

PMATH 351 Real Analysis, Exercises for Chapter 4: Separability and Completeness

1: (a) Let $c_0 = \{a \in \ell_\infty(\mathbb{R}) \mid \lim_{n \rightarrow \infty} a_n = 0\}$. Show that (c_0, d_∞) is separable.

(b) Show that $(\ell_\infty(\mathbb{C}), d_\infty)$ is complete.

2: (a) Show that $(\ell_2(\mathbb{R}), d_2)$ is separable.

(b) Show that $(\ell_2(\mathbb{C}), d_2)$ is complete.

3: (a) Show that $(\mathcal{B}([0, 1], \mathbb{C}), d_\infty)$ is not separable.

(b) Show that $(\mathcal{C}([-1, 1], \mathbb{R}), d_1)$ is not complete.

4: (Absolute convergence implies convergence) Let X be a normed linear space. For a sequence $(x_k)_{k \geq 1}$ in X , the n^{th} partial sum of $(x_k)_{k \geq 1}$ is the element $s_n = \sum_{k=1}^n x_k \in X$, the series $\sum_{k=1}^{\infty} x_k$ is, by definition, equal to the sequence of partial sums $(s_n)_{n \geq 1}$, we say the series $\sum_{k=1}^{\infty} x_k$ converges in X when the sequence of partial sums $(s_n)_{n \geq 1}$ converges in X and then the sum of the series (also denoted by $\sum_{k=1}^{\infty} x_k$) is defined to be the limit of the sequence of partial sums in X . Show that X is complete if and only if X has the property that for every sequence $(x_k)_{k \geq 1}$ in X , if $\sum_{k=1}^{\infty} \|x_k\|$ converges in \mathbb{R} then $\sum_{k=1}^{\infty} x_k$ converges in X .

5: Let X be a metric space.

(a) Show that X is complete if and only if every decreasing sequence of closed balls

$$\overline{B}(a_1, r_1) \supseteq \overline{B}(a_2, r_2) \supseteq \overline{B}(a_3, r_3) \supseteq \dots$$

in X with $r_n \rightarrow 0$ has a non-empty intersection.

(b) Show that the requirement in part (a) that $r_n \rightarrow 0$ is necessary.