
Chapter 6. Some Applications

Contraction Maps and Picard’s Theorem

6.1 Note: In this chapter, unless otherwise stated, we work in the field F = R.

6.2 Definition: Let X be a metric space. A map f : X → X is called a contraction
map on X when there exists a constant c ∈ [0, 1) such that for all x, y ∈ X we have

d
(
f(x), f(y)

)
≤ c d(x, y).

Such a constant c is called a contraction constant for f . Note that every contraction
map is uniformly continuous.

6.3 Definition: For a map f : X → X (where X is any set), a point a ∈ X such that
f(a) = a is called a fixed point of f .

6.4 Theorem: (The Banach Fixed-Point Theorem) Every contraction map on a complete
metric space has a unique fixed point.

Proof: Let X be a complete metric space and let f : X → X be a contraction map on
X with contraction constant c ∈ [0, 1). Let x0 ∈ X be any point. Let x1 = f(x0) and
x2 = f(x1) = f2(x0) and so on, so that for n ≥ 1 we have xn = f(xn−1) = fn(x0). Note
that the sequence (xn)n≥0 is Cauchy because for n < m we have

d(xn, xm) = d
(
fn(x0), fn(xm−n)

)
≤ cn d

(
x0, xm−n)

≤ cn
(
d(x0, x1) + d(x1, x2) + · · ·+ d(xm−n−1, xm−n)

)
≤ cnd(x0, x1)

(
1 + c+ c2 + · · ·+ cm−n−1

)
≤ cnd(x0, x1) 1

1−c −→ 0 as n→∞.

Since X is complete, the sequence (xn)n≥0 converges, so we can let a = lim
n→∞

xn. Note that

f(a) = a since f is continuous at a so f(a) = f
(

lim
n→∞

xn
)

= lim
n→∞

f(xn) = lim
n→∞

xn−1 = a.

Finally note that for a, b ∈ X, if f(a) = a and f(b) = b then since

d(a, b) = d
(
f(a), f(b)

)
≤ c d(a, b)

with 0 ≤ c < 1, it follows that d(a, b) = 0 so that a = b.

6.5 Example: Define f : [2,∞) → [2,∞) by f(x) = x+ 1
x . Note that f ′(x) = 1− 1

x2 so
that 3

4 ≤ f ′(x) < 1 for all x ∈ [2,∞). By the Mean Value Theorem, given x, y ∈ [2,∞)
we can choose c between x and y such that f(x)− f(y) = f ′(c)(x− y), and then we have∣∣f(x)−f(y)

∣∣ =
∣∣f ′(c)∣∣ |x−y| < |x−y|. Thus f has the property that

∣∣f(x)−f(y)
∣∣ < |x−y|

for all x, y ∈ [2,∞), but it is not a contraction map, and f has no fixed point because
f(x) = x+ 1

x > x for all x ∈ [2,∞).

6.6 Example: Define f :
[
0, π3

]
→
[
0, π3

]
by f(x) = cosx

(
note that cos(0) = 1 and

cos
(
π
3

)
= 1

2 and cosx is decreasing, so we have f
([

0, π3
))

=
[
1
2 , 1
]
⊆
[
0, π3

])
. Since∣∣f ′(x)

∣∣ = sinx which is increasing on
[
0, π3

]
, we have 0 ≤

∣∣f ′(x)
∣∣ ≤ √3

2 for all x ∈
[
0, π3

]
. By

the Mean Value Theorem (as above) we have
∣∣f(x)−f(y)

∣∣ ≤ √3
2 |x−y| for all x, y ∈

[
0, π3

]
so

that f is a contraction map with contraction constant c =
√
3
2 . By the Banach Fixed-Point

Theorem, f has a unique point, that is there is a unique a ∈
[
0, π3

]
such that cos a = a.

The proof of the theorem shows that we can find a as follows: choose any x0 ∈
[
0, π3

]
and

let xn = f(xn−1) = cos(xn−1) for n ≥ 1, and then xn → a.
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6.7 Definition: Let A ⊆ R2 and let f : A → R. We say that f satisfies a Lipschitz
condition on A when there exists a constant ` ≥ 0 such that for all x, y1, y2 ∈ R for which
(x, y1) ∈ A and (x, y2) ∈ A, we have∣∣f(x, y2)− f(x, y1)

∣∣ ≤ ` |y2 − y1|.
Such a constant ` is called a Lipschitz constant for f .

6.8 Theorem: (Picard) Let U be an open set in R2, let (a, b) ∈ U , and let F : U → R
satisfy a Lipschitz condition on U . Then there exists δ > 0 such that the differential
equation dy

dx = F (x, y) has a unique solution y = f(x) with f(a) = b, defined for all
x ∈ [a−δ, a+δ].

Proof: We sketch a proof. First note that y = f(x) is a solution to the differential equation
dy
dx = F (x, y) with f(a) = b if and only if f(x) satisfies the integral equation

f(x) = b+

∫ x

a

F
(
t, f(t)

)
dt

for all x ∈ [a−δ, a+δ]. Let ` be a Lipschitz constant for F . Choose r > 0 such that
B
(
(a, b), r

)
⊆ U and let k = max

(x,y)∈B((a,b),r)

∣∣F (x, y)
∣∣. Choose δ with 0 < δ < 1

` small

enough such that the rectangle R = [a−δ, a+δ]× [b−kδ, b+kδ] is contained in B
(
(a, b), r

)
.

Verify as an exercise (Using the Mean Value Theorem) that if f(x) is any solution to the
given differential equation with f(a) = b then the graph of f must be contained in the
rectangle R. Let

X =
{
f ∈ C[a−δ, a+δ]

∣∣Graph(f) ⊆ R
}
.

Verify that X is a closed subspace of the metric space C[a−δ, a+δ] (using the supremum
metric) and so X is complete. Define G : X → C[a−δ, a+δ] by

G(f)(x) = b+

∫ x

a

F
(
t, f(t)

)
dt.

Note that G(X) ⊆ X because for all f ∈ X and x ∈ [a−δ, a+δ] we have∣∣G(f)(x)− b
∣∣ =

∣∣∣∣ ∫ x

a

F (t, f(t)
)
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

k dt

∣∣∣∣ = k|x− a| ≤ kδ.

Note that G is a contraction map on X, with contraction constant c = `δ < 1 because, for
all f, g ∈ X and all x ∈ [a−δ, a+δ], we have∣∣G(f)(x)−G(g)(x)

∣∣ =

∣∣∣∣ ∫ x

a

(
F (t, f(t))− F (t, g(t))

)
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

∣∣F (t, f(t))− F (t, g(t))
∣∣dt∣∣∣∣

≤
∣∣∣∣ ∫ x

a

`
∣∣f(t)− g(t)

∣∣ dt∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

` ‖f − g‖∞ dt

∣∣∣∣
= `|x− a| ‖f − g‖∞ ≤ `δ ||f − g||∞.

By the Banach Fixed-Point Theorem, the map G has a unique fixed point f ∈ X, and this
function f ∈ X is the unique solution to the above integral equation, which is equivalent
to the given differential equation.
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The Arzela-Ascoli Theorem and Peano’s Theorem

6.9 Definition: Let X be a set and let S ⊆ F(X) = F(X,R). We say that S is pointwise
bounded when for every x ∈ X there exists m = m(x) > 0 such that |f(x)| ≤ m for every
function f ∈ S. We say that S is uniformly bounded when there exists m > 0 such that
|f(x)| ≤ m for every x ∈ X and every f ∈ S.

Let X be a metric space and let S ⊆ C(X) = C(X,R). We say that S is equicon-
tinuous when for every ε > 0 there exists δ > 0 such that for every f ∈ S and for all
x, y ∈ X, if d(x, y) < δ then d

(
f(x), f(y)

)
< ε

6.10 Note: When X is a compact metric space, by the Extreme Value Theorem, every
continuous function f : X → R is also bounded, so we have C(X) = Cb(X), which is a
complete metric space using the supremum norm. Unless otherwise stated, when we refer
to the metric space C(X) it is understood that we are using the supremum metric.

6.11 Note: When X is a compact metric space and S ⊆ C(X), note that S is uniformly
bounded if and only if S is bounded as a subspace of the metric space C(X).

6.12 Theorem: Let X be a compact metric space and let (fn) be a sequence in C(X). If
the sequence (fn) converges in the metric space C(X) (equivalently, if the sequence (fn)
converges uniformly on X) then the set {fn} is equicontinuous.

Proof: Suppose (fn) converges in C(X). Let ε > 0. Since (fn) converges in C(X) we
can choose ` ∈ Z+ such that for all n,m ≥ ` we have ‖fn − fm‖∞ < ε

3 . Since X is
compact, each of the functions fn is uniformly continuous on X. Choose δ > 0 such that
for all x, y ∈ X with d(x, y) < δ we have

∣∣fn(x) − fn(y)
∣∣ < ε for each n < ` and we have∣∣f`(x)− f`(y)

∣∣ < ε
3 . Then for all n ≥ ` and all x, y ∈ X with d(x, y) < δ we have∣∣fn(x)− fn(y)

∣∣ ≤ ∣∣fn(x)− f`(x)
∣∣+
∣∣f`(x)− f`(y)

∣∣+
∣∣f`(y)− fn(y)

∣∣ < ε.

6.13 Corollary: Let X be a compact metric space. Then every compact set S ⊆ C(X) is
equicontinuous.

Proof: Let S ⊆ C(X). Suppose that S is not equicontinuous. Choose ε > 0 such that
for all δ > 0 there exists f ∈ S and there exist x, y ∈ X with d(x, y) < δ such that∣∣f(x) − f(y)

∣∣ ≥ ε. For each n ∈ Z+, choose fn ∈ S such that there exist x, y ∈ X with

d(x, y) < 1
2n such that

∣∣fn(x) − fn(y)
∣∣ ≥ ε. Then no subsequence of (fn) can possibly

converge in S (using the supremum metric) and so S cannot be compact.

6.14 Theorem: Let X be a compact metric space and let (fn) be a sequence in C(X).
If the set {fn} is pointwise bounded and equicontinuous then the set {fn} is uniformly
bounded and the sequence (fn) has a convergent subsequence in C(X).

Proof: Suppose that the set {fn} is pointwise bounded and equicontinuous. We claim that
the set {fn} is uniformly bounded. Since {fn} is equicontinuous, we can choose δ > 0 such
that for all n ∈ Z+ and for all x, y ∈ X with d(x, y) < δ we have

∣∣fn(x)−fn(y)
∣∣ < 1. Since

X is compact, we can choose a1, a2, · · · , a` ∈ X such that X = B(a1, δ) ∪ · · · ∪ B(a`, δ).
Since {fn} is pointwise bounded, we can choose m > 0 such that for each index k with
1 ≤ k ≤ `, and for all n ∈ Z+, we have

∣∣fn(ak)
∣∣ ≤ m. Let n ∈ Z+ and x ∈ X.

Choose an index k with 1 ≤ k ≤ ` such that x ∈ B(ak, δ). Since d(x, ak) < δ we have∣∣fn(x)− fn(ak)
∣∣ < 1 and so

∣∣fn(x)
∣∣ ≤ ∣∣fn(x)− fn(ak)

∣∣+
∣∣fn(ak)

∣∣ < 1 +m. Since n ∈ Z+

and x ∈ X were arbitrary, the set {fn} is uniformly bounded, as claimed.
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It remains to show that the sequence (fn) has a convergent subsequence in C(X).
Since X is compact, and hence separable, we can choose a countable dense subset A ⊆ X,
say A = {a1, a2, a3, · · ·}. We claim that the sequence (fn)n≥1 has a subsequence (fnk

)k≥1
which converges pointwise on A. Since the real-valued sequence

(
fn(a1)

)
n≥1 is bounded,

we can choose a subsequence, which we shall write as
(
f1,k

)
k≥1 =

(
f1,1, f1,2, f1,3, · · ·

)
,

of the sequence of functions (fn)n≥1 such that the real-valued sequence
(
f1,k(a1)

)
k≥1

converges. Since the real-valued sequence
(
f1,k(a2)

)
k≥1 is bounded, we can choose a sub-

sequence
(
f2,k

)
of the sequence of functions

(
f1,k

)
such that the real-valued sequence(

f2,k(a2)
)

converges. Note that since
(
f2,k(a1)

)
is a subsequence of the convergent se-

quence
(
f1,k(a1)

)
, it also converges. By recursively repeating this procedure, we construct

sequences (fn,k)k≥1 for each n ≥ 1, such that
(
fn+1,k

)
k≥1 is a subsequence of

(
fn,k

)
k≥1 and

the real-valued sequences
(
fn,k(aj)

)
k≥1 converge for all j with 1 ≤ j ≤ n. Let

(
fnk

)
k≥1

denote the sequence
(
f1,1, f2,2,, f3,3,, · · ·

)
, note that this is a subsequence of the original

sequence (fn), and the real-valued sequences
(
fnk

(aj)
)
k≥1 converge for all indices j ∈ Z+,

so the subsequence (fnk
) converges pointwise on A, as required.

Finally, we claim that the above subsequence (fnk
) converges in C(X). Let ε > 0.

Since the set {fn} is equicontinuous we can choose δ > 0 such that for all n ∈ Z+ and all
x, y ∈ X with d(x, y) < δ we have

∣∣fn(x) − fn(y)
∣∣ < ε

3 . Since A is dense in X, the set

U =
{
B(an, δ)

∣∣n ∈]Z+
}

is an open cover of X. Since X is compact, we can choose a finite
subcover of U , so we can choose a1, a2, · · · , ap ∈ X such that X = B(a1, δ)∪ · · · ∪B(ap, δ).
Since the sequences

(
fnk

(aj)
)
k≥1 all converge, we can choose m ∈ Z+ such that for all

j ∈ Z+ with 1 ≤ j ≤ p and all k, ` ∈ Z+ with k, ` ≥ m we have
∣∣fnk

(aj) − fn`
(aj)

∣∣ < ε
3 .

Let x ∈ X and let k, ` ∈ Z+ with k, ` ≥ m. Choose an index j with 1 ≤ j ≤ p such that
x ∈ B(aj , δ). Then we have∣∣fnk

(x)− fn`
(x)
∣∣ ≤ ∣∣fnk

(x)− fnk
(aj)

∣∣+
∣∣fnk

(aj)− fn`
(aj)

∣∣+
∣∣fn`

(aj)− fn`
(x)
∣∣ < ε.

6.15 Theorem: (The Arzela-Ascoli Theorem) Let X be a compact metric space and let
S ⊆ C(X), using the supremum metric.

(1) S is compact if and only if S is closed, pointwise bounded, and equicontinuous.
(2) If S is pointwise bounded and equicontinuous, then S is compact.

Proof: To prove Part 1, suppose that S is compact. Then we know that S is closed and
bounded and we know (from Corollary 6.13) that S is equicontinuous. Since S is bounded,
using the supremum metric, it follows that S is uniformly bounded, hence also pointwise
bounded.

Suppose, conversely, that S is closed, pointwise bounded, and equicontinuous. Let
(fn) be a sequence in S. Since S is pointwise bounded and equicontinuous, the subset
{fn} is also pointwise bounded and equicontinuous. By the above theorem, the sequence
(fn) has a convergent subsequence (fnk

) in C(X). Since S is closed, the limit of this
subsequence lies in S. This proves that every sequence in S has a subsequence which
converges in S, and so S is compact.

This completes the proof of Part 1, and we leave the proof of Part 2 as an exercise.
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6.16 Theorem: (Peano) Let U ⊆ R2 be open, let (a, b) ∈ U , and let F : U → R be
continuous. Then there exists d > 0 such that the differential equation dy

dx = F (x, y) has a
solution y = f(x) with f(a) = b which is defined for all x ∈ [a−d, a+d].

Proof: Choose a closed rectangle Q with (a, b) ∈ Q ⊆ U . Since Q is compact,
∣∣F (x, y)

∣∣
attains its maximum value on Q, let M = max

{
|F (x, y)|

∣∣(x, y) ∈ Q
}

. Choose d > 0 so
that R = [a−d, a+d]× [b−Md, b+Md] ⊆ Q.

Fix n ∈ Z+. Since R is compact so that F is uniformly continuous on R, we can
choose δ > 0 so that for all (x1, y1), (x2, y2) ∈ R,∣∣(x1, y1)− (x2, y2)

∣∣ < δ =⇒
∣∣F (x1, y1)− F (x2, y2)

∣∣ ≤ 1
n .

Choose ` ∈ Z+ so d
` <

δ
M+1 and let ck = a+ kd

` for 0≤k<` so a = c0 < c1 < · · · < c` = a+d

with ck+1− ck = d
` <

δ
M+1 for all 0≤k <`. Let f = fn : [a, a+d]→ R be the continuous,

piecewise linear function with f(a) = b such that f ′(x) = F
(
ck, f(ck)

)
for all x ∈ (ck, ck+1)(

the function f = fn is constructed recursively by beginning with f(a) = b and then,

having defined f(x) for all x ∈ [a, ck], define f(x) = f(ck) + F
(
ck, f(ck)

)
(x − ck) for all

x ∈ [ck, ck+1]
)
.

Claim 1: we claim that for all x1, x2 ∈ [a, a+d] we have∣∣f(x1)− f(x2)
∣∣ ≤M |x1 − x2|.

Let x1, x2 ∈ [a, a+d] with x1 ≤ x2. For 0 ≤ k < p, let mk = F (ck, f(ck)) and note that
|mk| =

∣∣F (ck, f(ck)
)∣∣ ≤ M for all k. When x1, x2 ∈ [ck, ck+1] with x1 ≤ x2, we have

f(x2) = f(x1) +mk(x2 − ck) so that
∣∣f(x2)− f(x1)

∣∣ =
∣∣mk(x2 − ck)

∣∣ ≤M(x2 − x1), and
when x1 ∈ [cj , cj+1] and x2 ∈ [ck, ck+1] with j < k we have

f(x2) = f(x1) +mj(cj+1−x1) +mj+1(cj+2−cj+1) + · · ·+mk−1(ck−ck−1) +mk(x2−ck)

so
∣∣f(x2)− f(x1)

∣∣ ≤M(cj+1−x1) +M(cj+2−cj+1) + · · ·+M(ck−ck−1) +M(x2−ck), that

is
∣∣f(x2)− f(x1)

∣∣ ≤M(x2 − x1), as required.

Claim 2: we claim that when x ∈ [ck, ck+1] we have∫ x

ck

∣∣∣mk − F
(
t, f(t)

)∣∣∣ dt ≤ d
n .

Let x ∈ [ck, ck+1] and let t ∈ [ck, x]. Then |ck − t| ≤ ck+1 − ck = d
` <

δ
M+1 . By Claim 1,

we have
∣∣f(ck)− f(t)

∣∣ < Mδ
M+1 , so∣∣(ck, f(ck))− (t, f(t))

∣∣ ≤ |ck − t|+ ∣∣f(ck)− f(t)
∣∣ < δ

M+1 + Mδ
M+1 = δ.

By the choice of δ, we have
∣∣mk−F

(
t, f(t)

)∣∣ =
∣∣F (ck, f(ck)

)
−F

(
t, f(t)

)∣∣ ≤ 1
n . This holds

for all t ∈ [ck, x], so∫ x

ck

∣∣∣mk − F
(
t, f(t)

)∣∣∣ dt ≤ ∫ x

ck

1
n dt = 1

n (x− ck) ≤ d
n

as claimed.

Claim 3. we claim that for all x ∈ [a, a+d] we have∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣ ≤ d
n .

Let x ∈ [a, a+d]. Choose an index k so that x ∈ [ck, ck+1]. Then

f(x)− f(a) =
k−1∑
j=0

mj(cj+1 − cj) +mk(x− ck) =
k−1∑
j=0

∫ cj+1

cj

mj dt+

∫ x

ck

mk dt
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and so, ∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣
=

∣∣∣∣ k−1∑
j=0

∫ cj+1

cj

(
mj − F

(
t, f(t)

))
dt+

∫ x

ck

(
mk − F

(
t, f(t)

))
dt

∣∣∣∣
≤
k−1∑
j=0

∫ cj+1

cj

∣∣∣mj − F
(
t, f(t)

)∣∣∣ dt+

∫ x

ck

∣∣∣mk − F
(
F
(
t, f(t)

)∣∣∣ dt
≤
k−1∑
j=0

1
n (cj+1 − cj) + 1

n (x− ck) = 1
n (x− c0) = 1

n (x− a) ≤ d
n ,

(where we used Claim 2 on the final line above), as claimed.

We repeat the above construction for every n ∈ Z+ to obtain a sequence of functions
(fn)n≥1. Each function fn satisfies Claims 1, 2 and 3. Let S =

{
fn
∣∣n ∈ Z+

}
⊆ C[a, a+d].

Note that by Claim 1, the set S is equicontinuous
(
indeed given ε > 0, if |x1 − x2| < ε

M

then
∣∣fn(x1)− fn(x2)

∣∣ ≤M |x1 − x2| < ε
)

and the set S uniformly bounded
(
indeed since

fn(a) = b and
∣∣fn(x)−fn(a)

∣∣ ≤ M |x − a| ≤ Md we have b −Md ≤ fn(x) ≤ b + Md for

all x
)
. By the Arzela-Ascoli Theorem, the closure S of S in

(
C[a, a+d], d∞

)
is compact.

Thus we can choose a subsequence (fnk
)k≥1 of (fn)n≥1 which converges in S ⊆ C[a, a+d]

using the metric d∞, that is (fnk
)k≥1 converges uniformly on [a, a+d] to some continuous

function g : [a, a+d]→ R.

Claim 4: we claim that the above map g : [a, a+d] → R is a solution to the given
differential equation. First we note that when

∥∥f − g∥∥∞ < δ, for all t ∈ [a, a+d] we have∣∣(t, f(t)) − (t, g(t))
∣∣ =

∣∣f(t) − g(t)
∣∣ ≤ ‖f − g‖∞ < δ so that (by the choice of δ) we have∣∣F (t, f(t))− F (t, g(t))

∣∣ ≤ 1
n and hence∫ x

a

∣∣∣F (t, f(t)
)
− F

(
t, g(t)

)∣∣∣ dt ≤ ∫ x

a

1
n dt = 1

n (x− a) ≤ d
n .

Given ε > 0 we can choose k ∈ Z+ such that ‖fnk
− g‖∞ < δ and ‖fnk

− g‖∞ < ε
3 and

1
nk

< ε
3d . Write n = nk and f = fn = fnk

. Then for all x ∈ [a, a+d] we have∣∣∣∣(g(x)−g(a)
)
−
∫ x

a

F
(
t, g(t)

)
dt

∣∣∣∣ ≤ ∣∣∣∣(g(x)−g(a)
)
−
(
f(x)−f(a)

)∣∣∣∣
+

∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣+

∣∣∣∣ ∫ x

a

F
(
t, f(t)

)
dt−

∫ x

a

F
(
t, g(t)

)
dt

∣∣∣∣
≤
∣∣∣g(x)−f(x)

∣∣∣+

∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣+

∫ x

a

∣∣∣F (t, f(t)
)
− F

(
t, g(t)

)∣∣∣ dt
≤ ‖f − g‖∞ + d

n + d
n <

ε
3 + ε

3 + ε
3 = ε.

Since ε > 0 was arbitrary, it follows that for all x ∈ [a, a+d]

g(x) = g(a) +

∫ x

a

F
(
t, g(t)

)
dt .

By the Fundamental Theorem of Calculus, g is differentiable wih g′(x) = F
(
x, g(x)

)
for

all x ∈ [a, a+d], and so g is a solution of the given differential equation, as claimed.

Finally, we repeat the above procedure to obtain a solution g : [a−d, a]→ R then join
the two solutions to obtain a solution g : [a−d, a+d]→ R.
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The Stone-Weierstrass Theorem and Polynomial Approximation

6.17 Definition: A (commutative) algebra over a field F is a vector space U with
a binary multiplication operation such that for all u, v, w ∈ U and all t ∈ F we have
uv = vu, u(v + w) = uv + uw, and (tu)v = t(uv). A subspace A ⊆ U is a subalgebra of
U when it is an algebra using (the restriction of) the same operations used in U . Verify
that a subset A ⊆ U is a subalgebra of U when 0 ∈ A and for all u, v ∈ A and all t ∈ F
we have tu ∈ A, u+ v ∈ A and uv ∈ A.

6.18 Example: When X is a metric space, the vector space F(X) = F(X,R) of all
functions f :X → R is an algebra over R, and B(X), C(X), and Cb(X) are all subalgebras.

6.19 Example: When a ≤ b, the space P[a, b] of polynomial maps f : [a, b]→ R and the
space C1[a, b] of continuously differentiable maps are subalgebras of the algebra C[a, b] of
continuous maps f : [a, b]→ R, and the space R[a, b] of Riemann integrable functions is a
subalgebra of the algebra B[a, b] of bounded functions f : [a, b]→ R.

6.20 Example: Show that f(x) = |x| lies in the closure of P[−1, 1] in
(
C[−1, 1], d∞

)
.

Solution: Let ε > 0 and let a = ε
2 . Let g(x) =

√
x+ a2 and let pn(x) be the nth Taylor

polynomial for g(x) centred at 1: to be explicit, for
∣∣ x−1
1+a2

∣∣ < 1 we have

g(x) =
(
(x−1) + (1+a2)

)1/2
=
√

1+a2
(

1 + x−1
1+a2

)1/2
=
√

1+a2
∞∑
k=1

(
1/2
k

)(
x−1
1+a2

)k
,

and we have

pn(x) =
√

1+a2
n∑
k=0

(
1/2
k

)(
x−1
1+a2

)k
.

Note that pn → g pointwise for
∣∣ x−1
1+a2

∣∣ < 1, that is for all x ∈ (−a2, 2+a2), and fn → g

uniformly on [0, 2] (hence also on [0, 1]). Choose n ∈ Z+ such that
∣∣pn(x)− g(x)

∣∣ < a = ε
2

for all x ∈ [0, 1]. Also note that for all x ∈ R we have∣∣∣|x| − g(x2)
∣∣∣ =

√
x2+a2 −

√
x2 =

a2
√
x2+a2 +

√
x2
≤ a = ε

2 ,

so for all x ∈ [−1, 1], we have x2 ∈ [0, 1], hence∣∣∣|x| − pn(x2)
∣∣∣ ≤ ∣∣∣|x| − g(x2)

∣∣∣+
∣∣∣g(x2)− pn(x2)

∣∣∣ < ε
2 + ε

2 = ε.

6.21 Definition: Let A ⊆ C(X). We say that A separates points when for all x, y ∈ X
with x 6= y there exist f ∈ A with f(x) 6= f(y). We say that A vanishes nowhere when
for all x ∈ X there exists f ∈ A such that f(x) 6= 0. Note that if 1 ∈ A (where 1 denotes
the constant function) the A vanishes nowhere.
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6.22 Theorem: (The Stone-Weierstrass Theorem for Real Valued Functions) Let X be a
compact metric space and let A ⊆ C(X) = C(X,R) be a subalgebra. If A separates points
and vanishes nowhere then A = C(X) (using the supremum metric d∞).

Proof: Note first that A is also a subalgebra of C(X). Indeed given f, g ∈ A and c ∈ R,
we can choose sequences (fn) and (gn) in A such that fn → f and gn → g in C(X) (that
is fn → f and gn → g uniformly on X), and then we have cfn → cf , fn + gn → f + g and
fngn → fg uniformly on X, and hence cf ∈ A, f + g ∈ A and fg ∈ A. Also note that A
separates points and vanishes nowhere, and so we may assume, without loss of generality,
that A is closed.

Next we claim that if f ∈ A then we also have |f | ∈ A. Let f ∈ A ⊆ C(X). Choose
m > 0 with m ≥ ‖f‖∞. Let g = 1

mf and note that g ∈ A with ‖g‖∞ ≤ 1, that is
g(x) ∈ [−1, 1] for all x ∈ X. Let ε > 0. By Example 6.20, we can choose a polynomial
p0(x) = a0 + a1x + · · · + anx

n such that
∣∣p0(u) − |u|

∣∣ ≤ ε
2 for all u ∈ [−1, 1]. Let

p(x) = p0(x) − a0 and note that
∣∣p(u) − |u|

∣∣ ≤ ε for all u ∈ [−1, 1]. For all x ∈ X, we

have g(x) ∈ [−1, 1] and so
∣∣p(g(x)

)
−|g(x)|

∣∣ < ε. Note that the function h(x) = p
(
g(x)

)
=

a1g(x) + a2g(x)2 + · · · ang(x)n lies in A (because g ∈ A and A is an algebra). This shows
that for every ε > 0 we can find h ∈ A with

∣∣h− |g|∣∣ < ε, and (since A is closed) it follows
that |g| ∈ A and hence |f | = m|g| ∈ A.

Next we note that if f, g ∈ A then we also have max{f, g} ∈ A and min{f, g} ∈ A
because

max{f, g} =
f + g

2
+
|f − g|

2
and min{f, g} =

f + g

2
− |f − g|

2
and it follows, inductively, that if f1, f2, · · · , fn ∈ A then we have max{f1, · · · , fn} ∈ A
and min{f1, · · · , fn} ∈ A.

We claim that for all r, s ∈ R and for all a, b ∈ X with a 6= b, there is a function g ∈ A
with g(a) = r and g(b) = s. Let r, s ∈ R and let a, b ∈ X with a 6= b. Since A separates
points, we can choose h ∈ A with h(a) 6= h(b). Since A vanishes nowhere, we can choose
k, ` ∈ A with k(a) 6= 0 and `(b) 6= 0. Define u, v ∈ A by

u(x) =
(
h(x)− h(b)

)
k(x) and v(x) =

(
h(a)− h(x)

)
`(x)

and note that u(a) 6= 0 and u(b) = 0 while v(a) = 0 and v(b) 6= 0. Then define g ∈ A by

g(x) = r
u(x)

u(a)
+ s

v(x)

v(b)

to obtain g(a) = r and g(b) = s, as required.

We claim that for every f ∈ C(X), for every a ∈ X and for every ε > 0, there is a
function h ∈ A such that h(a) = f(a) and h(x) < f(x) + ε for all x ∈ X. Let f ∈ C(X),
let a ∈ X and let ε > 0. For each b ∈ X, by the previous claim we can choose gb ∈ A such
that gb(a) = f(a) and gb(b) = f(b). For each b ∈ X, since f and gb are continuous at b,
we can choose rb > 0 such that for all x ∈ B(b, rb) we have∣∣f(x)− f(b)

∣∣ < ε
2 and

∣∣gb(x)− gb(b)
∣∣ < ε

2 , hence
∣∣gb(x)− f(x)

∣∣ < ε.

Since X is compact and the set
{
B(b, rb)

∣∣ b∈X} covers X, we can choose b1, b2, · · · , bn ∈ X

such that X =
n⋃
k=1

B(bk, rbk), and then we let

h = min
{
gb1 , gb2 , · · · , gbn

}
∈ A.

For all x ∈ X we can choose an index k such that x ∈ B(bk, rak) and then we have
h(x) ≤ gbk(x) < f(x) + ε, as required.
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Finally, we complete the proof by showing that for every f ∈ C[0, 1] and every ε > 0
there exists g ∈ A such that |g(x)− f(x)| < ε for all x ∈ X. Let f ∈ C(X) and let ε > 0.
For each a ∈ X, by the previous claim we can choose ha ∈ A such that ha(a) = f(a) and
ha(x) < f(x) + ε for all x ∈ X. For each a ∈ X, since f and ha are continuous at a, we
can choose sa > 0 such that for all x ∈ B(a, sa) we have∣∣f(x)− f(a)

∣∣ < ε
2 and

∣∣ha(x)− ha(a)
∣∣ < ε

2 hence
∣∣ha(x)− f(x)

∣∣ < ε.

Since X is compact and
{
B(ak, sk)

∣∣ a ∈ X} covers X, we can choose a1, a2, · · · , am ∈ X

such that X =
m⋃
k=1

B(ak, sak), and then we choose

g = max
{
ha1 , ha2 , · · · , ham

}
∈ A.

For all x ∈ X we can choose an index k such that x ∈ B(ak, sak) and we can choose an
index ` such that g(x) = ha`(x) and then we have

g(x) ≥ hak(x) > f(x)− ε and g(x) = ha`(x) < f(x) + ε.

6.23 Corollary: (The Weierstrass Approximation Theorem for Real Valued Functions)
Let X ⊆ Rn be compact and let f ∈ C(X) = C(X,R). Then for all ε > 0 there exists a
real polynomial p in n variables such that

∣∣p(x)− f(x)
∣∣ < ε for all x ∈ X.

Proof: Each polynomial p in n-variables determines a continuous function p : X → R.
The set P(X) of such polynomial functions is a subalgebra of C(X) which separates points
and vanishes nowhere, so P(X) is dense in C(X), using the metric d∞. This means that
given f ∈ C(X), for all ε > 0 we can choose p ∈ P(X) such that ‖p− f‖∞ < ε, and hence∣∣p(x)− f(x)

∣∣ < ε for all x ∈ X.

6.24 Corollary: The space
(
C([a, b],R), d∞

)
is separable, where a, b ∈ R with a < b.

Proof: Let P be the set of polynomials with coefficients in Q. Note that P is countable by
Theorem 1.20

(
indeed, Q is countable by Part 4 of Theorem 1.20, hence Q2,Q3, · · · ,Qn

are all countable by Part 1 of Theorem 1.20 and by induction, hence the space Pn of poly-
nomials over Q of degree at most n is countable since the map F : Qn+1 → Pn given by

F (a0, a1, · · · , an+1) =
n∑
k=0

akx
k is bijective, and hence P =

∞⋃
n=0

Pn is countable by Part 3

of Theorem 1.20
)
. We claim that P is dense in C[a, b]. Let f ∈ C[a, b] and let ε > 0. By

the Weierstrass Approximation Theorem we can choose a polynomial p with coefficients in

R such that ‖p− f‖∞ < ε
2 , say p(x) =

n∑
k=0

ckx
k with each ck ∈ R. Let m = max{|a|, |b|, 1},

for each index k, choose ak ∈ Q with |ak − ck| < ε
2(n+1)mn and let g(x) =

n∑
k=0

akx
k. Then

for all x ∈ [a, b] we have |x| ≤ m
(
since m ≥ max{|a|, |b|}

)
and hence for all 0 ≤ k ≤ n we

have |x|k ≤ mk ≤ mn (since m ≥ 1). Thus for all x ∈ [a, b] we have∣∣g(x)− p(x)
∣∣ =

∣∣∣ n∑
k=0

(ak − ck)xk
∣∣∣ ≤ n∑

k=0

|ak − ck| |x|k ≤
n∑
k=0

ε
2(n+1)mn m

n = ε
2 .

Thus ‖g − p‖∞ ≤
ε
2 and hence ‖g − f‖∞ ≤ ‖g − p‖∞ + ‖p− f‖∞ < ε

2 + ε
2 = ε.

6.25 Exercise: Let A =
{∑n

k=1 fk(x)gk(y)
∣∣n ∈ Z+, fk, gk ∈ C[0, 1]

}
. Show that A is

dense in C
(
[0, 1]×[0, 1]

)
, using the metric d∞.

6.26 Exercise: Let A =
{
b0 +

∑n
k=1(ak sin(kx) + bk cos(kx))

∣∣n ∈ Z+, ak, bk ∈ R
}

. Show
that for all r ∈ [0, 2π], A is dense in C[0, r] but A is not dense in C[0, 2π], using d∞.
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6.27 Theorem: (The Stone-Weierstrass Theorem for Complex Valued Functions) Let X
be a compact metric space and let A ⊆ C(X,C) be a complex subalgebra. If A separates
points, vanishes nowhere, and is closed under conjugation (which means that if p ∈ A then
p ∈ A), then A = C(X,C), using the supremum metric d∞.

Proof: Let A ⊆ C(X,C) be a complex subalgebra. Suppose that A separates points,
vanishes nowhere, and is closed under conjugation. Let B = A ∩ C(X,R). Note that B is
a real subalgebra of C(X,R). Note that given p ∈ A with p = u+ iv where u, v ∈ C(X,R),
since u = 1

2 (p+ p) and v = 1
2i (p− p), it follows that u, v ∈ B because A is an algebra and

A is closed under conjugation. We claim that B separates points and vanishes nowhere.
To show that B separates points, let x1, x2 ∈ X with x1 6= x2. Since A separates points,
we can choose p ∈ A such that p(x1) 6= p(x2). Write p = u + iv with u, v ∈ C(X,R). As
shown above, we have u, v ∈ B. Since u(x1) + iv(x1) = p(x1) 6= p(x2) = u(x2) + iv(x2), it
follows that either u(x1) 6= u(x2) or v(x1) 6= v(x2), and so B separates points, as claimed.
To show that B vanishes nowhere, let x ∈ X. Since A vanishes nowhere we can choose
p ∈ A such that p(x) 6= 0. Write p = u + iv with u, v ∈ C(X,R), and note that u, v ∈ B.
Since 0 6= p(x) = u(x) + iv(x), either we have u(x) 6= 0 or we have v(x) 6= 0, and so B
vanishes nowhere, as claimed. Since B is a real subalgebra of C(X,R) which separates
points and vanishes nowhere, the Stone-Weierstrass Theorem for Real Functions implies
that B is dense in

(
C(X,R), d∞

)
. It follows easily that A is dense in

(
C(X,C), d∞

)
: indeed

given h ∈ C(X,C), say h = f + ig with f, g ∈ C(X,R), and given ε > 0, we can choose
u, v ∈ B such that ‖u − f‖∞ < ε

2 and ‖v − g‖∞ < ε
2 , and then p = u + iv ∈ A with

‖p−h‖∞ =
∥∥(u− f) + i(v− g)

∥∥
∞ ≤ ‖u− f‖∞+ ‖i(v− g)‖∞ = ‖u− f‖∞+ ‖v− g‖∞ < ε.

6.28 Corollary: (Weierstrass Approximation Theorem for Complex Valued Functions)
Let X ⊆ Cn be compact and let f ∈ C(X,C). Then for all ε > 0 there exists a complex
polynomial p in the 2n variables z1, z1, · · · , zn, zn such that

∣∣p(x)−f(x)
∣∣ < ε for all x ∈ X.

Proof: The proof is left as an exercise.

6.29 Corollary: The space
(
C([a, b],C), d∞

)
is separable, where a, b ∈ R with a < b.

Proof: The proof is left as an exercise.

10


