

PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 2

1: Determine which of the following functions $d : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are metrics on \mathbb{R} .

(a) $d(x, y) = (x - y)^2$

Solution: This is not a metric on \mathbb{R} since it does not satisfy the triangle inequality. For example, if $x = 0$, $y = 1$ and $z = 2$ then $d(x, y) + d(y, z) = 1 + 1 = 2 < 4 = d(x, z)$.

(b) $d(x, y) = \sqrt{|x - y|}$

Solution: This is a metric on \mathbb{R} . It is clearly positive definite and symmetric, and for $x, y, z \in \mathbb{R}$ we have

$$\begin{aligned} d(x, z) &= \sqrt{|x - z|} \\ &\leq \sqrt{|x - y| + |y - z|}, \text{ by the triangle inequality in } \mathbb{R} \\ &\leq \sqrt{|x - y|} + \sqrt{|y - z|}, \text{ by the triangle inequality in } \mathbb{R}^2 \\ &= d(x, y) + d(y, z). \end{aligned}$$

(c) $d(x, y) = |x^2 - y^2|$

Solution: This is not a metric on \mathbb{R} since it is not positive definite. For example, if $x = 1$ and $y = -1$ then we have $d(x, y) = 0$ but $x \neq y$.

(d) $d(x, y) = \frac{|x - y|}{1 + |x - y|}$

Solution: This is a metric. More generally, if d_1 is any metric on a set X , and if $F : [0, \infty) \rightarrow [0, \infty)$ is any function which satisfies

- (1) $F(x) \geq 0$ for all $x \geq 0$, with $F(x) = 0 \iff x = 0$,
- (2) $F(x) \leq F(y)$ for all $x \leq y \in \mathbb{R}$, and
- (3) $F(x + y) \leq F(x) + F(y)$ for all $x, y \geq 0$,

then the map $d_2(x, y) = F(d_1(x, y))$ is also a metric. Indeed property (1) ensures that d_2 is positive-definite, we need no requirement on F to ensure that d_2 is symmetric, and properties (2) and (3) ensure that d_2 satisfies the triangle inequality, since for $x, y, z \in \mathbb{R}$ we have

$$\begin{aligned} d_2(x, z) &= F(d_1(x, z)) \leq F(d_1(x, y) + d_1(y, z)), \text{ using property (2)} \\ &\leq F(d_1(x, y)) + F(d_1(y, z)), \text{ using property (3)} \\ &= d_2(x, y) + d_2(y, z). \end{aligned}$$

We note that if $F(0) = 0$, and $F'(t) > 0$ for all $t \geq 0$, then F satisfies properties (1) and (2), and if in addition $F''(t) < 0$ for all $t \geq 0$, then F also satisfies property (3). Indeed, say $0 \leq x \leq y \leq x + y$. Using the Mean Value Theorem, choose a with $0 \leq a \leq x$ so that $F(x) - F(0) = F'(a)(x - 0)$, that is $F(x) = F'(a)x$, and choose b with $y \leq b \leq x + y$ so that $F(x + y) - F(y) = F'(b)(x + y - y)$, that is $F(x + y) - F(y) = F'(b)x$. Since $F''(t) < 0$ for all $t \geq 0$, $F'(t)$ is decreasing, so

$$a \leq b \implies F'(b) \geq F'(a) \implies F'(b)x \geq F'(a)x \implies F(x + y) - F(y) \geq F(x).$$

When d_1 is the standard metric on \mathbb{R} and $F(t) = \frac{t}{1+t}$, we have $F(0) = 0$, $F'(t) = \frac{1}{(1+t)^2} > 0$ for all $t \geq 0$ and $F''(t) = \frac{-2}{(1+t)^3} < 0$ for all $t \geq 0$, and we have $d = d_2$.

2: (a) Let $S = \{(x, y) \in \mathbb{R}^2 \mid y > x^2\}$. Prove, from the definition of an open set, that S is open in \mathbb{R}^2 .

Solution: Let $(a, b) \in S$ so we have $b > a^2$ and hence $\sqrt{b} > |a|$. Let $r = \min\left(\frac{b-a^2}{2}, \frac{\sqrt{b}-|a|}{2}\right)$. We claim that $B((a, b), r) \subseteq S$. Let $(x, y) \in B((a, b), r)$. Note that

$$|x - a| \leq \sqrt{(x - a)^2 + (y - b)^2} = d((a, b), (x, y)) < r \leq \frac{\sqrt{b}-|a|}{2}$$

and similarly

$$|y - b| < r \leq \frac{b-a^2}{2}.$$

It follows that $|x| - |a| \leq |x - a| < \frac{\sqrt{b}-|a|}{2}$ so that $|x| \leq \frac{\sqrt{b}+|a|}{2}$ and that $b - y \leq |y - b| < \frac{b-a^2}{2}$ so that $y > \frac{b+a^2}{2}$. Note that $0 \leq (\sqrt{b} - |a|)^2 = b + a^2 - 2|a|\sqrt{b}$ so we have $2|a|\sqrt{b} \leq b + a^2$. It follows that

$$x^2 < \left(\frac{\sqrt{b}+|a|}{2}\right)^2 = \frac{b+a^2+2|a|\sqrt{b}}{4} \leq \frac{b+a^2}{2} < y.$$

Since $y > x^2$ we have $(x, y) \in S$. This shows that $B((a, b), r) \subseteq S$, as claimed, and so S is open.

(b) Define $f : \mathbb{R} \rightarrow \mathbb{R}^2$ by $f(t) = \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1}\right)$. Show that $\text{Range}(f)$ is not closed in \mathbb{R}^2 .

Solution: To solve this problem, it helps to draw a picture of $\text{Range}(f) \subseteq \mathbb{R}^2$. By plotting points, you will see that $\text{Range}(f)$ looks like the unit circle centred at $(0, 0)$ with the point $(0, 1)$ removed and, if you wish, you can show that this is indeed the case. Let $S = \text{Range}(f)$ and let $a = (0, 1)$. Let $x(t) = \frac{2t}{t^2+1}$ and $y(t) = \frac{t^2-1}{t^2+1}$ so that $f(t) = (x(t), y(t))$. We claim that $a \in \overline{S}$ but $a \notin S$. It is clear that $a \notin S$ because to get $f(t) = a$ we need $x(t) = 0$ and $y(t) = 1$, but to get $x(t) = \frac{2t}{t^2+1} = 0$ we must choose $t = 0$, but when $t = 0$ we have $y(t) = \frac{t^2-1}{t^2+1} = -1 \neq 1$. To show that $a \in \overline{S}$, we shall show that for all $r > 0$ we have $B(a, r) \cap S \neq \emptyset$. Let $r > 0$. Since $\lim_{t \rightarrow \infty} x(t) = 0$ and $\lim_{t \rightarrow \infty} y(t) = 1$ we can choose $t \in \mathbb{R}$ so that $|x(t) - 0| < \frac{r}{2}$ and $|y(t) - 1| < \frac{r}{2}$. Then we have

$$|f(t) - a| = |(x(t), y(t)) - (0, 1)| = |(x(t), y(t) - 1)| \leq |x(t)| + |y(t) - 1| < \frac{r}{2} + \frac{r}{2} = r$$

and so $f(t) \in B(a, r) \cap S$. This shows that for all $r > 0$ we have $B(a, r) \cap S \neq \emptyset$, and so $a \in \overline{S}$. Since $a \in \overline{S}$ but $a \notin S$ we see that $S \neq \overline{S}$ and so S is not closed.

3: Determine which of the following statements are true for every metric space (X, d) and every $A \subseteq X$.

(a) $\overline{B(a, r)} = \overline{B}(a, r)$ for every $a \in X$ and every $r > 0$.

Solution: This is false. For example, let $X = \mathbb{Z}$ with the standard metric. Then $B(0, 1) = \{0\} = \overline{B(0, 1)}$, but $\overline{B}(0, 1) = \{-1, 0, 1\}$.

(b) $(\overline{A})^c = (A^c)^\circ$.

Solution: This is true. Indeed

$$\begin{aligned} (\overline{A})^c &= (\bigcap \{K \subseteq X \mid K \text{ closed}, A \subseteq K\})^c \\ &= \bigcup \{K^c \subseteq X \mid K \text{ closed}, A \subseteq K\} \\ &= \bigcup \{U \subseteq X \mid U^c \text{ closed}, A \subseteq U^c\} \\ &= \bigcup \{U \subseteq X \mid U \text{ open}, U \subseteq A^c\} = (A^c)^\circ. \end{aligned}$$

(c) If $A = A^\circ$ then $A = (\overline{A})^\circ$.

Solution: This is false. For example, let $X = \mathbb{R}^n$ with the standard metric, and let $A = B^*(0, 1)$. Then $\overline{A} = \overline{B}(0, 1)$ and $(\overline{A})^\circ = B(0, 1)$.

(d) If $A = \overline{A}$ then $\partial(\partial A) = \partial A$.

Solution: This is true, as we now prove. Note first that, for any set A , we have $\partial A = \overline{A} \setminus A^\circ = \overline{A} \cap (A^\circ)^c$, which is closed, since it is the intersection of two closed sets. Now suppose that A is closed. We claim that $(\partial A)^\circ = \emptyset$. Indeed, if we had $a \in (\partial A)^\circ$, then we could choose $r > 0$ so that $B(a, r) \subseteq \partial A$, but then we would have $B(a, r) \subseteq \partial A \subseteq \overline{A} = A$ so that $a \in A^\circ$, and this is not possible since $a \in A^\circ \implies a \notin \partial A \implies a \notin (\partial A)^\circ$. Since ∂A is closed with $(\partial A)^\circ = \emptyset$, we have $\partial(\partial A) = \overline{\partial A} \setminus (\partial A)^\circ = \partial A \setminus \emptyset = \partial A$.

4: (a) Let (X, d) be a metric space with X uncountable. Show that for every $a \in X$ there exists $r > 0$ such that $B(a, r)$ is uncountable.

Solution: Suppose, for a contradiction, that there exists $a \in X$ such that for all $r > 0$, $B(a, r)$ is at most countable. Choose such a point a . Since for every $x \in X$ there exists $n \in \mathbb{N}$ with $n > d(a, x)$ so that $x \in B(a, n)$, we have $X = \bigcup_{n=1}^{\infty} B(a, n)$, which is a union of at most countable sets, and hence X is at most countable.

(b) Let (X, d) be a metric space with the property that for every $a \in X$ there exists $r > 0$ such that $B(a, r)$ is countable. Determine whether X must be countable.

Solution: It is not necessarily the case that X is countable. For example, let $X = \mathbb{R} \times (\mathbb{Q} \cap (0, 1))$ with the metric given by

$$d((x, p), (y, q)) = d_0(x, y) + d_1(p, q)$$

where d_0 is the discrete metric on \mathbb{R} and d_1 is the standard metric on $\mathbb{Q} \cap (0, 1)$. Notice that when $x = y$ we have $d((x, p), (y, q)) = d_1(p, q) < 1$ and when $x \neq y$ we have $d((x, p), (y, q)) = 1 + d(p, q) \geq 1$. Thus for $(x, p) \in X$, we have

$$B((x, p), 1) = \{x\} \times (\mathbb{Q} \cap (0, 1)).$$

Note that $|\mathbb{Q} \cap (0, 1)| = \aleph_0$ (proof: since $\mathbb{Q} \cap (0, 1) \subseteq \mathbb{Q}$ we have $|\mathbb{Q} \cap (0, 1)| \leq |\mathbb{Q}| = \aleph_0$, and since the map $F : \mathbb{N} \rightarrow \mathbb{Q} \cap (0, 1)$ given by $F(n) = \frac{1}{2^n}$ is 1:1 we have $\aleph_0 = |\mathbb{N}| \leq |\mathbb{Q} \cap (0, 1)|$) and so

$$|B((x, p), 1)| = |\{x\} \times (\mathbb{Q} \cap (0, 1))| = 1 \cdot \aleph_0 = \aleph_0,$$

but $|X| = 2^{\aleph_0}$ (proof: $|X| = |\mathbb{R} \times (\mathbb{Q} \cap (0, 1))| = 2^{\aleph_0} \cdot \aleph_0$, and we have $2^{\aleph_0} \cdot \aleph_0 \leq 2^{\aleph_0} \cdot 2^{\aleph_0} = 2^{\aleph_0 + \aleph_0} = 2^{\aleph_0}$ and $2^{\aleph_0} = 2^{\aleph_0} \cdot 1 \leq 2^{\aleph_0} \cdot \aleph_0$).

5: (a) Show that there is no inner product on \mathbb{R}^2 which induces the 1-norm $\| \cdot \|_1$.

Solution: If there were such an inner product, say $\langle \cdot, \cdot \rangle$, then by the polarization identity we would have

$$\begin{aligned}\langle (1, 0), (0, 1) \rangle &= \frac{1}{2} (\| (1, 1) \|_1^2 - \| (1, 0) \|_1^2 - \| (0, 1) \|_1^2) = \frac{1}{2} (4 - 1 - 1) = 1, \text{ and} \\ \langle (-1, 0), (0, 1) \rangle &= \frac{1}{2} (\| (-1, 1) \|_1^2 - \| (-1, 0) \|_1^2 - \| (0, 1) \|_1^2) = \frac{1}{2} (4 - 1 - 1) = 1,\end{aligned}$$

but this is not possible since by linearity, we must have $\langle (-1, 0), (0, 1) \rangle = -\langle (1, 0), (0, 1) \rangle$.

(b) Let $T = \{U \subseteq \mathbb{R} \mid U = \emptyset \text{ or } \mathbb{R} \setminus U \text{ is finite}\}$. Show that T is a topology on \mathbb{R} which is not induced by any metric on \mathbb{R} (T is called the *cofinite topology* on \mathbb{R}).

Solution: First we show that T is a topology on \mathbb{R} . Clearly, we have $\emptyset \in T$ and $\mathbb{R} \in T$ (since $\mathbb{R}^c = \emptyset$, which is finite). Suppose that $U_\alpha \in T$ for each $\alpha \in A$. If every $U_\alpha = \emptyset$ then $\bigcup_{\alpha \in A} U_\alpha = \emptyset$, so $\bigcup_{\alpha \in A} U_\alpha \in T$. If $U_\beta \neq \emptyset$ for some $\beta \in A$, then since $U_\beta \subseteq \bigcup_{\alpha \in A} U_\alpha$, we have $(\bigcup_{\alpha \in A} U_\alpha)^c \subseteq U_\beta^c$, which is finite, so $\bigcup_{\alpha \in A} U_\alpha \in T$. Suppose that $U_k \in T$ for each $k = 0, 1, \dots, n$. If some $U_k = \emptyset$ then $\bigcap_{k=0}^n U_k = \emptyset$, so $\bigcap_{k=0}^n U_k \in T$. If no $U_k = \emptyset$ then each U_k^c is finite, so $(\bigcap_{k=0}^n U_k)^c = \bigcup_{k=0}^n U_k^c$, which is a finite union of finite sets, and hence finite, so $\bigcap_{k=0}^n U_k \in T$.

Next we show that T cannot be induced by any metric. Let d be any metric on \mathbb{R} . Let $r = \frac{1}{2} d(0, 1)$. Note that $B(0, r) \cap B(1, r) = \emptyset$ since if we had $x \in B(0, r) \cap B(1, r)$ then we would have $d(0, x) < r$ and $d(1, x) < r$ and so $2r = d(0, 1) \leq d(0, x) + d(x, 1) < r + r = 2r$, which is not possible. Thus in the topology which is induced by any metric, there exist two disjoint non-empty sets. On the other hand, in the cofinite topology T on \mathbb{R} , given any two non-empty sets $U_1, U_2 \in T$, as shown in the previous paragraph we have that $(U_1 \cap U_2)^c$ is finite, and so $U_1 \cap U_2 \neq \emptyset$.

6: Let A denote the set of all real-valued sequences $(a_n)_{n \geq 1}$ for which $|a_n| \leq \frac{1}{2^n}$ for all $n \in \mathbb{Z}^+$.

(a) Show that $A^\circ = \emptyset$ in (ℓ_1, d_1) .

Solution: Let $a = (a_n)_{n \geq 1} \in A$. Let $r > 0$. Choose $N \in \mathbb{Z}^+$ so that $\frac{1}{2^N} < \frac{r}{2}$. Define $b = (b_n)_{n \geq 1}$ by

$$b_n = \begin{cases} a_n, & n \neq N \\ \frac{r}{2}, & n = N. \end{cases}$$

Then $b \in \ell_1$ since $\sum_{n=1}^{\infty} |b_n| = \sum_{n=1}^{\infty} |a_n| - a_N + \frac{r}{2} < \infty$, and $b \notin A$ since $b_N = \frac{r}{2} > \frac{1}{2^N}$, and $b \in B_1(a, r)$ since

$$\|b - a\|_1 = \sum_{n=1}^{\infty} |b_n - a_n| = \left| \frac{r}{2} - a_N \right| \leq \frac{r}{2} + |a_N| \leq \frac{r}{2} + \frac{1}{2^N} < \frac{r}{2} + \frac{r}{2} = r.$$

(b) Show that $\overline{A} = A$ in (ℓ_1, d_1) .

Solution: We must show that A is closed, or equivalently that A^c is open. Let $a = (a_n)_{n \geq 1} \in A^c$. Choose $N \in \mathbb{Z}^+$ so that $|a_N| > \frac{1}{2^N}$. Let $r = |a_N| - \frac{1}{2^N}$. We claim that $B_1(a, r) \subseteq A^c$. Let $x = (x_n)_{n \geq 1} \in B_1(a, r)$. Then

$$|a_N| - |x_N| \leq |a_N - x_N| \leq \sum_{n=1}^{\infty} |a_n - x_n| = \|a - x\|_1 < r = |a_N| - \frac{1}{2^N}.$$

It follows that $|x_N| > \frac{1}{2^N}$, and so $x = (x_n)_{n \geq 1} \notin A$, that is $x \in A^c$ as required.

7: (a) Show that ℓ_1 is neither open nor closed in the metric space (ℓ_∞, d_∞) .

Solution: By Part 2 of Theorem 2.49, to show that ℓ_1 is not closed in (ℓ_∞, d_∞) , it suffices to find a limit point of ℓ_1 which does not lie in ℓ_1 . Let $a = (\frac{1}{n})_{n \geq 1} = (1, \frac{1}{2}, \frac{1}{3}, \dots)$. Note that $a \in \ell_\infty$ with $\|a\|_\infty = a_1 = 1$ but $a \notin \ell_1$ since $\|a\|_1 = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$. We claim that a is a limit point of ℓ_1 . Let $r > 0$. Choose $m \in \mathbb{Z}^+$ such that $\frac{1}{m} < r$. Let $x = (x_n)_{n \geq 1}$ with $x_n = \frac{1}{n}$ for $n \leq m$ and $x_n = 0$ for $n > m$, that is let $x = (1, \frac{1}{2}, \dots, \frac{1}{m}, 0, 0, \dots)$. Then $x \neq a$, and $x \in \ell_1$ with $\|x\|_1 = \sum_{n=1}^m \frac{1}{n} < \infty$, and $\|x - a\|_\infty = \|(0, \dots, 0, \frac{1}{m+1}, \frac{1}{m+2}, \dots)\|_\infty = \frac{1}{m+1} < r$, and so we have $x \in B^*(a, r) \cap \ell_1$. Thus a is a limit point of ℓ_1 , as claimed, hence ℓ_1 is not closed in (ℓ_∞, d_∞) .

To see that ℓ_1 is not open, and indeed to see that $\ell_1^\circ = \emptyset$ in (ℓ_∞, d_∞) , note that given $a = (a_n) \in \ell_1$ and $0 < r \in \mathbb{R}$, we can choose $b = (b_n)$ to be the sequence given by $b_n = a_n + \frac{r}{2}$. Then we have $b \in B_\infty(a, r)$ but $b \notin \ell_1$.

(b) Determine whether every set $U \subseteq \ell_1$ which is open in (ℓ_1, d_2) is also open in (ℓ_1, d_1) .

Solution: We show that this is indeed the case. Let $a = (a_n)_{n \geq 1}$ and $x = (x_n)_{n \geq 1}$ be in ℓ_2 . For all $N \in \mathbb{Z}^+$, the Triangle Inequality gives

$$\sqrt{\sum_{n=1}^N (a_n - x_n)^2} \leq \sum_{n=1}^N |a_n - x_n|.$$

Taking the limit as $N \rightarrow \infty$ we obtain

$$d_2(a, x) = \sqrt{\sum_{n=1}^{\infty} (a_n - x_n)^2} \leq \sum_{n=1}^{\infty} |a_n - x_n| = d_1(a, x).$$

It follows that for all $0 < r \in \mathbb{R}$ we have $B_1(a, r) \subseteq B_2(a, r)$ since

$$x \in B_1(a, r) \implies d_1(a, x) < r \implies d_2(a, x) \leq d_1(a, x) < r \implies x \in B_2(a, r).$$

Now suppose that $U \subseteq \ell_1$ is open in (ℓ_1, d_2) . Let $a \in U$. Choose $0 < r \in \mathbb{R}$ so that $B_2(a, r) \subseteq U$. Then $B_1(a, r) \subseteq B_2(a, r) \subseteq U$. Thus U is also open in (ℓ_1, d_1) .

(c) Determine whether every set $U \subseteq \ell_1$ which is open in (ℓ_1, d_1) is also open in (ℓ_1, d_2) .

Solution: We shall show that for $a \in \ell_1$ and $0 < r \in \mathbb{R}$, the ball $B_1(a, r)$, which is open in (ℓ_1, d_1) , is not open in (ℓ_1, d_2) . Let $a = (a_n)_{n \geq 1} \in \ell_1$ and let $0 < r \in \mathbb{R}$. We claim that $a \notin B_1(a, r)^\circ$ in (ℓ_1, d_2) . We must show that for every $0 < s \in \mathbb{R}$, $B_2(a, s) \not\subseteq B_1(a, r)$. Let $s > 0$. Recall that $\sum \frac{1}{n^2}$ converges but $\sum \frac{1}{n}$ diverges. Let

$$p = \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^2}}$$

(in fact, $p = \frac{\pi}{\sqrt{6}}$). Then we have $\sum_{n=1}^{\infty} \frac{s^2/p^2}{n^2} = s^2$ and $\sum_{n=1}^{\infty} \frac{s/p}{n} = \infty$. Choose $N \in \mathbb{Z}^+$ so that $\sum_{n=1}^N \frac{s/p}{n} > r$. Let $b = (b_n)_{n \geq 1}$ be the sequence given by $b_n = \frac{s/p}{n}$ for $1 \leq n \leq N$ and $b_n = 0$ for $n > N$. Note that $b \in \mathbb{R}^\infty \subseteq \ell_1$ so $a + b \in \ell_1$. We have $a + b \in B_2(a, s)$ because

$$d_2(a, a + b) = \sqrt{\sum_{n=1}^N \frac{s^2/p^2}{n^2}} < \sqrt{\sum_{n=1}^{\infty} \frac{s^2/p^2}{n^2}} = s,$$

but $a + b \notin B_1(a, r)$ because

$$d_1(a, a + b) = \sum_{n=1}^N \frac{s/p}{n} > r.$$

Thus $B_2(a, r) \not\subseteq B_1(a, r)$, as required. We remark that a minor modification of the above argument can be used to show that $B_1(a, r)^\circ = \emptyset$ in (ℓ_1, d_2) .

8: (a) Verify that we can define a metric on the space $M_{k \times \ell}(\mathbb{R})$ of real $k \times \ell$ matrices by $d(A, B) = \text{rank}(B - A)$.

Solution: For $A, B \in M_{k \times \ell}(\mathbb{R})$, we define $d(A, B) = \text{rank}(A - B)$. It is clear that d is positive definite, that is $d(A, B) \geq 0$ for all $A, B \in M_{k \times \ell}(\mathbb{R})$ with $d(A, B) = 0$ if and only if $A = B$, because only the zero matrix has rank zero. It is also clear that d is symmetric, that is $d(A, B) = d(B, A)$, since for any matrix X we have $\text{rank}(X) = \text{rank}(-X)$. We need to verify that d satisfies the triangle inequality. Let $A, B, C \in M_{k \times \ell}(\mathbb{R})$. Let $X = A - B$, $Y = B - C$ and $Z = C - A$. Note that $X + Y = Z$. Let u_1, \dots, u_ℓ be the columns of X , let v_1, \dots, v_ℓ be the columns of Y and let w_1, \dots, w_ℓ be the columns of Z . Since $X + Y = Z$ we have $w_i = u_i + v_i$ for all indices i , and so $\text{Span}\{w_1, \dots, w_\ell\} \subseteq \text{Span}\{u_1, \dots, u_\ell, v_1, \dots, v_\ell\}$. Let $U = \text{Col}(A) = \text{Span}\{u_1, \dots, u_\ell\}$, $V = \text{Col}(B) = \text{Span}\{v_1, \dots, v_\ell\}$ and $W = \text{Col}(Z) = \text{Span}\{w_1, \dots, w_\ell\}$. Since $W = \text{Span}\{w_1, \dots, w_\ell\} \subseteq \text{Span}\{u_1, \dots, u_\ell, v_1, \dots, v_\ell\} = U + V$ we have

$$\text{rank}(Z) = \dim W \leq \dim(U + V) = \dim U + \dim V - \dim(U \cap V) \leq \dim U + \dim V = \text{rank}(X) + \text{rank}(Y),$$

and so

$$d(A, C) = \text{rank}(A - C) = \text{rank}(Z) \leq \text{rank}(X) + \text{rank}(Y) = \text{rank}(A - B) + \text{rank}(B - C) = d(A, B) + d(B, C).$$

(b) Verify that we can define a metric on the unit sphere $\mathbb{S}^2 = \{u \in \mathbb{R}^3 \mid \|u\| = 1\}$ by $d(u, v) = \cos^{-1}(u \cdot v)$ where $u \cdot v$ is the standard inner product (the dot product) in \mathbb{R}^3 . Hint: you may wish to use properties of the cross product in \mathbb{R}^3 .

Solution: For $u, v \in \mathbb{S}^2$ we define $d(u, v) = \cos^{-1}(u \cdot v)$. It is clear that d is symmetric. Note that d is positive definite because for all $u, v \in \mathbb{S}^2$ we have $d(u, v) = \cos^{-1}(u \cdot v) \in [0, \pi]$ and we have

$$\|u - v\|^2 = \|u\|^2 + \|v\|^2 - 2(u \cdot v) = 2 - 2(u \cdot v)$$

so that

$$d(u, v) = 0 \iff \cos^{-1}(u \cdot v) = 0 \iff u \cdot v = 1 \iff \|u - v\|^2 = 0 \iff u = v.$$

To show that d satisfies the Triangle Inequality, recall (or verify) that for vectors $u, v, w, x \in \mathbb{R}^3$ we have

$$(u \times v) \cdot (w \times x) = (u \cdot w)(v \cdot x) - (v \cdot w)(u \cdot x). \quad (1)$$

For $0 \neq u, v \in \mathbb{R}^3$, recall that the angle $\theta = \theta(u, v)$ between u and v is given by $\theta = \cos^{-1} \frac{u \cdot v}{\|u\| \|v\|}$. Using

Property (1) of the cross product, we have

$$\begin{aligned} \sin^2 \theta &= 1 - \cos^2 \theta = 1 - \frac{(u \cdot v)^2}{\|u\|^2 \|v\|^2} = \frac{\|u\|^2 \|v\|^2 - (u \cdot v)^2}{\|u\|^2 \|v\|^2} \\ &= \frac{(u \cdot u)(v \cdot v) - (u \cdot v)(u \cdot v)}{\|u\|^2 \|v\|^2} = \frac{(u \times v) \cdot (u \times v)}{\|u\|^2 \|v\|^2} = \frac{\|u \times v\|^2}{\|u\|^2 \|v\|^2}. \end{aligned}$$

Since $0 \leq \theta \leq \pi$ so that $\sin \theta \geq 0$ it follows that

$$\sin \theta = \frac{\|u \times v\|}{\|u\| \|v\|}.$$

When $u, v \in \mathbb{S}^2$, so $|u| = |v| = 1$, note that $d(u, v) = \cos^{-1}(u \cdot v) = \theta(u, v)$. When $u, v, w \in \mathbb{S}^2$, using the Cauchy Schwarz Inequality and Property (1), we have

$$\begin{aligned} \cos(\theta(u, v) + \theta(v, w)) &= \cos \theta(u, v) \cos \theta(v, w) - \sin \theta(u, v) \sin \theta(v, w) \\ &= (u \cdot v)(v \cdot w) - \|u \times v\| \|v \times w\| \\ &\leq (u \cdot v)(v \cdot w) - (u \times v) \cdot (v \times w) \\ &= (u \cdot v)(v \cdot w) - ((u \cdot v)(v \cdot w) - (u \cdot w)(v \cdot v)) \\ &= u \cdot w = \cos \theta(u, w). \end{aligned}$$

Since $\cos \theta$ is decreasing with θ , it follows that $\theta(u, w) \leq \theta(u, v) + \theta(v, w)$, that is $d(u, w) \leq d(u, v) + d(v, w)$.