PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 3

: (a) Define f,, : [0,1] = R by fn(z) =1—na for 0 <z < L and f,(z) =0 for L <z < 1. Show that f, — 0
in C[0, 1] using either of the metrics d; or da, but f,, /4 0 pointwise on [0, 1].

Solution: We have f,, — 0 in (C[0,1],dy) and f,, — 0 in (C[0,1],d2) by Part 5 of Theorem 3.2 because

Hn n 21/71 1
d1(fn,0) /|fn |dm—/0 1—nxdx—[ —§x]0 =s5-—0,and

1/n . 1/n
da(fn,0)* = /0 fn(2)? da :/0 1 —2nx +n?z? do = [x—nx2 + %zx‘g . = % — 0.

On the other hand, it is not the case that f,, — 0 pointwise on [0,1] because lim f,(0) = lim 1 =1.
n— o0

n—roo

(b) Define f,, : [0,1] = R by fu(z) = n?z —n®z? for 0 < 2 < L and f,(z) =0 for L <2 < 1. Show that
fn — 0 pointwise on [0,1] but f,, 4 0 in C[0, 1] using either of the metrics dy or ds.

Solution: We claim that f,, — 0 pointwise on [0,1]. When z = 0 we have f,(x) = f,(0) = 0 for all n € Z*
so that lim f,(z) = 0. Let « € (0,1]. Choose m € ZT large enough so that -- < z. Then for n > m we
n—oo

have + < L < 2. so that f,(x) = 0. Since f,(z) =0 for all n > m, we have lim f,(z) =0. Thus f, — 0
n—oo

pointwise on [0, 1], as claimed.
On the other hand, we have f, 4 0 in (C[0,1],d1) and f,, / 0 in (C[0,1],dz) by Part 5 of Theorem 3.2
because

1/n 1 /n

l/n
_ nda? — 9pdaB 6,4 7. _ |nt 3 _ n® 4, n® 5 _n
2(fn,0) /fn 2dx = / z“ —2n°z° +n’x dxf[?)x 2x+5x} = 35 — 00.

(c) Define f,, : [0,1] — R by f,(x) = y/naz". Show that (f,),>1 converges in (C[0,1],d;) but diverges in
(C[O7 1]7d2)

Solution: Note that f, — 0 in (C[0,1],d1) because
1
di(fn,0) / | frn(x \dx—/\/ﬁx dxf{n "“] :n—‘fl%().
On the other hand, in (C[O, 1], dg), notice that for all n € Z™ we have

1 1/2 1
I fr = fanlly = (/ (\/ﬁx" — \/4nx4")2dx) = (/ (nx —4n 2®" + 4n 28 )dm)
0 0

1/2 1 ..
) — = asn — o0,

1/2

_ n
- (2n+1 5n+1 + 8n+1

It follows that the sequence (f,,) cannot converge because if we had f,, — ¢ in C[0, 1] then we could choose
m € Z* so that when n > m we have || f, — g|l2 < ﬁ and then for n > m we would have

1= Fanlle < W = gl + g = Fanlle < 2 + 3% = 53

which contradicts the fact that ||f, — fin] — %



n
2: (a) For each n € Z%, let , = (pk)k>1 € R be given by z, = % e, where ey, is the k' standard
k=1

basis vector in R*° (so we have z,, 1, = k“ when £ < n and z,,, = 0 when k > n) Find lim ( lim xz, k)
n—oo " k—oo

in R, and find hm ( lim zp) in R, and determine whether the sequence (z,,),>1 converges in ({oo, dso)-

k—o0 " n—00
Solution: Given n € Z*, since z,,, = 0 for all k > n, we have hm T,k = 0, and so lim ( lim z, k) 0.
k— n—oo  k—oo
Given k € Z*, since z,, , = % for all n > k, we have lim z,; = il , SO hm ( lim =z, k) = lim % 1.
n— oo k—o0 " n—oo k—o0
We claim that (x,,) does not converge in ({o, doo). Suppose, for a contradlctlon7 that ©, — a in ({, doo)-
By Theorem 3.6, for all k € ZT we must have a;, = hm Tk = M and so a = (ag)k>1 = (%, %, é, Z, . )

For all n € Z* since zp, 1, = a, = % forkgnandxn,k—Ofork>n, we have |2, —ag| =0 for k <n
and |z, — ax| = EEL for k > n, and so ||z, — alle =sup {EE [k > n+1} = Zﬁ > 1. Since ||z, — al|eo >1
for all n € Z7, it follows that z,, /4 a in (£s, dw ), S0 We have obtained the desired contradiction.

(b) Let A C R and let ¢1(A) = {(an) € {1|each a, € A}. Show that ¢1(A) = ¢1(A) in ({1,d1).

Solution: Let a = (ag) € ¢1(A). For each n € ZT construct a sequence z, = (zp,x) € ¢1(A) (using the

Axiom of Choice) by choosing z,, 1, € B(ak, 2,}% ) N A (note that B(ak, 2,}+k ) N A is not empty since a, € A).

Then for all n, k we have |z, ; — ax| < 2n+,€ and so for all n, ||z, —al|; = Z |Zn. ke — ag] < Z 2n+k = 2%,
k=1

and so z, — a in (I1,d;). Thus a € ¢ (A), so we have (1 (A) C ¢1(A).
Now let a = (ag) 6 ¢1(A). We claim that each a; € A. Let r > 0. Choose b = (br) € ¢1(A) with

la — by < r, that is Z |ap, — bx| < r. Then for each k we have |ap — b| < Z lar, — bx| < r, and so
=0 k=0

bi, € Blag,r)N A. Thus each ay, € 4, as claimed, so a € £1(A), and hence ¢1(A) C ¢, (4).

(c) Let ¢ be the set of all convergent sequences of real numbers. Show that ¢ is closed and that the interior
of ¢ is empty in (loo, doo)-

Solution: Let (z,),>1 be a sequence in ¢ which converges in ({00, dn), and let @ = lim z, in (b, doo)-
- n— oo

Note that a € {5, means that a is a bounded sequence of real numbers, say a = (ax)r>1. By the Sequential
Characterization of Closed Sets, it suffices to show that a € ¢ or, in other words, that a converges in R.
For each n € Z*, we have x,, € ¢, which means that z, is a convergent sequence of real numbers, say
ZTp = (Tpk)k>1. Let € > 0. Since z,, = a in {o, we can choose, and fix, one value of n € Z* such that
lzn —all, < g, and then we have |z, — ax| < g for all indices k. Since (z,,x)r>1 converges in R, hence
is Cauchy in R, we can choose m € ZT such that for all k,¢ > m we have |z, — Tn | < % Then for all
k,¢ > m we have

lar, — ae| < lag — Tnpl + [Tpp — Tnel +|Tne —ad < §+5+5=c¢

Thus the sequence a = (ag)r>1 is Cauchy in R, so it converges in R, that is a € ¢ as required.

n

Let a € ¢, say a = (an)n>1. Let 7 > 0. Let © = (2,)n>1 be the sequence given by z, = a, + 5(—1)".
Then = € s (since |z,| < |an| + 5 for all n € ZT so that ||z < |la]l, + %) and # € Be(a,r) (since
|zp — an| = 5 for all n € Z" so that ||z —al|,, = 5) and = ¢ ¢ (since if we had = € ¢ then we would also
have x —a € ¢, but « — a is the sequence with terms z,, — a,, = %(—1)", which diverges). Thus for all » > 0,

the ball By, (a,r) is not contained in ¢, so a ¢ ¢ Since a € ¢ was arbitrary point, we have c® = (.



3: Let X and Y be metric spaces.

(a) Let A and B be closed sets in X with X = AUB,let f: A — Y and g : B — Y be continuous with
f(z) = g(z) for all z € AN B, and define h: X — Y by

|} f(z) , for z € A,
h(x)_{g(x),forxGB.

Show that A is continuous.
Solution: Let C' C Y be closed. Then
hHC) = fHC)ugTH(O),

is closed (since it is the union of two closed sets).

(b) Let A be a dense subset of X and let f,g: X — Y be continuous maps with f(z) = g(x) for all z € A.
Show that f(z) = g(x) for all z € X.

Solution: Let B = {z € X‘f(x) = g(z)}. Note that A C B. We claim that B is closed. Let a € B¢
so that f(a) # g(a). Let r = 3 dy (f(a),g(a))) so that By (f(a),r) N By (g(a),r) = 0. Since f and g are
continuous, the set U = f_l(By (f(a),r)) N g_l(By (g(a),r)) is open, and we have a € U. Choose s > 0
so that Bx(a,s) C U. Then for z € Bx(a,s), we have f(z) € By (f(a),r) and g(z) € By (g(a),r). Since
By (f(a),7) N By (g(a),r) = 0, we see that f(z) # g(x), so € B°. Thus B¢ is open, so B is closed, as
claimed. Since B is closed and A C B, we have A C B. But A is dense in X, so A = X, and so we have
X C B. Thus B = X, as required.

(c) Show that a map f: X — Y is continuous if and only if for every B C Y we have f~1(B°) C f~1(B)°.

Solution: Suppose that f is continuous. Since A° is open and f is continuous, f 1 (AO) is open. Since A° C A,
we have f~1(A°) C f~'(A). Since f~!(A°) is open and f~!(A°) C f1(A), we have f~!(A°) C f~1(A)°.

Conversely, suppose that for every A C Y we have ffl(Ao) C f~Y(A)°. Let U C Y be open. Then
U°=U,so f~1(U) = f~1(U°) C f~Y(U)°. Since f~1(U) C f~1(U)° and of course f~H(U)° C f~*(U), we
have that f~1(U) = f~1(U)°, so f~}(U) is open. Thus f is continuous.

(d) Show that a map f: X — Y is continuous if and only if for every A C X we have f(A) C f(A).
Solution: Suppose that f is continuous. Let A C X. Let b € f(A), say b = f(a) where a € A. We must

show that b € f(A). Let r > 0. Since By (b,7) is open and f is continuous, f~* (By (b, r)) is open, so we can
choose s > 0 so that Bx(a,s) C f~!(By(b,7)). Since a € A, we have Bx(a,s) N A # (), so we can choose
a point ¢ € Bx(a,s) N A. Since ¢ € Bx(a,s) C f~'(By(b,r)) we have f(c) € By (b,r), and since c € A we
have f(c) € f(A), and so f(c) € By (b,7) N f(A). Thus By (b,r) N f(A) # 0 and so b € f(A), as required.
Conversely, suppose that for every A C X we have f (X) C m Let B C Y be closed. We claim that
fYB) is closed. Let A = f~1(B). Note that f(A) C B. Let x € A. Then f(z) € f(A) C f(A)C B=B

and so x € f~1(B) = A. Thus A C A. Of course we also have A C A, so A = A, and so A is closed, as
claimed. Thus f is continuous.




4: (a) Let I : R™® — R* be the identity map given by I(z) = x for all x € R*°. Determine whether I is
continuous as a map I : (R, d;) — (R*°, dy) and whether I is continuous as a map I : (R*,ds) — (R, dy).

Solution: We claim that I is continuous as a map I : (R*°,dy) — (R*,dz). By Part 4 of Theorem 3.35, it
suffices to show that the closed ball B1(0,1) = {z € R* |||z[|; < 1} is bounded in (R*°,d3). Let x € R*®

(e} o0
with ||z||; < 1, that is with Y |zx| < 1. Since > |xx| < 1, we must have |xj| < 1 for all k € ZT, and hence
k=1 k=1

e} o0
2|2 < |@| for all k € ZT. Thus we have ||z]2> = 3. |#x|2 < 3 |zx] = ||z[1 < 1, and hence ||z]]2 < 1. Thus
k=1 k=1

the closed ball B1(0,1) is bounded in (R*,dz), and so [ is continuous as a map I : (R, d;) — (R*, da).

We claim that I is not continuous as a map I : (R, dz) — (R*,d;). By Part 4 of Theorem 3.35, it
suffices to show that the closed ball B3(0,1) = {z € R*|||z[|2 < 1} is unbounded in (R*,d;). Let n € Z*.

n2

Let x € R be given by x = %ek (so we have zj = % for 1 < k <n? and z; = 0 for £k > n™. Then
e} 2 = (o] TL2

lz2® = 3 |22 = 32 4 =1 hence ||z|[2 < 1, so we have © € B2(0,1). And [|z]; = > |ax| = X L =n.
k=1 k=1 k=1 k=

Thus Bz(0,1) is not bounded in (R*,d;), and so [ is not continuous as a map I : (R, dy) — (R*®

1
; dl)
(b) Determine whether the map G : (C[0,1],d1) — (R,d2) given by G(f) = f(0) is continuous.

Solution: We claim that G is not continuous. Since G is linear, it suffices to show that G(B1(0,1)) is not
bounded. For n > 1, define f, : [0,1] — R by

2n—2n2x, 0<zx

IA A
—_ 3

0 ;

1
Then ||fn]l1 = /0 |fu(z)|dz =1, s0 f,, € B1(0,1), but G(f») = f(0) = 2n, so G(B1(0,1)) is unbounded.

1
(c) Determine whether the map H : (C[0,1],d2) — (R, d2) given by H(f) = / f(z) dx is continuous.
0

Solution: We claim that H is continuous. Since H is linear, it suffices to show that I (EQ (0, 1)) is bounded.

1
Let f € B2(0,1) so we have || f||2 < 1, that is / f(z)?dx < 1. Then, since |y| < 1+y? for all y € R, we have
0

) = | [ swae|< [ene s [rsera=1s [ sera<e,

and so H(B3(0,1)) is bounded, as required.



5: Define F': C[0,1] - C[0, 1] by F(f)(x) = /Om Ji([’“;) dt.

(a) Determine whether F is continuous as a map from (C[0,1], ds) to (C[0,1], dso).
Solution: We claim that F : (C[0,1],dx) — (C[0,1], d) is continuous. Let f € C[0, 1] with || ||, < 1. Then

[tz

< max/ —dt— max {2\/1?} = max 2vz = 2.
0

z€[0,1] z€[0,1] z€[0,1]

1F ()l = max |F(£)()] = max

Since F' is linear and F (E(O, 1)) is bounded, it follows that F' is continuous.

(b) Determine whether F is continuous as a map from (C[0,1],d1) to (C[0,1],d1).

Solution: We claim that F : (C[0,1],d1) — (C[0,1],d;) is not continuous. For n € ZT define f, : [0,1] = R
by

1 1/n
Note that f,, is continuous and Hf”H1 = / fa(t)dt = {27115 — thQ} =1.For0<z< % we have
0 0

e fo(t T 9 JRT" ,
f() _ %72 n2VE dt = [4nt1/27%t3/2}0:4nx1/2 43 23/2

and in particular F(f,)(3) =4yn— 3v/n = %. For L <z <1 we have

1/n z 1/n
F(fn)(x)Z/O f\(/i)dlf-i-/l/ Odt:/o Ji([’?dtzF(fn)(i)zsf-

Thus
F(fn) an )| dx > —Sﬁdac Lﬁ( )—>ooasn—>oo
1 m 3 3

Since F' is linear and F (E(O, 1)) is unbounded, it follows that F' is not continuous.



6: (a) Show that (R?,d;) and (R?,d.) are isometric.

Solution: An isometry from (R?,d;) to (R?,ds) should send the square By (0, 1) to the square B, (0,1). We
define f : R? — R? to be the composite of the rotation about the origin by 45° with the scaling by v/2, so
fis given by f(z,y) = (x —y,x + y). This map f is bijective; its inverse ¢ is the composite of the rotation
about the origin by —45° with the scaling by %, given by g(z,y) = (%ry, %“’) For u = (x,y) € R?,

If@lloe = [ f @)l = [z = g2+ )|, = max {o —yl, |z +yl} = 2] + |y = ||z, )|, = lull
and so for u,v € R?,

doo (f(u), f(v)) = [|£(w) = f)| , = [[f(w=v)]| = llu—v]1 = di(u,v).

Thus f preserves distance, so it is an isometry.

(b) Show that (R3,ds) is not isometric to either (R3,d;) or (R?,dx,).

Solution: (R3,dy) cannot be isometric to either (R?,d;) or (R3, dy) because in (R?,d2) we can have at most
4 points z; with da(z;,x;) = 1 for all i # j, but in (R%,dy) we have the 6 points +(3,0,0), £(0, 3,0),
:I:(O,O7 %), and in (R3,d.) we have the 8 points (ey, e, e3) with each e; € {0,1}.

(c) Define F : (R?,d) — (C[0,27],dw) by F(rcosa,rsina)(t) = rcos(t + ), where r,o0 € R with r > 0.
Show that F is an isometry from R? to F(R?).

Solution: We claim that F' is injective. Suppose that (r cos o, rsina) = F(scos 3, ssin ) in C[0, 2], where
r,s > 0 and «, 8 € R. Then we have rcos(t + a) = scos(t + ) = g(¢) for all t € [0, 2x]. It follows that we
have r = s = max {|g(t)||0 < ¢ < 27} = ||g||oo, and we have cos(t + &) = cos(t + f3) for all ¢ € [0, 2] so that
a = B mod 27. Thus we have (rcosa,rsina) = (scosf3,ssin3) in R?, and so F is injective as claimed.
Next, we claim that F preserves distance. By the Law of Cosines, the distance between u = (r cos «, r sin )
and v = (scos 3, ssin 3) in R? is given by

d(u,v) = /12 + 52 — 2rscos(f — a).
On the other hand, the distance between F(u) and F(v) is

doo (F(u), F(v)) = ||F(u) — F(U)Hoo = terr{gg;} |7 cos(t + a) — scos(t + B)| .

For A, B,t € R we have
Acost+ Bsint = v A2 + B%ﬁ cost + ﬁsint)
=/ A2 + B? cos(t + ¢),
where ¢ is the angle with cos¢ = ﬁ and sin¢ = ﬁ, and so

rcos(t + o) — scos(t + 8) = rcostcosa — rsintsina — scostcos 8 + ssintsin 4
= (rcosa — scos ) cost + (ssin 8 — rsina)sint
=V A2+ B2cos(t + ¢),

where A =rcosa — scos and B = ssin 8 — rsina and ¢ is as above. Thus we have

doo (F(u), F(v)) = max] |V A2 + B2 cos(t + ¢)|

tel0,2m
=\A?2+ B2

= /(rcosa — scos §)2 + (ssin B — rsina)?

= \/7"2 cos? o — 2rscos accos f + s2 cos? f + s2sin? B — 2rssinasin f + r2sin? o

= /12 + 52 — 2rscos(f — )
= d(u, v) .




