
Chapter 7. The Baire Category Theorem

7.1 Definition: When I is the bounded open interval I = (a, b), where a, b ∈ R with
a ≤ b, the diameter of I is d(I) = b − a. For a subset A ⊆ R, we define the Lebesgue
outer measure of A to be

λ(A) = inf
{ ∞∑
k=1

d(Ik)
∣∣∣ each Ik is a bounded open interval in R and A ⊆

∞⋃
k=1

Ik

}
with 0 ≤ λ(A) ≤ ∞. We say that A has (Lebesgue) measure zero when λ(A) = 0.

7.2 Note: Every finite or countable set A ⊆ R has measure zero. Indeed, if A is finite, say
A = {a1, a2, · · · , an}, then given ε > 0 then we can take Ik =

(
ak− ε

2n , ak+ ε
2n

)
for k ≤ n,

and we can take Ik = ∅ for k > n, to get A ⊆
∞⋃
k=1

Ik and
∞∑
k=1

d(Ik) =
n∑
k=1

ε
n = ε. And if A

is countably infinite, say A = {a1, a2, a3, · · ·}, then we can take Ik =
(
a− ε

2k+1 , ak+ ε
2k+1

)
for all k ≥ 1 to get A ⊆

∞⋃
k=1

Ik and
∞∑
k=1

d(Ik) =
∞∑
k=1

ε
2k

= ε. Perhaps surprisingly, it is not

the case that every set of measure zero is at most countable.

7.3 Example: The (standard) Cantor set is the set C ⊆ [0, 1] constructed as follows.
Let C0 = [0, 1]. Let I1 be the open middle third of C0, that is let I1 =

(
1
3 ,

2
3

)
, and let

C1 = A0\U1 =
[
0, 13
]
∪
[
2
3 , 1
]
. Let I2 and I3 be the open middle thirds of the two component

intervals of C1, that is let I2 =
(
1
9 ,

2
9

)
and I3 =

(
7
9 ,

8
9

)
, and let C2 = C1 \ (I2 ∪ I3). Having

constructed the set Cn, which is the disjoint union of 2n closed intervals each of length 1
3n ,

let I2n , I2n+1, · · · , I2n+1−1 be the open middle thirds of these 2n component intervals and
let Cn+1 = Cn \ (I2n , I2n+1, · · · , I2n+1−1). Note that Cn is the set of all numbers x ∈ [0, 1]
which can be written in base 3 such that the the first n digits of x are not equal to 1.

The Cantor set is the set

C =
∞⋂
n=0

Cn

or equivalently, C is the set of all numbers x ∈ [0, 1] which can be written in base 3 with
none of the digits of x equal to 1.

Since C =
∞⋂
n=0

Cn with C0 ⊇ C1 ⊇ C2 ⊇ · · ·, it follows that C ⊆ Cn for all n ∈ N.

Since Cn is the (disjoint) union of 2n closed intervals each of size 1
3n , it follows that we

can cover Cn (hence also C) by a union of 2n open intervals each of size 2
3n , and so we

have λ(C) ≤ 2n · 2
3n = 2n+1

3n . Since λ(C) ≤ 2n+1

3n for all n ∈ N and 2n+1

3n → 0 as n→∞, it
follows that λ(C) = 0.

On the other hand, since C is the set of all real numbers x ∈ [0, 1] which can be
written in base 3 using only the digits 0 and 2, it follows that |C| = 2ℵ0 .

7.4 Remark: Note that the set C of numbers x ∈ [0, 1] which can be written in base 3
without using the digit 1, is not equal to the complement of the set B of numbers x ∈ [0, 1]
which can be written in base 3 using the digit 1 (at least once). For example, the number
x = 1

3 can be written in base 3 as x = 0.1 so we have x ∈ B, but it can also be written in
base 3 as x = 0.0222 · · ·, so we also have x ∈ C.

7.5 Exercise: Show that the set of all real numbers x ∈ [0, 1], which can be written in
base 5 without using the digit 2, has measure zero.
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7.6 Definition: Let X be a metric space and let A ⊆ X. Recall that A is dense (in X)
when for every nonempty open ball B ⊆ X we have B ∩A 6= ∅, equivalently when A = X.
We say A is nowhere dense (in X) when for every nonempty open ball B ⊆ X there
exists a nonempty open ball C ⊆ B with C ∩A = ∅, or equivalently when A

o
= ∅.

7.7 Exercise: Show that the Cantor set is nowhere dense in [0, 1] (or in R).

7.8 Note: When A ⊆ B ⊆ X, note that if A is dense in X then so is B and, on the other
hand, if B is nowhere dense in X then so is A.

7.9 Note: When A,B ⊆ X with B = Ac = X \ A, note that A is nowhere dense ⇐⇒
A

0
= ∅ ⇐⇒ B0 = X ⇐⇒ the interior of B is dense.

7.10 Definition: Let A ⊆ X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when Ac is first category.

7.11 Note: Every countable set in R is first category since if A = {a1, a2, a3, · · ·} then we

have A =
∞⋃
k=1

{ak}. In particular Q is first category and Qc = R \Q is residual.

7.12 Note: If A ⊆ X is first category then so is every subset of A.

7.13 Note: If A1, A2, A3, · · · ⊆ X are are all first category then so is
∞⋃
k=1

Ak.

7.14 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.
(2) Every residual set in X is dense.
(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

LetA ⊆ X be first category, sayA =
∞⋃
n=1

Cn where each Cn is nowhere dense. Suppose,

for a contradiction, that A has nonempty interior, and choose an open ball B0 = B(a0, r0)
with 0 < r0 < 1 such that B0 ⊆ A . Since each Cn is nowhere dense, we can chose a
nested sequence of open balls Bn = B(an, rn) with 0 < rn <

1
2n such that Bn ⊆ Bn−1 and

Bn ∩ Cn = ∅. Because rn → 0, it folows that the sequence {an} is Cauchy. Because X
is complete, it follows that {an} converges in X, say a = lim

n→∞
an. Note that a ∈ Bn for

all n since ak ∈ Bn for all k ≥ n. Since a ∈ B0 and B0 ⊆ A we have a ∈ A. But since

a ∈ Bnfor al n ≥ 1, and Bn ∩Cn = ∅, we have a /∈ Cn for all n ≥ 1 hence a /∈
∞⋃
n=1

Cn, that

is a /∈ A.

7.15 Example: Recall that Q is first category and Qc is residual. The Baire Category
Theorem shows that Qc cannot be first category because if Q and Qc were both first
category then R = Q ∪ Qc would also be first category, but this is not possible since R
does not have empty interior.
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7.16 Exercise: Let f ∈ C∞(R) and suppose that for all x ∈ R there exists nx ∈ Z+ such
that f (nx)(x) = 0. Show that there exists a nonempty open interval (a, b) ⊆ R such that
the restriction of f to (a, b) is a polynomial.

7.17 Exercise: For each n ∈ Z+, let fn : R → R be continuous. Suppose that for all
x ∈ R there exists n ∈ Z+ such that fn(x) ∈ Q. Prove that there exists n ∈ Z+ such that
fn is constant in some nondegenerate interval.

7.18 Remark: Let C1 =
{
A ⊆ R

∣∣A is finite or countable
}

, C2
{
A ⊆ R

∣∣λ(A) = 0
}

and

C3 =
{
A ⊆ R

∣∣A is first category
}

. Note that if C = Ck for some k ∈ {1, 2, 3}, then C has
the following properties:

(1) if A ⊆ B and B ∈ C then A ∈ C,
(2) if A1, A2, A3, · · · ∈ C then

∞⋃
k=1

Ak ∈ C, and

(3) if A ∈ C then A0 = ∅.
Because of this, it seems reasonable to consider each set Ck to be, in some sense, “small”.
Perhaps surprisingly, the following theorem states that every set in R is the union of two
such small sets.

7.19 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1, a2, a3, · · ·}. For k, ` ∈ Z+, let Ik,` =
(
a` − 1

2k+` , a` + 1
2k+`

)
and

for k ∈ Z+, let Uk =
∞⋃
`=1

Ik,`. Note that each Uk is open with Q ⊆ Uk, so each Uk is

a dense open set. Also note that for each k ∈ Z+ we have λ(Uk) ≤
∞∑̀
=1

d(Ik,`) = 1
2k−1 .

Let B =
∞⋂
k=1

Uk and note that B is residual, since it is a countable intersection of dense

open sets. Since B =
∞⋂
k=1

Uk and U1 ⊇ U2 ⊇ U3 ⊇ · · ·, we have B ⊆ Uk for all k, hence

λ(B) ≤ λ(Uk) ≤ 1
2k−1 for all k ∈ Z+, and it follows that λ(B) = 0. Thus R is the disjoint

union of the set B, which has measure zero, and its complement Bc which is first category
(since B is residual). Finally note that any set A ⊆ R is equal to the disjoint union
A = (A ∩B) ∪ (A ∩Bc), and we have λ(A ∩B) = 0 and the set A ∩Bc is first category.

7.20 Remark: At first glance, it might appear that the set B constructed in the above
proof might simply be equal to Q. But in fact, B must be uncountable, because if B was
countable then B would be first category, but then B and Bc would both be first category,
and hence R = B ∪ Bc would also be first category. But R is not first category by the
Baire Category Theorem.
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7.21 Example: Most students will have seen that it is possible to construct a continuous
function f : [0, 1]→ R such that f is nowhere differentiable. Show that the set of nowhere
differentiable functions is residual (hence dense) in C[0, 1].

Solution: Let A be the complement of the set of nowhere differentiable functions in C[0, 1],
that is

A =
{
f ∈ C[0, 1]

∣∣∣ f is differentiable at some point a ∈ [0, 1]
}
.

For each k, ` ∈ Z+, let

Ak,` =
{
f ∈ C[0, 1]

∣∣∣ ∃a∈ [0, 1] ∀x∈ [0, 1] 0 < |x− a| < 1
k =⇒

∣∣ f(x)−f(a)
x−a

∣∣ ≤ `}.
We shall show that A =

⋃
k,`

Ak,`, and that each Ak,` is closed in C[0, 1] with an empty

interior and so A is first category. Thus the set of nowhere differentiable functions is
residual, and hence dense by the Baire Category Theorem.

We claim that A =
⋃
k,`

Ak,`. Let f ∈ A. Choose a ∈ [0, 1] such that f is differentiable

at a. Choose ` ∈ Z+ such that
∣∣f ′(a)

∣∣ ≤ `. Choose δ > 0 such that for all x ∈ [0, 1] we

have 0 < |x − a| < δ =⇒
∣∣ f(x)−f(a)

x−a − f ′(a)
∣∣ < ` − |f ′(a)|. Choose k ∈ Z+ with 1

k ≤ δ.

Then for all x ∈ [0, 1], if 0 < |x− a| < 1
k then we have

∣∣ f(x)−f(a)
x−a − f ′(a)

∣∣ < `− |f ′(a)| and
hence ∣∣ f(x)−f(a)

x−a
∣∣ ≤ ∣∣ f(x)−f(a)x−a − f ′(a)

∣∣+ |f ′(a)| ≤
(
`− |f ′(a)|

)
+ |f ′(a)| = `

so that f ∈ Ak,`. Thus A =
⋃
k,`

Ak,`, as claimed.

We claim that each set Ak,` is closed in C[0, 1]. Let (fn)n≥1 be a sequence in Ak,`
which converges in C[0, 1], and let g = lim

n→∞
fn in C[0, 1]. Then fn → g uniformly in [0, 1],

and we need to show that g ∈ Ak,`. For each n ∈ Z+, since fn ∈ Ak,` we can choose

an ∈ [0, 1] such that for all x ∈ [0, 1] we have 0 < |x − an| < 1
k =⇒

∣∣ fn(x)−f(an)
x−an

∣∣ ≤ `.
Since [0, 1] is compact, we can choose a convergent subsequence (ank

)k≥1 of the sequence
(an)n≥1 and let a = lim

k→∞
ank
∈ [0, 1]. Note that the corresponding subsequence (fnk

)k≥1

of (fn)n≥1 converges in C[0, 1] with the same limit g = lim
k→∞

fnk
in C[0, 1]. Note that when

0 < |x−a| < 1
k , since ank

→ a it follows that we also have 0 < |x−ank
| < 1

k for sufficiently
large k ∈ Z+. Since fnk

→ g uniformly on [0, 1] and ank
→ a in [0, 1], recall (or verify)

that lim
k→∞

fnk
(ank

) = g(a) and so, for all x ∈ [0, 1] with 0 < |x− a| < 1
k∣∣∣g(x)− g(a)

x− a

∣∣∣ = lim
k→∞

∣∣∣fnk
(x)− fnk

(ank
)

x− ank

∣∣∣ ≤ `.
This proves that g ∈ Ak,` and so Ak,` is closed in C[0, 1], as claimed.

We claim that each set Ak,` has empty interior in C[0, 1]. Let f ∈ Ak,`. We need to
show that for all r > 0 there there is a function g ∈ B(f, r) with g /∈ Ak,`. Our strategy
is to first find a piecewise linear function p with ‖p− f‖∞ < r

2 and then to add a rapidly
oscillating sine function to obtain a function g = p + r

2 sin(wx) with g /∈ Ak,` and with
‖g − f‖∞ < r. Let r > 0. Since f is uniformly continuous on [0, 1] we can choose δ > 0
such that |x− y| < δ =⇒

∣∣f(x)− f(y)
∣∣ < r

4 . we can choose n ∈ Z+ such that 1
n < δ. Let

xi = i
n for 0 ≤ i ≤ n and let p ∈ C[0, 1] be the piecewise linear function whose graph has
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vertices at
(
xi, f(xi)

)
for 0 ≤ i ≤ n. Then for all i and for all x ∈ [xi−1, xi], we have∣∣f(x)− p(x)

∣∣ ≤ ∣∣f(x)− f(xi)
∣∣+
∣∣f(xi)− p(x)

∣∣ =
∣∣f(x)− f(xi)

∣∣+
∣∣p(xi)− p(x)

∣∣
≤
∣∣f(x)− f(xi)

∣∣+
∣∣p(xi)− p(xi−1)

∣∣ < r
4 + r

4 = r
2

and hence ‖f − p‖∞ < r
2 . Let m = max

t 6=xi

∣∣p′(t)∣∣ = max
1≤i≤n

n
∣∣f(xi)− f(xi−1)

∣∣. Choose ω ∈ R

such that 2π
ω < 1

k and 2π
w < r

2(`+m) , and consider the function g = p+ r
2 sin(ωx). Note that

‖g − f‖∞ ≤ ‖g − p‖∞ + ‖p− f‖∞ < r
2 + r

2 = r, so it remains only to show that g /∈ Ak,`.
Let a ∈ [0, 1]. By our choice of ω we can choose x ∈ [0, 1] with 0 < |x− a| < 1

k such that
|x− a| < r

2(`+m) and such that sin(ωx) = ±1 with sin(ωx) = 1 ⇐⇒ sin(ωa) ≤ 0 so that∣∣ sin(ωx)− sin(ωa)
∣∣ ≥ 1. Then we have

r
2

∣∣ sin(ωx)− sin(ωa)
∣∣ =

∣∣(g(x)− g(a)
)
−
(
p(x)− p(a)

)∣∣ ≤ ∣∣g(x)− g(a)
∣∣+
∣∣p(x)− p(a)

∣∣∣∣g(x)− g(a)
∣∣ ≥ r

2

∣∣ sin(ωx)− sin(ωa)
∣∣− ∣∣p(x)− p(a)

∣∣ ≥ r
2 −

∣∣p(x)− p(a)
∣∣∣∣∣ g(x)−g(a)x−a

∣∣∣ ≥ r

2|x− a|
−
∣∣∣p(x)− p(a)

x− a

∣∣∣ ≥ r

2 · 2(`+m)
r

−m = `

so that g /∈ Ak,`, as required.

7.22 Notation: Let X be a set. For any set C of subsets of X we write

Cσ =
{ ∞⋃
k=1

Ak

∣∣∣ each Ak ∈ C
}

and Cδ =
{ ∞⋂
k=1

Ak

∣∣∣ each Ak ∈ C
}
.

Note that Cσσ = Cσ and Cδδ = Cδ.

7.23 Definition: Let X be a set. A σ-algebra in X is a set C of subsets of X such that

(1) ∅ ∈ C,
(2) if A ∈ C then Ac = X \A ∈ C, and

(3) if A1, A2, A3, · · · ∈ C then
∞⋃
k=1

Ak ∈ C.

Note that when C is a σ-algebra in X we have Cσ = C and Cδ = C.

7.24 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that Gσ = G
and Fδ = F .

7.25 Example: For any set X, the set
{
∅, X

}
and the set P(X) of all subsets of X are

σ-algebras in X,

7.26 Note: Note that given any set C of subsets of a set X there exists a unique smallest
σ-algebra in X which contains C, namely the intersection of all σ-algebras in X which
contain C.

7.27 Definition: In a metric space (or topological space) X, the Borel σ-algebra B is
the smallest σ-algebra in X which contains G (hence also F). The elements of B are called
Borel sets. Note that B contains all of the sets G,Gδ,Gδσ,Gσδσ, · · · and all of the sets
F ,Fσ,Fσδ,Fσδσ, · · ·.

7.28 Exercise: Using the Baire Category Theorem, show that in R we have F ⊆ Gδ
(equivalently G ⊆ Fσ), Fσ 6= Gδ, and Gδ ∪ Fσ ⊂6= Gδσ ∩ Fσδ.
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