Chapter 6. Some Applications

Contraction Maps and Picard’s Theorem

6.1 Note: In this chapter, unless otherwise stated, we work in the field F = R.

6.2 Definition: Let X be a metric space. A map f: X — X is called a contraction
map on X when there exists a constant ¢ € [0,1) such that for all z,y € X we have

d(f(z), f(y)) < cd(z,y).

Such a constant c is called a contraction constant for f. Note that every contraction
map is uniformly continuous.

6.3 Definition: For a map f: X — X (where X is any set), a point a € X such that
f(a) = a is called a fixed point of f.

6.4 Theorem: (The Banach Fixed-Point Theorem) Every contraction map on a complete
metric space has a unique fixed point.

Proof: Let X be a complete metric space and let f : X — X be a contraction map on
X with contraction constant ¢ € [0,1). Let g € X be any point. Let 1 = f(z¢) and
xo = f(x1) = f%(x0) and so on, so that for n > 1 we have x,, = f(z,_1) = f"(z0). Note
that the sequence (z,,),>0 is Cauchy because for n < m we have

d(@n, 2m) = d(f"(x0), " (Tm—n)) < " d(x0, Tp—n)
< (d(zo, z1) + d(@1,22) + -+ + d(Tm—n—1, Tm—n))

< Cnd(ﬂfo,ﬂfl)(l +e4+cE 4+ cm—n—l)

< d(wg, 1) = —> 0 as n — oo,

Since X is complete, the sequence (z,,),>0 converges, so we can let @ = lim z,. Note that
- n— oo

f(a) = a since f is continuous at a so f(a) = f( lim xn) = lim f(x,)= lim z,_1 = a.
n— 00 n— 00 T—>00
Finally note that for a,b € X, if f(a) = a and f(b) = b then since

d(a,b) = d(f(a), f(b)) < cd(a,b)
with 0 < ¢ < 1, it follows that d(a,b) = 0 so that a = b.

6.5 Example: Define f : [2,00) — [2,00) by f(z) =z + 1. Note that f'(z) =1— 2% so
that 2 < f'(z) < 1 for all # € [2,00). By the Mean Value Theorem, given z,y € [2,00)
we can choose ¢ between = and y such that f(z) — f(y) = f'(¢)(x — y), and then we have
|f(z)=f(y)| = |f'(c)| |z —y| < |z—y|. Thus f has the property that | f(x)—f(y)| < [z—y|
for all z,y € [2,00), but it is not a contraction map, and f has no fixed point because
fl@)=z+1>zforallz e (2 0).

6.6 Example: Define f : [0,Z] — [0,%] by f(z) = cosz (note that cos(0) = 1 and

coS (%) = % and coszx is decreasing, so we have f([(),%)) = [%,1] C [O, %]) Since

| f/(2)| = sinz which is increasing on [0, Z |, we have 0 < | f/(z)| < ‘/75 forallz € [0,%]. By

the Mean Value Theorem (as above) we have |f(a:)—f(y)‘ < %g\x—m forallz,y € [0, %] so
that f is a contraction map with contraction constant ¢ = \/7§ By the Banach Fixed-Point
Theorem, f has a unique point, that is there is a unique a € [O, %} such that cosa = a.
The proof of the theorem shows that we can find a as follows: choose any x( € [0, %] and

let x,, = f(xp—1) = cos(x,—1) for n > 1, and then x,, — a.



6.7 Definition: Let A C R? and let f : A — R. We say that f satisfies a Lipschitz
condition on A when there exists a constant £ > 0 such that for all z, y1,y> € R for which
(x,y1) € A and (z,y2) € A, we have

|f(a:,y2) - f(xayl)‘ </ ’yZ - y1|'
Such a constant ¢ is called a Lipschitz constant for f.
6.8 Theorem: (Picard) Let U be an open set in R?, let (a,b) € U, and let F : U — R
satisfy a Lipschitz condition on U. Then there exists 6 > 0 such that the differential

equation g—z = F(z,y) has a unique solution y = f(x) with f(a) = b, defined for all
x € [a—9,a+4].

Proof: We sketch a proof. First note that y = f(x) is a solution to the differential equation
4 — P(x,y) with f(a) = b if and only if f(z) satisfies the integral equation

dx
f(x) =b+ /m F(t, f(t)dt

for all € [a—d,a+0d]. Let ¢ be a Lipschitz constant for F. Choose r > 0 such that

B((a,b),r) C U and let k = max |F(z,y)|. Choose § with 0 < § < § small
(z,y)eB((ab),r)

enough such that the rectangle R = [a—4, a+8] x [b—ké, b+kd] is contained in B((a,b),r).
Verify as an exercise (Using the Mean Value Theorem) that if f(x) is any solution to the
given differential equation with f(a) = b then the graph of f must be contained in the
rectangle R. Let

X = {f €Cla—6,a+0d] | Graph(f) C R}.

Verify that X is a closed subspace of the metric space Cla—d,a+4] (using the supremum
metric) and so X is complete. Define G : X — Cla—J,a+46] by

G(f)(z)=b+ /m F(t, f(t))dt

Note that G(X) C X because for all f € X and x € [a—§, a+] we have

|G(f)(z) —b| = ‘/jF(t,f(t))dt < /:kdt

Note that GG is a contraction map on X, with contraction constant ¢ = ¢6 < 1 because, for
all f,g € X and all z € [a—4¢, a+9], we have

G(f)(@) — Glg)(@)] = ] [ P sy - re (t)))dt] < ] [ 1F . 10) - F g0

<[ Klf(t)—g(t)\dt‘ <| [Cenr-glwar

=z —alllf —glleo <L5[f — glloc-

By the Banach Fixed-Point Theorem, the map G has a unique fixed point f € X, and this
function f € X is the unique solution to the above integral equation, which is equivalent
to the given differential equation.

= k|lx — a| < k6.




The Arzela-Ascoli Theorem and Peano’s Theorem

6.9 Definition: Let X be aset and let S C F(X) = F(X,R). We say that S is pointwise
bounded when for every z € X there exists m = m(xz) > 0 such that |f(x)| < m for every
function f € §. We say that S is uniformly bounded when there exists m > 0 such that
|f(x)] <m for every x € X and every f € S.

Let X be a metric space and let S C C(X) = C(X,R). We say that S is equicon-
tinuous when for every ¢ > 0 there exists § > 0 such that for every f € S and for all
z,y € X, if d(z,y) < 0 then d(f(z), f(y)) <e

6.10 Note: When X is a compact metric space, by the Extreme Value Theorem, every
continuous function f : X — R is also bounded, so we have C(X) = Cy(X), which is a
complete metric space using the supremum norm. Unless otherwise stated, when we refer
to the metric space C(X) it is understood that we are using the supremum metric.

6.11 Note: When X is a compact metric space and S C C(X), note that S is uniformly
bounded if and only if S is bounded as a subspace of the metric space C(X).

6.12 Theorem: Let X be a compact metric space and let (f,,) be a sequence in C(X). If
the sequence (f,) converges in the metric space C(X) (equivalently, if the sequence (f,)
converges uniformly on X ) then the set {f,} is equicontinuous.

Proof: Suppose (f,) converges in C(X). Let € > 0. Since (f,) converges in C(X) we
can choose ¢ € Z* such that for all n,m > ¢ we have ||f, — fmlloo < §. Since X is
compact, each of the functions f,, is uniformly continuous on X. Choose § > 0 such that
for all z,y € X with d(z,y) < & we have |f,(z) — fu(y)| < € for each n < ¢ and we have

| fe(z) = fe(y)| < §. Then for all n > £ and all z,y € X with d(z,y) < & we have

| fu(@) = o) < | fu(®) = fel@)| + | fe(@) = few)| + | fe(y) — faw)| <e.

6.13 Corollary: Let X be a compact metric space. Then every compact set S C C(X) is
equicontinuous.

Proof: Let S C C(X). Suppose that S is not equicontinuous. Choose € > 0 such that

for all 6 > 0 there exists f € S and there exist z,y € X with d(z,y) < ¢ such that

}f(:c) — f(y)‘ > €. For each n € Z*, choose f,, € S such that there exist x,y € X with
1

d(z,y) < 5= such that ’fn(ac) - fn(y)‘ > ¢. Then no subsequence of (f,) can possibly

converge in S (using the supremum metric) and so S cannot be compact.

6.14 Theorem: Let X be a compact metric space and let (f,) be a sequence in C(X).
If the set {f,} is pointwise bounded and equicontinuous then the set {f,} is uniformly
bounded and the sequence (f,,) has a convergent subsequence in C(X).

Proof: Suppose that the set {f,} is pointwise bounded and equicontinuous. We claim that
the set { f,,} is uniformly bounded. Since {f,} is equicontinuous, we can choose § > 0 such
that for all n € ZT and for all z,y € X with d(z,y) < § we have | f,(z) — fu(y)| < 1. Since
X is compact, we can choose aj,as,--+,a; € X such that X = B(a;,0) U---U B(ay,9).
Since {f,} is pointwise bounded, we can choose m > 0 such that for each index k with
1 <k </, and for all n € Z*, we have ‘fn(ak)‘ < m. Let n € Zt and z € X.
Choose an index k with 1 < k < ¢ such that = € B(ag,d). Since d(z,ar) < § we have
}fn(x) - fn(ak)‘ <1 and so ‘fn(x)| < ‘fn(x) - fn(ak)| + ‘fn(ak)‘ <1+ m. Since n € Z*
and x € X were arbitrary, the set {f,} is uniformly bounded, as claimed.



It remains to show that the sequence (f,) has a convergent subsequence in C(X).
Since X is compact, and hence separable, we can choose a countable dense subset A C X,
say A = {a1,a2,as,---}. We claim that the sequence (f,,),>1 has a subsequence (f,, )r>1

which converges pointwise on A. Since the real-valued sequence ( fn(al))n>1 is bounded,

we can choose a subsequence, which we shall write as (fl,k)k>1 = (fl,l,fLQ,fl’g, . --),

of the sequence of functions (f,)n>1 such that the real-valued sequence (fix(a1)) b1

converges. Since the real-valued sequence ( fl,k(ag)) e>1 is bounded, we can choose a sub-
sequence (fzk) of the sequence of functions (f 1,k) ‘such that the real-valued sequence
( fzvk(az)) converges. Note that since ( fgvk(al)) is a subsequence of the convergent se-
quence ( fl,k(al)), it also converges. By recursively repeating this procedure, we construct

sequences ( f, )r>1 for each n > 1, such that (fn+17k)k>1 is a subsequence of (fn7k)k>1 and

the real-valued sequences ( fn,k(aj)) converge for all j with 1 < 5 < n. Let ( fnk)

k>1 k>1
denote the sequence (f1,1, Jo2,5 33, ), note that this is a subsequence of the original

sequence (f,), and the real-valued sequences (f,, (a;)),., converge for all indices j € Z,

k>1
so the subsequence (f,,) converges pointwise on A, as required.

Finally, we claim that the above subsequence (f,,) converges in C(X). Let ¢ > 0.
Since the set {f,} is equicontinuous we can choose § > 0 such that for all n € Z* and all
z,y € X with d(z,y) < § we have |fn(m) - fn(y)| < £. Since A is dense in X, the set
U= {B(an, 5)|n e]Z*} is an open cover of X. Since X is compact, we can choose a finite
subcover of U, so we can choose a1, asg, -+, a, € X such that X = B(ay,0)U---UB(ap,0).

Since the sequences ( frn (aj))k>1 all converge, we can choose m € Z* such that for all

je€Zt with1 < j<pandall k,/ € Z" with k&,/ > m we have |fnk(aj) — fm(aj)} < £
Let z € X and let k,/ € Z* with k,¢ > m. Choose an index j with 1 < j < p such that

x € B(a;,d). Then we have
‘fnk(x) - fne(x)‘ < ‘fnk(x> - fnk(aﬂ)} + ’fnk(aj) - fne<aj)| + ‘fne<aj) - fne(x)| <€

6.15 Theorem: (The Arzela-Ascoli Theorem) Let X be a compact metric space and let
S C C(X), using the supremum metric.

(1) S is compact if and only if S is closed, pointwise bounded, and equicontinuous.
(2) If S is pointwise bounded and equicontinuous, then S is compact.

Proof: To prove Part 1, suppose that S is compact. Then we know that S is closed and
bounded and we know (from Corollary 6.13) that S is equicontinuous. Since S is bounded,
using the supremum metric, it follows that S is uniformly bounded, hence also pointwise
bounded.

Suppose, conversely, that S is closed, pointwise bounded, and equicontinuous. Let
(fn) be a sequence in S. Since S is pointwise bounded and equicontinuous, the subset
{fn} is also pointwise bounded and equicontinuous. By the above theorem, the sequence
(fn) has a convergent subsequence (f,,) in C(X). Since S is closed, the limit of this
subsequence lies in S. This proves that every sequence in S has a subsequence which
converges in S, and so S is compact.

This completes the proof of Part 1, and we leave the proof of Part 2 as an exercise.



6.16 Theorem: (Peano) Let U C R? be open, let (a,b) € U, and let F : U — R be
continuous. Then there exists d > 0 such that the differential equation 3y = F(x,y) has a
solution y = f(x) with f(a) = b which is defined for all z € [a—d, a+d].

Proof: Choose a closed rectangle @ with (a,b) € @ C U. Since @ is compact, |F(x,y)|
attains its maximum value on @, let M = max {|F(z,y)||(z,y) € Q}. Choose d > 0 so
that R = [a—d,a+d] x [b—Md,b+Md] C Q.

Fix n € Z*. Since R is compact so that F' is uniformly continuous on R, we can
choose § > 0 so that for all (z1,y1), (z2,y2) € R,

| (21, yl) — (z2,92)| <6 = |F(z1,y1) — F(z2,52)| < +.

Choose ¢ € ZT so Zl < M+1 and let ¢y, —a—i—kd forO<k<lsoa=cyp<c1 <---<c¢p=atd
with cpi1—cx = e < M+1 for all 0<k < /. Let f = f,, : [a,a+d] — R be the continuous,
piecewise linear function with f(a) = b such that f'(z) = F(cy, f(cx)) for all z € (ck, chr1)
(the function f = f, is constructed recursively by beginning with f(a) = b and then,
having defined f(z) for all = € [a, cg), define f(z) = f(cx) + F(ck, f(ck))(z — cx) for all
T € [Ck, Ck+1] )

Claim 1: we claim that for all z1,z2 € [a,a+d] we have

|f(z1) = f(x2)] < M2y — 2.

Let z1,x2 € [a,a+d] with 1 < z9. For 0 < k < p, let my, = F(cg, f(cr)) and note that
imy| = |F(ck, f(ck))| < M for all k. When x1,z2 € [cg, cpp1] with 21 < x5, we have
fz2) = f(z1) + myp(z2 — cx) so that | f(z2) — f(z1)| = [mr(z2 — k)| < M(z2 — 21), and
when z; € [¢j,¢j41] and x2 € [cg, cpy1] With j < k we have
f(2) = f(@1) + mj(cjpr—21) + mypa(cjpa—cjpr) + -+ mp—1(ck —cr—1) + mr(z2—ck)
so | f(w2) = f(@1)| < M(cjy1—21) + M(cjpa—cjq1) + -+ M(cy—cp—1) + M(z2—cy), that
is |f(z2) — f(21)] < M(x2 — x1), as required.

Claim 2: we claim that when x € [ck, cx+1] we have
/ my — F(t,f(t))‘ dt < 4,
Ck

Let @ € [ck, cpp1) and let ¢ € [cg, 2]. Then [c —t| < cpp1 —cp = 4 < M— By Claim 1,

we have |f(ck) - )| < MLfl’ S0

[(ers fler)) = (&, F ()] < lex =t + [ flex) = F(O)| < 357 + 7r55 = 0

By the choice of §, we have |my, — F (t, f(t))| = |F (ck, f(cr)) — F(t, f(t))| < L. This holds
for all ¢t € [cg, x], so

/c mk—F(t,f(t))‘dtS/jldt lig—c)<d

as claimed.

Claim 3. we claim that for all x € [a, a+d] we have

(f(x)—f(a)) - /mF(t,f(t)) dt’ <4

Let x € [a,a+d]. Choose an index k so that = € [ck, cx+1]. Then
k—1

k—1 Cjt1 T
f(x) — f(a) = j;omj(cj—i—l —¢j) +mp(r —c) = jzo/cj m; dt+/0k my, dt



and so,

\<f<sc>—f<a>) - [ psnaf

_ /Cﬁl ( F(t, f(t ))> dt + /93 <mk N F(t,f(t))> dt’

0vEC Ck

Ci+1 z
/ F(t, f(t) )ﬁ+/
Cj Ck

J
< ZO%(CJH—CJH%(QS—%):%(w—c()):%(w—a)é%,
J:

x
—

>
| Q.
=l

my, — F(F (¢, f(t)) ‘ dt

L[]

?rk)
HO

(where we used Claim 2 on the final line above), as claimed.

We repeat the above construction for every n € Z* to obtain a sequence of functions
(fn)n>1. Each function f, satisfies Claims 1, 2 and 3. Let S = {f, |n € ZT} C C[a, a+d].
Note that by Claim 1, the set S is equicontinuous (indeed given € > 0, if |21 — 22| < 57
then | ful(z1) — fn (x2)| < Mlzy — xo] < e) and the set S uniformly bounded (indeed since
fa(a) = b and |fn(z)— fu(a)] < M|z — a| < Md we have b — Md < f,(z) < b+ Md for
all w) By the Arzela-Ascoli Theorem, the closure S of S in (C la, a+d], doo) is compact.

Thus we can choose a subsequence (fy, )k>1 of (fn)n>1 which converges in S C Cla, a+d]
using the metric doo, that is (fy, )r>1 converges uniformly on [a, a+d] to some continuous
function g : [a,a+d] — R.

Claim 4: we claim that the above map ¢ : [a,a+d] — R is a solution to the given
differential equation. First we note that when || f- gHOO < ¢, for all t € [a,a+d] we have

}(t,f(t)) — (t,g(t))| = |f(t) - g(t)! < ||f — glloo < 6 so that (by the choice of §) we have
}F(t, f(t)) = F(t,g(t))| < % and hence

/am F(t, f(t)) —F(t,g(t))’dtg /aw Lg—1(e—a)<d.

Given € > 0 we can choose k € ZT such that ||f,, — glloc < 0 and || f,, — gllc < § and
— < 55. Write n = ng and f = f,, = f,,. Then for all x € [a, a+d] we have

\<g<x>—g<a>> - [ Fleow)a] < \(g@c)—g(a)) - (f<:c>—f<a>>\
+'(f(a:)—f(a))—/;F(t,f(t)) dt‘+ /axF(t,f(t)) dt—/jF(t,g(t)) dt‘
< [sto)—s@)| + | @) -1@) - [ P+ [C|Fesw) - Feg)]a

<f—glot+2+d<s+5+5=¢
Since € > 0 was arbitrary, it follows that for all x € [a, a+d]
o@) =g(@)+ [ Fleg(o)dt.

By the Fundamental Theorem of Calculus, g is differentiable wih ¢/(z) = F(z, g(z)) for
all x € [a,a+d], and so g is a solution of the given differential equation, as claimed.

Finally, we repeat the above procedure to obtain a solution g : [a—d, a] — R then join
the two solutions to obtain a solution g : [a—d, a+d] — R.

6



The Stone-Weierstrass Theorem and Polynomial Approximation

6.17 Definition: A (commutative) algebra over a field F' is a vector space U with
a binary multiplication operation such that for all u,v,w € U and all ¢t € F' we have
uwv = vu, u(v +w) = wv + vw, and (tu)v = t(uv). A subspace A C U is a subalgebra of
U when it is an algebra using (the restriction of) the same operations used in U. Verify
that a subset A C U is a subalgebra of U when 0 € A and for all u,v € A and all t € F
we have tu € A, u+v € A and uv € A.

6.18 Example: When X is a metric space, the vector space F(X) = F(X,R) of all
functions f: X — R is an algebra over R, and B(X), C(X), and Cp(X) are all subalgebras.

6.19 Example: When a < b, the space Pla, b] of polynomial maps f : [a,b] — R and the
space C![a,b] of continuously differentiable maps are subalgebras of the algebra Cla, b] of
continuous maps f : [a,b] — R, and the space R]a, b] of Riemann integrable functions is a
subalgebra of the algebra B[a, b] of bounded functions f : [a,b] — R.

6.20 Example: Show that f(z) = |z| lies in the closure of P[—1,1] in (C[—1,1], dw).

Solution: Let € > 0 and let a = 5. Let g(x) = vz + a® and let p,(z) be the n'™™ Taylor
polynomial for g(z) centred at 1: to be explicit, for |f”+;a12| < 1 we have

g(x) = ((x—l) + (1+a2))1/2 = V1+a? (1 + ﬁ_ag)lﬂ =V1+a? i (1,42)(%)]2
k=1

and we have

po(z) = V1+a® > (1£2)(fJa12)k~
k=0

Note that p, — ¢ pointwise for |f;a12| < 1, that is for all z € (—a?,2+a?), and f, — g

uniformly on [0,2] (hence also on [0,1]). Choose n € ZT such that |p,(z) — g(z)| < a= &
for all € [0,1]. Also note that for all x € R we have

o] - g(a?)| = Va?ra? - Va?

so for all # € [—1,1], we have 22 € [0, 1], hence

2

a
— < a=
Vari+a? + Va2 o

Y

N

2] = pa(®)] < [J2] = 9(@?)| + |9(e?) — pu(a®)| < 5+ 5 =

6.21 Definition: Let A C C(X). We say that A separates points when for all z,y € X
with = # y there exist f € A with f(z) # f(y). We say that A vanishes nowhere when
for all x € X there exists f € A such that f(z) # 0. Note that if 1 € A (where 1 denotes
the constant function) the A vanishes nowhere.



6.22 Theorem: (The Stone-Weierstrass Theorem for Real Valued Functions) Let X be a
compact metric space and let A C C(X) = C(X,R) be a subalgebra. If A separates points
and vanishes nowhere then A = C(X) (using the supremum metric dx. ).

Proof: Note first that A is also a subalgebra of C(X). Indeed given f,g € A and ¢ € R,
we can choose sequences (f,) and (g,) in A such that f,, — f and g, — ¢g in C(X) (that
is f, = f and g,, — ¢ uniformly on X), and then we have cf,, — ¢f, f. + g9, — f+ g and
fngn — fg uniformly on X, and hence cf € A, f + g € A and fg € A. Also note that A
separates points and vanishes nowhere, and so we may assume, without loss of generality,
that A is closed.

Next we claim that if f € A then we also have |f| € A. Let f € A C C(X). Choose
m > 0 with m > ||f|l.. Let g = Lf and note that g € A with [|g||,, < 1, that is
g(x) € [-1,1] for all x € X. Let ¢ > 0. By Example 6.20, we can choose a polynomial
po(z) = ao + a1z + -+ + a,a™ such that |po(u) — |ul| < § for all w € [-1,1]. Let
p(z) = po(x) — ap and note that |p(u) — |u|| < € for all u € [~1,1]. For all z € X, we
have g(z) € [-1,1] and so |p(g(z)) — |g(z)|| < e. Note that the function h(z) = p(g(z)) =
a1g(z) + azg(x)? + -+ - a,g(z)™ lies in A (because g € A and A is an algebra). This shows
that for every e > 0 we can find h € A with |h — [g]| < ¢, and (since A is closed) it follows
that |g| € A and hence |f| = m|g| € A.

Next we note that if f,g € A then we also have max{f, g} € A and min{f,g} € A
because

and it follows, inductively, that if fi1, fo, -, f, € A then we have max{f,---,f,} € 4
and min{ fy,---, fn} € A.

We claim that for all ;s € R and for all a,b € X with a # b, there is a function g € A
with g(a) = r and g(b) = s. Let r,s € R and let a,b € X with a # b. Since A separates
points, we can choose h € A with h(a) # h(b). Since A vanishes nowhere, we can choose
k,l € A with k(a) # 0 and ¢(b) # 0. Define u,v € A by

u(z) = (h(z) — h(b))k(z) and v(z) = (h(a) — h(z))l(z)
and note that u(a) # 0 and u(b) = 0 while v(a) = 0 and v(b) # 0. Then define g € A by

_ ul@) (@)
9@ =r o T 0w

to obtain g(a) = r and g(b) = s, as required.

and min{f, g} =

We claim that for every f € C(X), for every a € X and for every € > 0, there is a
function h € A such that h(a) = f(a) and h(z) < f(x) + € for all z € X. Let f € C(X),
let a € X and let € > 0. For each b € X, by the previous claim we can choose g, € A such

that gy(a) = f(a) and gy(b) = f(b). For each b € X, since f and g; are continuous at b,
we can choose 1, > 0 such that for all z € B(b,r,) we have

@)= )] < § and |gy(z) = gu(b)] < § . hence |gs(a) — F()] < .
Since X is compact and the set {B(b, Tp) ‘ beX} covers X, we can choose b1,bs,---,b, € X

such that X = |J B(bk, s, ), and then we let
k=1

h:min{gbl,ng,"',gbn} € A

For all z € X we can choose an index k such that © € B(bg,7,,) and then we have
h(z) < gp, () < f(x) + €, as required.



Finally, we complete the proof by showing that for every f € C[0, 1] and every ¢ > 0
there exists g € A such that |g(z) — f(z)| < e for all z € X. Let f € C(X) and let € > 0.
For each a € X, by the previous claim we can choose h, € A such that h,(a) = f(a) and
he(x) < f(z) + € for all x € X. For each a € X, since f and h, are continuous at a, we
can choose s, > 0 such that for all x € B(a, s,) we have

|f(z) = fla)| < § and |ha(z) — ha(a)| < § hence |hq(z)— f(z)| <e.
Since X is compact and {B(ak,sk) | a € X} covers X, we can choose ai,as, -+, a, € X

such that X = |J B(ag, Sq, ), and then we choose

w=t g = max {ha,, hay, -+ ha, } € Al

For all z € X we can choose an index k such that x € B(ay, S,,) and we can choose an
index ¢ such that g(z) = hg,(x) and then we have

9(x) = ha, (z) > f(x) —€ and g(x) = ha,(z) < f(z) + €.

6.23 Corollary: (The Weierstrass Approximation Theorem for Real Valued Functions)
Let X C R™ be compact and let f € C(X) = C(X,R). Then for all ¢ > 0 there exists a
real polynomial p in n variables such that |p(z) — f(z)| < € for all z € X.

Proof: Each polynomial p in n-variables determines a continuous function p : X — R.
The set P(X) of such polynomial functions is a subalgebra of C(X') which separates points
and vanishes nowhere, so P(X) is dense in C(X), using the metric d,. This means that
given f € C(X), for all € > 0 we can choose p € P(X) such that ||p — f|e < ¢, and hence
Ip(z) — f(z)| < eforallz e X,

6.24 Corollary: The space (C([a, b, R), doo) is separable, where a,b € R with a < b.

Proof: Let P be the set of polynomials with coefficients in Q. Note that P is countable by

Theorem 1.20 (indeed, Q is countable by Part 4 of Theorem 1.20, hence Q2,Q3,-.-,Q"

are all countable by Part 1 of Theorem 1.20 and by induction, hence the space P,, of poly-

nomials over Q of degree at most n is countable since the map F : Q"t! — P, given by
n oo

F(ag,ai, -+ ,ans1) = Y. apx® is bijective, and hence P = (J P, is countable by Part 3
k=0 n=0

of Theorem 1.20). We claim that P is dense in C[a,b]. Let f € Cla,b] and let € > 0. By

the Weierstrass Approximation Theorem we can choose a polynomial p with coefficients in

n
R such that |[p — ||, < §,say p(z) = > cxz” with each ¢ € R. Let m = max{|al, [b|, 1},
k=0

for each index k, choose a; € Q with |ax — cx| <

gy and let g(z) = k;o axz®. Then

for all € [a, b] we have |z| < m (since m > max{|al,|b]}) and hence for all 0 < k < n we
have |z|*¥ < mF <m" (since m > 1). Thus for all x € [a, b] we have

n n n
’9(1‘) —p(ac)l = kzo(ak - Ck)xk < kzo |ak - Ck| |x|k < kzo m m' = %

Thus [|g — pll.. < § and hence llg = fll.. < g —pllc + Ip— flo < 5+ 5 =<
6.25 Exercise: Let A = {3}, fu(2)gr(y) |n € Z¥, fr, g1 € C[0,1]}. Show that A is
dense in C([0,1]x[0,1]), using the metric du.

6.26 Exercise: Let A = {by+ >, _, (aj sin(kz) + by cos(kz)) | n € ZT, ay, by, € R}. Show
that for all € [0,27], A is dense in C[0,r] but A is not dense in C|[0, 27], using do.



6.27 Theorem: (The Stone-Weierstrass Theorem for Complex Valued Functions) Let X
be a compact metric space and let A C C(X,C) be a complex subalgebra. If A separates
points, vanishes nowhere, and is closed under conjugation (which means that if p € A then
pE A), then A= C(X,C), using the supremum metric do,.

Proof: Let A C C(X,C) be a complex subalgebra. Suppose that A separates points,
vanishes nowhere, and is closed under conjugation. Let B = ANC(X,R). Note that B is
a real subalgebra of C(X,R). Note that given p € A with p = u + iv where u,v € C(X,R),
since u = %(p +p) and v = %(p — D), it follows that u,v € B because A is an algebra and
A is closed under conjugation. We claim that B separates points and vanishes nowhere.
To show that B separates points, let x1,x2 € X with x1 # x5. Since A separates points,
we can choose p € A such that p(z1) # p(z2). Write p = u + iv with u,v € C(X,R). As
shown above, we have u,v € B. Since u(z1) + iv(x1) = p(z1) # p(x2) = u(x2) + iv(xsa), it
follows that either u(z1) # u(xa) or v(z1) # v(z2), and so B separates points, as claimed.
To show that B vanishes nowhere, let x € X. Since A vanishes nowhere we can choose
p € A such that p(x) # 0. Write p = u + iv with u,v € C(X,R), and note that u,v € B.
Since 0 # p(x) = u(x) + iv(z), either we have u(z) # 0 or we have v(z) # 0, and so B
vanishes nowhere, as claimed. Since B is a real subalgebra of C(X,R) which separates
points and vanishes nowhere, the Stone-Weierstrass Theorem for Real Functions implies
that B is dense in (C(X, R), doo). It follows easily that A is dense in (C(X, C), doo): indeed
given h € C(X,C), say h = f + ig with f,g € C(X,R), and given € > 0, we can choose
u,v € B such that |lu — f[lec < § and |[v — gl < §, and then p = u +iv € A with
Ip—lloe = [|(u— 1)+ i@ = )|, < = Flloo + 10~ )lloe = [l Flloc + [[0 — oo < c.

6.28 Corollary: (Weierstrass Approximation Theorem for Complex Valued Functions)
Let X C C™ be compact and let f € C(X,C). Then for all € > 0 there exists a complex
polynomial p in the 2n variables z1,7Z1, -+, Zn, Zn Such that ‘p(w) - f(x)‘ <eforallz € X.

Proof: The proof is left as an exercise.
6.29 Corollary: The space (C([a, b],C), doo) is separable, where a,b € R with a < b.

Proof: The proof is left as an exercise.

10



