

PMATH 351 Real Analysis, Exercises for Chapter 3: Limits and Continuity

1: (a) Define $f_n : [0, 1] \rightarrow \mathbb{R}$ by $f_n(x) = 1 - nx$ for $0 \leq x \leq \frac{1}{n}$ and $f_n(x) = 0$ for $\frac{1}{n} \leq x \leq 1$. Show that $f_n \rightarrow 0$ in $\mathcal{C}[0, 1]$ using either of the metrics d_1 or d_2 , but $f_n \not\rightarrow 0$ pointwise on $[0, 1]$.

(b) Define $f_n : [0, 1] \rightarrow \mathbb{R}$ by $f_n(x) = n^2x - n^3x^2$ for $0 \leq x \leq \frac{1}{n}$ and $f_n(x) = 0$ for $\frac{1}{n} \leq x \leq 1$. Show that $f_n \rightarrow 0$ pointwise on $[0, 1]$ but $f_n \not\rightarrow 0$ in $\mathcal{C}[0, 1]$ using either of the metrics d_1 or d_2 .

(c) Define $f_n : [0, 1] \rightarrow \mathbb{R}$ by $f_n(x) = \sqrt{n}x^n$. Show that $(f_n)_{n \geq 1}$ converges in $(\mathcal{C}[0, 1], d_1)$ but diverges in $(\mathcal{C}[0, 1], d_2)$.

2: (a) For each $n \in \mathbb{Z}^+$, let $x_n = (x_{n,k})_{k \geq 1} \in \mathbb{R}^\infty$ be given by $x_n = \sum_{k=1}^n \frac{k+1}{k} e_k$, where e_k is the k^{th} standard basis vector in \mathbb{R}^∞ (so we have $x_{n,k} = \frac{k+1}{k}$ when $k \leq n$ and $x_{n,k} = 0$ when $k > n$). Find $\lim_{n \rightarrow \infty} (\lim_{k \rightarrow \infty} x_{n,k})$ in \mathbb{R} , and find $\lim_{k \rightarrow \infty} (\lim_{n \rightarrow \infty} x_{n,k})$ in \mathbb{R} , and determine whether the sequence $(x_n)_{n \geq 1}$ converges in (ℓ_∞, d_∞) .

(b) Let $A \subseteq \mathbb{R}$ and let $\ell_1(A) = \{(a_n) \in \ell_1 \mid \text{each } a_n \in A\}$. Show that $\overline{\ell_1(A)} = \ell_1(\overline{A})$ in (ℓ_1, d_1) .

(c) Let c be the set of all convergent sequences of real numbers. Show that c is closed and that the interior of c is empty in (ℓ_∞, d_∞) .

3: Let X and Y be metric spaces.

(a) Let A and B be closed sets in X with $X = A \cup B$, let $f : A \rightarrow Y$ and $g : B \rightarrow Y$ be continuous with $f(x) = g(x)$ for all $x \in A \cap B$, and define $h : X \rightarrow Y$ by

$$h(x) = \begin{cases} f(x) & \text{, for } x \in A, \\ g(x) & \text{, for } x \in B. \end{cases}$$

Show that h is continuous.

(b) Let A be a dense subset of X and let $f, g : X \rightarrow Y$ be continuous maps with $f(x) = g(x)$ for all $x \in A$. Show that $f(x) = g(x)$ for all $x \in X$.

(c) Show that a map $f : X \rightarrow Y$ is continuous if and only if for every $B \subseteq Y$ we have $f^{-1}(B^\circ) \subseteq f^{-1}(B)^\circ$.

(d) Show that a map $f : X \rightarrow Y$ is continuous if and only if for every $A \subseteq X$ we have $f(\overline{A}) \subseteq \overline{f(A)}$.

4: (a) Let $I : \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ be the identity map given by $I(x) = x$ for all $x \in \mathbb{R}^\infty$. Determine whether I is continuous as a map $I : (\mathbb{R}^\infty, d_1) \rightarrow (\mathbb{R}^\infty, d_2)$ and whether I is continuous as a map $I : (\mathbb{R}^\infty, d_2) \rightarrow (\mathbb{R}^\infty, d_1)$.

(b) Determine whether the map $G : (\mathcal{C}[0, 1], d_1) \rightarrow (\mathbb{R}, d_2)$ given by $G(f) = f(0)$ is continuous.

(c) Determine whether the map $H : (\mathcal{C}[0, 1], d_2) \rightarrow (\mathbb{R}, d_2)$ given by $H(f) = \int_0^1 f(x) dx$ is continuous.

5: Define $F : \mathcal{C}[0, 1] \rightarrow \mathcal{C}[0, 1]$ by $F(f)(x) = \int_0^x \frac{f(t)}{\sqrt{t}} dt$.

(a) Determine whether F is continuous as a map from $(\mathcal{C}[0, 1], d_\infty)$ to $(\mathcal{C}[0, 1], d_\infty)$.

(b) Determine whether F is continuous as a map from $(\mathcal{C}[0, 1], d_1)$ to $(\mathcal{C}[0, 1], d_1)$.

6: (a) Show that (\mathbb{R}^2, d_1) and (\mathbb{R}^2, d_∞) are isometric.

(b) Show that (\mathbb{R}^3, d_2) is not isometric to either (\mathbb{R}^3, d_1) or (\mathbb{R}^3, d_∞) .

(c) Define $F : (\mathbb{R}^2, d_2) \rightarrow (\mathcal{C}[0, 2\pi], d_\infty)$ by $F(r \cos \alpha, r \sin \alpha)(t) = r \cos(t + \alpha)$, where $r, \alpha \in \mathbb{R}$ with $r \geq 0$. Show that F is an isometry from \mathbb{R}^2 to $F(\mathbb{R}^2)$.