
PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 2

1: Determine which of the following functions d : R× R→ R are metrics on R.

(a) d(x, y) = (x− y)2

Solution: This is not a metric on R since it does not satisfy the triangle inequality. For example, if x = 0,
y = 1 and z = 2 then d(x, y) + d(y, z) = 1 + 1 = 2 < 4 = d(x, z).

(b) d(x, y) =
√
|x− y|

Solution: This is a metric on R. It is clearly positive definite and symmetric, and for x, y, z ∈ R we have

d(x, z) =
√
|x− z|

≤
√
|x− y|+ |y − z| , by the triangle inequality in R

≤
√
|x− y|+

√
|y − z| , by the triangle inequality in R2

= d(x, y) + d(y, z) .

(c) d(x, y) = |x2 − y2|
Solution: This is not a metric on R since it is not positive definite. For example, if x = 1 and y = −1 then
we have d(x, y) = 0 but x 6= y.

(d) d(x, y) =
|x− y|

1 + |x− y|
Solution: This is a metric. More generally, if d1 is any metric on a set X, and if F : [0,∞)→ [0,∞) is any
function which satisfies

(1) F (x) ≥ 0 for all x ≥ 0, with F (x) = 0 ⇐⇒ x = 0,
(2) F (x) ≤ F (y) for all x ≤ y ∈ R, and
(3) F (x+ y) ≤ F (x) + F (y) for all x, y ≥ 0,

then the map d2(x, y) = F
(
d1(x, y)

)
is also a metric. Indeed property (1) ensures that d2 is positive-definite,

we need no requirement on F to ensure that d2 is symmetric, and properties (2) and (3) ensure that d2
satisfies the triangle inequality, since for x, y, z ∈ R we have

d2(x, z) = F
(
d1(x, z)

)
≤ F

(
d1(x, y) + d1(y, z)

)
, using propery (2)

≤ F
(
d1(x, y)

)
+ F

(
d1(y, z)

)
, using property (3)

= d2(x, y) + d2(y, z) .

We note that if F (0) = 0, and F ′(t) > 0 for all t ≥ 0, then F satisfies properties (1) and (2), and if in
addition F ′′(t) < 0 for all t ≥ 0, then F also satisfies property (3). Indeed, say 0 ≤ x ≤ y ≤ x+ y. Using the
Mean Value Theorem, choose a with 0 ≤ a ≤ x so that F (x)− F (0) = F ′(a)(x− 0), that is F (x) = F ′(a)x,
and choose b with y ≤ b ≤ x+y so that F (x+y)−F (y) = F ′(b)(x+y−y), that is F (x+y)−F (y) = F ′(b)x.
Since F ′′(t) < 0 for all t ≥ 0, F ′(t) is decreasing, so

a ≤ b =⇒ F ′(b) ≥ F ′(a) =⇒ F ′(b)x ≥ F ′(a)x =⇒ F (x+ y)− F (y) ≥ F (x) .

When d1 is the standard metric on R and F (t) =
t

1 + t
, we have F (0) = 0, F ′(t) =

1

(1 + t)2
> 0 for all t ≥ 0

and F ′′(t) =
−2

(1 + t)3
< 0 for all t ≥ 0, and we have d = d2.



2: (a) Let S =
{

(x, y) ∈ R2
∣∣y > x2

}
. Prove, from the definition of an open set, that S is open in R2.

Solution: Let (a, b) ∈ S so we have b > a2 and hence
√
b > |a|. Let r = min

(
b−a2

2 ,
√
b−|a|
2

)
. We claim that

B
(
(a, b), r

)
⊆ S. Let (x, y) ∈ B

(
(a, b), r

)
. Note that

|x− a| ≤
√

(x− a)2 + (y − b)2 = d
(
(a, b), (x, y)

)
< r ≤

√
b−|a|
2

and similarly

|y − b| < r ≤ b−a2
2 .

It follows that |x| − |a| ≤ |x − a| <
√
b−|a|
2 so that |x| ≤

√
b+|a|
2 and that b − y ≤ |y − b| < b−a2

2 so that

y > b+a2

2 . Note that 0 ≤
(√
b− |a|

)2
= b+ a2 − 2|a|

√
b so we have 2|a|

√
b ≤ b+ a2. It follows that

x2 <
(√

b+|a|
2

)2
= b+a2+2|a|

√
b

4 ≤ b+a2

2 < y.

Since y > x2 we have (x, y) ∈ S. This shows that B
(
(a, b), r

)
⊆ S, as claimed, and so S is open.

(b) Define f : R→ R2 by f(t) =
(

2t
t2+1 ,

t2−1
t2+1

)
. Show that Range(f) is not closed in R2.

Solution: To solve this problem, it helps to draw a picture of Range(f) ⊆ R2. By plotting points, you will see
that Range(f) looks like the unit circle centred at (0, 0) with the point (0, 1) removed and, if you wish, you

can show that this is indeed the case. Let S = Range(f) and let a = (0, 1). Let x(t) = 2t
t2+1 and y(t) = t2−1

t2+1

so that f(t) =
(
x(t), y(t)

)
. We claim that a ∈ S but a /∈ S. It is clear that a /∈ S because to get f(t) = a

we need x(t) = 0 and y(t) = 1, but to get x(t) = 2t
t2+1 = 0 we must choose t = 0, but when t = 0 we have

y(t) = t2−1
t2+1 = −1 6= 1. To show that a ∈ S, we shall show that for all r > 0 we have B(a, r) ∩ S 6= ∅. Let

r > 0. Since lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = 1 we can choose t ∈ R so that
∣∣x(t)− 0

∣∣ < r
2 and

∣∣y(t)− 1
∣∣ < r

2 .

Then we have∣∣f(t)− a
∣∣ =

∣∣(x(t), y(t))− (0, 1)
∣∣ =

∣∣(x(t) , y(t)− 1
)∣∣ ≤ |x(t)|+ |y(t)− 1| < r

2 + r
2 = r

and so f(t) ∈ B(a, r) ∩ S. This shows that for all r > 0 we have B(a, r) ∩ S 6= ∅, and so a ∈ S. Since a ∈ S
but a /∈ S we see that S 6= S and so S is not closed.



3: Determine which of the following statements are true for every metric space (X, d) and every A ⊆ X.

(a) B(a, r) = B(a, r) for every a ∈ X and every r > 0.

Solution: This is false. For example, let X = Z with the standard metric. Then B(0, 1) = {0} = B(0, 1),
but B(0, 1) = {−1, 0, 1}.

(b)
(
A
)c

=
(
Ac
)◦

.

Solution: This is true. Indeed(
A
)c

=
(⋂{

K ⊆ X
∣∣K closed , A ⊆ K

})c
=
⋃{

Kc ⊆ X
∣∣K closed , A ⊆ K

}
=
⋃{

U ⊆ X
∣∣U c closed , A ⊆ U c

}
=
⋃{

U ⊆ X
∣∣U open , U ⊆ Ac

}
=
(
Ac
)◦
.

(c) If A = A◦ then A =
(
A
)◦

.

Solution: This is false. For example, let X = Rn with the standard metric, and let A = B∗(0, 1). Then
A = B(0, 1) and

(
A
)◦

= B(0, 1).

(d) If A = A then ∂(∂A) = ∂A.

Solution: This is true, as we now prove. Note first that, for any set A, we have ∂A = A \ A◦ = A ∩ (A◦)c,
which is closed, since it is the intersection of two closed sets. Now suppose that A is closed. We claim that
(∂A)◦ = ∅. Indeed, if we had a ∈ (∂A)◦, then we could choose r > 0 so that B(a, r) ⊆ ∂A, but then we would
have B(a, r) ⊆ ∂A ⊆ A = A so that a ∈ A◦, and this is not possible since a ∈ A◦ =⇒ a /∈ ∂A =⇒ a /∈ (∂A)◦.
Since ∂A is closed with (∂A)◦ = ∅, we have ∂(∂A) = ∂A \ (∂A)◦ = ∂A \ ∅ = ∂A.

4: (a) Let (X, d) be a metric space with X uncountable. Show that for every a ∈ X there exists r > 0 such
that B(a, r) is uncountable.

Solution: Suppose, for a contradiction, that there exists a ∈ X such that for all r > 0, B(a, r) is at most
countable. Choose such a point a. Since for every x ∈ X there exists n ∈ N with n > d(a, x) so that

x ∈ B(a, n), we have X =
∞⋃
n=1

B(a, n), which is a union of at most countable sets, and hence X is at most

countable.

(b) Let (X, d) be a metric space with the property that for every a ∈ X there exists r > 0 such that B(a, r)
is countable. Determine whether X must be countable.

Solution: It is not necessarily the case that X is countable. For example, let X = R×
(
Q ∩ (0, 1)

)
with the

metric given by
d
(
(x, p), (y, q)

)
= d0(x, y) + d1(p, q)

where d0 is the discrete metric on R and d1 is the standard metric on Q ∩ (0, 1). Notice that when x = y
we have d

(
(x, p), (y, q)

)
= d1(p, q) < 1 and when x 6= y we have d

(
(x, p), (y, q)

)
= 1 + d(p, q) ≥ 1. Thus for

(x, p) ∈ X, we have
B
(
(x, p), 1

)
= {x} ×

(
Q ∩ (0, 1)

)
.

Note that
∣∣Q ∩ (0, 1)

∣∣ = ℵ0
(
proof: since Q ∩ (0, 1) ⊆ Q we have

∣∣Q ∩ (0, 1)
∣∣ ≤ |Q| = ℵ0, and since the

map F : N→ Q ∩ (0, 1) given by F (n) = 1
2n is 1:1 we have ℵ0 = |N| ≤

∣∣Q ∩ (0, 1)
∣∣) and so∣∣B((x, p), 1)∣∣ =

∣∣{x} × (Q ∩ (0, 1)
)∣∣ = 1 · ℵ0 = ℵ0 ,

but |X| = 2ℵ0
(
proof: |X| =

∣∣R × (Q ∩ (0, 1)
)∣∣ = 2ℵ0 · ℵ0, and we have 2ℵ0 · ℵ0 ≤ 2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0

and 2ℵ0 = 2ℵ0 · 1 ≤ 2ℵ0 · ℵ0
)
.



5: (a) Show that there is no inner product on R2 which induces the 1-norm ‖ ‖1.

Solution: If there were such an inner product, say 〈 , 〉, then by the polarization identity we would have

〈(1, 0), (0, 1)〉 = 1
2

(∥∥(1, 1)
∥∥
1

2 −
∥∥(1, 0)

∥∥
1

2 −
∥∥(0, 1)

∥∥
1

2)
= 1

2 (4− 1− 1) = 1 , and

〈−(1, 0), (0, 1)〉 = 1
2

(∥∥(−1, 1)
∥∥
1

2 −
∥∥(−1, 0)

∥∥
1

2 −
∥∥(0, 1)

∥∥
1

2)
= 1

2 (4− 1− 1) = 1 ,

but this is not possible since by linearity, we must have 〈−(1, 0), (0, 1)〉 = −〈(1, 0), (0, 1)〉.

(b) Let T =
{
U ⊆ R

∣∣U = ∅ or R \ U is finite
}

. Show that T is a topology on R which is not induced by
any metric on R (T is called the cofinite topology on R).

Solution: First we show that T is a topology on R. Clearly, we have ∅ ∈ T and R ∈ T (since Rc = ∅, which
is finite). Suppose that Uα ∈ T for each α ∈ A. If every Uα = ∅ then

⋃
α∈A

Uα = ∅, so
⋃
α∈A

Uα ∈ T . If Uβ 6= ∅

for some β ∈ A, then since Uβ ⊆
⋃
α∈A

Uα, we have
( ⋃
α∈A

Uα
)c ⊆ Uβc, which is finite, so

⋃
α∈A

Uα ∈ T . Suppose

that Uk ∈ T for each k = 0, 1, · · · , n. If some Uk = ∅ then
n⋂
k=0

Uk = ∅, so
n⋂
k=0

Uk ∈ T . If no Uk = ∅ then each

Uk
c is finite, so

( n⋂
k=0

Uk
)c

=
n⋃
k=0

Uk
c, which is a finite union of finite sets, and hence finite, so

n⋂
k=0

Uk ∈ T .

Next we show that T cannot be induced by any metric. Let d be any metric on R. Let r = 1
2 d(0, 1).

Note that B(0, r) ∩ B(1, r) = ∅ since if we had x ∈ B(0, r) ∩ B(1, r) then we would have d(0, x) < r and
d(1, x) < r and so 2r = d(0, 1) ≤ d(0, x) + d(x, 1) < r + r = 2r, which is not possible. Thus in the topology
which is induced by any metric, there exist two disjoint non-empty sets. On the other hand, in the cofinite
topology T on R, given any two non-empty sets U1, U2 ∈ T , as shown in the previous paragraph we have
that (U1 ∩ U2)c is finite, and so U1 ∩ U2 6= ∅.

6: Let A denote the set of all real-valued sequences (an)n≥1 for which |an| ≤ 1
2n for all n ∈ Z+.

(a) Show that A◦ = ∅ in (`1, d1).

Solution: Let a = (an)n≥1 ∈ A. Let r > 0. Choose N ∈ Z+ so that 1
2N

< r
2 . Define b = (bn)n≥1 by

bn =

{
an , n 6= N
r
2 , n = N .

Then b ∈ `1 since
∞∑
n=1
|bn| =

∞∑
n=1
|an| − aN + r

2 <∞, and b /∈ A since bN = r
2 >

1
2N

, and b ∈ B1(a, r) since

‖b− a‖1 =
∞∑
n=1
|bn − an| =

∣∣ r
2 − aN

∣∣ ≤ r
2 + |aN | ≤ r

2 + 1
2N

< r
2 + r

2 = r .

(b) Show that A = A in (`1, d1).

Solution: We must show that A is closed, or equivalently that Ac is open. Let a = (an)n≥1 ∈ Ac. Choose
N ∈ Z+ so that |aN | > 1

2N
. Let r = |aN | − 1

2N
. We claim that B1(a, r) ⊆ Ac. Let x = (xn)n≥1 ∈ B1(a, r).

Then

|aN | − |xN | ≤ |aN − xN | ≤
∞∑
n=1
|an − xn| = ‖a− x‖1 < r = |aN | − 1

2N
.

It follows that |xN | > 1
2N

, and so x = (xn)n≥1 /∈ A, that is x ∈ Ac as required.



7: (a) Show that `1 is neither open nor closed in the metric space (`∞, d∞).

Solution: By Part 2 of Theorem 2.49, to show that `1 is not closed in (`∞, d∞), it suffices to find a limit point
of `1 which does not lie in `1. Let a =

(
1
n

)
n≥1 =

(
1, 12 ,

1
3 , · · ·

)
. Note that a ∈ `∞ with ‖a‖∞ = a1 = 1 but

a /∈ `1 since ‖a‖1 =
∞∑
n=1

1
n =∞. We claim that a is a limit point of `1. Let r > 0. Choose m ∈ Z+ such that

1
m < r. Let x = (xn)n≥1 with xn = 1

n for n ≤ m and xn = 0 for n > m, that is let x =
(
1, 12 , · · · ,

1
m , 0, 0, · · ·

)
.

Then x 6= a, and x ∈ `1 with ‖x‖1 =
m∑
n=1

1
n <∞, and ‖x− a‖∞ =

∥∥(0, · · · , 0, 1
m+1 ,

1
m+2 , · · ·

)∥∥∞ = 1
m+1 < r,

and so we have x ∈ B∗(a, r)∩ `1. Thus a is a limit point of `1, as claimed, hence `1 is not closed in (`∞, d∞).

To see that `1 is not open, and indeed to see that `1
◦ = ∅ in (`∞, d∞), note that given a = (an) ∈ `1

and 0 < r ∈ R, we can choose b = (bn) to be the sequence given by bn = an + r
2 . Then we have b ∈ B∞(a, r)

but b /∈ `1.

(b) Determine whether every set U ⊆ `1 which is open in (`1, d2) is also open in (`1, d1).

Solution: We show that this is indeed the case. Let a = (an)n≥1 and x = (xn)n≥1 be in `2. For all N ∈ Z+,
the Triangle Inequality gives √

N∑
n=1

(an − xn)2 ≤
N∑
n=1

|an − xn| .

Taking the limit as N →∞ we obtain

d2(a, x) =

√
∞∑
n=1

(an − xn)2 ≤
∞∑
n=1

|an − xn| = d1(a, x) .

It follows that for all 0 < r ∈ R we have B1(a, r) ⊆ B2(a, r) since

x ∈ B1(a, r) =⇒ d1(a, x) < r =⇒ d2(a, x) ≤ d1(a, x) < r =⇒ x ∈ B2(a, r) .

Now suppose that U ⊆ `1 is open in (`1, d2). Let a ∈ U . Choose 0 < r ∈ R so that B2(a, r) ⊆ U . Then
B1(a, r) ⊆ B2(a, r) ⊆ U . Thus U is also open in (`1, d1).

(c) Determine whether every set U ⊆ `1 which is open in (`1, d1) is also open in (`1, d2).

Solution: We shall show that for a ∈ `1 and 0 < r ∈ R, the ball B1(a, r), which is open in (l1, d1), is not open
in (l1, d2). Let a = (an)n≥1 ∈ `1 and let 0 < r ∈ R. We claim that a /∈ B1(a, r)◦ in (`1, d2). We must show
that for every 0 < s ∈ R, B2(a, s) 6⊆ B1(a, r). Let s > 0. Recall that

∑
1
n2 converges but

∑
1
n diverges. Let

p =

√
∞∑
n=1

1
n2

(
in fact, p = π√

6

)
. Then we have

∞∑
n=1

s2/p2

n2 = s2 and
∞∑
n=1

s/p
n =∞. Choose N ∈ Z+ so that

N∑
n=1

s/p
n > r. Let

b = (bn)n≥1 be the sequence given by bn = s/p
n for 1 ≤ n ≤ N and bn = 0 for n > N . Note that b ∈ R∞ ⊆ `1

so a+ b ∈ `1. We have a+ b ∈ B2(a, s) because

d2(a, a+ b) =

√
N∑
n=1

s2/p2

n2 <

√
∞∑
n=1

s2/p2

n2 = s ,

but a+ b /∈ B1(a, r) because

d1(a, a+ b) =
N∑
n=1

s/p
n > r .

Thus B2(a, r) 6⊆ B1(a, r), as required. We remark that a minor modification of the above argument can be
used to show that B1(a, r)◦ = ∅ in (`1, d2).



8: (a) Verify that we can define a metric on the space Mk×`(R) of real k×` matrices by d(A,B) = rank(B−A).

Solution: For A,B ∈ Mk×`(R), we define d(A,B) = rank(A − B). It is clear that d is positive definite,
that is d(A,B) ≥ 0 for all A,B ∈ Mk×`(R) with d(A,B) = 0 if and only if A = B, because only the
zero matrix has rank zero. It is also clear that d is symmetric, that is d(A,B) = d(B,A), since for any
matrix X we have rank(X) = rank(−X). We need to verify that d satisfies the triangle inequality. Let
A,B,C ∈ Mk×`(R). Let X = A − B, Y = B − C and Z = C − A. Note that X + Y = Z. Let u1, · · · , u`
be the columns of X, let v1, · · · , v` be the columns of Y and let w1, · · · , w` be the columns of Z. Since
X + Y = Z we have wi = ui + vi for all indices i, and so Span{w1, · · · , w`} ⊆ Span{u1, · · · , u`, v1, · · · , v`}.
Let U = Col(A) = Span{u1, · · · , u`}, V = Col(B) = Span{v1, · · · , v`} and W = Col(Z) = Span{w1, · · · , w`}.
Since W = Span{w1, · · · , w`} ⊆ Span{u1, · · · , u`, v1, · · · , v`} = U + V we have

rank(Z) = dimW ≤ dim(U + V ) = dimU + dimV − dim(U ∩ V ) ≤ dimU + dimV = rank(X) + rank(Y ),

and so

d(A,C) = rank(A−C) = rank(Z) ≤ rank(X) + rank(Y ) = rank(A−B) + rank(B−C) = d(A,B) +d(B,C).

(b) Verify that we can define a metric on the unit sphere S2 =
{
u ∈ R3

∣∣ ‖u‖ = 1
}

by d(u, v) = cos−1(u. v)
where u. v is the standard inner product (the dot product) in R3. Hint: you may wish to use properties of
the cross product in R3.

Solution: For u, v ∈ S2 we define d(u, v) = cos−1(u. v). It is clear that d is symmetric. Note that d is
positive definite because for all u, v ∈ S2 we have d(u, v) = cos−1(u. v) ∈ [0, π] and we have

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2(u. v) = 2− 2(u. v)

so that
d(u, v) = 0 ⇐⇒ cos−1(u. v) = 0 ⇐⇒ u. v = 1 ⇐⇒ ‖u− v‖2 = 0 ⇐⇒ u = v.

To show that d satisfies the Triangle Inequality, recall (or verify) that for vectors u, v, w, x ∈ R3 we have

(u× v). (w × x) = (u.w)(v .x)− (v .w)(u.x). (1)

For 0 6= u, v ∈ R3, recall that the angle θ = θ(u, v) between u and v is given by θ = cos−1
u. v
‖u‖ ‖v‖

. Using

Property (1) of the cross product, we have

sin2 θ = 1− cos2 θ = 1− (u. v)2

‖u‖2‖v‖2
=
‖u‖2‖v‖2 − (u. v)2

‖u‖2‖v‖2

=
(u.u)(v . v)− (u. v)(u. v)

‖u‖2‖v‖2
=

(u× v). (u× v)

‖u‖2‖v‖2
=
‖u× v‖2

‖u‖2‖v‖2
.

Since 0 ≤ θ ≤ π so that sin θ ≥ 0 it follows that

sin θ =
‖u× v‖
‖u‖ ‖v‖

.

When u, v ∈ S2, so |u| = |v| = 1, note that d(u, v) = cos−1(u. v) = θ(u, v). When u, v, w ∈ S2, using the
Cauchy Schwarz Inequality and Property (1), we have

cos
(
θ(u, v) + θ(v, w)

)
= cos θ(u, v) cos θ(v, w)− sin θ(u, v) sin θ(v, w)

= (u. v)(v .w)− ‖u× v‖ ‖v × w‖
≤ (u. v)(v .w)− (u× v). (v × w)

= (u. v)(v .w)−
(
(u. v)(v .w)− (u.w)(v . v)

)
= u.w = cos θ(u,w).

Since cos θ is decreasing with θ, it follows that θ(u,w) ≤ θ(u, v) + θ(v, w), that is d(u,w) ≤ d(u, v) + d(v, w).


