PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 1

: (a) Find a bijective map f: R — [0,1).

Solution: The map h : R — (0,1) given by h(z) = l + 1 tan* xis a bijective map with inverse given
by h=1(y) = tan( (y — l))7 and the map ¢ : (0,1) — [0, 1 ) given by g( T ) kfl for k € Z* and by
g(x) = x when x # k:+1 for any k € Z7 is bijective with inverse given by g~ ( 1) = k 7 for k € Z* and by
g (y) =y for y # &L for any k € ZF. The composite f : R — [0,1) given by f(z) = ( (x)) is bijective.
(b) Find an injective map f: R — R\ Q.

Solution: The map h : R — (0,1) given by h(z) = 2 + 1 tan_ z is a bijective map with inverse given by

h=*(y) = tan (7(y — 3)), and the map g: (0,1) - R\ Q glven by
, ¢ Q
:c+f z€Q.

is injective, so the composite f: R — R\ Q given by f(x) = g(h(z)) is injective.

(¢c) Find a bijective map from N to the set of all finite subsets of N.

Solution: Let A be the set of finite subsets of N. We define a bijective map F' : N — A as follows. Given
m .

n € N we can write n (uniquely) in its binary representation as n = amam—1 - - - a1ap, so we have n = > a;2"

i=0
where each a; € {0,1} with a,, =1 (unless n = 0 in which case m = a,, = 0). We then define

F(n) = F(é}oam) = {k € N|ar =1}.

(for example, when n = 19, in binary notation n = 10011 and so F'(n) = {0,1,4}). The inverse map
G : A — N is given by

0 1ifkels,
G(S) = kzoa;ﬁk where aj, = {0 ke s

[ee]

In the above equation, S is a finite subset of N, and the sum Y a;2" finite because S is finite so that a; = 1
k=0

for only finitely many values of k € N.



2: Find the cardinality of each of the following sets without using cardinal arithmetic (that is, only using the
material from Chapter 1 up until, and including, Theorem 1.24).

(a) The set of all functions f: N — N.

Solution: Recall that 2 denotes the set of functions from N to {0,1}, and N denotes the set of functions
from N to N. Note that 2% C NN (since every function from N to {0, 1} is also a function from N to N) and so
we have |2V < |[NY|. Recall that each element n € N can be written uniquely in the form n = 2¥=1(21+1) -1
with k,1 € N. Define F : NN — 2N by

Lif k= f(1),
0if k # £(1).
(In the above equation, f : N — N and F(f) : N — {0,1}). We claim that F is injective. Let f,g: N — N.
Suppose that F(f) = F(g). Then F(f)(n) = F(g)(n) for all n € N. Given k,l € N, let n = 2¥(21 — 1) — 1.
Then we have k = f(I) <= F(f)(n)=1 < F(g)(n) =1 < k=g(l). Thus f(I) = g(I) for all l € N,

and so f = g. Thus F is injective, as claimed, and so we have |[N| < |2V]. By the Cantor-Schroeder-Bernstein
Theorem, it follows that [NN| = |2V|) that is |NN| = 280,

F(f) (8@ —1) ~1) = {

(b) The set of all non-decreasing functions f : N — N.

Solution: Let A be the set of non-decreasing functions from N to N. Define F': 28 — A by F(f)(k) = k+f(k)
where f € 2V (so f : N — {0,1}) and k € N. Note that the function F(f) is non-decreasing since for all
k € Nwehave F(f)(k+1)—F(f)(k) =k+1+f(k+1)—k—f(k) =14+ f(k+1)—f(k) >14+0—1 =0 (since
f(k), f(k+1) € {0,1}). Also note that the function F is injective because for f,g € 2~ if F(f) = F(g)
then for all k € N we have F(f)(k) = F(g)(k) so that k + f(k) = k + g(k), and hence f(k) = g(k). Since
F : 2V — A is injective we have [2"] < |A|. On the other hand, since A C N¥ and |NY| = |2V] as shown in
Part (a), we have |A| < [2V]. Thus |A| = |2)] = 2%, by the Cantor-Schroeder-Bernstein Theorem.

(c) The set of all non-increasing functions f : N — N.

Solution: Let B be the set of non-increasing functions from N to N. Define F' : N — B by letting F(n) be
the constant function F(n)(k) = n for all K € N. Then F is clearly injective so we have |N| < |B|. Define
G : B — N as follows. Given f € B, let m = min (Range(f)) and | = min{k € N|f(k) = m} (these exist by

I
the Well-Ordering Property of N), and then define G(f) = [] prf®+! where py = 2 and where pj, is the
k=0

Eth odd prime for k > 1. The function G is injective because the function f is uniquely determined by the
numbers I, f(0), f(1),--- f(I) and because positive integers have unique prime factorization. Thus |B| < |N].
Since |N| < |B| and |B| < |N|, we have |B| = |[N| = X by the Cantor-Schroeder Bernstein Theorem.

!
We remark that the map H : B — N given by H(f) = [] px/™ is not injective. Can you see why?
k=0



3: Find the cardinality of each of the following sets.

(a) The set of all countably infinite subsets of R.

Solution: Let C' be the set of all countably infinite subsets of R. Note that the map f : R — C given by
f(r) = {r,r+1,742,---} is injective so that we have 2% = |R| < |C|, and the map g : R* — C given by
g(z1, 9,23, -+) = {w1, 22,23, -} is surjective so that, by Example 1.32, we have 2% = |R¥| > |C|. Thus
|C| = 2% by the the Cantor-Schoeder-Bernstein Theorem.

(b) The set of continuous functions f: R — R.

Solution: Let C(R) denote the set of continuous maps f : R — R and let C(Q) denote the set of continuous

maps f: Q — R. Since every continuous map f : R — R is determined by its restriction to Q (indeed given

a ¢ Q, we can choose a sequence (z,,) in Q with #,, — a and then we must have f(a) = lim f(x,)), the map
n— oo

F : C(R) — C(Q), which sends f € C(R) to its restriction to Q, is a bijection. Thus we have |C(R)| = |C(Q)|.
Since C(Q) C R?, we have

C®)| = @] < [RY = (2%)™ = 2% = g%,

Also the map G : R — C(R), which sends a € R to the constant map f, given by f,(z) = a for all x € R, is
injective so

2% = [R| < [C(R)].
By the Cantor-Schroeder-Bernstein Theorem, we have |C(R)| = 2%

(¢) The set of all bounded functions f : R — R.
Solution: Note that B(R) C R so we have
‘B(R)| < |RR| _ (2N0)2N0 — 9Ro-2%0 < 92N0.2%0 _ ga%otNo g%
Also note that 28 C B(R) so we have
22" — |2%| < [B(R)|.

B(R)| =22".

By the Cantor-Schroder-Bernstein Theorem,



4: (a) Show that every open set in R (using the standard topology) is equal to the union of finite or countably
many disjoint open intervals.

Solution: For a,b € R, let [a, b] denote the closed interval between a and b, that is
[a,b] = {a+t(b—a)|0<t<1},

and note that [a,b] = [b,a] = [min{a,b}, max{a,b}]. Recall that the intervals in R are the sets with the
intermediate value property: a subset I C R is an interval when it has the property that for every a,b € I
we have [a,b] C I (in other words, the intervals in R are equal to the convex subsets of R). Let U be an open
set in R. Define a relation on U by stipulating that a ~ b <= [a,b] C U. Note that this is an equivalence
relation (indeed we have a ~ a because [a,a] = {a}, and if a ~ b then b ~ a because [a,b] = [b,a], and
if a ~band b~ ¢ then a ~ ¢ because [a,c] C [a,b] U [b,c]). It follows that U is the disjoint union of the
equivalence classes.

We claim that each equivalence class C' is an interval. Let C' be an equivalence class and let a,b € C.
Then we have a ~ b and C = {z € U|z ~ a}. Since a ~ b we have [a,b] C U. For every = € [a,b] we have
[a,z] C [a,b] C U so that x ~ a and hence x € C. This shows that [a,b] C C, hence C' is an interval.

We claim that each equivalence class C' is open. Let C be an equivalence class and let a € C. Then we
have C = {x € U| T ~ a}. Since U is open we can choose r > 0 such that (e« —r,a+r) C U. For every
x € (a—r,a+r) we have [a,z] C (a —r,a+ 1) C U so that z ~ a hence z € C. This shows that for all
(a—r,a+1) C C and so C is open.

Finally, we claim that there are at most countably many equivalence classes C. We denote the set of
equivalence classes by U/~. For each equivalence class C' € U/~, since C is a nonempty open interval we
can choose a rational number a, € C. Because the equivalence classes are disjoint, the rational numbers a,
are distinct so the map F : U/~ Q given by F(C) = a. is injective. Thus the set of equivalence classes U/~
is at most countable.

(b) Find the cardinality of the set of all open sets in R.

Solution: Let S be the set of all open sets in R. We claim that |S| = 2%°. Since the map F : R — S given
by F(a) = B(a,1) = (a — 1,a + 1) is injective, we have |S| > |R| = 2%0. It remains to show that |S| < 2%o.
Let U be a nonempty open set. For each a € U we can choose r, > 0 so that (a — 3r,,a+ 3r,) CU
then we can choose ¢, € Q with ¢, € (a —r,a+r) and we can choose s, € Q with r < s < 2r and then we
have a € (¢a — Sa,qa + 5a) € (a —3rq,a+3rq) C U. Tt follows that U = |J,c/(¢a — Sas Ga + 54). Thus every
nonempty open set is a union of open intervals with rational centre and positive rational radius. Hence every
open set (including the empty set) is a union of open intervals with rational centre and non-negative rational
radius. Since there are only countably many such open intervals (indeed |Q x Q29| = NO) it follows that
every open set in R is equal to a countable union of open intervals with rational centre and non-negative

rational radius. It follows that the map G : (Q x QZO)Z+ — S given by

G((Q1,51)7 (q2,52), - ) =(q1 — 51,1 +51) U (g2 — 82,92 +52) U -~

is surjective. Thus we have

51 < |(@x @07 | = wje < (%) = 2 — 2,



5: (a) Let QT = {x € Q|z > 0} and let Z* = {k € Z|k > 0}. Let f: Q" — Z* be the injective map given by

f(%) =2F1(20 1) for k,l € ZT with ged(k,l) = 1. Let A= f(Q*t). Let ap = min A, a; = min A4 \ {ao},

az = min A \ {ap,a1}, and so on. Find agy and find |A N 5100‘ where as usual, for m € N we write

Sm ={0,1,---,m —1}.

Solution: The elements in Z* \ A = Z*\ f(Q") are the elements 2~%(2/ — 1) with ged(k,1) # 1, so
ZP\NA={2°21 - 1)| ged(1,1) # 1} U {2"(20 — 1)| ged(2,1) # 1} U {2*(20 — 1)| ged(3,1) #1} U - --

We have ged(1,1) = 1 for all [ € ZT, and so {2°(21 — 1)’gcd(1,l) # 1} = 0. We have ged(2,1) # 1 for
1€{2,4,6,8,10,- -}, and so

{2' (20— 1) ged(2,0) #1} ={2-3,2-7,2-11,2-15,2-19,---} = {6,14,22,30,38, - - -}
We have ged(3,1) # 1 for I € {3,6,9,12,---} and so
{22(20 —1)| ged(3,0) #1} = {4-5,4-11,4-17,4-23,---} = {20,44,68,92,- - -}.

Similarly,

{2320 — 1)| ged(4,0) # 1} = {8(20 — 1)|I = 2,4,6,8,10} = {24,56,58,120, - - -}

{2*(20 — 1)| ged(5,1) # 1} = {16(21 — 1)|l = 5,10,15,20, - - - } = {144,304, -}

{2°(20 — 1)| ged(6,1) # 1} = {32(20 — 1)|1 = 2,3,6,8,9,12,14,15,18, - -- } = {96,160, 352, - -}
For k > 7 it is clear that {2"71(2] — 1)| ged(k, ) # 1} N S1go = 0, and so we have

(ZT\ A) N Si00 = {6, 14,22, 30, 38, 46, 54, 62, 70, 78,86, 94} U {20, 44, 68,92} U {24, 56,58} U {96}

Thus }(Z“‘ \VA)N 5100} =12+4+3+1=20 and so |A N 5100| =99 — 20 = 79. Also, the first few term in
the sequence (ax)r>0 are as follows

k0 1 2 3 4 5
ag. 1 2 3 4 5 7

and in particular, asg = 26.

8§ 9 10 11 12 13 14 15 16 17 18 19 20
10 11 12 13 15 16 17 18 19 21 23 25 26

(b) Let A=B =N. Let f: A— Band g: B — A be the injective maps given by f(k) = 2k and g(k) = 3k.

Let Xy = Aand Yy = ¢g(B), and for k > 1 let Xp11 = g(f(Xk)) and Yey1 = g(f(Yx)). Let U = U (X \ Yx).
k=1

Find ’U N S100| and find |U N Sm| in the case that m = 6* with k& € N.

Solution: For m € N we write mN = {mk|k € N} = {0, m, 2m,3m,---}. We have X; = N and Y; = 3N. Note
that g(f(k)) = g(2k) = 6k for all k € N, and so we have Xy = 6N, X3 = 36N, and in general X,, = 6"~ 'N,
and we have Y5 = 18N, Y3 = 108N and in general Y,, = 3 - 6" 'N.

UNS100 = (X1 \ Y1) NS00 U (X2 \ Y2) N S100 U (X3 \ Y3) N S190U - -+
= (X1 N S100) \ (Y1 N S100) U (X2 N S100) \ (Y2 M S100) U (X3 M S100) \ (Y3 N S100) U
—{0,1,2,---,99} \ {0,3,6,9,---,96,99} U {0,6,12,---,96} \ {0, 18,36, 54, 72,90} U {0, 36,72} \ {0}
and so |U N Syop| = (100 — 34) + (17 — 6) + (3 — 1) = 79,
Let m = 6. For j > k we have X; NS, =Y; NS, = {0} and for 1 < j <k we have
|X; N S| = [697INN Sy, | = 551 68 = 65791 | and
Y; N S| = [3-697INN Sy, | = 58— 6F = $6FI+1

so we have
[e’e) o) k
UNSm=|J&X;\Y)N UX\S (Y; 0 Sy, UX\S \ (Y;NS,) , and
j 1 j=1 j=1

k k
|UNSy,| = (\X N S| = Y50 Sm]) = Zl (6b=3+1 — Lgh—it1) =2 '216k7j+1
=

i=
(6k+6k—1+ 6% +6)=2-8(6F —1)=2(6"—1).

) “



