

PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 3

1: (a) Define $f_n : [0, 1] \rightarrow \mathbb{R}$ by $f_n(x) = 1 - nx$ for $0 \leq x \leq \frac{1}{n}$ and $f_n(x) = 0$ for $\frac{1}{n} \leq x \leq 1$. Show that $f_n \rightarrow 0$ in $\mathcal{C}[0, 1]$ using either of the metrics d_1 or d_2 , but $f_n \not\rightarrow 0$ pointwise on $[0, 1]$.

Solution: We have $f_n \rightarrow 0$ in $(\mathcal{C}[0, 1], d_1)$ and $f_n \rightarrow 0$ in $(\mathcal{C}[0, 1], d_2)$ by Part 5 of Theorem 3.2 because

$$d_1(f_n, 0) = \int_0^1 |f_n(x)| dx = \int_0^{1/n} 1 - nx dx = \left[x - \frac{n}{2} x^2 \right]_0^{1/n} = \frac{1}{2n} \rightarrow 0, \text{ and}$$

$$d_2(f_n, 0)^2 = \int_0^1 f_n(x)^2 dx = \int_0^{1/n} 1 - 2nx + n^2 x^2 dx = \left[x - nx^2 + \frac{n^2}{3} x^3 \right]_0^{1/n} = \frac{1}{3n} \rightarrow 0.$$

On the other hand, it is not the case that $f_n \rightarrow 0$ pointwise on $[0, 1]$ because $\lim_{n \rightarrow \infty} f_n(0) = \lim_{n \rightarrow \infty} 1 = 1$.

(b) Define $f_n : [0, 1] \rightarrow \mathbb{R}$ by $f_n(x) = n^2 x - n^3 x^2$ for $0 \leq x \leq \frac{1}{n}$ and $f_n(x) = 0$ for $\frac{1}{n} \leq x \leq 1$. Show that $f_n \rightarrow 0$ pointwise on $[0, 1]$ but $f_n \not\rightarrow 0$ in $\mathcal{C}[0, 1]$ using either of the metrics d_1 or d_2 .

Solution: We claim that $f_n \rightarrow 0$ pointwise on $[0, 1]$. When $x = 0$ we have $f_n(x) = f_n(0) = 0$ for all $n \in \mathbb{Z}^+$ so that $\lim_{n \rightarrow \infty} f_n(x) = 0$. Let $x \in (0, 1]$. Choose $m \in \mathbb{Z}^+$ large enough so that $\frac{1}{m} < x$. Then for $n \geq m$ we have $\frac{1}{n} \leq \frac{1}{m} < x$. so that $f_n(x) = 0$. Since $f_n(x) = 0$ for all $n \geq m$, we have $\lim_{n \rightarrow \infty} f_n(x) = 0$. Thus $f_n \rightarrow 0$ pointwise on $[0, 1]$, as claimed.

On the other hand, we have $f_n \not\rightarrow 0$ in $(\mathcal{C}[0, 1], d_1)$ and $f_n \not\rightarrow 0$ in $(\mathcal{C}[0, 1], d_2)$ by Part 5 of Theorem 3.2 because

$$d_1(f_n, 0) = \int_0^1 |f_n(x)| dx = \int_0^{1/n} n^2 x - n^3 x^2 dx = \left[\frac{n^2}{2} x^2 - \frac{n^3}{3} x^3 \right]_0^{1/n} = \frac{1}{6}, \text{ and}$$

$$d_2(f_n, 0)^2 = \int_0^1 f_n(x)^2 dx = \int_0^{1/n} n^4 x^2 - 2n^5 x^3 + n^6 x^4 dx = \left[\frac{n^4}{3} x^3 - \frac{n^5}{2} x^4 + \frac{n^6}{5} x^5 \right]_0^{1/n} = \frac{n}{30} \rightarrow \infty.$$

(c) Define $f_n : [0, 1] \rightarrow \mathbb{R}$ by $f_n(x) = \sqrt{n} x^n$. Show that $(f_n)_{n \geq 1}$ converges in $(\mathcal{C}[0, 1], d_1)$ but diverges in $(\mathcal{C}[0, 1], d_2)$.

Solution: Note that $f_n \rightarrow 0$ in $(\mathcal{C}[0, 1], d_1)$ because

$$d_1(f_n, 0) = \int_0^1 |f_n(x)| dx = \int_0^1 \sqrt{n} x^n dx = \left[\frac{\sqrt{n}}{n+1} x^{n+1} \right]_0^1 = \frac{\sqrt{n}}{n+1} \rightarrow 0.$$

On the other hand, in $(\mathcal{C}[0, 1], d_2)$, notice that for all $n \in \mathbb{Z}^+$ we have

$$\begin{aligned} \|f_n - f_{4n}\|_2 &= \left(\int_0^1 (\sqrt{n} x^n - \sqrt{4n} x^{4n})^2 dx \right)^{1/2} = \left(\int_0^1 (n x^{2n} - 4n x^{5n} + 4n x^{8n}) dx \right)^{1/2} \\ &= \left(\frac{n}{2n+1} - \frac{4n}{5n+1} + \frac{4n}{8n+1} \right)^{1/2} \rightarrow \frac{1}{\sqrt{5}} \text{ as } n \rightarrow \infty. \end{aligned}$$

It follows that the sequence (f_n) cannot converge because if we had $f_n \rightarrow g$ in $\mathcal{C}[0, 1]$ then we could choose $m \in \mathbb{Z}^+$ so that when $n \geq m$ we have $\|f_n - g\|_2 < \frac{1}{4\sqrt{5}}$ and then for $n \geq m$ we would have

$$\|f_n - f_{4n}\|_2 \leq \|f_n - g\|_2 + \|g - f_{4n}\|_2 < \frac{1}{4\sqrt{5}} + \frac{1}{4\sqrt{5}} = \frac{1}{2\sqrt{5}}$$

which contradicts the fact that $\|f_n - f_{4n}\| \rightarrow \frac{1}{\sqrt{5}}$.

2: (a) For each $n \in \mathbb{Z}^+$, let $x_n = (x_{n,k})_{k \geq 1} \in \mathbb{R}^\infty$ be given by $x_n = \sum_{k=1}^n \frac{k+1}{k} e_k$, where e_k is the k^{th} standard basis vector in \mathbb{R}^∞ (so we have $x_{n,k} = \frac{k+1}{k}$ when $k \leq n$ and $x_{n,k} = 0$ when $k > n$). Find $\lim_{n \rightarrow \infty} (\lim_{k \rightarrow \infty} x_{n,k})$ in \mathbb{R} , and find $\lim_{k \rightarrow \infty} (\lim_{n \rightarrow \infty} x_{n,k})$ in \mathbb{R} , and determine whether the sequence $(x_n)_{n \geq 1}$ converges in (ℓ_∞, d_∞) .

Solution: Given $n \in \mathbb{Z}^+$, since $x_{n,k} = 0$ for all $k > n$, we have $\lim_{k \rightarrow \infty} x_{n,k} = 0$, and so $\lim_{n \rightarrow \infty} (\lim_{k \rightarrow \infty} x_{n,k}) = 0$. Given $k \in \mathbb{Z}^+$, since $x_{n,k} = \frac{k+1}{k}$ for all $n \geq k$, we have $\lim_{n \rightarrow \infty} x_{n,k} = \frac{k+1}{k}$, so $\lim_{k \rightarrow \infty} (\lim_{n \rightarrow \infty} x_{n,k}) = \lim_{k \rightarrow \infty} \frac{k+1}{k} = 1$. We claim that (x_n) does not converge in (ℓ_∞, d_∞) . Suppose, for a contradiction, that $x_n \rightarrow a$ in (ℓ_∞, d_∞) . By Theorem 3.6, for all $k \in \mathbb{Z}^+$ we must have $a_k = \lim_{n \rightarrow \infty} x_{n,k} = \frac{k+1}{k}$, and so $a = (a_k)_{k \geq 1} = (\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots)$. For all $n \in \mathbb{Z}^+$ since $x_{n,k} = a_k = \frac{k+1}{k}$ for $k \leq n$ and $x_{n,k} = 0$ for $k > n$, we have $|x_{n,k} - a_k| = 0$ for $k \leq n$ and $|x_{n,k} - a_k| = \frac{k+1}{k}$ for $k > n$, and so $\|x_n - a\|_\infty = \sup \{ \frac{k+1}{k} \mid k \geq n+1 \} = \frac{n+2}{n+1} > 1$. Since $\|x_n - a\|_\infty > 1$ for all $n \in \mathbb{Z}^+$, it follows that $x_n \not\rightarrow a$ in (ℓ_∞, d_∞) , so we have obtained the desired contradiction.

(b) Let $A \subseteq \mathbb{R}$ and let $\ell_1(A) = \{(a_n) \in \ell_1 \mid \text{each } a_n \in A\}$. Show that $\overline{\ell_1(A)} = \ell_1(\overline{A})$ in (ℓ_1, d_1) .

Solution: Let $a = (a_k) \in \ell_1(\overline{A})$. For each $n \in \mathbb{Z}^+$ construct a sequence $x_n = (x_{n,k}) \in \ell_1(A)$ (using the Axiom of Choice) by choosing $x_{n,k} \in B(a_k, \frac{1}{2^{n+k}}) \cap A$ (note that $B(a_k, \frac{1}{2^{n+k}}) \cap A$ is not empty since $a_k \in \overline{A}$). Then for all n, k we have $|x_{n,k} - a_k| \leq \frac{1}{2^{n+k}}$ and so for all n , $\|x_n - a\|_1 = \sum_{k=1}^{\infty} |x_{n,k} - a_k| \leq \sum_{k=1}^{\infty} \frac{1}{2^{n+k}} = \frac{1}{2^n}$, and so $x_n \rightarrow a$ in (ℓ_1, d_1) . Thus $a \in \overline{\ell_1(A)}$, so we have $\ell_1(\overline{A}) \subseteq \overline{\ell_1(A)}$.

Now let $a = (a_k) \in \overline{\ell_1(A)}$. We claim that each $a_k \in \overline{A}$. Let $r > 0$. Choose $b = (b_k) \in \ell_1(A)$ with $|a - b|_1 < r$, that is $\sum_{k=0}^{\infty} |a_k - b_k| < r$. Then for each k we have $|a_k - b_k| \leq \sum_{k=0}^{\infty} |a_k - b_k| < r$, and so $b_k \in B(a_k, r) \cap A$. Thus each $a_k \in \overline{A}$, as claimed, so $a \in \ell_1(\overline{A})$, and hence $\overline{\ell_1(A)} \subseteq \ell_1(\overline{A})$.

(c) Let c be the set of all convergent sequences of real numbers. Show that c is closed and that the interior of c is empty in (ℓ_∞, d_∞) .

Solution: Let $(x_n)_{n \geq 1}$ be a sequence in c which converges in (ℓ_∞, d_∞) , and let $a = \lim_{n \rightarrow \infty} x_n$ in (ℓ_∞, d_∞) . Note that $a \in \ell_\infty$ means that a is a bounded sequence of real numbers, say $a = (a_k)_{k \geq 1}$. By the Sequential Characterization of Closed Sets, it suffices to show that $a \in c$ or, in other words, that a converges in \mathbb{R} . For each $n \in \mathbb{Z}^+$, we have $x_n \in c$, which means that x_n is a convergent sequence of real numbers, say $x_n = (x_{n,k})_{k \geq 1}$. Let $\epsilon > 0$. Since $x_n \rightarrow a$ in ℓ_∞ we can choose, and fix, one value of $n \in \mathbb{Z}^+$ such that $\|x_n - a\|_\infty < \frac{\epsilon}{3}$, and then we have $|x_{n,k} - a_k| < \frac{\epsilon}{3}$ for all indices k . Since $(x_{n,k})_{k \geq 1}$ converges in \mathbb{R} , hence is Cauchy in \mathbb{R} , we can choose $m \in \mathbb{Z}^+$ such that for all $k, \ell \geq m$ we have $|x_{n,k} - x_{n,\ell}| < \frac{\epsilon}{3}$. Then for all $k, \ell \geq m$ we have

$$|a_k - a_\ell| \leq |a_k - x_{n,k}| + |x_{n,k} - x_{n,\ell}| + |x_{n,\ell} - a_\ell| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus the sequence $a = (a_k)_{k \geq 1}$ is Cauchy in \mathbb{R} , so it converges in \mathbb{R} , that is $a \in c$ as required.

Let $a \in c$, say $a = (a_n)_{n \geq 1}$. Let $r > 0$. Let $x = (x_n)_{n \geq 1}$ be the sequence given by $x_n = a_n + \frac{r}{2}(-1)^n$. Then $x \in \ell_\infty$ (since $|x_n| \leq |a_n| + \frac{r}{2}$ for all $n \in \mathbb{Z}^+$ so that $\|x\|_\infty \leq \|a\|_\infty + \frac{r}{2}$) and $x \in B_\infty(a, r)$ (since $|x_n - a_n| = \frac{r}{2}$ for all $n \in \mathbb{Z}^+$ so that $\|x - a\|_\infty = \frac{r}{2}$) and $x \notin c$ (since if we had $x \in c$ then we would also have $x - a \in c$, but $x - a$ is the sequence with terms $x_n - a_n = \frac{r}{2}(-1)^n$, which diverges). Thus for all $r > 0$, the ball $B_\infty(a, r)$ is not contained in c , so $a \notin c^\circ$. Since $a \in c$ was arbitrary point, we have $c^\circ = \emptyset$.

3: Let X and Y be metric spaces.

(a) Let A and B be closed sets in X with $X = A \cup B$, let $f : A \rightarrow Y$ and $g : B \rightarrow Y$ be continuous with $f(x) = g(x)$ for all $x \in A \cap B$, and define $h : X \rightarrow Y$ by

$$h(x) = \begin{cases} f(x) & \text{, for } x \in A, \\ g(x) & \text{, for } x \in B. \end{cases}$$

Show that h is continuous.

Solution: Let $C \subseteq Y$ be closed. Then

$$h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C),$$

is closed (since it is the union of two closed sets).

(b) Let A be a dense subset of X and let $f, g : X \rightarrow Y$ be continuous maps with $f(x) = g(x)$ for all $x \in A$. Show that $f(x) = g(x)$ for all $x \in X$.

Solution: Let $B = \{x \in X \mid f(x) = g(x)\}$. Note that $A \subseteq B$. We claim that B is closed. Let $a \in B^c$ so that $f(a) \neq g(a)$. Let $r = \frac{1}{2}d_Y(f(a), g(a))$ so that $B_Y(f(a), r) \cap B_Y(g(a), r) = \emptyset$. Since f and g are continuous, the set $U = f^{-1}(B_Y(f(a), r)) \cap g^{-1}(B_Y(g(a), r))$ is open, and we have $a \in U$. Choose $s > 0$ so that $B_X(a, s) \subseteq U$. Then for $x \in B_X(a, s)$, we have $f(x) \in B_Y(f(a), r)$ and $g(x) \in B_Y(g(a), r)$. Since $B_Y(f(a), r) \cap B_Y(g(a), r) = \emptyset$, we see that $f(x) \neq g(x)$, so $x \in B^c$. Thus B^c is open, so B is closed, as claimed. Since B is closed and $A \subseteq B$, we have $\overline{A} \subseteq B$. But A is dense in X , so $\overline{A} = X$, and so we have $X \subseteq B$. Thus $B = X$, as required.

(c) Show that a map $f : X \rightarrow Y$ is continuous if and only if for every $B \subseteq Y$ we have $f^{-1}(B^\circ) \subseteq f^{-1}(B)^\circ$.

Solution: Suppose that f is continuous. Since A° is open and f is continuous, $f^{-1}(A^\circ)$ is open. Since $A^\circ \subseteq A$, we have $f^{-1}(A^\circ) \subseteq f^{-1}(A)$. Since $f^{-1}(A^\circ)$ is open and $f^{-1}(A^\circ) \subseteq f^{-1}(A)$, we have $f^{-1}(A^\circ) \subseteq f^{-1}(A)^\circ$.

Conversely, suppose that for every $A \subseteq Y$ we have $f^{-1}(A^\circ) \subseteq f^{-1}(A)^\circ$. Let $U \subseteq Y$ be open. Then $U^\circ = U$, so $f^{-1}(U) = f^{-1}(U^\circ) \subseteq f^{-1}(U)^\circ$. Since $f^{-1}(U) \subseteq f^{-1}(U)^\circ$ and of course $f^{-1}(U)^\circ \subseteq f^{-1}(U)$, we have that $f^{-1}(U) = f^{-1}(U)^\circ$, so $f^{-1}(U)$ is open. Thus f is continuous.

(d) Show that a map $f : X \rightarrow Y$ is continuous if and only if for every $A \subseteq X$ we have $f(\overline{A}) \subseteq \overline{f(A)}$.

Solution: Suppose that f is continuous. Let $A \subseteq X$. Let $b \in f(\overline{A})$, say $b = f(a)$ where $a \in \overline{A}$. We must show that $b \in \overline{f(A)}$. Let $r > 0$. Since $B_Y(b, r)$ is open and f is continuous, $f^{-1}(B_Y(b, r))$ is open, so we can choose $s > 0$ so that $B_X(a, s) \subseteq f^{-1}(B_Y(b, r))$. Since $a \in \overline{A}$, we have $B_X(a, s) \cap A \neq \emptyset$, so we can choose a point $c \in B_X(a, s) \cap A$. Since $c \in B_X(a, s) \subseteq f^{-1}(B_Y(b, r))$ we have $f(c) \in B_Y(b, r)$, and since $c \in A$ we have $f(c) \in f(A)$, and so $f(c) \in B_Y(b, r) \cap f(A)$. Thus $B_Y(b, r) \cap f(A) \neq \emptyset$ and so $b \in \overline{f(A)}$, as required.

Conversely, suppose that for every $A \subseteq X$ we have $f(\overline{A}) \subseteq \overline{f(A)}$. Let $B \subseteq Y$ be closed. We claim that $f^{-1}(B)$ is closed. Let $A = f^{-1}(B)$. Note that $f(A) \subseteq B$. Let $x \in \overline{A}$. Then $f(x) \in f(\overline{A}) \subseteq \overline{f(A)} \subseteq \overline{B} = B$ and so $x \in f^{-1}(B) = A$. Thus $\overline{A} \subseteq A$. Of course we also have $A \subseteq \overline{A}$, so $A = \overline{A}$, and so A is closed, as claimed. Thus f is continuous.

4: (a) Let $I : \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ be the identity map given by $I(x) = x$ for all $x \in \mathbb{R}^\infty$. Determine whether I is continuous as a map $I : (\mathbb{R}^\infty, d_1) \rightarrow (\mathbb{R}^\infty, d_2)$ and whether I is continuous as a map $I : (\mathbb{R}^\infty, d_2) \rightarrow (\mathbb{R}^\infty, d_1)$.

Solution: We claim that I is continuous as a map $I : (\mathbb{R}^\infty, d_1) \rightarrow (\mathbb{R}^\infty, d_2)$. By Part 4 of Theorem 3.35, it suffices to show that the closed ball $\overline{B}_1(0, 1) = \{x \in \mathbb{R}^\infty \mid \|x\|_1 \leq 1\}$ is bounded in (\mathbb{R}^∞, d_2) . Let $x \in \mathbb{R}^\infty$ with $\|x\|_1 \leq 1$, that is with $\sum_{k=1}^{\infty} |x_k| \leq 1$. Since $\sum_{k=1}^{\infty} |x_k| \leq 1$, we must have $|x_k| \leq 1$ for all $k \in \mathbb{Z}^+$, and hence $|x_k|^2 \leq |x_k|$ for all $k \in \mathbb{Z}^+$. Thus we have $\|x\|_2^2 = \sum_{k=1}^{\infty} |x_k|^2 \leq \sum_{k=1}^{\infty} |x_k| = \|x\|_1 \leq 1$, and hence $\|x\|_2 \leq 1$. Thus the closed ball $\overline{B}_1(0, 1)$ is bounded in (\mathbb{R}^∞, d_2) , and so I is continuous as a map $I : (\mathbb{R}^\infty, d_1) \rightarrow (\mathbb{R}^\infty, d_2)$.

We claim that I is not continuous as a map $I : (\mathbb{R}^\infty, d_2) \rightarrow (\mathbb{R}^\infty, d_1)$. By Part 4 of Theorem 3.35, it suffices to show that the closed ball $\overline{B}_2(0, 1) = \{x \in \mathbb{R}^\infty \mid \|x\|_2 \leq 1\}$ is unbounded in (\mathbb{R}^∞, d_1) . Let $n \in \mathbb{Z}^+$.

Let $x \in \mathbb{R}^\infty$ be given by $x = \sum_{k=1}^{n^2} \frac{1}{n} e_k$ (so we have $x_k = \frac{1}{n}$ for $1 \leq k \leq n^2$ and $x_k = 0$ for $k > n^2$). Then $\|x\|_2^2 = \sum_{k=1}^{\infty} |x_k|^2 = \sum_{k=1}^{n^2} \frac{1}{n^2} = 1$ hence $\|x\|_2 \leq 1$, so we have $x \in \overline{B}_2(0, 1)$. And $\|x\|_1 = \sum_{k=1}^{\infty} |x_k| = \sum_{k=1}^{n^2} \frac{1}{n} = n$. Thus $\overline{B}_2(0, 1)$ is not bounded in (\mathbb{R}^∞, d_1) , and so I is not continuous as a map $I : (\mathbb{R}^\infty, d_2) \rightarrow (\mathbb{R}^\infty, d_1)$.

(b) Determine whether the map $G : (\mathcal{C}[0, 1], d_1) \rightarrow (\mathbb{R}, d_2)$ given by $G(f) = f(0)$ is continuous.

Solution: We claim that G is not continuous. Since G is linear, it suffices to show that $G(\overline{B}_1(0, 1))$ is not bounded. For $n \geq 1$, define $f_n : [0, 1] \rightarrow \mathbb{R}$ by

$$f_n(x) = \begin{cases} 2n - 2n^2x, & 0 \leq x \leq \frac{1}{n} \\ 0, & \frac{1}{n} \leq x \leq 1. \end{cases}$$

Then $\|f_n\|_1 = \int_0^1 |f_n(x)| dx = 1$, so $f_n \in \overline{B}_1(0, 1)$, but $G(f_n) = f_n(0) = 2n$, so $G(\overline{B}_1(0, 1))$ is unbounded.

(c) Determine whether the map $H : (\mathcal{C}[0, 1], d_2) \rightarrow (\mathbb{R}, d_2)$ given by $H(f) = \int_0^1 f(x) dx$ is continuous.

Solution: We claim that H is continuous. Since H is linear, it suffices to show that $H(\overline{B}_2(0, 1))$ is bounded.

Let $f \in \overline{B}_2(0, 1)$ so we have $\|f\|_2 \leq 1$, that is $\int_0^1 f(x)^2 dx \leq 1$. Then, since $|y| \leq 1+y^2$ for all $y \in \mathbb{R}$, we have

$$|H(f)| = \left| \int_0^1 f(x) dx \right| \leq \int_0^1 |f(x)| dx \leq \int_0^1 1+f(x)^2 dx = 1 + \int_0^1 f(x)^2 dx \leq 2,$$

and so $H(\overline{B}_2(0, 1))$ is bounded, as required.

5: Define $F : \mathcal{C}[0, 1] \rightarrow \mathcal{C}[0, 1]$ by $F(f)(x) = \int_0^x \frac{f(t)}{\sqrt{t}} dt$.

(a) Determine whether F is continuous as a map from $(\mathcal{C}[0, 1], d_\infty)$ to $(\mathcal{C}[0, 1], d_\infty)$.

Solution: We claim that $F : (\mathcal{C}[0, 1], d_\infty) \rightarrow (\mathcal{C}[0, 1], d_\infty)$ is continuous. Let $f \in \mathcal{C}[0, 1]$ with $\|f\|_\infty \leq 1$. Then

$$\begin{aligned} \|F(f)\|_\infty &= \max_{x \in [0, 1]} |F(f)(x)| = \max_{x \in [0, 1]} \left| \int_0^x \frac{f(t)}{\sqrt{t}} dt \right| \leq \max_{x \in [0, 1]} \int_0^x \frac{|f(t)|}{\sqrt{t}} dt \\ &\leq \max_{x \in [0, 1]} \int_0^1 \frac{1}{\sqrt{t}} dt = \max_{x \in [0, 1]} \left[2\sqrt{t} \right]_0^x = \max_{x \in [0, 1]} 2\sqrt{x} = 2. \end{aligned}$$

Since F is linear and $F(\overline{B}(0, 1))$ is bounded, it follows that F is continuous.

(b) Determine whether F is continuous as a map from $(\mathcal{C}[0, 1], d_1)$ to $(\mathcal{C}[0, 1], d_1)$.

Solution: We claim that $F : (\mathcal{C}[0, 1], d_1) \rightarrow (\mathcal{C}[0, 1], d_1)$ is not continuous. For $n \in \mathbb{Z}^+$ define $f_n : [0, 1] \rightarrow \mathbb{R}$ by

$$f_n(t) = \begin{cases} 2n - 2n^2t, & 0 \leq t \leq \frac{1}{n} \\ 0, & \frac{1}{n} \leq t \leq 1. \end{cases}$$

Note that f_n is continuous and $\|f_n\|_1 = \int_0^1 f_n(t) dt = \left[2n t - n^2 t^2 \right]_0^{1/n} = 1$. For $0 \leq x \leq \frac{1}{n}$ we have

$$F(f_n)(x) = \int_0^x \frac{f_n(t)}{\sqrt{t}} dt = \int_0^x \frac{2n}{\sqrt{t}} - 2n^2 \sqrt{t} dt = \left[4n t^{1/2} - \frac{4n^2}{3} t^{3/2} \right]_0^x = 4n x^{1/2} - \frac{4n^2}{3} x^{3/2},$$

and in particular $F(f_n)(\frac{1}{n}) = 4\sqrt{n} - \frac{4}{3}\sqrt{n} = \frac{8\sqrt{n}}{3}$. For $\frac{1}{n} \leq x \leq 1$ we have

$$F(f_n)(x) = \int_0^{1/n} \frac{f_n(t)}{\sqrt{t}} dt + \int_{1/n}^x 0 dt = \int_0^{1/n} \frac{f_n(t)}{\sqrt{t}} dt = F(f_n)(\frac{1}{n}) = \frac{8\sqrt{n}}{3}.$$

Thus

$$\|F(f_n)\|_1 = \int_0^1 |F(f_n)(x)| dx \geq \int_{1/n}^1 \frac{8\sqrt{n}}{3} dx = \frac{8\sqrt{n}(1 - \frac{1}{n})}{3} \rightarrow \infty \text{ as } n \rightarrow \infty.$$

Since F is linear and $F(\overline{B}(0, 1))$ is unbounded, it follows that F is not continuous.

6: (a) Show that (\mathbb{R}^2, d_1) and (\mathbb{R}^2, d_∞) are isometric.

Solution: An isometry from (\mathbb{R}^2, d_1) to (\mathbb{R}^2, d_∞) should send the square $B_1(0, 1)$ to the square $B_\infty(0, 1)$. We define $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ to be the composite of the rotation about the origin by 45° with the scaling by $\sqrt{2}$, so f is given by $f(x, y) = (x - y, x + y)$. This map f is bijective; its inverse g is the composite of the rotation about the origin by -45° with the scaling by $\frac{1}{\sqrt{2}}$, given by $g(x, y) = \left(\frac{x+y}{2}, \frac{-x+y}{2}\right)$. For $u = (x, y) \in \mathbb{R}^2$,

$$\|f(u)\|_\infty = \|f(x, y)\|_\infty = \|(x - y, x + y)\|_\infty = \max\{|x - y|, |x + y|\} = |x| + |y| = \|(x, y)\|_1 = \|u\|_1,$$

and so for $u, v \in \mathbb{R}^2$,

$$d_\infty(f(u), f(v)) = \|f(u) - f(v)\|_\infty = \|f(u - v)\|_\infty = \|u - v\|_1 = d_1(u, v).$$

Thus f preserves distance, so it is an isometry.

(b) Show that (\mathbb{R}^3, d_2) is not isometric to either (\mathbb{R}^3, d_1) or (\mathbb{R}^3, d_∞) .

Solution: (\mathbb{R}^3, d_2) cannot be isometric to either (\mathbb{R}^3, d_1) or (\mathbb{R}^3, d_∞) because in (\mathbb{R}^3, d_2) we can have at most 4 points x_i with $d_2(x_i, x_j) = 1$ for all $i \neq j$, but in (\mathbb{R}^3, d_1) we have the 6 points $\pm(\frac{1}{2}, 0, 0)$, $\pm(0, \frac{1}{2}, 0)$, $\pm(0, 0, \frac{1}{2})$, and in (\mathbb{R}^3, d_∞) we have the 8 points (e_1, e_2, e_3) with each $e_i \in \{0, 1\}$.

(c) Define $F : (\mathbb{R}^2, d_2) \rightarrow (\mathcal{C}[0, 2\pi], d_\infty)$ by $F(r \cos \alpha, r \sin \alpha)(t) = r \cos(t + \alpha)$, where $r, \alpha \in \mathbb{R}$ with $r \geq 0$. Show that F is an isometry from \mathbb{R}^2 to $F(\mathbb{R}^2)$.

Solution: We claim that F is injective. Suppose that $(r \cos \alpha, r \sin \alpha) = F(s \cos \beta, s \sin \beta)$ in $\mathcal{C}[0, 2\pi]$, where $r, s \geq 0$ and $\alpha, \beta \in \mathbb{R}$. Then we have $r \cos(t + \alpha) = s \cos(t + \beta) = g(t)$ for all $t \in [0, 2\pi]$. It follows that we have $r = s = \max\{|g(t)| \mid 0 \leq t \leq 2\pi\} = \|g\|_\infty$, and we have $\cos(t + \alpha) = \cos(t + \beta)$ for all $t \in [0, 2\pi]$ so that $\alpha = \beta \pmod{2\pi}$. Thus we have $(r \cos \alpha, r \sin \alpha) = (s \cos \beta, s \sin \beta)$ in \mathbb{R}^2 , and so F is injective as claimed. Next, we claim that F preserves distance. By the Law of Cosines, the distance between $u = (r \cos \alpha, r \sin \alpha)$ and $v = (s \cos \beta, s \sin \beta)$ in \mathbb{R}^2 is given by

$$d(u, v) = \sqrt{r^2 + s^2 - 2rs \cos(\beta - \alpha)}.$$

On the other hand, the distance between $F(u)$ and $F(v)$ is

$$d_\infty(F(u), F(v)) = \|F(u) - F(v)\|_\infty = \max_{t \in [0, 2\pi]} |r \cos(t + \alpha) - s \cos(t + \beta)|.$$

For $A, B, t \in \mathbb{R}$ we have

$$\begin{aligned} A \cos t + B \sin t &= \sqrt{A^2 + B^2} \left(\frac{A}{\sqrt{A^2 + B^2}} \cos t + \frac{B}{\sqrt{A^2 + B^2}} \sin t \right) \\ &= \sqrt{A^2 + B^2} \cos(t + \phi), \end{aligned}$$

where ϕ is the angle with $\cos \phi = \frac{A}{\sqrt{A^2 + B^2}}$ and $\sin \phi = \frac{B}{\sqrt{A^2 + B^2}}$, and so

$$\begin{aligned} r \cos(t + \alpha) - s \cos(t + \beta) &= r \cos t \cos \alpha - r \sin t \sin \alpha - s \cos t \cos \beta + s \sin t \sin \beta \\ &= (r \cos \alpha - s \cos \beta) \cos t + (s \sin \beta - r \sin \alpha) \sin t \\ &= \sqrt{A^2 + B^2} \cos(t + \phi), \end{aligned}$$

where $A = r \cos \alpha - s \cos \beta$ and $B = s \sin \beta - r \sin \alpha$ and ϕ is as above. Thus we have

$$\begin{aligned} d_\infty(F(u), F(v)) &= \max_{t \in [0, 2\pi]} |\sqrt{A^2 + B^2} \cos(t + \phi)| \\ &= \sqrt{A^2 + B^2} \\ &= \sqrt{(r \cos \alpha - s \cos \beta)^2 + (s \sin \beta - r \sin \alpha)^2} \\ &= \sqrt{r^2 \cos^2 \alpha - 2rs \cos \alpha \cos \beta + s^2 \cos^2 \beta + s^2 \sin^2 \beta - 2rs \sin \alpha \sin \beta + r^2 \sin^2 \alpha} \\ &= \sqrt{r^2 + s^2 - 2rs \cos(\beta - \alpha)} \\ &= d(u, v). \end{aligned}$$