
PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 3

1: (a) Define fn : [0, 1]→ R by fn(x) = 1− nx for 0 ≤ x ≤ 1
n and fn(x) = 0 for 1

n ≤ x ≤ 1. Show that fn → 0
in C[0, 1] using either of the metrics d1 or d2, but fn 6→ 0 pointwise on [0, 1].

Solution: We have fn → 0 in
(
C[0, 1], d1

)
and fn → 0 in

(
C[0, 1], d2

)
by Part 5 of Theorem 3.2 because

d1(fn, 0) =

∫ 1

0

|fn(x)| dx =

∫ 1/n

0

1− nx dx =
[
x− n

2 x
2
]1/n
0

= 1
2n → 0 , and

d2(fn, 0)2 =

∫ 1

0

fn(x)2 dx =

∫ 1/n

0

1− 2nx+ n2x2 dx =
[
x− nx2 + n2

3 x3
]1/n
0

= 1
3n → 0.

On the other hand, it is not the case that fn → 0 pointwise on [0, 1] because lim
n→∞

fn(0) = lim
n→∞

1 = 1.

(b) Define fn : [0, 1] → R by fn(x) = n2x − n3x2 for 0 ≤ x ≤ 1
n and fn(x) = 0 for 1

n ≤ x ≤ 1. Show that
fn → 0 pointwise on [0, 1] but fn 6→ 0 in C[0, 1] using either of the metrics d1 or d2.

Solution: We claim that fn → 0 pointwise on [0, 1]. When x = 0 we have fn(x) = fn(0) = 0 for all n ∈ Z+

so that lim
n→∞

fn(x) = 0. Let x ∈ (0, 1]. Choose m ∈ Z+ large enough so that 1
m < x. Then for n ≥ m we

have 1
n ≤

1
m < x. so that fn(x) = 0. Since fn(x) = 0 for all n ≥ m, we have lim

n→∞
fn(x) = 0. Thus fn → 0

pointwise on [0, 1], as claimed.
On the other hand, we have fn 6→ 0 in

(
C[0, 1], d1

)
and fn 6→ 0 in

(
C[0, 1], d2

)
by Part 5 of Theorem 3.2

because

d1(fn, 0) =

∫ 1

0

|fn(x)| dx =

∫ 1/n

0

n2x− n3x2 dx =
[
n2

2 x
2 − n3

3 x
3
]1/n
0

= 1
6 , and

d2(fn, 0)2 =

∫ 1

0

fn(x)2 dx =

∫ 1/n

0

n4x2 − 2n5x3 + n6x4 dx =
[
n4

3 x
3 − n5

2 x
4 + n6

5 x
5
]1/n
0

= n
30 →∞.

(c) Define fn : [0, 1] → R by fn(x) =
√
nxn. Show that (fn)n≥1 converges in

(
C[0, 1], d1

)
but diverges in(

C[0, 1], d2
)
.

Solution: Note that fn → 0 in
(
C[0, 1], d1

)
because

d1(fn, 0) =

∫ 1

0

|fn(x)| dx =

∫ 1

0

√
nxn dx =

[ √
n

n+1x
n+1
]1
0

=
√
n

n+1 → 0.

On the other hand, in
(
C[0, 1], d2

)
, notice that for all n ∈ Z+ we have

‖fn − f4n‖2 =

(∫ 1

0

(√
nxn −

√
4nx4n

)2
dx

)1/2

=

(∫ 1

0

(
nx2n − 4nx5n + 4nx8n

)
dx

)1/2

=
(

n
2n+1 −

4n
5n+1 + 4n

8n+1

)1/2 → 1√
5

as n→∞.

It follows that the sequence (fn) cannot converge because if we had fn → g in C[0, 1] then we could choose
m ∈ Z+ so that when n ≥ m we have ‖fn − g‖2 < 1

4
√
5

and then for n ≥ m we would have

‖fn − f4n‖2 ≤ ‖fn − g‖2 + ‖g − f4n‖2 < 1
4
√
5

+ 1
4
√
5

= 1
2
√
5

which contradicts the fact that ‖fn − f4n‖ → 1√
5
.



2: (a) For each n ∈ Z+, let xn = (xn,k)k≥1 ∈ R∞ be given by xn =
n∑
k=1

k+1
k ek, where ek is the kth standard

basis vector in R∞
(
so we have xn,k = k+1

k when k ≤ n and xn,k = 0 when k > n
)
. Find lim

n→∞

(
lim
k→∞

xn,k
)

in R, and find lim
k→∞

(
lim
n→∞

xn,k
)

in R, and determine whether the sequence (xn)n≥1 converges in (`∞, d∞).

Solution: Given n ∈ Z+, since xn,k = 0 for all k > n, we have lim
k→∞

xn,k = 0, and so lim
n→∞

(
lim
k→∞

xn,k
)

= 0.

Given k ∈ Z+, since xn,k = k+1
k for all n ≥ k, we have lim

n→∞
xn,k = k+1

k , so lim
k→∞

(
lim
n→∞

xn,k
)

= lim
k→∞

k+1
k = 1.

We claim that (xn) does not converge in (`∞, d∞). Suppose, for a contradiction, that xn → a in (`∞, d∞).
By Theorem 3.6, for all k ∈ Z+ we must have ak = lim

n→∞
xn,k = k+1

k , and so a = (ak)k≥1 =
(
2
1 ,

3
2 ,

4
3 ,

5
4 , · · ·

)
.

For all n ∈ Z+ since xn,k = ak = k+1
k for k ≤ n and xn,k = 0 for k > n, we have |xn,k − ak| = 0 for k ≤ n

and |xn,k − ak| = k+1
k for k > n, and so ‖xn− a‖∞ = sup

{
k+1
k

∣∣k ≥ n+ 1
}

= n+2
n+1 > 1. Since ‖xn− a‖∞ > 1

for all n ∈ Z+, it follows that xn 6→ a in (`∞, d∞), so we have obtained the desired contradiction.

(b) Let A ⊆ R and let `1(A) =
{

(an) ∈ `1
∣∣ each an ∈ A

}
. Show that `1(A) = `1

(
A
)

in (`1, d1).

Solution: Let a = (ak) ∈ `1
(
A
)
. For each n ∈ Z+ construct a sequence xn = (xn,k) ∈ `1(A) (using the

Axiom of Choice) by choosing xn,k ∈ B
(
ak,

1
2n+k

)
∩A (note that B

(
ak,

1
2n+k

)
∩A is not empty since ak ∈ A).

Then for all n, k we have |xn,k − ak| ≤ 1
2n+k and so for all n, ‖xn − a‖1 =

∞∑
k=1

|xn,k − ak| ≤
∞∑
k=1

1
2n+k = 1

2n ,

and so xn → a in (l1, d1). Thus a ∈ `1(A), so we have `1
(
A
)
⊆ `1(A).

Now let a = (ak) ∈ `1(A). We claim that each ak ∈ A. Let r > 0. Choose b = (bk) ∈ `1(A) with

|a − b|1 < r, that is
∞∑
k=0

|ak − bk| < r. Then for each k we have |ak − bk| ≤
∞∑
k=0

|ak − bk| < r, and so

bk ∈ B(ak, r) ∩A. Thus each ak ∈ A, as claimed, so a ∈ `1
(
A
)
, and hence `1(A) ⊆ `1

(
A
)
.

(c) Let c be the set of all convergent sequences of real numbers. Show that c is closed and that the interior
of c is empty in

(
`∞, d∞

)
.

Solution: Let (xn)n≥1 be a sequence in c which converges in (`∞, d∞), and let a = lim
n→∞

xn in (`∞, d∞).

Note that a ∈ `∞ means that a is a bounded sequence of real numbers, say a = (ak)k≥1. By the Sequential
Characterization of Closed Sets, it suffices to show that a ∈ c or, in other words, that a converges in R.
For each n ∈ Z+, we have xn ∈ c, which means that xn is a convergent sequence of real numbers, say
xn = (xn,k)k≥1. Let ε > 0. Since xn → a in `∞ we can choose, and fix, one value of n ∈ Z+ such that
‖xn − a‖∞ < ε

3 , and then we have |xn,k − ak| < ε
3 for all indices k. Since (xn,k)k≥1 converges in R, hence

is Cauchy in R, we can choose m ∈ Z+ such that for all k, ` ≥ m we have |xn,k − xn,`| < ε
3 . Then for all

k, ` ≥ m we have

|ak − a`| ≤ |ak − xn,k|+ |xn,k − xn,`|+ |xn,` − a`| < ε
3 + ε

3 + ε
3 = ε.

Thus the sequence a = (ak)k≥1 is Cauchy in R, so it converges in R, that is a ∈ c as required.

Let a ∈ c, say a = (an)n≥1. Let r > 0. Let x = (xn)n≥1 be the sequence given by xn = an + r
2 (−1)n.

Then x ∈ `∞
(
since |xn| ≤ |an| + r

2 for all n ∈ Z+ so that ‖x‖∞ ≤ ‖a‖∞ + r
2

)
and x ∈ B∞(a, r)

(
since

|xn − an| = r
2 for all n ∈ Z+ so that ‖x− a‖∞ = r

2

)
and x /∈ c

(
since if we had x ∈ c then we would also

have x− a ∈ c, but x− a is the sequence with terms xn− an = r
2 (−1)n, which diverges

)
. Thus for all r > 0,

the ball B∞(a, r) is not contained in c, so a /∈ co Since a ∈ c was arbitrary point, we have co = ∅.



3: Let X and Y be metric spaces.

(a) Let A and B be closed sets in X with X = A ∪ B, let f : A → Y and g : B → Y be continuous with
f(x) = g(x) for all x ∈ A ∩B, and define h : X → Y by

h(x) =

{
f(x) , for x ∈ A,
g(x) , for x ∈ B .

Show that h is continuous.

Solution: Let C ⊆ Y be closed. Then

h−1(C) = f−1(C) ∪ g−1(C) ,

is closed (since it is the union of two closed sets).

(b) Let A be a dense subset of X and let f, g : X → Y be continuous maps with f(x) = g(x) for all x ∈ A.
Show that f(x) = g(x) for all x ∈ X.

Solution: Let B =
{
x ∈ X

∣∣f(x) = g(x)
}

. Note that A ⊆ B. We claim that B is closed. Let a ∈ Bc

so that f(a) 6= g(a). Let r = 1
2 dY

(
f(a), g(a))

)
so that BY

(
f(a), r

)
∩ BY

(
g(a), r

)
= ∅. Since f and g are

continuous, the set U = f−1
(
BY
(
f(a), r

))
∩ g−1

(
BY
(
g(a), r

))
is open, and we have a ∈ U . Choose s > 0

so that BX(a, s) ⊆ U . Then for x ∈ BX(a, s), we have f(x) ∈ BY
(
f(a), r

)
and g(x) ∈ BY

(
g(a), r

)
. Since

BY
(
f(a), r

)
∩ BY

(
g(a), r

)
= ∅, we see that f(x) 6= g(x), so x ∈ Bc. Thus Bc is open, so B is closed, as

claimed. Since B is closed and A ⊆ B, we have A ⊆ B. But A is dense in X, so A = X, and so we have
X ⊆ B. Thus B = X, as required.

(c) Show that a map f : X → Y is continuous if and only if for every B ⊆ Y we have f−1(B◦) ⊆ f−1(B)◦.

Solution: Suppose that f is continuous. Since A◦ is open and f is continuous, f−1
(
A◦
)

is open. Since A◦ ⊆ A,

we have f−1
(
A◦
)
⊆ f−1(A). Since f−1

(
A◦
)

is open and f−1
(
A◦
)
⊆ f−1(A), we have f−1

(
A◦
)
⊆ f−1(A)◦.

Conversely, suppose that for every A ⊆ Y we have f−1
(
A◦
)
⊆ f−1(A)◦. Let U ⊆ Y be open. Then

U◦ = U , so f−1(U) = f−1
(
U◦
)
⊆ f−1(U)◦. Since f−1(U) ⊆ f−1(U)◦ and of course f−1(U)◦ ⊆ f−1(U), we

have that f−1(U) = f−1(U)◦, so f−1(U) is open. Thus f is continuous.

(d) Show that a map f : X → Y is continuous if and only if for every A ⊆ X we have f
(
A
)
⊆ f(A).

Solution: Suppose that f is continuous. Let A ⊆ X. Let b ∈ f
(
A
)
, say b = f(a) where a ∈ A. We must

show that b ∈ f(A). Let r > 0. Since BY (b, r) is open and f is continuous, f−1
(
BY (b, r)

)
is open, so we can

choose s > 0 so that BX(a, s) ⊆ f−1
(
BY (b, r)

)
. Since a ∈ A, we have BX(a, s) ∩ A 6= ∅, so we can choose

a point c ∈ BX(a, s) ∩ A. Since c ∈ BX(a, s) ⊆ f−1
(
BY (b, r)

)
we have f(c) ∈ BY (b, r), and since c ∈ A we

have f(c) ∈ f(A), and so f(c) ∈ BY (b, r) ∩ f(A). Thus BY (b, r) ∩ f(A) 6= ∅ and so b ∈ f(A), as required.

Conversely, suppose that for every A ⊆ X we have f
(
A
)
⊆ f(A). Let B ⊆ Y be closed. We claim that

f−1(B) is closed. Let A = f−1(B). Note that f(A) ⊆ B. Let x ∈ A. Then f(x) ∈ f(A) ⊆ f(A) ⊆ B = B

and so x ∈ f−1(B) = A. Thus A ⊆ A. Of course we also have A ⊆ A, so A = A, and so A is closed, as
claimed. Thus f is continuous.



4: (a) Let I : R∞ → R∞ be the identity map given by I(x) = x for all x ∈ R∞. Determine whether I is
continuous as a map I : (R∞, d1)→ (R∞, d2) and whether I is continuous as a map I : (R∞, d2)→ (R∞, d1).

Solution: We claim that I is continuous as a map I : (R∞, d1) → (R∞, d2). By Part 4 of Theorem 3.35, it
suffices to show that the closed ball B1(0, 1) =

{
x ∈ R∞

∣∣ ‖x‖1 ≤ 1
}

is bounded in (R∞, d2). Let x ∈ R∞

with ‖x‖1 ≤ 1, that is with
∞∑
k=1

|xk| ≤ 1. Since
∞∑
k=1

|xk| ≤ 1, we must have |xk| ≤ 1 for all k ∈ Z+, and hence

|xk|2 ≤ |xk| for all k ∈ Z+. Thus we have ‖x‖22 =
∞∑
k=1

|xk|2 ≤
∞∑
k=1

|xk| = ‖x‖1 ≤ 1, and hence ‖x‖2 ≤ 1. Thus

the closed ball B1(0, 1) is bounded in (R∞, d2), and so I is continuous as a map I : (R∞, d1)→ (R∞, d2).

We claim that I is not continuous as a map I : (R∞, d2) → (R∞, d1). By Part 4 of Theorem 3.35, it
suffices to show that the closed ball B2(0, 1) =

{
x ∈ R∞

∣∣ ‖x‖2 ≤ 1
}

is unbounded in (R∞, d1). Let n ∈ Z+.

Let x ∈ R∞ be given by x =
n2∑
k=1

1
nek

(
so we have xk = 1

n for 1 ≤ k ≤ n2 and xk = 0 for k > nn. Then

‖x‖22 =
∞∑
k=1

|xk|2 =
n2∑
k=1

1
n2 = 1 hence ‖x‖2 ≤ 1, so we have x ∈ B2(0, 1). And ‖x‖1 =

∞∑
k=1

|xk| =
n2∑
k=1

1
n = n.

Thus B2(0, 1) is not bounded in (R∞, d1), and so I is not continuous as a map I : (R∞, d2)→ (R∞, d1).

(b) Determine whether the map G :
(
C[0, 1], d1

)
→
(
R, d2

)
given by G(f) = f(0) is continuous.

Solution: We claim that G is not continuous. Since G is linear, it suffices to show that G
(
B1(0, 1)

)
is not

bounded. For n ≥ 1, define fn : [0, 1]→ R by

fn(x) =

{
2n− 2n2x , 0 ≤ x ≤ 1

n

0 , 1
n ≤ x ≤ 1 .

Then ‖fn‖1 =

∫ 1

0

|fn(x)| dx = 1, so fn ∈ B1(0, 1), but G(fn) = fn(0) = 2n, so G
(
B1(0, 1)

)
is unbounded.

(c) Determine whether the map H :
(
C[0, 1], d2

)
→ (R, d2) given by H(f) =

∫ 1

0

f(x) dx is continuous.

Solution: We claim that H is continuous. Since H is linear, it suffices to show that H
(
B2(0, 1)

)
is bounded.

Let f ∈ B2(0, 1) so we have ‖f‖2 ≤ 1, that is

∫ 1

0

f(x)2dx ≤ 1. Then, since |y| ≤ 1+y2 for all y ∈ R, we have

∣∣H(f)
∣∣ =

∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)| dx ≤
∫ 1

0

1+f(x)2 dx = 1 +

∫ 1

0

f(x)2 dx ≤ 2 ,

and so H
(
B2(0, 1)

)
is bounded, as required.



5: Define F : C[0, 1]→ C[0, 1] by F (f)(x) =

∫ x

0

f(t)√
t
dt.

(a) Determine whether F is continuous as a map from
(
C[0, 1], d∞

)
to
(
C[0, 1], d∞

)
.

Solution: We claim that F :
(
C[0, 1], d∞

)
→
(
C[0, 1], d∞

)
is continuous. Let f ∈ C[0, 1] with ‖f‖∞ ≤ 1. Then∥∥F (f)

∥∥
∞ = max

x∈[0,1]

∣∣F (f)(x)
∣∣ = max

x∈[0,1]

∣∣∣∣∫ x

0

f(t)√
t
dt

∣∣∣∣ ≤ max
x∈[0,1]

∫ x

0

|f(t)|√
t
dt

≤ max
x∈[0,1]

∫ 1

0

1√
t
dt = max

x∈[0,1]

[
2
√
t
]x
0

= max
x∈[0,1]

2
√
x = 2 .

Since F is linear and F
(
B(0, 1)

)
is bounded, it follows that F is continuous.

(b) Determine whether F is continuous as a map from
(
C[0, 1], d1

)
to
(
C[0, 1], d1

)
.

Solution: We claim that F :
(
C[0, 1], d1

)
→
(
C[0, 1], d1

)
is not continuous. For n ∈ Z+ define fn : [0, 1]→ R

by

fn(t) =

{
2n− 2n2t , 0 ≤ t ≤ 1

n

0 , 1
n ≤ t ≤ 1 .

Note that fn is continuous and
∥∥fn∥∥1 =

∫ 1

0

fn(t) dt =
[
2n t− n2t2

]1/n
0

= 1 . For 0 ≤ x ≤ 1
n we have

F (fn)(x) =

∫ x

0

fn(t)√
t
dt =

∫ x

0

2n√
t
− 2n2

√
t dt =

[
4n t1/2 − 4n2

3 t3/2
]x
0

= 4nx1/2 − 4n2

3 x3/2 ,

and in particular F (fn)
(
1
n

)
= 4
√
n− 4

3

√
n = 8

√
n

3 . For 1
n ≤ x ≤ 1 we have

F (fn)(x) =

∫ 1/n

0

f(t)√
t
dt+

∫ x

1/n

0 dt =

∫ 1/n

0

f(t)√
t
dt = F (fn)

(
1
n

)
= 8
√
n

3 .

Thus ∥∥F (fn)
∥∥
1

=

∫ 1

0

∣∣F (fn)(x)
∣∣ dx ≥ ∫ 1

1/n

8
√
n

3 dx =
8
√
n
(
1− 1

n

)
3 −→∞ as n→∞ .

Since F is linear and F
(
B(0, 1)

)
is unbounded, it follows that F is not continuous.



6: (a) Show that (R2, d1) and (R2, d∞) are isometric.

Solution: An isometry from (R2, d1) to (R2, d∞) should send the square B1(0, 1) to the square B∞(0, 1). We
define f : R2 → R2 to be the composite of the rotation about the origin by 45◦ with the scaling by

√
2, so

f is given by f(x, y) = (x− y, x+ y). This map f is bijective; its inverse g is the composite of the rotation
about the origin by −45◦ with the scaling by 1√

2
, given by g(x, y) =

(
x+y
2 , −x+y2

)
. For u = (x, y) ∈ R2,

‖f(u)‖∞ =
∥∥f(x, y)

∥∥
∞ =

∥∥(x− y, x+ y)
∥∥
∞ = max

{
|x− y|, |x+ y|

}
= |x|+ |y| =

∥∥(x, y)
∥∥
1

= ‖u‖1 ,

and so for u, v ∈ R2,

d∞
(
f(u), f(v)

)
=
∥∥f(u)− f(v)

∥∥
∞ =

∥∥f(u− v)
∥∥
∞ = ‖u− v‖1 = d1(u, v) .

Thus f preserves distance, so it is an isometry.

(b) Show that (R3, d2) is not isometric to either (R3, d1) or (R3, d∞).

Solution: (R3, d2) cannot be isometric to either (R3, d1) or (R3, d∞) because in (R3, d2) we can have at most
4 points xi with d2(xi, xj) = 1 for all i 6= j, but in (R3, d1) we have the 6 points ±

(
1
2 , 0, 0

)
, ±
(
0, 12 , 0

)
,

±
(
0, 0, 12

)
, and in (R3, d∞) we have the 8 points (e1, e2, e3) with each ei ∈ {0, 1}.

(c) Define F : (R2, d2) →
(
C[0, 2π], d∞

)
by F (r cosα, r sinα)(t) = r cos(t + α), where r, α ∈ R with r ≥ 0.

Show that F is an isometry from R2 to F (R2).

Solution: We claim that F is injective. Suppose that (r cosα, r sinα) = F (s cosβ, s sinβ) in C[0, 2π], where
r, s ≥ 0 and α, β ∈ R. Then we have r cos(t + α) = s cos(t + β) = g(t) for all t ∈ [0, 2π]. It follows that we
have r = s = max

{
|g(t)|

∣∣0 ≤ t ≤ 2π
}

= ‖g‖∞, and we have cos(t+ α) = cos(t+ β) for all t ∈ [0, 2π] so that
α = β mod 2π. Thus we have (r cosα, r sinα) = (s cosβ, s sinβ) in R2, and so F is injective as claimed.
Next, we claim that F preserves distance. By the Law of Cosines, the distance between u = (r cosα, r sinα)
and v = (s cosβ, s sinβ) in R2 is given by

d(u, v) =
√
r2 + s2 − 2rs cos(β − α) .

On the other hand, the distance between F (u) and F (v) is

d∞
(
F (u), F (v)

)
=
∥∥F (u)− F (v)

∥∥
∞ = max

t∈[0,2π]

∣∣r cos(t+ α)− s cos(t+ β)
∣∣ .

For A,B, t ∈ R we have

A cos t+B sin t =
√
A2 +B2

(
A√

A2+B2
cos t+ B√

A2+B2
sin t

)
=
√
A2 +B2 cos(t+ φ) ,

where φ is the angle with cosφ = A√
A2+B2

and sinφ = B√
A2+B2

, and so

r cos(t+ α)− s cos(t+ β) = r cos t cosα− r sin t sinα− s cos t cosβ + s sin t sinβ

= (r cosα− s cosβ) cos t+ (s sinβ − r sinα) sin t

=
√
A2 +B2 cos(t+ φ) ,

where A = r cosα− s cosβ and B = s sinβ − r sinα and φ is as above. Thus we have

d∞
(
F (u), F (v)

)
= max
t∈[0,2π]

∣∣√A2 +B2 cos(t+ φ)
∣∣

=
√
A2 +B2

=
√

(r cosα− s cosβ)2 + (s sinβ − r sinα)2

=

√
r2 cos2 α− 2rs cosα cosβ + s2 cos2 β + s2 sin2 β − 2rs sinα sinβ + r2 sin2 α

=
√
r2 + s2 − 2rs cos(β − α)

= d(u, v) .


