
PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 1

1: (a) Find a bijective map f : R→ [0, 1).

Solution: The map h : R → (0, 1) given by h(x) = 1
2 + 1

π tan−1 x is a bijective map with inverse given

by h−1(y) = tan
(
π(y − 1

2 )
)
, and the map g : (0, 1) → [0, 1) given by g

(
k
k+1

)
= k−1

k for k ∈ Z+ and by

g(x) = x when x 6= k
k+1 for any k ∈ Z+ is bijective with inverse given by g−1

(
k−1
k

)
= k

k+1 for k ∈ Z+ and by

g−1(y) = y for y 6= k−1
k for any k ∈ Z+. The composite f : R→ [0, 1) given by f(x) = g(h(x)) is bijective.

(b) Find an injective map f : R→ R \Q.

Solution: The map h : R → (0, 1) given by h(x) = 1
2 + 1

π tan−1 x is a bijective map with inverse given by
h−1(y) = tan

(
π(y − 1

2 )
)
, and the map g : (0, 1)→ R \Q given by

g(x) =

{
x , x /∈ Q

x+
√

2 , x ∈ Q .

is injective, so the composite f : R→ R \Q given by f(x) = g(h(x)) is injective.

(c) Find a bijective map from N to the set of all finite subsets of N.

Solution: Let A be the set of finite subsets of N. We define a bijective map F : N → A as follows. Given

n ∈ N we can write n (uniquely) in its binary representation as n = amam−1 · · · a1a0, so we have n =
m∑
i=0

ai2
i

where each ai ∈ {0, 1} with am = 1 (unless n = 0 in which case m = am = 0). We then define

F (n) = F
( m∑
k=0

ak2k
)

=
{
k ∈ N

∣∣ak = 1
}
.

(for example, when n = 19, in binary notation n = 10011 and so F (n) = {0, 1, 4}). The inverse map
G : A→ N is given by

G(S) =
∞∑
k=0

ak2k where ak =

{
1 if k ∈ S,
0 if k /∈ S.

In the above equation, S is a finite subset of N, and the sum
∞∑
k=0

ak2k finite because S is finite so that ak = 1

for only finitely many values of k ∈ N.



2: Find the cardinality of each of the following sets without using cardinal arithmetic (that is, only using the
material from Chapter 1 up until, and including, Theorem 1.24).

(a) The set of all functions f : N→ N.

Solution: Recall that 2N denotes the set of functions from N to {0, 1}, and NN denotes the set of functions
from N to N. Note that 2N ⊆ NN (since every function from N to {0, 1} is also a function from N to N) and so
we have |2N| ≤ |NN|. Recall that each element n ∈ N can be written uniquely in the form n = 2k−1(2l+1)−1
with k, l ∈ N. Define F : NN → 2N by

F (f)
(
2k(2l − 1)− 1

)
=

{
1 if k = f(l),

0 if k 6= f(l).

(In the above equation, f : N→ N and F (f) : N→ {0, 1}). We claim that F is injective. Let f, g : N→ N.
Suppose that F (f) = F (g). Then F (f)(n) = F (g)(n) for all n ∈ N. Given k, l ∈ N, let n = 2k(2l − 1) − 1.
Then we have k = f(l) ⇐⇒ F (f)(n) = 1 ⇐⇒ F (g)(n) = 1 ⇐⇒ k = g(l). Thus f(l) = g(l) for all l ∈ N,
and so f = g. Thus F is injective, as claimed, and so we have |NN| ≤ |2N|. By the Cantor-Schroeder-Bernstein
Theorem, it follows that |NN| = |2N|, that is |NN| = 2ℵ0 .

(b) The set of all non-decreasing functions f : N→ N.

Solution: Let A be the set of non-decreasing functions from N to N. Define F : 2N → A by F (f)(k) = k+f(k)
where f ∈ 2N (so f : N → {0, 1}) and k ∈ N. Note that the function F (f) is non-decreasing since for all
k ∈ N we have F (f)(k+1)−F (f)(k) = k+1+f(k+1)−k−f(k) = 1+f(k+1)−f(k) ≥ 1+0−1 = 0 (since
f(k), f(k + 1) ∈ {0, 1}). Also note that the function F is injective because for f, g ∈ 2N, if F (f) = F (g)
then for all k ∈ N we have F (f)(k) = F (g)(k) so that k + f(k) = k + g(k), and hence f(k) = g(k). Since
F : 2N → A is injective we have

∣∣2N∣∣ ≤ |A|. On the other hand, since A ⊆ NN and |NN| = |2N| as shown in
Part (a), we have |A| ≤ |2N|. Thus |A| = |2N| = 2ℵ0 , by the Cantor-Schroeder-Bernstein Theorem.

(c) The set of all non-increasing functions f : N→ N.

Solution: Let B be the set of non-increasing functions from N to N. Define F : N → B by letting F (n) be
the constant function F (n)(k) = n for all k ∈ N. Then F is clearly injective so we have |N| ≤ |B|. Define
G : B → N as follows. Given f ∈ B, let m = min

(
Range(f)

)
and l = min{k ∈ N|f(k) = m} (these exist by

the Well-Ordering Property of N), and then define G(f) =
l∏

k=0

pk
f(k)+1 where p0 = 2 and where pk is the

kth odd prime for k ≥ 1. The function G is injective because the function f is uniquely determined by the
numbers l, f(0), f(1), · · · f(l) and because positive integers have unique prime factorization. Thus |B| ≤ |N|.
Since |N| ≤ |B| and |B| ≤ |N|, we have |B| = |N| = ℵ0 by the Cantor-Schroeder Bernstein Theorem.

We remark that the map H : B → N given by H(f) =
l∏

k=0

pk
f(k) is not injective. Can you see why?



3: Find the cardinality of each of the following sets.

(a) The set of all countably infinite subsets of R.

Solution: Let C be the set of all countably infinite subsets of R. Note that the map f : R → C given by
f(r) = {r, r+1, r+2, · · ·} is injective so that we have 2ℵ0 = |R| ≤ |C|, and the map g : Rω → C given by
g(x1, x2, x3, · · ·) = {x1, x2, x3, · · ·} is surjective so that, by Example 1.32, we have 2ℵ0 = |Rω| ≥ |C|. Thus
|C| = 2ℵ0 by the the Cantor-Schoeder-Bernstein Theorem.

(b) The set of continuous functions f : R→ R.

Solution: Let C(R) denote the set of continuous maps f : R→ R and let C(Q) denote the set of continuous
maps f : Q→ R. Since every continuous map f : R→ R is determined by its restriction to Q (indeed given
a /∈ Q, we can choose a sequence 〈xn〉 in Q with xn → a and then we must have f(a) = lim

n→∞
f(xn)

)
, the map

F : C(R)→ C(Q), which sends f ∈ C(R) to its restriction to Q, is a bijection. Thus we have
∣∣C(R)

∣∣ =
∣∣C(Q)

∣∣.
Since C(Q) ⊆ RQ, we have ∣∣C(R)

∣∣ =
∣∣C(Q)

∣∣ ≤ ∣∣RQ∣∣ =
(
2ℵ0
)ℵ0

= 2ℵ0·ℵ0 = 2ℵ0 .

Also the map G : R→ C(R), which sends a ∈ R to the constant map fa given by fa(x) = a for all x ∈ R, is
injective so

2ℵ0 = |R| ≤
∣∣C(R)

∣∣ .
By the Cantor-Schroeder-Bernstein Theorem, we have

∣∣C(R)
∣∣ = 2ℵ0 .

(c) The set of all bounded functions f : R→ R.

Solution: Note that B(R) ⊆ RR so we have∣∣B(R)
∣∣ ≤ ∣∣RR∣∣ = (2ℵ0)2

ℵ0
= 2ℵ0·2

ℵ0 ≤ 22
ℵ0 ·2ℵ0 = 22

ℵ0+ℵ0
= 22

ℵ0
.

Also note that 2R ⊆ B(R) so we have

22
ℵ0

=
∣∣2R∣∣ ≤ ∣∣B(R)

∣∣ .
By the Cantor-Schröder-Bernstein Theorem,

∣∣B(R)
∣∣ = 22

ℵ0
.



4: (a) Show that every open set in R (using the standard topology) is equal to the union of finite or countably
many disjoint open intervals.

Solution: For a, b ∈ R, let [a, b] denote the closed interval between a and b, that is

[a, b] =
{
a+ t(b− a)

∣∣ 0 ≤ t ≤ 1
}
,

and note that [a, b] = [b, a] =
[

min{a, b},max{a, b}
]
. Recall that the intervals in R are the sets with the

intermediate value property: a subset I ⊆ R is an interval when it has the property that for every a, b ∈ I
we have [a, b] ⊆ I (in other words, the intervals in R are equal to the convex subsets of R). Let U be an open
set in R. Define a relation on U by stipulating that a ∼ b ⇐⇒ [a, b] ⊆ U . Note that this is an equivalence
relation

(
indeed we have a ∼ a because [a, a] = {a}, and if a ∼ b then b ∼ a because [a, b] = [b, a], and

if a ∼ b and b ∼ c then a ∼ c because [a, c] ⊆ [a, b] ∪ [b, c]
)
. It follows that U is the disjoint union of the

equivalence classes.
We claim that each equivalence class C is an interval. Let C be an equivalence class and let a, b ∈ C.

Then we have a ∼ b and C =
{
x ∈ U

∣∣x ∼ a
}

. Since a ∼ b we have [a, b] ⊆ U . For every x ∈ [a, b] we have
[a, x] ⊆ [a, b] ⊆ U so that x ∼ a and hence x ∈ C. This shows that [a, b] ⊆ C, hence C is an interval.

We claim that each equivalence class C is open. Let C be an equivalence class and let a ∈ C. Then we
have C =

{
x ∈ U

∣∣x ∼ a
}

. Since U is open we can choose r > 0 such that (a − r, a + r) ⊆ U . For every
x ∈ (a − r, a + r) we have [a, x] ⊆ (a − r, a + r) ⊆ U so that x ∼ a hence x ∈ C. This shows that for all
(a− r, a+ r) ⊆ C and so C is open.

Finally, we claim that there are at most countably many equivalence classes C. We denote the set of
equivalence classes by U/∼. For each equivalence class C ∈ U/∼, since C is a nonempty open interval we
can choose a rational number a

C
∈ C. Because the equivalence classes are disjoint, the rational numbers a

C

are distinct so the map F : U/∼ Q given by F (C) = a
C

is injective. Thus the set of equivalence classes U/∼
is at most countable.

(b) Find the cardinality of the set of all open sets in R.

Solution: Let S be the set of all open sets in R. We claim that |S| = 2ℵ0 . Since the map F : R → S given
by F (a) = B(a, 1) = (a− 1, a+ 1) is injective, we have |S| ≥ |R| = 2ℵ0 . It remains to show that |S| ≤ 2ℵ0 .

Let U be a nonempty open set. For each a ∈ U we can choose ra > 0 so that (a − 3ra, a + 3ra) ⊆ U
then we can choose qa ∈ Q with qa ∈

(
a− r, a+ r) and we can choose sa ∈ Q with r < s < 2r and then we

have a ∈ (qa − sa, qa + sa) ⊆ (a− 3ra, a+ 3ra) ⊆ U . It follows that U =
⋃
a∈U (qa − sa, qa + sa). Thus every

nonempty open set is a union of open intervals with rational centre and positive rational radius. Hence every
open set (including the empty set) is a union of open intervals with rational centre and non-negative rational
radius. Since there are only countably many such open intervals

(
indeed |Q × Q≥0| = ℵ0

)
it follows that

every open set in R is equal to a countable union of open intervals with rational centre and non-negative
rational radius. It follows that the map G : (Q×Q≥0)Z

+ → S given by

G
(
(q1, s1), (q2, s2), · · ·

)
= (q1 − s1, q1 + s1) ∪ (q2 − s2, q2 + s2) ∪ · · ·

is surjective. Thus we have

|S| ≤
∣∣∣(Q×Q≥0)Z

+
∣∣∣ = ℵℵ00 ≤

(
2ℵ0
)ℵ0

= 2ℵ0·ℵ0 = 2ℵ0 .



5: (a) Let Q+ = {x ∈ Q|x > 0} and let Z+ = {k ∈ Z|k > 0}. Let f : Q+ → Z+ be the injective map given by
f
(
k
l

)
= 2k−1(2l − 1) for k, l ∈ Z+ with gcd(k, l) = 1. Let A = f(Q+). Let a0 = minA, a1 = minA \ {a0},

a2 = minA \ {a0, a1}, and so on. Find a20 and find
∣∣A ∩ S100

∣∣ where as usual, for m ∈ N we write
Sm = {0, 1, · · · ,m− 1}.
Solution: The elements in Z+ \A = Z+ \ f(Q+) are the elements 2k−1(2l − 1) with gcd(k, l) 6= 1, so

Z+ \A =
{

20(2l − 1)
∣∣ gcd(1, l) 6= 1

}
∪
{

21(2l − 1)
∣∣ gcd(2, l) 6= 1

}
∪
{

22(2l − 1)
∣∣ gcd(3, l) 6= 1

}
∪ · · ·

We have gcd(1, l) = 1 for all l ∈ Z+, and so
{

20(2l − 1)
∣∣ gcd(1, l) 6= 1

}
= ∅. We have gcd(2, l) 6= 1 for

l ∈ {2, 4, 6, 8, 10, · · ·}, and so{
21(2l − 1)

∣∣ gcd(2, l) 6= 1
}

= {2 · 3, 2 · 7, 2 · 11, 2 · 15, 2 · 19, · · ·} = {6, 14, 22, 30, 38, · · ·}.

We have gcd(3, l) 6= 1 for l ∈ {3, 6, 9, 12, · · ·} and so{
22(2l − 1)

∣∣ gcd(3, l) 6= 1
}

= {4 · 5, 4 · 11, 4 · 17, 4 · 23, · · ·} = {20, 44, 68, 92, · · ·}.

Similarly,{
23(2l − 1)

∣∣ gcd(4, l) 6= 1
}

=
{

8(2l − 1)
∣∣l = 2, 4, 6, 8, 10

}
= {24, 56, 58, 120, · · ·}{

24(2l − 1)
∣∣ gcd(5, l) 6= 1

}
=
{

16(2l − 1)
∣∣l = 5, 10, 15, 20, · · ·

}
= {144, 304, · · ·}{

25(2l − 1)
∣∣ gcd(6, l) 6= 1

}
=
{

32(2l − 1)
∣∣l = 2, 3, 6, 8, 9, 12, 14, 15, 18, · · ·

}
= {96, 160, 352, · · ·}

For k ≥ 7 it is clear that
{

2k−1(2l − 1)
∣∣ gcd(k, l) 6= 1

}
∩ S100 = ∅, and so we have(

Z+ \A
)
∩ S100 = {6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94} ∪ {20, 44, 68, 92} ∪ {24, 56, 58} ∪ {96}.

Thus
∣∣(Z+ \ A) ∩ S100

∣∣ = 12 + 4 + 3 + 1 = 20 and so
∣∣A ∩ S100

∣∣ = 99− 20 = 79. Also, the first few term in
the sequence 〈ak〉k≥0 are as follows

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ak 1 2 3 4 5 7 8 9 10 11 12 13 15 16 17 18 19 21 23 25 26

and in particular, a20 = 26.

(b) Let A = B = N. Let f : A→ B and g : B → A be the injective maps given by f(k) = 2k and g(k) = 3k.

Let X1 = A and Y1 = g(B), and for k ≥ 1 let Xk+1 = g(f(Xk)) and Yk+1 = g(f(Yk)). Let U =
∞⋃
k=1

(Xk \Yk).

Find
∣∣U ∩ S100

∣∣ and find
∣∣U ∩ Sm∣∣ in the case that m = 6k with k ∈ N.

Solution: For m ∈ N we write mN = {mk|k ∈ N} = {0,m, 2m, 3m, · · ·}. We have X1 = N and Y1 = 3N. Note
that g(f(k)) = g(2k) = 6k for all k ∈ N, and so we have X2 = 6N, X3 = 36N, and in general Xn = 6n−1N,
and we have Y2 = 18N, Y3 = 108N and in general Yn = 3 · 6n−1N.

U∩S100 = (X1 \ Y1) ∩ S100 ∪ (X2 \ Y2) ∩ S100 ∪ (X3 \ Y3) ∩ S100 ∪ · · ·
= (X1 ∩ S100) \ (Y1 ∩ S100) ∪ (X2 ∩ S100) \ (Y2 ∩ S100) ∪ (X3 ∩ S100) \ (Y3 ∩ S100) ∪ · · ·
= {0, 1, 2, · · · , 99} \ {0, 3, 6, 9, · · · , 96, 99} ∪ {0, 6, 12, · · · , 96} \ {0, 18, 36, 54, 72, 90} ∪ {0, 36, 72} \ {0}

and so
∣∣U ∩ S100

∣∣ = (100− 34) + (17− 6) + (3− 1) = 79.

Let m = 6k. For j > k we have Xj ∩ Sm = Yj ∩ Sm = {0} and for 1 ≤ j ≤ k we have

|Xj ∩ Sm| = |6j−1N ∩ Sm| = 1
6j−1 6k = 6k−j+1 , and

|Yj ∩ Sm| = |3 · 6j−1N ∩ Sm| = 1
3·6j−1 6k = 1

3 6k−j+1

so we have

U ∩ Sm =

∞⋃
j=1

(Xj \ Yj) ∩ Sm =

∞⋃
j=1

(Xj \ Sm) \ (Yj ∩ Sm) =

k⋃
j=1

(Xj \ Sm) \ (Yj ∩ Sm) , and

∣∣U ∩ Sm∣∣ =
k∑
j=1

(
|Xj ∩ Sm| − |Yj ∩ Sm|

)
=

k∑
j=1

(
6k−j+1 − 1

3 6k−j+1
)

= 2
3

k∑
j=1

6k−j+1

= 2
3 (6k + 6k−1 + · · ·+ 62 + 6) = 2

3 ·
6
5 (6k − 1) = 4

5 (6k − 1).


