PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 2

: Determine which of the following functions d : R x R — R are metrics on R.

(a) d(z,y) = (v —y)?
Solution: This is not a metric on R since it does not satisfy the triangle inequality. For example, if z = 0,
y=1and z =2 then d(z,y) + d(y,2) =14+ 1 =2 <4 =d(z,2).

(b) d(z,y) = /|z — y|

Solution: This is a metric on R. It is clearly positive definite and symmetric, and for x,y, z € R we have

d(x,z) = +/|x — 2|

|z —y| + |y — 2| , by the triangle inequality in R

<Vl —y|+ ]y — 2| , by the triangle inequality in R?
= d(z,y) +d(y,2).

(¢) d(z,y) = [2* — 3|
Solution: This is not a metric on R since it is not positive definite. For example, if = 1 and y = —1 then
we have d(z,y) = 0 but = # y.

|z — 1y
1+ |z —yl

Solution: This is a metric. More generally, if d; is any metric on a set X, and if F' : [0,00) — [0, 00) is any
function which satisfies

(d) d(z,y) =

(1)

1) F(z) > 0 for all > 0, with F(z) =0 < 2 =0,
(2) F(xz) < F(y) for all <y € R, and
(3) F(z+y) < F(z) + F(y) for all z,y > 0,

then the map da(z,y) = F (dl( T,y )) is also a metric. Indeed property (1) ensures that dy is positive-definite,
we need no requirement on F' to ensure that do is symmetric, and properties (2) and (3) ensure that ds
satisfies the triangle inequality, since for x,y, 2z € R we have

da(z,2) = F(di(z,2)) < F(di(z,y) + di(y,2)) , using propery (2)
< F(dy(z,y)) + F(di(y, 2)) , using property (3)
=dy(z,y) + da(y, 2) .

We note that if F/(0) = 0, and F'(t) > 0 for all ¢ > 0, then F satisfies properties (1) and (2), and if in
addition F”'(t) < 0 for all ¢ > 0, then F also satisfies property (3). Indeed, say 0 < x < y < z+y. Using the
Mean Value Theorem, choose a with 0 < a < x so that F(z) — F(0) = F'(a)(z — 0), that is F(z) = F'(a) z
and choose b with y < b < x+y so that F(a+y)—F(y) = F'(b)(x+y—y), that is F(x+y)— F(y) = F'(b) z
Since F"'(t) < 0 for all t > 0, F'(t) is decreasing, so

a<b=F'(b)>F'(a) = F'(b)x > F'(a)x = F(x +y) — F(y) > F(z).
1
(1+1)?

When d; is the standard metric on R and F(t) = we have F(0) =0, F'(t) = >0forallt >0

14t
< 0 for all ¢ > 0, and we have d = ds.

-2
and F'(1) =



2: (a) Let S = {(z,y) € Rﬂy > z2}. Prove, from the definition of an open set, that S is open in R2.

Solution: Let (a,b) € S so we have b > a? and hence vb > |a|. Let 7 = min <% , @) We claim that
B((a,b),r) € S. Let (z,y) € B((a,b),r). Note that

v —a| < V@ —a)? + (y — b = d((a,b), (z,9)) <r < L5l

and similarly
b— 2
ly — bl <r < 5%,

Vb—|al Vb+|al
2 2

It follows that |z| — |a| < |z —a] < so that |z] < and that b—y < |y — b < # so that
y > #. Note that 0 < (vb — |a|)2 = b+ a® — 2|a|Vb so we have 2|a|v/b < b+ a?. Tt follows that

\/l;+\a|)2 _ b+a2+2\a|\/5 <
2 - 4

2
r? < b+2“ <y.

Since y > 22 we have (z,y) € S. This shows that B((a,b),r) C S, as claimed, and so S is open.

(b) Define f: R — R? by f(t) = (%, %) Show that Range(f) is not closed in R?.
Solution: To solve this problem, it helps to draw a picture of Range(f) C R?. By plotting points, you will see
that Range(f) looks like the unit circle centred at (0,0) with the point (0,1) removed and, if you wish, you

can show that this is indeed the case. Let S = Range(f) and let a = (0,1). Let z(t) = t224i1 and y(t) = gﬁ

so that f(t) = (z(t),y(t)). We claim that a € S but a ¢ S. It is clear that a ¢ S because to get f(t) = a

we need z(t) = 0 and y(¢t) = 1, but to get z(t) = t224tr1 = 0 we must choose t = 0, but when ¢t = 0 we have

y(t) = iz;} = —1 # 1. To show that a € S, we shall show that for all 7 > 0 we have B(a,r) NS # (). Let

r> 0. Since lim 2(t) = 0 and lim y(¢) = 1 we can choose ¢ € R so that |z(t) — 0] < § and |y(t) — 1| < 5.
t—o0 t—o0

Then we have
|F(t) = a| = [(x(),y(t)) = (0,1)] = [(x(t), y(t) = 1)| < |z(®)] + [y(t) =1 < 5+ 5 =7

and so f(t) € B(a,r) N S. This shows that for all 7 > 0 we have B(a,r) NS # (), and so a € S. Since a € S
but a ¢ S we see that S # S and so S is not closed.



3: Determine which of the following statements are true for every metric space (X, d) and every A C X.
(a) B(a,r) = B(a,r) for every a € X and every r > 0.
Solution: This is false. For example, let X = Z with the standard metric. Then B(0,1) = {0} = B(0,1),
but B(0,1) = {—1,0,1}.
(b) (4)" = (4°)".
Solution: This is true. Indeed
(Z)C = (ﬂ{K C X’K closed, A C K})(

= LJ{KC C X|K closed, A C K}

= U {U - X‘Uc closed, A C Uc}

= U{U - X‘U open,U C AC} = (AC)O.

(c) If A= A° then A = (Z)o.

Solution: This is false. For example, let X = R" with the standard metric, and let A = B*(0,1). Then
A=DB(0,1) and (4)° = B(0,1).

(d) If A =4 then 0(9A) = 9A.

Solution: This is true, as we now prove. Note first that, for any set A, we have 9A = A\ A° = AN (A°)°,
which is closed, since it is the intersection of two closed sets. Now suppose that A is closed. We claim that
(0A)° = (. Indeed, if we had a € (9A)°, then we could choose r > 0 so that B(a,r) C A, but then we would
have B(a,r) C A C A = A so that a € A°, and this is not possible since a € A° = a ¢ 9A = a ¢ (0A)°.
Since A is closed with (9A)° = ), we have 9(0A) = A\ (0A)° = A\ ) = OA.

4: (a) Let (X,d) be a metric space with X uncountable. Show that for every a € X there exists » > 0 such
that B(a,r) is uncountable.

Solution: Suppose, for a contradiction, that there exists a € X such that for all » > 0, B(a,r) is at most
countable. Choose such a point a. Since for every © € X there exists n € N with n > d(a,z) so that
x € B(a,n), we have X = U B(a,n), which is a union of at most countable sets, and hence X is at most

n=1

countable.

(b) Let (X, d) be a metric space with the property that for every a € X there exists r > 0 such that B(a,r)
is countable. Determine whether X must be countable.

Solution: It is not necessarily the case that X is countable. For example, let X = R x (Q N (0, 1)) with the
metric given by
d((z.p), (y,9)) = do(z,y) + di(p, q)

where dj is the discrete metric on R and d; is the standard metric on Q N (0,1). Notice that when = = y
we have d(( , ), (v, )) = di(p,q) < 1 and when z # y we have d( x,p), ) =1+4d(p,q) > 1. Thus for

(z,p) € X, we have
B((w,p),1) ={z} x (QN(0,1)).

Note that ‘Qﬁ (0,1) ’—No (proof since QN (0,1) C Q we have ’Qﬂ 0,1) ’ < |Q| = N, and since the
map F : N — QN (0,1) given by F(n) = 55 is 1:1 we have Ry = |[N| < |Q N (0,1)]) and so
|B((z,p),1)| = [{z} x (QN(0,1))] =1-Rg =Ry,

but [X| = 2% (proof: |X|=|R x (QN(0,1))] =2% - Ry, and we have 28 . Ry < 280 . 280 = 200 — %o
and 280 =280 . 1 < 2R . N).



5: (a) Show that there is no inner product on R? which induces the 1-norm | |;.
Solution: If there were such an inner product, say ( , ), then by the polarization identity we would have
2 2 2
(00,00, = JIL Dl = 1800, = 0. ),7) = 31— 1) = 1, ana
2 2 2
<_(170)a (071)> = %(H(_l’ I)Hl - H(_17O)H1 - H(O’ I)Hl ) = %(4 -1- 1) = 17
but this is not possible since by linearity, we must have (—(1,0), (0,1)) = —((1,0), (0,1)).
(b) Let T = {U C R ‘ U=0orR\U is finite}. Show that T is a topology on R which is not induced by
any metric on R (7T is called the cofinite topology on R).

Solution: First we show that T is a topology on R. Clearly, we have ) € T and R € T (since R = (), which

is finite). Suppose that U, € T for each a € A. If every U, =0 then |J Uy =0,50 |J Uy, €T. If Ug # 10
acA acA

for some 5 € A, then since Ug C |J U,, we have ( U Uoé)c C Ug®, which is finite, so |J U, € T. Suppose
a€cA acA acA
that Uy € T for each k = 0,1,---,n. If some Uy =0 then (| Uy =0, s0 (| Ux € T. If no Uy = O then each
k=0 k=0

n n n
U° is finite, so ( N Uk)c = |J Ux°, which is a finite union of finite sets, and hence finite, so (| U € T.
k=0 k=0 k=0

Next we show that 7' cannot be induced by any metric. Let d be any metric on R. Let r = 1 d(0,1).
Note that B(0,7) N B(1,r) = 0 since if we had = € B(0,7) N B(1,r) then we would have d(0,z) < r and
d(1,z) < r and so 2r = d(0,1) < d(0,z) + d(z,1) < r + r = 2r, which is not possible. Thus in the topology
which is induced by any metric, there exist two disjoint non-empty sets. On the other hand, in the cofinite
topology T on R, given any two non-empty sets Uy, Us € T, as shown in the previous paragraph we have
that (U N Us)¢ is finite, and so Uy N Uy # .

6: Let A denote the set of all real-valued sequences (a,),>1 for which |a,| < 5 for all n € Z7.
(a) Show that A° =0 in (¢1,dy).
Solution: Let a = (ay)n>1 € A. Let r > 0. Choose N € ZT so that 5 < 5. Define b = (by)n>1 by
n N
b, — { a n #

r —
§,n—N.

o0 o]
Then b € {1 since Y |by| = 3 |an| —an + 5 < o0, and b ¢ A since by = 5 > &, and b € By (a,r) since
n=1 n=1
o 1
16— all, = Zl\bn*an|:|£*a1v| Sstlanl<5+am <5+5=r.
n—=

(b) Show that A = A in (¢1,dy).

Solution: We must show that A is closed, or equivalently that A° is open. Let a = (a,)n>1 € A°. Choose
N € Z7T so that |an| > k. Let r = |an| — 5% . We claim that By(a,r) C A°. Let & = (2,)n>1 € Bi(a,r).
Then

o0
lan| = lzn| < lay —2n| < X lan — 20| = la = 2], <r = |ay| - 35 -
n=1

It follows that |zn| > 5k, and so & = (z,)n>1 ¢ A, that is € A° as required.



7: (a) Show that ¢; is neither open nor closed in the metric space (oo, doo)-

Solution: By Part 2 of Theorem 2.49, to show that ¢; is not closed in (¢, doo ), it suffices to find a limit point
of ¢; which does not lie in #;. Let a = (%l)n>1 = (1, %, %, . ) Note that a € o, with ||a||cc = a1 = 1 but

o0
a ¢ 0y since ||lalj; = Y. 2 = co. We claim that a is a limit point of ¢;. Let 7 > 0. Choose m € Z* such that

n =

n=1
%<r. Letx:(mn)nzlwithxn:%forngmandxn:Oforn>m,thatisletx: (1,%,-~7%,0,0,~-).
m
Then z # a, and x € {; with |zl = Y L < o0, and ||z — al|ec = H(O,n-ﬁ,ﬁ,ﬁg--)”%zﬁ <r,

and so we have x € B*(a,r)N{;. Thus a is a limit point of ¢1, as claimed, hence ¢; is not closed in (¢, deo)-
To see that £; is not open, and indeed to see that £1° = 0 in (€, dso), note that given a = (a,) € £;

and 0 < r € R, we can choose b = (b,,) to be the sequence given by b, = a,, + 5. Then we have b € B (a,r)

but b ¢ £;.

(b) Determine whether every set U C ¢; which is open in (¢, ds) is also open in (¢1,d;).

Solution: We show that this is indeed the case. Let a = (a,)n>1 and © = (x,,)n>1 be in fy. For all N € ZT,
the Triangle Inequality gives

Taking the limit as N — oo we obtain

dy(a,x) = i(an—xn)2 §Z|an—xn| =dy(a,x).

n=

It follows that for all 0 < r € R we have Bj(a,r) C Ba(a,r) since

3

Il

-
-

x € Bi(a,r) = di(a,x) <r = da(a,z) < di(a,z) <r = x € By(a,r).
Now suppose that U C /¢; is open in (¢1,d3). Let a € U. Choose 0 < r € R so that Bs(a,r) C U. Then
Bi(a,r) € By(a,r) CU. Thus U is also open in (¢1,dy).
(¢) Determine whether every set U C ¢; which is open in (¢1,d;) is also open in ({1, dg).

Solution: We shall show that for a € ¢; and 0 < r € R, the ball By (a,r), which is open in (I, d;), is not open
in (I1,d2). Let a = (an)n>1 € 1 and let 0 < r € R. We claim that a ¢ Bi(a,r)° in (¢1,d2). We must show
that for every 0 < s € R, Bs(a,s) Z Bi(a,r). Let s > 0. Recall that ) - converges but ) L diverges. Let

1
n2

18

p:

n=1

00 b e N
(in fact, p = %) Then we have 21 SQn/fz =52 and 21 % = 00. Choose N € ZT so that 21 % >r. Let

b = (b,)n>1 be the sequence given by b,, = # for1 <n < N and b,, = 0 for n > N. Note that b € R® C ¢;
so a+bely. We have a + b € Ba(a, s) because

o0
dy(a,a+b) = [ S S22 <[5 S22
n=1 n=1

N
di(a,a+b)= > #>r.

n=1

1Mz

but a + b ¢ Bi(a,r) because

Thus Bs(a,r) € Bi(a,r), as required. We remark that a minor modification of the above argument can be
used to show that Bj(a,r)° =0 in (¢1,ds).



8: (a) Verify that we can define a metric on the space My ¢(R) of real k x £ matrices by d(A, B) = rank(B — A).

Solution: For A, B € My ¢(R), we define d(A, B) = rank(A — B). It is clear that d is positive definite,
that is d(A,B) > 0 for all A,B € Mgx¢(R) with d(A,B) = 0 if and only if A = B, because only the
zero matrix has rank zero. It is also clear that d is symmetric, that is d(A, B) = d(B, A), since for any
matrix X we have rank(X) = rank(—X). We need to verify that d satisfies the triangle inequality. Let
A,B,C € Mpxo(R). Let X =A—-B,Y=B—Cand Z=C— A. Note that X +Y = Z. Let uy,---,uy
be the columns of X, let vy,---,vs be the columns of Y and let wq,---,w,; be the columns of Z. Since
X +Y = Z we have w; = u; + v; for all indices i, and so Span{ws,---,we} C Span{uy, -, up, vy, -, v¢}.
Let U = Col(A) = Span{uy,---,us}, V = Col(B) = Span{vy,---,v,} and W = Col(Z) = Span{wy, - -, ws}.
Since W = Span{wy, - --,ws} C Span{uy,---,ug,v1,---,ve} = U + V we have

rank(Z) = dimW < dim(U 4+ V) =dimU + dimV — dim(UNV) < dim U 4+ dim V' = rank(X) + rank(Y),
and so

d(A,C) =rank(A—C) = rank(Z) < rank(X) +rank(Y’) = rank(A — B) +rank(B — C) = d(A, B) +d(B, C).

(b) Verify that we can define a metric on the unit sphere §? = {u € R*| ||lul| = 1} by d(u,v) = cos™!(u + v)
where u « v is the standard inner product (the dot product) in R®. Hint: you may wish to use properties of
the cross product in R3.

Solution: For u,v € S? we define d(u,v) = cos™!(u+wv). It is clear that d is symmetric. Note that d is
positive definite because for all u,v € S? we have d(u,v) = cos™!(u + v) € [0, 7] and we have

lu =l = [lull* + Jo]* = 2(u + v) =2 = 2(u - v)

so that
d(u,v) =0 <= cos H(u+v) =0 <= u-v=1 = |lu—2v|>=0 <= u=v.

To show that d satisfies the Triangle Inequality, recall (or verify) that for vectors u, v, w,r € R? we have
(uxv)s(wxz)=(usw)(vex)—(vew)(u-z). (1)

For 0 # u,v € R3, recall that the angle § = 6(u,v) between u and v is given by = cos™* m Using

Property (1) of the cross product, we have

2 20 l12 — (1 o 27)2
RPN VL) 1 [ (221
[l [
C(wew)wev)—(uev)(urv)  (uxv)e(uxv) fuxol?
[ul[[lv]]? l[ul[lo][? lull?[lv]>*

Since 0 < 6 < 7 so that sinf > 0 it follows that

_ Jluxo

sin 0

ol

When u,v € S?, so |u|] = |v| = 1, note that d(u,v) = cos™(u + v) = O(u,v). When u,v,w € S?, using the
Cauchy Schwarz Inequality and Property (1), we have

cos (6(u, v) + 0(v, w)) = cos B(u,v) cos (v, w) — sin (u, v) sin 6(v, w)
= (u-v)(v - w) = [luxof o xw]
<(uv)(vew)—(uxv)s(vxw)
= (u-v)(vew)— ((usv)(vew)—(usw)(v-v))
=wu+w = cosb(u,w).

Since cos @ is decreasing with 6, it follows that 6(u, w) < 0(u,v) + (v, w), that is d(u,w) < d(u,v) + d(v,w).



