

PMATH 351 Real Analysis, Exercises for Chapter 2: Metric Spaces

1: Determine which of the following functions $d : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are metrics on \mathbb{R} .

- (a) $d(x, y) = (x - y)^2$
- (b) $d(x, y) = \sqrt{|x - y|}$
- (c) $d(x, y) = |x^2 - y^2|$
- (d) $d(x, y) = \frac{|x - y|}{1 + |x - y|}$

2: (a) Let $S = \{(x, y) \in \mathbb{R}^2 \mid y > x^2\}$. Prove, from the definition of an open set, that S is open in \mathbb{R}^2 .

- (b) Define $f : \mathbb{R} \rightarrow \mathbb{R}^2$ by $f(t) = \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1}\right)$. Show that $\text{Range}(f)$ is not closed in \mathbb{R}^2 .

3: Determine which of the following statements are true for every metric space (X, d) and every $A \subseteq X$.

- (a) $\overline{B(a, r)} = \overline{B}(a, r)$ for every $a \in X$ and every $r > 0$.
- (b) $(\overline{A})^c = (A^c)^\circ$.
- (c) If $A = A^\circ$ then $A = (\overline{A})^\circ$.
- (d) If $A = \overline{A}$ then $\partial(\partial A) = \partial A$.

4: (a) Let (X, d) be a metric space with X uncountable. Show that for every $a \in X$ there exists $r > 0$ such that $B(a, r)$ is uncountable.

- (b) Let (X, d) be a metric space with the property that for every $a \in X$ there exists $r > 0$ such that $B(a, r)$ is countable. Determine whether X must be countable.

5: (a) Show that there is no inner product on \mathbb{R}^2 which induces the 1-norm $\| \cdot \|_1$.

- (b) Let $T = \{U \subseteq \mathbb{R} \mid U = \emptyset \text{ or } \mathbb{R} \setminus U \text{ is finite}\}$. Show that T is a topology on \mathbb{R} which is not induced by any metric on \mathbb{R} (T is called the *cofinite topology* on \mathbb{R}).

6: Let A denote the set of all real-valued sequences $(a_n)_{n \geq 1}$ for which $|a_n| \leq \frac{1}{2^n}$ for all $n \in \mathbb{Z}^+$.

- (a) Show that $A^\circ = \emptyset$ in (ℓ_1, d_1) .
- (b) Show that $\overline{A} = A$ in (ℓ_1, d_1) .

7: (a) Show that ℓ_1 is neither open nor closed in the metric space (ℓ_∞, d_∞) .

- (b) Determine whether every set $U \subseteq \ell_1$ which is open in (ℓ_1, d_2) is also open in (ℓ_1, d_1) .
- (c) Determine whether every set $U \subseteq \ell_1$ which is open in (ℓ_1, d_1) is also open in (ℓ_1, d_2) .

8: (a) Verify that we can define a metric on the space $M_{k \times \ell}(\mathbb{R})$ of real $k \times \ell$ matrices by $d(A, B) = \text{rank}(B - A)$.

- (b) Verify that we can define a metric on the unit sphere $\mathbb{S}^2 = \{u \in \mathbb{R}^3 \mid \|u\| = 1\}$ by $d(u, v) = \cos^{-1}(u \cdot v)$ where $u \cdot v$ is the standard inner product (the dot product) in \mathbb{R}^3 . Hint: you may wish to use properties of the cross product in \mathbb{R}^3 .