Chapter 7. The Baire Category Theorem

7.1 Definition: When I is the bounded open interval I = (a,b), where a,b € R with
a < b, the diameter of I is d(I) = b — a. For a subset A C R, we define the Lebesgue
outer measure of A to be

ANA) = mf{ Z d(Iy) ‘ each Iy is a bounded open interval in R and A C | Ik}
k=1

with 0 < A(A4) < co. We say that A has (Lebesgue) measure zero when \(A) = 0.

7 .2 Note: Every finite or countable set A C R has measure zero. Indeed, if A is finite, say
= {a1,a2, - -,a,}, then given € > 0 then we can take Ik = (ak 2n,ak+ ) for k < n,

and we can take I = () for k > n, to get A C UIkand Zd(fk) Zi—e And if A

n
k=1

is countably infinite, say A = {a1,az,as, -}, then we can take I, = (a— SETT ak—i—#)
forall k > 1toget AC | I and > d(Ix) = 5% = €. Perhaps surprisingly, it is not
k=1 k=1 k=1
the case that every set of measure zero is at most countable.
7.3 Example: The (standard) Cantor set is the set C' C [0, 1] constructed as follows.
Let Co = [0,1]. Let I; be the open middle third of Cy, that is let I; = (3, 3) and let
= Ap\U; = [ , 3] U [3, } Let I, and I3 be the open middle thirds of the two component

mtervals of Cq, that is let I, = (9, 9) and I3 = (9, 9) and let Co = C1 \ (Io U I3). Havmg
constructed the set C,,, which is the disjoint union of 2" closed intervals each of length = 35
let Ign, Ioniq,---, Ion+1_1 be the open middle thirds of these 2" component intervals and
let Cpop1 = Cp \ (Ign, Ignyq, -+, Iyn+1_1). Note that C,, is the set of all numbers x € [0, 1]
which can be written in base 3 such that the the first n digits of x are not equal to 1.

The Cantor set is the set -

C=NC,
n=0

or equivalently, C' is the set of all numbers = € [0, 1] which can be written in base 3 with
none of the digits of x equal to 1.

Since C = [ C, with Cy 2 C; D Cy D ---, it follows that C' C C,, for all n € N.

n=0

Since C), is the (disjoint) union of 2" closed intervals each of size 5, it follows that we
can cover (), (hence also C) by a union of 2" open intervals each of size and so we
have \(C) <2"- 2 = 2;; Since A(C) < 2n " for all n € N and 2
follows that A(C') = 0.

On the other hand, since C is the set of all real numbers x € [0, 1] which can be
written in base 3 using only the digits 0 and 2, it follows that |C| = 2%,
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7.4 Remark: Note that the set C' of numbers = € [0,1] which can be written in base 3
without using the digit 1, is not equal to the complement of the set B of numbers z € [0, 1]
which can be written in base 3 using the digit 1 (at least once). For example, the number
T = % can be written in base 3 as x = 0.1 so we have x € B, but it can also be written in

base 3 as x = 0.0222- - -, so we also have z € C.

7.5 Exercise: Show that the set of all real numbers = € [0, 1], which can be written in
base 5 without using the digit 2, has measure zero.



7.6 Definition: Let X be a metric space and let A C X. Recall that A is dense (in X)
when for every nonempty open ball B C X we have BN A # (), equivalently when A = X.
We say A is nowhere dense (in X) when for every nonempty open ball B C X there
exists a nonempty open ball C' C B with C' N A = 0, or equivalently when 4 ° = 0.

7.7 Exercise: Show that the Cantor set is nowhere dense in [0, 1] (or in R).

7.8 Note: When A C B C X, note that if A is dense in X then so is B and, on the other
hand, if B is nowhere dense in X then so is A.

7.9 Note: When A, B C X with B = A° = X \ A, note that A is nowhere dense <=
A°= () < B9 =X <= the interior of B is dense.

7.10 Definition: Let A C X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when A€ is first category.

7.11 Note: Every countable set in R is first category since if A = {a1, a2, as, -} then we

have A = |J {ar}. In particular Q is first category and Q¢ = R\ Q is residual.
k=1
7.12 Note: If A C X is first category then so is every subset of A.

7.13 Note: If Ay, Ay, As,--- C X are are all first category then sois |J Ag.
k=1

7.14 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.

(2) Every residual set in X is dense.

(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

oo
Let A C X be first category, say A = |J C,, where each C,, is nowhere dense. Suppose,
n=1

for a contradiction, that A has nonempty interior, and choose an open ball By = B(aq,0)
with 0 < 79 < 1 such that By C A . Since each C,, is nowhere dense, we can chose a
nested sequence of open balls B,, = B(ay,,r,) with 0 < r,, < 2% such that B,, C B,,_1 and
B, NC, = 0. Because r, — 0, it folows that the sequence {a,} is Cauchy. Because X

is complete, it follows that {a,} converges in X, say a = nli_)rrgo a,. Note that a € B,, for

all n since a; € B, for all k > n. Since a € By and By C A we have a € A. But since
a € Byforaln > 1, and B, NC, =0, we have a ¢ C,, for alln > 1 hence a ¢ |J C,, that

n=1
isa¢ A.

7.15 Example: Recall that Q is first category and Q¢ is residual. The Baire Category
Theorem shows that Q¢ cannot be first category because if Q and Q¢ were both first
category then R = Q U Q¢ would also be first category, but this is not possible since R
does not have empty interior.



7.16 Exercise: Let f € C*°(R) and suppose that for all z € R there exists n, € Z* such
that f("=)(z) = 0. Show that there exists a nonempty open interval (a,b) C R such that
the restriction of f to (a,b) is a polynomial.

7.17 Exercise: For each n € Z™, let f, : R — R be continuous. Suppose that for all
x € R there exists n € Z* such that f,(z) € Q. Prove that there exists n € ZT such that
frn is constant in some nondegenerate interval.

7.18 Remark: Let C; = {A C R! A is finite or countable}, CQ{A C ]R’ AMA) = 0} and
C3 = {A C R| A is first Category}. Note that if C = Cy, for some k € {1,2,3}, then C has
the following properties:

(1)if AC B and B € C then A € C,

(2) if Al,AQ,Ag,,"' € C then U Ak € C, and
k=1

(3) if A € C then A° = ().

Because of this, it seems reasonable to consider each set C to be, in some sense, “small”.
Perhaps surprisingly, the following theorem states that every set in R is the union of two
such small sets.

7.19 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1,a2,as,---}. For k,0 € ZT, let I, = (ag — ﬁ, ap + ﬁ) and

for k € Z*, let Uy, = U Iy ¢. Note that each U} is open with Q C Uy, so each Uy is
(=1

a dense open set. Also note that for each k € ZT we have A(Uy) < 3 d(Ipe) = 55t
=1

[e.e]
Let B = () Uy and note that B is residual, since it is a countable intersection of dense
k=1

open sets. Since B = (| Uy and Uy D Uy D Us D ---, we have B C Uy, for all k, hence
k=1

A(B) < AMUy) < 5 for all k € ZT, and it follows that A(B) = 0. Thus R is the disjoint

union of the set B, which has measure zero, and its complement B¢ which is first category

(since B is residual). Finally note that any set A C R is equal to the disjoint union

A= (ANB)U (AN B°), and we have A\(AN B) = 0 and the set AN B¢ is first category.

7.20 Remark: At first glance, it might appear that the set B constructed in the above
proof might simply be equal to Q. But in fact, B must be uncountable, because if B was
countable then B would be first category, but then B and B¢ would both be first category,
and hence R = B U B¢ would also be first category. But R is not first category by the
Baire Category Theorem.



7.21 Example: Most students will have seen that it is possible to construct a continuous
function f : [0,1] — R such that f is nowhere differentiable. Show that the set of nowhere
differentiable functions is residual (hence dense) in C[0, 1].

Solution: Let A be the complement of the set of nowhere differentiable functions in C[0, 1],
that is

= {f € Cl0,1] ‘ f is differentiable at some point a € [0, 1]}

For each k,¢ € ZT, let
Ao ={fec1]|3aef0.1] vae0,1] 0< o —a] < L = [HE=f@)] </}

We shall show that A = |J Ak, and that each Ay, is closed in C[0, 1] with an empty
k€
interior and so A is first category. Thus the set of nowhere differentiable functions is

residual, and hence dense by the Baire Category Theorem.
We claim that A = |J A . Let f € A. Choose a € [0,1] such that f is differentiable
k¢

at a. Choose ¢ € Z* such that ‘f | < ¢. Choose § > 0 such that for all z € [0, 1] we
have 0 < |z —a| < § = |M f’(a)‘ < £ —|f'(a)]. Choose k € ZT with 1 < 4.

Then for all z € [0,1], if 0 < |z —a| < 4 then we have ’% — f'(a)| < £—1f'(a)| and
hence

Homl| < B - r@f + 1 @) < (0= 17@) + 1 (@) =
so that f € Ay . Thus A = |J Ak, as claimed.
k.t
We claim that each set Ay is closed in C[0,1]. Let (f,),>1 be a sequence in Ay 4
which converges in C[0, 1], and let g = lim f,, in C[0,1]. Then f,, — ¢ uniformly in [0, 1],
n—oo

and we need to show that g € Ay . For each n € 77T, since f, € Ay .« we can choose

€ [0,1] such that for all z € [0,1] we have 0 < |z — a,| < 1 = ‘M| < /.
Smce [0,1] is compact, we can choose a convergent subsequence (a,, )g>1 of the sequence
(an)n>1 and let a = khm an, € [0,1]. Note that the corresponding subsequence (fy, )rk>1

> e >

of (fn)n>1 converges in C[0, 1] with the same limit g = lim fn,, in C[0, 1]. Note that when

0 < |z—a| < 1, since a,, — a it follows that we also have 0 < |z —ay,| < 1 for sufficiently
large k € ZT. Since f,, — g uniformly on [0,1] and a,, — a in [0,1], recall (or verify)
that lim fy, (an,) = g(a) and so, for all z € [0,1] with 0 < |z —a| < 1

k—o0

fnk(x) — fnk (a”nk:)

T — Qp,

< /.

‘g(l‘) —9(a@)| _ .
r—a k— o0

This proves that g € Ay » and so Ay ¢ is closed in C|0, 1], as claimed.

We claim that each set Ay ¢ has empty interior in C[0,1]. Let f € Ay . We need to
show that for all > 0 there there is a function g € B(f,r) with g ¢ Ay . Our strategy
is to first find a piecewise linear function p with ||p — f||,, < § and then to add a rapidly
oscillating sine function to obtain a function g = p + § sin(wz) with g ¢ Ag, and with
lg — fllo < 7. Letr > 0. Since f is uniformly continuous on [0, 1] we can choose § > 0
such that |z —y| <6 = |f(z) — f(y)| < %. we can choose n € Z* such that 1 < §. Let

T; = % for 0 <i < n and let p € C[0, 1] be the piecewise linear function whose graph has

4



vertices at (:vz-, f(xl)) for 0 <i < mn. Then for all ¢ and for all z € [x;_1, z;], we have
|f(x) = p(a)] < |f(z) - f(xi)\ + [f(2i) = p(@)| = |f(2) = f(z)] + |p(z:) — p(2)]
<|f(@) = fl@)| + |p(xs) — plaica)| < §+5 =5
and hence ||f —pl|, < 5. Let m = max Ip'(t)| = Jmax n|f(x;) — f(x;—1)|. Choose w € R
such that 27” < % and 21: 2(€+m)’

g = flls < lg = plloo + Ip = fllo < 5+ % =1, so it remains only to show that g ¢ Ay ,.
Let a € [0,1]. By our choice of w we can choose = € [0,1] with 0 < |z — a| < ¢ such that

and consider the function g = p+ % sin(wz). Note that

|z —al < 5 my and such that sin(wz) = +1 with sin(wz) =1 <= sin(wa) < 0 so that
| sin(wz) — sin(wa)| > 1. Then we have
5 | sin(wz) —sin(wa)| = |(g(z) — g(a)) — (p(zx) — p(a))| < [g(z) = g(a)| + |p(z) — p(a)|
|9(z) — g(a)| > §sin(wa) - Sllfl(w&)| p(z) = pla)| > § — |p(x) — pla)|
g(x)—g(a r p p(a) _
(g—a() Z2|:z:—a|_’ 4 —2_2(€+m)_m_£

so that g ¢ Ay ¢, as required.

7.22 Notation: Let X be a set. For any set C of subsets of X we write
CU:{ U Ak‘eaChAREC} and C(;:{ N Ak‘eachAkGC}.
k=1 k=1

Note that C,, = C, and Css5 = Cs.

7.23 Definition: Let X be a set. A o-algebra in X is a set C of subsets of X such that

(1) 0 ec,
(2)if A €C then A°= X\ A €, and
(3) if Al,AQ,Ag,"' S C then U Ak € C.
k=1
Note that when C is a o-algebra in X we have C, = C and C5 = C.

7.24 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that G, =G
and F5 = F.

7.25 Example: For any set X, the set {@, X} and the set P(X) of all subsets of X are
o-algebras in X,

7.26 Note: Note that given any set C of subsets of a set X there exists a unique smallest
o-algebra in X which contains C, namely the intersection of all o-algebras in X which
contain C.

7.27 Definition: In a metric space (or topological space) X, the Borel o-algebra B is
the smallest o-algebra in X which contains G (hence also F). The elements of B are called
Borel sets. Note that B contains all of the sets G, Gs, Gso, Gos0, -+ and all of the sets
fafoafaéafaéaa"'

7.28 Exercise: Using the Baire Category Theorem, show that in R we have F C Gs
(equivalently G C F,), F, # Gs, and Gs U F, % Gso N Fos.



