

PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 1

1: (a) Find a bijective map $f : \mathbb{R} \rightarrow [0, 1]$.

Solution: The map $h : \mathbb{R} \rightarrow (0, 1)$ given by $h(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} x$ is a bijective map with inverse given by $h^{-1}(y) = \tan(\pi(y - \frac{1}{2}))$, and the map $g : (0, 1) \rightarrow [0, 1]$ given by $g(\frac{k}{k+1}) = \frac{k-1}{k}$ for $k \in \mathbb{Z}^+$ and by $g(x) = x$ when $x \neq \frac{k}{k+1}$ for any $k \in \mathbb{Z}^+$ is bijective with inverse given by $g^{-1}(\frac{k-1}{k}) = \frac{k}{k+1}$ for $k \in \mathbb{Z}^+$ and by $g^{-1}(y) = y$ for $y \neq \frac{k-1}{k}$ for any $k \in \mathbb{Z}^+$. The composite $f : \mathbb{R} \rightarrow [0, 1]$ given by $f(x) = g(h(x))$ is bijective.

(b) Find an injective map $f : \mathbb{R} \rightarrow \mathbb{R} \setminus \mathbb{Q}$.

Solution: The map $h : \mathbb{R} \rightarrow (0, 1)$ given by $h(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} x$ is a bijective map with inverse given by $h^{-1}(y) = \tan(\pi(y - \frac{1}{2}))$, and the map $g : (0, 1) \rightarrow \mathbb{R} \setminus \mathbb{Q}$ given by

$$g(x) = \begin{cases} x & , \quad x \notin \mathbb{Q} \\ x + \sqrt{2} & , \quad x \in \mathbb{Q} \end{cases}.$$

is injective, so the composite $f : \mathbb{R} \rightarrow \mathbb{R} \setminus \mathbb{Q}$ given by $f(x) = g(h(x))$ is injective.

(c) Find a bijective map from \mathbb{N} to the set of all finite subsets of \mathbb{N} .

Solution: Let A be the set of finite subsets of \mathbb{N} . We define a bijective map $F : \mathbb{N} \rightarrow A$ as follows. Given $n \in \mathbb{N}$ we can write n (uniquely) in its binary representation as $n = a_m a_{m-1} \cdots a_1 a_0$, so we have $n = \sum_{i=0}^m a_i 2^i$ where each $a_i \in \{0, 1\}$ with $a_m = 1$ (unless $n = 0$ in which case $m = a_m = 0$). We then define

$$F(n) = F\left(\sum_{k=0}^m a_k 2^k\right) = \{k \in \mathbb{N} \mid a_k = 1\}.$$

(for example, when $n = 19$, in binary notation $n = 10011$ and so $F(n) = \{0, 1, 4\}$). The inverse map $G : A \rightarrow \mathbb{N}$ is given by

$$G(S) = \sum_{k=0}^{\infty} a_k 2^k \text{ where } a_k = \begin{cases} 1 & \text{if } k \in S, \\ 0 & \text{if } k \notin S. \end{cases}$$

In the above equation, S is a finite subset of \mathbb{N} , and the sum $\sum_{k=0}^{\infty} a_k 2^k$ finite because S is finite so that $a_k = 1$ for only finitely many values of $k \in \mathbb{N}$.

2: Find the cardinality of each of the following sets without using cardinal arithmetic (that is, only using the material from Chapter 1 up until, and including, Theorem 1.24).

(a) The set of all functions $f : \mathbb{N} \rightarrow \mathbb{N}$.

Solution: Recall that $2^{\mathbb{N}}$ denotes the set of functions from \mathbb{N} to $\{0, 1\}$, and $\mathbb{N}^{\mathbb{N}}$ denotes the set of functions from \mathbb{N} to \mathbb{N} . Note that $2^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}$ (since every function from \mathbb{N} to $\{0, 1\}$ is also a function from \mathbb{N} to \mathbb{N}) and so we have $|2^{\mathbb{N}}| \leq |\mathbb{N}^{\mathbb{N}}|$. Recall that each element $n \in \mathbb{N}$ can be written uniquely in the form $n = 2^{k-1}(2l+1)-1$ with $k, l \in \mathbb{N}$. Define $F : \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by

$$F(f)(2^k(2l-1)-1) = \begin{cases} 1 & \text{if } k = f(l), \\ 0 & \text{if } k \neq f(l). \end{cases}$$

(In the above equation, $f : \mathbb{N} \rightarrow \mathbb{N}$ and $F(f) : \mathbb{N} \rightarrow \{0, 1\}$). We claim that F is injective. Let $f, g : \mathbb{N} \rightarrow \mathbb{N}$. Suppose that $F(f) = F(g)$. Then $F(f)(n) = F(g)(n)$ for all $n \in \mathbb{N}$. Given $k, l \in \mathbb{N}$, let $n = 2^k(2l-1)-1$. Then we have $k = f(l) \iff F(f)(n) = 1 \iff F(g)(n) = 1 \iff k = g(l)$. Thus $f(l) = g(l)$ for all $l \in \mathbb{N}$, and so $f = g$. Thus F is injective, as claimed, and so we have $|\mathbb{N}^{\mathbb{N}}| \leq |2^{\mathbb{N}}|$. By the Cantor-Schroeder-Bernstein Theorem, it follows that $|\mathbb{N}^{\mathbb{N}}| = |2^{\mathbb{N}}|$, that is $|\mathbb{N}^{\mathbb{N}}| = 2^{\aleph_0}$.

(b) The set of all non-decreasing functions $f : \mathbb{N} \rightarrow \mathbb{N}$.

Solution: Let A be the set of non-decreasing functions from \mathbb{N} to \mathbb{N} . Define $F : 2^{\mathbb{N}} \rightarrow A$ by $F(f)(k) = k + f(k)$ where $f \in 2^{\mathbb{N}}$ (so $f : \mathbb{N} \rightarrow \{0, 1\}$) and $k \in \mathbb{N}$. Note that the function $F(f)$ is non-decreasing since for all $k \in \mathbb{N}$ we have $F(f)(k+1) - F(f)(k) = k+1 + f(k+1) - k - f(k) = 1 + f(k+1) - f(k) \geq 1 + 0 - 1 = 0$ (since $f(k), f(k+1) \in \{0, 1\}$). Also note that the function F is injective because for $f, g \in 2^{\mathbb{N}}$, if $F(f) = F(g)$ then for all $k \in \mathbb{N}$ we have $F(f)(k) = F(g)(k)$ so that $k + f(k) = k + g(k)$, and hence $f(k) = g(k)$. Since $F : 2^{\mathbb{N}} \rightarrow A$ is injective we have $|2^{\mathbb{N}}| \leq |A|$. On the other hand, since $A \subseteq \mathbb{N}^{\mathbb{N}}$ and $|\mathbb{N}^{\mathbb{N}}| = |2^{\mathbb{N}}|$ as shown in Part (a), we have $|A| \leq |2^{\mathbb{N}}|$. Thus $|A| = |2^{\mathbb{N}}| = 2^{\aleph_0}$, by the Cantor-Schroeder-Bernstein Theorem.

(c) The set of all non-increasing functions $f : \mathbb{N} \rightarrow \mathbb{N}$.

Solution: Let B be the set of non-increasing functions from \mathbb{N} to \mathbb{N} . Define $F : \mathbb{N} \rightarrow B$ by letting $F(n)$ be the constant function $F(n)(k) = n$ for all $k \in \mathbb{N}$. Then F is clearly injective so we have $|\mathbb{N}| \leq |B|$. Define $G : B \rightarrow \mathbb{N}$ as follows. Given $f \in B$, let $m = \min(\text{Range}(f))$ and $l = \min\{k \in \mathbb{N} | f(k) = m\}$ (these exist by the Well-Ordering Property of \mathbb{N}), and then define $G(f) = \prod_{k=0}^l p_k^{f(k)+1}$ where $p_0 = 2$ and where p_k is the k^{th} odd prime for $k \geq 1$. The function G is injective because the function f is uniquely determined by the numbers $l, f(0), f(1), \dots, f(l)$ and because positive integers have unique prime factorization. Thus $|B| \leq |\mathbb{N}|$. Since $|\mathbb{N}| \leq |B|$ and $|B| \leq |\mathbb{N}|$, we have $|B| = |\mathbb{N}| = \aleph_0$ by the Cantor-Schroeder-Bernstein Theorem.

We remark that the map $H : B \rightarrow \mathbb{N}$ given by $H(f) = \prod_{k=0}^l p_k^{f(k)}$ is not injective. Can you see why?

3: Find the cardinality of each of the following sets.

(a) The set of all countably infinite subsets of \mathbb{R} .

Solution: Let C be the set of all countably infinite subsets of \mathbb{R} . Note that the map $f : \mathbb{R} \rightarrow C$ given by $f(r) = \{r, r+1, r+2, \dots\}$ is injective so that we have $2^{\aleph_0} = |\mathbb{R}| \leq |C|$, and the map $g : \mathbb{R}^\omega \rightarrow C$ given by $g(x_1, x_2, x_3, \dots) = \{x_1, x_2, x_3, \dots\}$ is surjective so that, by Example 1.32, we have $2^{\aleph_0} = |\mathbb{R}^\omega| \geq |C|$. Thus $|C| = 2^{\aleph_0}$ by the the Cantor-Schoeder-Bernstein Theorem.

(b) The set of continuous functions $f : \mathbb{R} \rightarrow \mathbb{R}$.

Solution: Let $\mathcal{C}(\mathbb{R})$ denote the set of continuous maps $f : \mathbb{R} \rightarrow \mathbb{R}$ and let $\mathcal{C}(\mathbb{Q})$ denote the set of continuous maps $f : \mathbb{Q} \rightarrow \mathbb{R}$. Since every continuous map $f : \mathbb{R} \rightarrow \mathbb{R}$ is determined by its restriction to \mathbb{Q} (indeed given $a \notin \mathbb{Q}$, we can choose a sequence $\langle x_n \rangle$ in \mathbb{Q} with $x_n \rightarrow a$ and then we must have $f(a) = \lim_{n \rightarrow \infty} f(x_n)$), the map $F : \mathcal{C}(\mathbb{R}) \rightarrow \mathcal{C}(\mathbb{Q})$, which sends $f \in \mathcal{C}(\mathbb{R})$ to its restriction to \mathbb{Q} , is a bijection. Thus we have $|\mathcal{C}(\mathbb{R})| = |\mathcal{C}(\mathbb{Q})|$. Since $\mathcal{C}(\mathbb{Q}) \subseteq \mathbb{R}^\mathbb{Q}$, we have

$$|\mathcal{C}(\mathbb{R})| = |\mathcal{C}(\mathbb{Q})| \leq |\mathbb{R}^\mathbb{Q}| = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0}.$$

Also the map $G : \mathbb{R} \rightarrow \mathcal{C}(\mathbb{R})$, which sends $a \in \mathbb{R}$ to the constant map f_a given by $f_a(x) = a$ for all $x \in \mathbb{R}$, is injective so

$$2^{\aleph_0} = |\mathbb{R}| \leq |\mathcal{C}(\mathbb{R})|.$$

By the Cantor-Schroeder-Bernstein Theorem, we have $|\mathcal{C}(\mathbb{R})| = 2^{\aleph_0}$.

(c) The set of all bounded functions $f : \mathbb{R} \rightarrow \mathbb{R}$.

Solution: Note that $\mathcal{B}(\mathbb{R}) \subseteq \mathbb{R}^\mathbb{R}$ so we have

$$|\mathcal{B}(\mathbb{R})| \leq |\mathbb{R}^\mathbb{R}| = (2^{\aleph_0})^{2^{\aleph_0}} = 2^{\aleph_0 \cdot 2^{\aleph_0}} \leq 2^{2^{\aleph_0} \cdot 2^{\aleph_0}} = 2^{2^{\aleph_0 + \aleph_0}} = 2^{2^{\aleph_0}}.$$

Also note that $2^\mathbb{R} \subseteq \mathcal{B}(\mathbb{R})$ so we have

$$2^{2^{\aleph_0}} = |2^\mathbb{R}| \leq |\mathcal{B}(\mathbb{R})|.$$

By the Cantor-Schröder-Bernstein Theorem, $|\mathcal{B}(\mathbb{R})| = 2^{2^{\aleph_0}}$.

4: (a) Show that every open set in \mathbb{R} (using the standard topology) is equal to the union of finite or countably many disjoint open intervals.

Solution: For $a, b \in \mathbb{R}$, let $[a, b]$ denote the closed interval between a and b , that is

$$[a, b] = \{a + t(b - a) \mid 0 \leq t \leq 1\},$$

and note that $[a, b] = [b, a] = [\min\{a, b\}, \max\{a, b\}]$. Recall that the intervals in \mathbb{R} are the sets with the intermediate value property: a subset $I \subseteq \mathbb{R}$ is an interval when it has the property that for every $a, b \in I$ we have $[a, b] \subseteq I$ (in other words, the intervals in \mathbb{R} are equal to the convex subsets of \mathbb{R}). Let U be an open set in \mathbb{R} . Define a relation on U by stipulating that $a \sim b \iff [a, b] \subseteq U$. Note that this is an equivalence relation (indeed we have $a \sim a$ because $[a, a] = \{a\}$, and if $a \sim b$ then $b \sim a$ because $[a, b] = [b, a]$, and if $a \sim b$ and $b \sim c$ then $a \sim c$ because $[a, c] \subseteq [a, b] \cup [b, c]$). It follows that U is the disjoint union of the equivalence classes.

We claim that each equivalence class C is an interval. Let C be an equivalence class and let $a, b \in C$. Then we have $a \sim b$ and $C = \{x \in U \mid x \sim a\}$. Since $a \sim b$ we have $[a, b] \subseteq U$. For every $x \in [a, b]$ we have $[a, x] \subseteq [a, b] \subseteq U$ so that $x \sim a$ and hence $x \in C$. This shows that $[a, b] \subseteq C$, hence C is an interval.

We claim that each equivalence class C is open. Let C be an equivalence class and let $a \in C$. Then we have $C = \{x \in U \mid x \sim a\}$. Since U is open we can choose $r > 0$ such that $(a - r, a + r) \subseteq U$. For every $x \in (a - r, a + r)$ we have $[a, x] \subseteq (a - r, a + r) \subseteq U$ so that $x \sim a$ hence $x \in C$. This shows that for all $(a - r, a + r) \subseteq C$ and so C is open.

Finally, we claim that there are at most countably many equivalence classes C . We denote the set of equivalence classes by U/\sim . For each equivalence class $C \in U/\sim$, since C is a nonempty open interval we can choose a rational number $a_C \in C$. Because the equivalence classes are disjoint, the rational numbers a_C are distinct so the map $F : U/\sim \rightarrow \mathbb{Q}$ given by $F(C) = a_C$ is injective. Thus the set of equivalence classes U/\sim is at most countable.

(b) Find the cardinality of the set of all open sets in \mathbb{R} .

Solution: Let S be the set of all open sets in \mathbb{R} . We claim that $|S| = 2^{\aleph_0}$. Since the map $F : \mathbb{R} \rightarrow S$ given by $F(a) = B(a, 1) = (a - 1, a + 1)$ is injective, we have $|S| \geq |\mathbb{R}| = 2^{\aleph_0}$. It remains to show that $|S| \leq 2^{\aleph_0}$.

Let U be a nonempty open set. For each $a \in U$ we can choose $r_a > 0$ so that $(a - 3r_a, a + 3r_a) \subseteq U$ then we can choose $q_a \in \mathbb{Q}$ with $q_a \in (a - r, a + r)$ and we can choose $s_a \in \mathbb{Q}$ with $r < s < 2r$ and then we have $a \in (q_a - s_a, q_a + s_a) \subseteq (a - 3r_a, a + 3r_a) \subseteq U$. It follows that $U = \bigcup_{a \in U} (q_a - s_a, q_a + s_a)$. Thus every nonempty open set is a union of open intervals with rational centre and positive rational radius. Hence every open set (including the empty set) is a union of open intervals with rational centre and non-negative rational radius. Since there are only countably many such open intervals (indeed $|\mathbb{Q} \times \mathbb{Q}^{\geq 0}| = \aleph_0$) it follows that every open set in \mathbb{R} is equal to a countable union of open intervals with rational centre and non-negative rational radius. It follows that the map $G : (\mathbb{Q} \times \mathbb{Q}^{\geq 0})^{\mathbb{Z}^+} \rightarrow S$ given by

$$G((q_1, s_1), (q_2, s_2), \dots) = (q_1 - s_1, q_1 + s_1) \cup (q_2 - s_2, q_2 + s_2) \cup \dots$$

is surjective. Thus we have

$$|S| \leq |(\mathbb{Q} \times \mathbb{Q}^{\geq 0})^{\mathbb{Z}^+}| = \aleph_0^{\aleph_0} \leq (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0}.$$

5: (a) Let $\mathbb{Q}^+ = \{x \in \mathbb{Q} | x > 0\}$ and let $\mathbb{Z}^+ = \{k \in \mathbb{Z} | k > 0\}$. Let $f : \mathbb{Q}^+ \rightarrow \mathbb{Z}^+$ be the injective map given by $f\left(\frac{k}{l}\right) = 2^{k-1}(2l-1)$ for $k, l \in \mathbb{Z}^+$ with $\gcd(k, l) = 1$. Let $A = f(\mathbb{Q}^+)$. Let $a_0 = \min A$, $a_1 = \min A \setminus \{a_0\}$, $a_2 = \min A \setminus \{a_0, a_1\}$, and so on. Find a_{20} and find $|A \cap S_{100}|$ where as usual, for $m \in \mathbb{N}$ we write $S_m = \{0, 1, \dots, m-1\}$.

Solution: The elements in $\mathbb{Z}^+ \setminus A = \mathbb{Z}^+ \setminus f(\mathbb{Q}^+)$ are the elements $2^{k-1}(2l-1)$ with $\gcd(k, l) \neq 1$, so

$$\mathbb{Z}^+ \setminus A = \{2^0(2l-1) | \gcd(1, l) \neq 1\} \cup \{2^1(2l-1) | \gcd(2, l) \neq 1\} \cup \{2^2(2l-1) | \gcd(3, l) \neq 1\} \cup \dots$$

We have $\gcd(1, l) = 1$ for all $l \in \mathbb{Z}^+$, and so $\{2^0(2l-1) | \gcd(1, l) \neq 1\} = \emptyset$. We have $\gcd(2, l) \neq 1$ for $l \in \{2, 4, 6, 8, 10, \dots\}$, and so

$$\{2^1(2l-1) | \gcd(2, l) \neq 1\} = \{2 \cdot 3, 2 \cdot 7, 2 \cdot 11, 2 \cdot 15, 2 \cdot 19, \dots\} = \{6, 14, 22, 30, 38, \dots\}.$$

We have $\gcd(3, l) \neq 1$ for $l \in \{3, 6, 9, 12, \dots\}$ and so

$$\{2^2(2l-1) | \gcd(3, l) \neq 1\} = \{4 \cdot 5, 4 \cdot 11, 4 \cdot 17, 4 \cdot 23, \dots\} = \{20, 44, 68, 92, \dots\}.$$

Similarly,

$$\{2^3(2l-1) | \gcd(4, l) \neq 1\} = \{8(2l-1) | l = 2, 4, 6, 8, 10\} = \{24, 56, 58, 120, \dots\}$$

$$\{2^4(2l-1) | \gcd(5, l) \neq 1\} = \{16(2l-1) | l = 5, 10, 15, 20, \dots\} = \{144, 304, \dots\}$$

$$\{2^5(2l-1) | \gcd(6, l) \neq 1\} = \{32(2l-1) | l = 2, 3, 6, 8, 9, 12, 14, 15, 18, \dots\} = \{96, 160, 352, \dots\}$$

For $k \geq 7$ it is clear that $\{2^{k-1}(2l-1) | \gcd(k, l) \neq 1\} \cap S_{100} = \emptyset$, and so we have

$$(\mathbb{Z}^+ \setminus A) \cap S_{100} = \{6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94\} \cup \{20, 44, 68, 92\} \cup \{24, 56, 58\} \cup \{96\}.$$

Thus $|(\mathbb{Z}^+ \setminus A) \cap S_{100}| = 12 + 4 + 3 + 1 = 20$ and so $|A \cap S_{100}| = 99 - 20 = 79$. Also, the first few term in the sequence $\langle a_k \rangle_{k \geq 0}$ are as follows

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a_k	1	2	3	4	5	7	8	9	10	11	12	13	15	16	17	18	19	21	23	25	26

and in particular, $a_{20} = 26$.

(b) Let $A = B = \mathbb{N}$. Let $f : A \rightarrow B$ and $g : B \rightarrow A$ be the injective maps given by $f(k) = 2k$ and $g(k) = 3k$.

Let $X_1 = A$ and $Y_1 = g(B)$, and for $k \geq 1$ let $X_{k+1} = g(f(X_k))$ and $Y_{k+1} = g(f(Y_k))$. Let $U = \bigcup_{k=1}^{\infty} (X_k \setminus Y_k)$.

Find $|U \cap S_{100}|$ and find $|U \cap S_m|$ in the case that $m = 6^k$ with $k \in \mathbb{N}$.

Solution: For $m \in \mathbb{N}$ we write $m\mathbb{N} = \{mk | k \in \mathbb{N}\} = \{0, m, 2m, 3m, \dots\}$. We have $X_1 = \mathbb{N}$ and $Y_1 = 3\mathbb{N}$. Note that $g(f(k)) = g(2k) = 6k$ for all $k \in \mathbb{N}$, and so we have $X_2 = 6\mathbb{N}$, $X_3 = 36\mathbb{N}$, and in general $X_n = 6^{n-1}\mathbb{N}$, and we have $Y_2 = 18\mathbb{N}$, $Y_3 = 108\mathbb{N}$ and in general $Y_n = 3 \cdot 6^{n-1}\mathbb{N}$.

$$\begin{aligned} U \cap S_{100} &= (X_1 \setminus Y_1) \cap S_{100} \cup (X_2 \setminus Y_2) \cap S_{100} \cup (X_3 \setminus Y_3) \cap S_{100} \cup \dots \\ &= (X_1 \cap S_{100}) \setminus (Y_1 \cap S_{100}) \cup (X_2 \cap S_{100}) \setminus (Y_2 \cap S_{100}) \cup (X_3 \cap S_{100}) \setminus (Y_3 \cap S_{100}) \cup \dots \\ &= \{0, 1, 2, \dots, 99\} \setminus \{0, 3, 6, 9, \dots, 96, 99\} \cup \{0, 6, 12, \dots, 96\} \setminus \{0, 18, 36, 54, 72, 90\} \cup \{0, 36, 72\} \setminus \{0\} \end{aligned}$$

and so $|U \cap S_{100}| = (100 - 34) + (17 - 6) + (3 - 1) = 79$.

Let $m = 6^k$. For $j > k$ we have $X_j \cap S_m = Y_j \cap S_m = \{0\}$ and for $1 \leq j \leq k$ we have

$$|X_j \cap S_m| = |6^{j-1}\mathbb{N} \cap S_m| = \frac{1}{6^{j-1}} 6^k = 6^{k-j+1}, \text{ and}$$

$$|Y_j \cap S_m| = |3 \cdot 6^{j-1}\mathbb{N} \cap S_m| = \frac{1}{3 \cdot 6^{j-1}} 6^k = \frac{1}{3} 6^{k-j+1}$$

so we have

$$\begin{aligned} U \cap S_m &= \bigcup_{j=1}^{\infty} (X_j \setminus Y_j) \cap S_m = \bigcup_{j=1}^{\infty} (X_j \setminus S_m) \setminus (Y_j \cap S_m) = \bigcup_{j=1}^k (X_j \setminus S_m) \setminus (Y_j \cap S_m), \text{ and} \\ |U \cap S_m| &= \sum_{j=1}^k (|X_j \cap S_m| - |Y_j \cap S_m|) = \sum_{j=1}^k (6^{k-j+1} - \frac{1}{3} 6^{k-j+1}) = \frac{2}{3} \sum_{j=1}^k 6^{k-j+1} \\ &= \frac{2}{3} (6^k + 6^{k-1} + \dots + 6^2 + 6) = \frac{2}{3} \cdot \frac{6}{5} (6^k - 1) = \frac{4}{5} (6^k - 1). \end{aligned}$$