

Chapter 5. Connectedness and Compactness

Connectedness

5.1 Definition: Let X be a metric space and let $A \subseteq X$. For sets $U, V \subseteq X$, we say that U and V **separate** A (in X) when

$$U \cap A \neq \emptyset, V \cap A \neq \emptyset, U \cap V = \emptyset \text{ and } A \subseteq U \cup V.$$

We say that A is **connected** (in X) when there do not exist open sets U and V in X which separate A . We say that A is **disconnected** (in X) when it is not connected, that is when there do exist open sets U and V in X which separate A .

5.2 Example: Show that the connected sets in \mathbb{R} are the intervals.

Solution: Recall (or verify) that the intervals in \mathbb{R} are the sets with the intermediate value property: for all $a, b \in A$ and all $x \in \mathbb{R}$, if $a < x < b$ then $x \in A$. Let $A \subseteq \mathbb{R}$. Suppose that A is not an interval. Then A does not have the intermediate value property so we can choose $a, b \in A$ and $u \in \mathbb{R}$ with $a < u < b$ and $u \notin A$. Then $U = (-\infty, u)$ and $V = (u, \infty)$ separate A and so A is disconnected.

Suppose, conversely, A is disconnected. Choose open sets U and V which separate A . Choose $a \in U$ and $b \in V$. Note that $a \neq b$ since $U \cap V = \emptyset$. Suppose that $a < b$ (the case that $b < a$ is similar). Let $u = \sup(U \cap [a, b])$. Note that $u \neq a$ since we can choose $\delta > 0$ such that $[a, a+\delta] \subseteq U \cap [a, b]$ and then we have $u = \sup(U \cap [a, b]) \geq a + \delta$. Note that $u \neq b$ since we can choose $\delta > 0$ such that $(b-\delta, b] \subseteq V \cap [a, b]$ and then we have $u = \sup(U \cap [a, b]) \leq b - \delta$ since $U \cap V = \emptyset$. Thus we have $a < u < b$. Note that $u \notin U$ since if we had $u \in U$ we could choose $\delta > 0$ such that $(u-\delta, u+\delta) \subseteq U \cap [a, b]$ which contradicts the fact that $u = \sup(U \cap [a, b])$. Note that $u \notin V$ since if we had $u \in V$ then we could choose $\delta > 0$ such that $(u-\delta, u+\delta) \subseteq V \cap [a, b]$ which contradicts the fact that $u = \sup(U \cap [a, b])$ because $U \cap V = \emptyset$. Since $u \notin U$ and $u \notin V$ and $A \subseteq U \cap V$ we have $u \notin A$, so A does not have the intermediate value property, and so A is not an interval.

5.3 Example: Show that the non-empty connected sets in \mathbb{Q} are the one-point sets.

Solution: Every one-point set (in any metric space) is clearly connected. Suppose that $A \subseteq \mathbb{Q}$ contains at least two points, say $a, b \in A$ with $a < b$. We choose an irrational number $r \in (a, b)$, and then the open sets $U = \{x \in \mathbb{Q} \mid x < r\}$ and $\{x \in \mathbb{Q} \mid x > r\}$ separate A in \mathbb{Q} .

5.4 Theorem: Let X and Y be metric spaces, let $f : X \rightarrow Y$, and let $A \subseteq X$. If f is continuous and A is connected in X then $f(A)$ is connected in Y .

Proof: Suppose that f is continuous and $f(A)$ is disconnected. Choose open sets U and V in Y which separate $f(A)$ in Y , that is $U \cap f(A) \neq \emptyset, V \cap f(A) \neq \emptyset, U \cap V = \emptyset$ and $f(A) \subseteq U \cup V$. Since f is continuous, the sets $f^{-1}(U)$ and $f^{-1}(V)$ are open in X . Since $U \cap f(A) \neq \emptyset$ and $V \cap f(A) \neq \emptyset$, we have $f^{-1}(U) \cap A \neq \emptyset$ and $f^{-1}(V) \cap A \neq \emptyset$. Since $U \cap V = \emptyset$, we have $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Since $f(A) \subseteq U \cup V$, we have $A \subseteq f^{-1}(U) \cup f^{-1}(V)$. Thus the open sets $f^{-1}(U)$ and $f^{-1}(V)$ separate A in X , so A is disconnected in X .

5.5 Theorem: Let X be a metric space and let $A \subseteq P \subseteq X$. Then A is connected in P if and only if A is connected in X .

Proof: Suppose that A is not connected in X . Choose open sets U and V in X which separate A in X , that is $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V = \emptyset$ and $A \subseteq U \cup V$. Let $E = U \cap P$ and $F = V \cap P$. Note that E and F are open in P and E and F separate A in P .

Suppose, conversely, that there exist sets $E, F \subseteq P$ which are open in P and which separate A in P , that is $A \cap E \neq \emptyset$, $A \cap F \neq \emptyset$, $E \cap F = \emptyset$ and $A \subseteq E \cup F$. Choose open sets $U, V \subseteq X$ such that $E = U \cap P$ and $F = V \cap P$. Note that it is possible that $U \cap V \neq \emptyset$ and so U and V might not separate A in X . For this reason, we shall construct open subsets $U_0 \subseteq U$ and $V_0 \subseteq V$ which do separate A in X . For each $a \in E$ choose $r_a > 0$ such that $B(a, 2r_a) \subseteq U$ and then let $U_0 = \bigcup_{a \in E} B(a, r_a)$. Note that U_0 is open in X (since it is a union of open sets in X) and that we have $E \subseteq U_0 \subseteq U$. Similarly, for each $b \in F$ choose $s_b > 0$ so that $B(b, 2s_b) \subseteq V$, and then let $V_0 = \bigcup_{b \in F} B(b, s_b)$. Note that V_0 is open in X and $F \subseteq V_0 \subseteq V$. We claim that the open sets U_0 and V_0 separate A in X . Since $E \subseteq U_0$ and $F \subseteq V_0$ we have $\emptyset \neq A \cap E \subseteq A \cap U_0$, $\emptyset \neq A \cap F \subseteq A \cap V_0$ and $A \subseteq E \cup F \subseteq U_0 \cup V_0$. It remains to show that $U_0 \cap V_0 = \emptyset$. Suppose, for a contradiction, that $U_0 \cap V_0 \neq \emptyset$. Choose $x \in U_0 \cap V_0$. Since $x \in U_0 = \bigcup_{a \in E} B(a, r_a)$ we can choose $a \in E$ such that $x \in B(a, r_a)$. Similarly, we can choose $b \in F$ so that $x \in B(b, s_b)$. Suppose that $r_a \geq s_b$ (the case that $s_b \geq r_a$ is similar). By the Triangle Inequality, it follows that $|b - a| \leq |b - x| + |x - a| < s_b + r_a \leq 2r_a$ and so we have $b \in B(a, 2r_a) \subseteq U$. Since $b \in F \subseteq P$ and $b \in U$ we have $b \in U \cap P = E$. Thus we have $b \in E \cap F$ which contradicts the fact that $E \cap F = \emptyset$, and so $U_0 \cap V_0 = \emptyset$, as required.

5.6 Corollary: Let X be a metric space and let $A \subseteq X$. Then A is connected in X if and only if A is connected in itself if and only if the only subsets of A which are both open and closed in A are the sets \emptyset and A .

Proof: By the above theorem, with $P = A$, we see that A is connected in X if and only if A is connected in itself. If there is a set U in A , with $\emptyset \subsetneq U \subsetneq A$, which is both open and closed in A , then its complement $V = U^c = A \setminus U$ is also both open and closed in A , and then U and V separate A so that A is disconnected (in itself). Conversely, if A is disconnected (in itself) then we can choose open sets U and V in A which separate A (that is $U \neq \emptyset$, $V \neq \emptyset$, $U \cap V = \emptyset$ and $U \cup V = A$) and then each of the sets U and V is both open and closed, and neither is empty, and neither is equal to all of A .

5.7 Remark: Because of the above theorem and corollary, when A is a connected subset of a metric space X , we do not normally say that A is connected in X ; we simply say that A is connected. Also, again because of the above corollary, we can extend our definition of connectedness so that it applies to topological spaces:

5.8 Definition: For a topological space X , we say that X is **disconnected** when it is the union of two disjoint nonempty open sets, otherwise, we say that X is **connected**.

5.9 Theorem: Let X be a metric space. The union of any set of connected sets in X , which share a common point, is connected.

Proof: Let $a \in X$ and for each $k \in K$ (where K is any set), let $A_k \subseteq X$ be connected in X with $a \in A_k$. Let $B = \bigcup_{k \in K} A_k$, and note that $a \in B$. Suppose, for a contradiction, that

B is not connected. Choose open sets $U, V \subseteq X$ which separate B (so we have $U \cap B \neq \emptyset$, $V \cap B \neq \emptyset$, $U \cap V = \emptyset$ and $B \subseteq U \cup V$). Since $B \subseteq U \cup V$ and $a \in B$, we must have $a \in U$ or $a \in V$. Suppose that $a \in U$ (the case that $a \in V$ is similar). Let $k \in K$. Note that $A_k \cap U \neq \emptyset$ (since $a \in A_k \cap U$) and $U \cap V = \emptyset$ and $A_k \subseteq B \subseteq U \cup V$. Since A_k is connected we must have $A_k \cap V = \emptyset$ (otherwise U and V would separate A_k). Since $A_k \subseteq U \cup V$ and $A_k \cap V = \emptyset$, we have $A_k \subseteq U$. Since $k \in K$ was arbitrary, we have $A_k \subseteq U$ for all $k \in K$, and hence $B = \bigcup_{k \in K} A_k \subseteq U$. Since $B \subseteq U$ and $U \cap V = \emptyset$, we have $B \cap V = \emptyset$, which gives the desired contradiction.

5.10 Definition: Let X be a metric space. Define a relation \cong on X by stipulating that for $a, b \in X$ we have $a \cong b$ if and only if there exists a connected set $A \subseteq X$ such that $a, b \in A$. Note that \cong is an equivalence relation (which means that for all $a, b, c \in X$ we have $a \cong a$, and $a \cong b \implies b \cong a$, and $(a \cong b \text{ and } b \cong c) \implies a \cong c$). Recall the the **equivalence class** of $a \in X$ is the set

$$[a] = \{x \in X \mid x \cong a\}.$$

Recall (or verify) that the equivalence classes are disjoint, with $[a] = [b] \iff a \cong b$, and that X is equal to the disjoint union of the equivalence classes. The equivalence classes of X , under this equivalence relation \cong , are called the (connected) **components** of X .

5.11 Theorem: Let X be a metric space. The connected components of X are connected, and every connected subset of X is contained in one of the connected components of X .

Proof: First let us show that every connected subset of X is contained in one of the components. Let $P \subseteq X$ be connected. If P is empty then of course it is contained in one of the components of X . Suppose $P \neq \emptyset$ and let $p \in P$. Since the components cover X , we can choose $a \in X$ such that $p \in [a]$. We claim that $P \subseteq [a]$. Let $x \in P$. Since $p \in P$ and $x \in P$ and P is connected, we have $x \cong p$ (by the definition of the relation \cong). Since $p \in [a]$ we have $p \cong a$ hence $[p] = [a]$. Since $x \cong p$ we have $x \in [p] = [a]$. Since $x \in P$ was arbitrary, $P \subseteq [a]$, as claimed.

Now let us show that the components of X are connected. Let $a \in X$. We claim that $[a]$ is connected. For each $x \in [a]$, we have $x \cong a$ and so (by the definition of \cong) we can choose a connected set $A_x \subseteq X$ with $x, a \in A_x$. As shown above, A_x is contained in one of the components of X , and since $a \in A_x \cap [a]$, that component must be $[a]$, so we have $A_x \subseteq [a]$. Since $A_x \subseteq [a]$ for every $x \in [a]$, we see that $[a] = \bigcup_{x \in [a]} A_x$. By the above lemma (since the sets A_x are connected with $a \in A_x$ for every $x \in [a]$) the set $\bigcup_{x \in [a]} A_x$ is connected.

Path Connectedness

5.12 Definition: Let X be a metric space (or a topological space) and let $A \subseteq X$. For $a, b \in A$, a (continuous) **path** from a to b in A is a continuous map $\alpha : [0, 1] \rightarrow A$ with $\alpha(0) = a$ and $\alpha(1) = b$. When there exists a path from a to b in A , we write $a \sim b$ in A . We say that A is **path connected** (in X) when it has the property that for all $a, b \in A$, we have $a \sim b$ in A .

5.13 Remark: It is clear from the definition that A is path connected in X if and only if A is path connected in itself (because the continuity of a map $\alpha : [0, 1] \rightarrow A$ is unchanged if we regard α as a map $\alpha : [0, 1] \rightarrow X$). Because of this, we do not normally say that A is path connected in X ; we simply say that A is path connected.

5.14 Example: When X is a normed linear space (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) and $A \subseteq X$, note that if A is convex then A is path connected (because when A is convex, the map $\alpha : [0, 1] \rightarrow X$ given by $\alpha(t) = a + t(b - a)$ is continuous and takes values in the set A). In particular, note that the open and closed balls $B(a, r)$ and $\overline{B}(a, r)$ are path-connected.

5.15 Theorem: Let X and Y be metric spaces (or topological spaces), let $A \subseteq X$, and let $f : A \subseteq X \rightarrow Y$. If f is continuous on A , and A is path connected, then $f(A)$ is path connected.

Proof: Suppose that f is continuous on A and A is path connected. Let $c, d \in f(A)$. Choose $a, b \in A$ with $f(a) = c$ and $f(b) = d$. Since A is path connected, we can choose a continuous map $\alpha : [0, 1] \rightarrow A$ with $\alpha(0) = a$ and $\alpha(1) = b$. Then the map $\beta : [0, 1] \rightarrow f(A)$ given by $\beta(t) = f(\alpha(t))$ is continuous with $\beta(0) = c$ and $\beta(1) = d$, and so $f(A)$ is path-connected.

5.16 Theorem: Let X be a metric space (or a topological space). The relation \sim on X (given by stipulating that $a \sim b$ when there exists a path from a to b in X) is an equivalence relation on X .

Proof: Let $a, b, c \in X$. We have $a \sim a$ because we can define $\alpha : [0, 1] \rightarrow X$ by $\alpha(t) = a$ for all t , and then α is continuous with $\alpha(0) = a$ and $\alpha(1) = a$.

Suppose that $a \sim b$. Let α be a path from a to b , so $\alpha : [0, 1] \rightarrow X$ is continuous with $\alpha(0) = a$ and $\alpha(1) = b$. Define $\beta : [0, 1] \rightarrow X$ by $\beta(t) = \alpha(1-t)$. Note that β is continuous since it is the composite of the continuous map α with the continuous map $s : [0, 1] \rightarrow [0, 1]$ given by $s(t) = 1-t$, and note that we have $\beta(0) = \alpha(1) = b$ and $\beta(1) = \alpha(0) = a$. Thus β is a path in X from b to a and so $b \sim a$.

Finally, suppose that $a \sim b$ and $b \sim c$. Let α be a path from a to b in X and let β be a path from b to c in X . Define $\gamma : [0, 1] \rightarrow X$ by

$$\gamma(t) = \begin{cases} \alpha(2t) & , \text{ for } 0 \leq t \leq \frac{1}{2}, \\ \beta(2t-1) & , \text{ for } \frac{1}{2} \leq t \leq 1. \end{cases}$$

Note that $\gamma(0) = \alpha(0) = a$, $\gamma\left(\frac{1}{2}\right) = \alpha(1) = \beta(0) = b$, and $\gamma(1) = \beta(1) = c$. We claim that γ is continuous. Note that the sets $A = [0, \frac{1}{2}]$ and $B = [\frac{1}{2}, 1]$ are closed in $[0, 1]$ with $A \cup B = [0, 1]$, and the restriction of γ to A is given by $\alpha(2t)$, which is continuous (being the composite of two continuous functions), and the restriction of γ to B is given by $\beta(2t-1)$, which is also continuous. Let $C \subseteq X$. Since α is continuous, the set $\alpha^{-1}(C)$ is closed in $[0, \frac{1}{2}]$, hence also in $[0, 1]$, and since β is continuous, the set $\beta^{-1}(C)$ is closed in $[\frac{1}{2}, 1]$, hence also in $[0, 1]$, and so the set $\gamma^{-1}(C) = \alpha^{-1}(C) \cup \beta^{-1}(C)$ is closed in $[0, 1]$ (since it is the union of two closed sets). Thus γ is continuous by Theorem 3.29 (the Topological Characterization of Continuity).

5.17 Definition: Let X be a metric space (or a topological space). The equivalence classes $[a] = \{x \in X \mid x \sim a\}$ are called the **path components** of X . Recall (or verify) that since \sim is an equivalence relation on X , the path components of X are disjoint with $[a] = [b] \iff a \sim b$, and X is equal to the disjoint union of its path components.

5.18 Theorem: Let X be a metric space (or a topological space). The path components of X are path connected, and every path connected subset of X is contained in one of the path components of X .

Proof: The proof is left as an exercise.

5.19 Theorem: (Path Connectedness Implies Connectedness) Let X be a metric space (or a topological space). If X is path connected then X is connected.

Proof: Suppose that X is path connected. Suppose, for a contradiction, that X is not connected. Choose nonempty disjoint open sets U and V in X such that $X = U \cup V$. Choose $a \in U$ and $b \in V$. Choose a path $\alpha : [0, 1] \rightarrow X$ from a to b in X . Since α is continuous, the sets $\alpha^{-1}(U)$ and $\alpha^{-1}(V)$ are open in $[0, 1]$. Since $\alpha(0) = a \in U$ and $\alpha(1) = b \in V$ we have $0 \in \alpha^{-1}(U)$ so that $\alpha^{-1}(U) \neq \emptyset$ and $1 \in \alpha^{-1}(V)$ so that $\alpha^{-1}(V) \neq \emptyset$. Since $X = U \cup V$ we have $[0, 1] = \alpha^{-1}(U) \cup \alpha^{-1}(V)$. Thus $[0, 1]$ is the union of the disjoint nonempty subsets $\alpha^{-1}(U)$ and $\alpha^{-1}(V)$. This contradicts the fact that $[0, 1]$ is connected.

5.20 Corollary: In a metric space X , every path component is contained in one of the connected components, and every connected component is a disjoint union of the path components which it contains.

5.21 Note: The converse of the above theorem does not always hold. For example, let $A = B \cup C$ with $B = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = \sin \frac{1}{x}\}$ and $C = \{(x, y) \in \mathbb{R}^2 \mid x = 0, -1 \leq y \leq 1\}$. As an exercise, verify that A is connected and B and C are the path components of A .

5.22 Theorem: Let X be a normed linear space and let $A \subseteq X$. If A is open in X and A is connected, then A is path connected.

Proof: Suppose that A is open in X and that A is connected. Let $a \in A$. Let

$$U = \{b \in A \mid a \sim b\}.$$

We claim that U is open in A . Let $b \in U$. Since $b \in A$ and A is open in X , we can choose $r > 0$ so that $B(b, r) \subseteq A$. Let $c \in B(b, r)$. Since $b \in U$ we have $a \sim b$. Since $c \in B(b, r) \subseteq A$ we have $b \sim c$, indeed we can define $\alpha : [0, 1] \rightarrow B(b, r) \subseteq A$ by $\alpha(t) = b + t(c - b)$ and then α is continuous with $\alpha(0) = b$ and $\alpha(1) = c$, and $\alpha(t) \in B(b, r)$ for all $t \in [0, 1]$ because $\|\alpha(t) - b\| = \|t(c - b)\| = |t|\|c - b\| \leq \|c - b\| < r$. Since $a \sim b$ and $b \sim c$ we have $a \sim c$. Since $a \sim c$ we have $c \in U$, hence $B(b, r) \subseteq U$. This shows that U is open.

We claim that U is also closed in A . Let $b \in A \setminus U$. Since $b \in A$ and A is open in X , we can choose $r > 0$ so that $B(b, r) \subseteq A$. Let $c \in B(b, r)$. Since $b \notin U$ we have $a \not\sim b$. Since $c \in B(b, r) \subseteq A$ we have $b \sim c$, as above. It follows that $a \not\sim c$ since otherwise we would have $a \sim c$ and $c \sim b$ and hence $a \sim b$. Since $c \not\sim a$ we have $c \in A \setminus U$. Thus $B(b, r) \subseteq A \setminus U$. This shows that $A \setminus U$ is open so that U is closed in A .

Since A is connected, the only subsets of A which are both open and closed are \emptyset and A . Since U is both open and closed we must have $U = \emptyset$ or $U = A$. Since $a \sim a$ we have $a \in U$ so $U \neq \emptyset$ and so $U = A$. Since $A = U = \{b \in A \mid a \sim b\}$ we have $a \sim b$ for every $b \in A$. Thus A is path connected.

Compactness

5.23 Definition: Let X be a metric space (or a topological space) and let $A \subseteq X$. An **open cover** for A (in X) is a set S of open sets in X such that $A \subseteq \bigcup S = \bigcup_{U \in S} U$. When S is an open cover for A in X , a **subcover** of S for A is a subset $T \subseteq S$ such that $A \subseteq \bigcup T = \bigcup_{U \in T} U$. We say that A is **compact** (in X) when every open cover for A has a finite subcover.

5.24 Example: Recall that for $A \subseteq \mathbb{R}^n$, the Heine-Borel Theorem states that A is compact if and only if A is closed and bounded. Note that this also holds for $A \subseteq \mathbb{C}^n$ because $(\mathbb{C}^n, d_2) = (\mathbb{R}^{2n}, d_2)$.

5.25 Example: When X is a metric space and $A \subseteq X$ is closed and bounded, it is *not* always the case that A is compact. For example, if X is any infinite set and d is the discrete metric on X , then every infinite subset $A \subseteq X$ is closed and bounded but not compact. In particular, closed unit balls are not compact, indeed for all $a \in X$ we have $\overline{B}(a, 1) = X$.

5.26 Theorem: Let $A \subseteq X \subseteq Y$ where Y is a metric space (or a topological space). Then A is compact in X if and only if A is compact in Y .

Proof: Suppose that A is compact in X . Let T be an open cover for A in Y . For each $V \in T$, let $U_V = V \cap X$. Note that each set U_V is open in X by Theorem 2.51 (or by Definition 2.52). Since $A \subseteq X$ and $A \subseteq \bigcup_{V \in T} V$, we also have $A \subseteq \bigcup_{V \in T} (V \cap X) = \bigcup_{V \in T} U_V$. Thus the set $S = \{U_V \mid V \in T\}$ is an open cover for A in X . Since A is compact in X we can choose a finite subcover, say $\{U_{V_1}, \dots, U_{V_n}\}$ of S , where each $V_i \in T$. Since $A \subseteq \bigcup_{i=1}^n U_{V_i} = \bigcup_{i=1}^n (V_i \cap X)$, we also have $A \subseteq \bigcup_{i=1}^n V_i$ and so $\{V_1, \dots, V_n\}$ is a finite subcover of T .

Suppose, conversely, that A is compact in Y . Let S be an open cover for A in X . For each $U \in S$, by Theorem 2.51 (or by Definition 2.52) we can choose an open set V_U in Y such that $U = V_U \cap X$. Then $T = \{V_U \mid U \in S\}$ is an open cover of A in Y . Since A is compact in Y we can choose a finite subcover, say $\{V_{U_1}, \dots, V_{U_n}\}$ of T , where each $U_i \in S$. Then we have $A \subseteq \bigcup_{i=1}^n (V_{U_i} \cap X) = \bigcup_{i=1}^n U_i$ and so $\{U_1, \dots, U_n\}$ is a finite subcover of S .

5.27 Remark: Let $A \subseteq X$ where X is a metric space (or a topological space). By the above theorem, note that A is compact in X if and only if A is compact in itself. For this reason, we do not usually say that A is compact in X , we simply say that A is compact.

5.28 Theorem: Let X be a metric space and let $A \subseteq X$. If A is compact then A is closed and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let $a \in A^c$. For each $x \in A$, let $r_x = d(a, x) > 0$, let $U_x = B(a, \frac{r_x}{2})$, and let $V_x = B(x, \frac{r_x}{2})$ so that U_x and V_x are disjoint. Note that the set $S = \{V_x \mid x \in A\}$ is an open cover for A . Since A is compact we can choose a finite subcover, say $\{V_{x_1}, \dots, V_{x_n}\}$ where each $x_i \in A$. Let $r = \min\{r_{x_1}, \dots, r_{x_n}\}$ so that $B(a, \frac{r}{2}) \subseteq U_{x_i}$ for all i , and hence $B(a, \frac{r}{2})$ is disjoint from each set V_{x_i} . Since $B(a, \frac{r}{2})$ is disjoint from each set V_{x_i} and the sets V_{x_i} cover A , it follows that $B(a, \frac{r}{2})$ is disjoint from A , hence $B(a, \frac{r}{2}) \subseteq A^c$. Thus A^c is open, hence A is closed.

We claim that A is bounded. Let $a \in A$. For each $n \in \mathbb{Z}^+$, let $U_n = B(a, n)$. Then the set $S = \{U_1, U_2, U_3, \dots\}$ is an open cover for A . Since A is compact, we can choose a finite subcover, say $\{U_{n_1}, U_{n_2}, \dots, U_{n_\ell}\} \subseteq S$, with each $n_i \in \mathbb{Z}^+$. Let $m = \max\{n_1, n_2, \dots, n_\ell\}$ so that $U_{n_i} \subseteq U_m$ for all indices i . Then we have $A \subseteq \bigcup_{i=1}^\ell U_{n_i} = U_m = B(a, m)$ and so A is bounded.

5.29 Theorem: Let X be a metric space (or a topological space) and let $A \subseteq X$. If X is compact and A is closed in X , then A is compact.

Proof: Suppose that X is compact and A is closed in X . Let S be an open cover for A . Then $S \cup \{A^c\}$ is an open cover for X . Since X is compact, we can choose a finite subcover T of $S \cup \{A^c\}$. Note that T may or may not contain the set A^c but, in either case, $T \setminus \{A^c\}$ is an open cover for A with $T \setminus \{A^c\} \subseteq S$, so that $T \setminus \{A^c\}$ is a finite subcover of S .

5.30 Corollary: Let X be a metric space (or a topological space), let $A \subseteq X$ be closed, and let $K \subseteq X$ be compact. Then $A \cap K$ is compact.

5.31 Theorem: Let X and Y be metric spaces (or topological spaces) and let $f : X \rightarrow Y$. If X is compact and f is continuous then $f(X)$ is compact.

Proof: Suppose that X is compact and f is continuous. Let T be an open cover for $f(X)$ in Y . Since f is continuous, so that $f^{-1}(V)$ is open in X for each $V \in T$, the set $S = \{f^{-1}(V) | V \in T\}$ is an open cover for X . Since X is compact, we can choose a finite subcover, say $\{f^{-1}(V_1), f^{-1}(V_2), \dots, f^{-1}(V_n)\}$ of S , with each $V_i \in T$. Then the set $\{V_1, V_2, \dots, V_n\}$ is a finite subcover of T for $f(X)$.

5.32 Example: Note that continuous maps do not necessarily send closed sets to closed sets. For example, the map $f : \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = \frac{2}{\pi} \tan^{-1}(x)$ sends the closed set \mathbb{R} homeomorphically to the open interval $(-1, 1)$.

5.33 Theorem: (The Extreme Value Theorem) Let X be a compact metric space (or topological space) and let $f : X \rightarrow \mathbb{R}$ be continuous. Then there exist $a, b \in X$ such that $f(a) \leq f(x) \leq f(b)$ for all $x \in X$.

Proof: Since X is compact and f is continuous, it follows that $f(X)$ is compact in \mathbb{R} . Since $f(X)$ is compact, it is closed and bounded in \mathbb{R} . Since $f(X)$ is bounded in \mathbb{R} , it follows that $m = \inf f(X)$ and $M = \sup f(X)$ are both finite real numbers, and since $f(X)$ is closed in \mathbb{R} it follows that $m \in f(X)$ and $M \in f(X)$ so that we can choose $a, b \in X$ such that $f(a) = m = \inf f(X)$ and $f(b) = M = \sup f(X)$.

5.34 Theorem: Let X and Y be metric spaces with X compact. Let $f : X \rightarrow Y$ be continuous and bijective. Then f is a homeomorphism.

Proof: Let $g = f^{-1} : Y \rightarrow X$. We need to prove that g is continuous. Let $A \subseteq X$ be closed in X . Since X is compact and $A \subseteq X$ is closed, it follows (from Theorem 5.29) that A is compact. Since the map $f : A \rightarrow Y$ is continuous and A is compact, it follows (from Theorem 5.31) that $f(A)$ is compact. Since $f(A)$ is compact it follows (from Theorem 5.28) that $f(A)$ is closed. Since $g = f^{-1}$ we have $g^{-1}(A) = f(A)$, which is closed. Since $g^{-1}(A)$ is closed in Y for every closed set A in X , it follows that g is continuous, by the Topological Characterization of Continuity (Theorem 3.29).

5.35 Example: In the above theorem, the requirement that X is compact is necessary. For example, if X is the interval $X = [0, 2\pi)$ and Y is the unit circle $Y = \{z \in \mathbb{C} | \|z\| = 1\}$, then the map $f : X \rightarrow Y$ given by $f(t) = e^{it}$ is continuous and bijective, but the inverse map is not continuous at 1.

5.36 Theorem: (The Lebesgue Number) Let X be a compact metric space and let S be an open cover for X . Then there exists a number $\lambda > 0$, which is called a **Lebesgue number** for the cover S , such that for all $a \in X$ there exists $U \in S$ such that $B(a, \lambda) \subseteq U$.

Proof: For each $x \in X$, since S is an open cover for X we can choose $U_x \in S$ with $x \in U_x$ and then, since U_x is open we can choose $r_x > 0$ so that $B(a, 2r_x) \subseteq U_x$. Note that the set $T = \{B(x, r_x) | x \in X\}$ is an open cover for X . Since X is compact, we can choose a finite subcover, say $\{B(x_1, r_{x_1}), \dots, B(x_n, r_{x_n})\}$ of T for X , with each $x_i \in X$. Let $\lambda = \min\{r_{x_1}, \dots, r_{x_n}\}$. We claim that λ is a Lebesgue number for S . Let $a \in X$. Choose an index i such that $a \in B(x_i, r_{x_i})$, and let $U = U_{x_i} \in S$. For all $y \in B(a, \lambda)$ we have $d(y, x_i) \leq d(y, a) + d(a, x_i) \leq \lambda + r_{x_i} \leq 2r_{x_i}$ and hence $y \in B(x_i, 2r_{x_i}) \subseteq U_{x_i} = U$. This shows that $B(a, \lambda) \subseteq U$, as required.

5.37 Theorem: Let X and Y be metric spaces with X compact and let $f : X \rightarrow Y$ be continuous. Then f is uniformly continuous.

Proof: We leave the proof as an exercise.

5.38 Definition: Let X be a metric space. We say that X is **totally bounded** when for every $\epsilon > 0$ there exists a finite subset $\{a_1, a_2, \dots, a_n\} \subseteq X$ such that $X = \bigcup_{i=1}^n B(a_i, \epsilon)$. We say that X has the **finite intersection property on closed sets** when for every set T of closed sets in X , if every finite subset of T has non-empty intersection, then T has non-empty intersection.

5.39 Theorem: Let X be a metric space. Then the following are equivalent.

- (1) X is compact.
- (2) X has the finite intersection property on closed sets.
- (3) Every sequence (x_n) in X has a convergent subsequence.
- (4) Every infinite subset $A \subseteq X$ has a limit point.
- (5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set of closed sets in X . Suppose that T has empty intersection, that is suppose $\bigcap_{A \in T} A = \emptyset$. Then $\bigcup_{A \in T} A^c = X$ so the set $S = \{A^c | A \in T\}$ is an open cover for X . Since X is compact, we can choose a finite subcover, say $\{A_1^c, \dots, A_n^c\}$ of S for X . Then we have $A_1 \cap A_2 \cap \dots \cap A_n = \emptyset$, showing that some finite subset of T has empty intersection.

Next we prove that (2) implies (3). Suppose X has the finite intersection property on closed sets. Let $(x_n)_{n \geq 1}$ be a sequence in X . For each $m \in \mathbb{Z}^+$, let $A_m = \overline{\{x_n | n > m\}}$ and note that each A_m is closed with $A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$. Let $T = \{A_m | m \in \mathbb{Z}^+\}$. Note that every finite subset of T has non-empty intersection because given $A_{m_1}, \dots, A_{m_\ell} \in T$ we can let $m = \max\{m_1, \dots, m_\ell\}$ and then we have $\bigcap_{i=1}^\ell A_{m_i} = A_m$ and we have $x_n \in A_m$. Since X has the finite intersection property on closed sets, it follows that T has non-empty intersection. Choose a point $a \in \bigcap_{m=1}^\infty A_m$. We construct a subsequence $(x_{n_k})_{k \geq 1}$ of $(x_n)_{n \geq 1}$ with $\lim_{k \rightarrow \infty} x_{n_k} = a$ as follows. Since $a \in A_1 = \overline{\{x_n | n > 1\}}$ we can choose $n_1 > 1$ such that $d(x_{n_1}, a) < 1$. Since $a \in A_{n_1} = \overline{\{x_n | n > n_1\}}$ we can choose $n_2 > n_1$ such that $d(x_{n_2}, a) < \frac{1}{2}$. Since $a \in A_{n_2} = \overline{\{x_n | n > n_2\}}$ we can choose $n_3 > n_2$ such that $d(x_{n_3}, a) < \frac{1}{3}$. Repeating this procedure, we can choose $1 < n_1 < n_2 < n_3 < \dots$ such that $d(x_{n_k}, a) < \frac{1}{k}$ for all indices k , and then we have constructed a subsequence (x_{n_k}) such that $\lim_{k \rightarrow \infty} x_{n_k} = a$.

Next we prove that (3) implies (4). Suppose that every sequence (x_n) in X has a convergent subsequence. Let $A \subseteq X$ be an infinite subset. Choose a sequence (x_n) in A with the terms x_n all distinct. Choose a convergent subsequence (x_{n_k}) of (x_n) and let $a = \lim_{k \rightarrow \infty} x_{n_k}$. Then a is a limit point of the set A .

Now let us prove that (4) implies (5). Suppose that every infinite subset $A \subseteq X$ has a limit point. We claim that X is complete. Let (x_n) be a Cauchy sequence in X . We claim that (x_n) has a convergent subsequence. If the set $\{x_n \mid n \in \mathbb{Z}^+\}$ is finite, then some term in the sequence occurs infinitely often, so we can choose indices $n_1 < n_2 < n_3 < \dots$ such that $x_1 = x_2 = x_3 = \dots$, and so in this case (x_n) has a constant subsequence. Suppose the set $\{x_n \mid n \in \mathbb{Z}^+\}$ is infinite. Let a be a limit point of the infinite set $A = \{x_n \mid n \in \mathbb{Z}^+\}$. Since a is a limit point of the set $\{x_n\}$ we can choose indices n_k with $n_1 < n_2 < n_3 < \dots$ such that $0 < d(x_{n_k}, a) < \frac{1}{k}$ for each index k . Then (x_{n_k}) is a subsequence of (x_n) with $\lim_{k \rightarrow \infty} x_{n_k} = a$. Since the sequence (x_n) is Cauchy and has a convergent subsequence, it follows, from Part 3 of Theorem 4.11, that the sequence (x_n) converges. Thus X is complete, as claimed.

Continuing our proof that (4) implies (5), suppose that X is not totally bounded. Choose $\epsilon > 0$ such that there do not exist finitely many points $a_1, \dots, a_n \in X$ for which $X = \bigcup_{i=1}^n B(a_i, \epsilon)$. Let $a_1 \in X$. Since $X \neq B(a_1, \epsilon)$ we can choose $a_2 \in X \setminus B(a_1, \epsilon)$. Since $X \neq B(a_1, \epsilon) \cup B(a_2, \epsilon)$ we can choose $a_3 \in X$ with $a_3 \notin B(a_1, \epsilon) \cup B(a_2, \epsilon)$. Repeat this procedure to choose points a_1, a_2, a_3, \dots with $a_{n+1} \notin \bigcup_{k=1}^n B(a_k, \epsilon)$. Then the set $A = \{a_n \mid n \in \mathbb{Z}^+\}$ is an infinite subset of X which has no limit point.

Finally we prove that prove that (5) implies (1). Suppose that X is complete and totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open cover S for X which has no finite subcover for X . Since X is totally bounded, we can cover X by finitely many balls of radius 1. Choose one of the balls, say $U_1 = B(a_1, 1)$ such that there is no finite subcover of S for U_1 (if there was a finite subcover for each ball, then the union of all these subcovers would be a finite subcover for X). Since X is totally bounded, we can cover X (hence also U_1) by finitely many balls of radius $\frac{1}{2}$. Choose one of these balls, say $U_2 = B(a_2, \frac{1}{2})$ such that there is no finite subcover of S for $U_1 \cap U_2$. Repeat the procedure to obtain balls $U_n = B(a_n, \frac{1}{n})$ such that, for each n , there is no finite subcover of S for $\bigcap_{k=1}^n U_k$. In particular, each intersection $\bigcap_{k=1}^n U_k$ is nonempty so we can choose an element $x_n \in \bigcap_{k=1}^n U_k$. Since for all $k, \ell \geq m$ we have $x_k, x_\ell \in U_m = B(a_m, \frac{1}{m})$ it follows that (x_n) is Cauchy. Since X is complete, it follows that (x_n) converges in X . Let $a = \lim_{n \rightarrow \infty} x_n$. Since S covers X we can choose $U \in S$ with $a \in U$. Since U is open we can choose $r > 0$ such that $B(a, r) \subseteq U$. Since $x_n \rightarrow a$ we can choose $m > \frac{3}{r}$ such that $d(x_m, a) < \frac{r}{3}$. Then for all $x \in U_m = B(a_m, \frac{1}{m})$ we have $d(x, a) \leq d(x, a_m) + d(a_m, x_m) + d(x_m, a) < \frac{1}{m} + \frac{1}{m} + \frac{r}{3} < r$, and so $U_m \subseteq B(a, r) \subseteq U$. But then S has a finite subcover for U_m , namely the singleton $\{U\}$, which contradicts the fact that S has no finite subcover for $\bigcap_{k=1}^m U_k$.

5.40 Example: Let $\mathbb{F} = \mathbb{R}$. Show that in the metric space $(\mathcal{C}[0, 1], d_\infty)$, the closed unit ball $\overline{B}(0, 1)$ is not compact.

Solution: Let $f_n(x) = x^n$ for $n \in \mathbb{Z}^+$. Note that $\|f_n\|_\infty = 1$ so that each $f_n \in \overline{B}(0, 1)$. Note that the pointwise limit of the sequence (f_n) is the function $g : [0, 1] \rightarrow \mathbb{R}$ given by $g(x) = 0$ when $x < 1$ and $g(1) = 1$, which is not continuous. If some subsequence (f_{n_k}) of (f_n) were to converge in $(\mathcal{C}[0, 1], d_\infty)$ then it would need to converge uniformly on $[0, 1]$ to the function g . But this is not possible since the uniform limit of a sequence of continuous functions is always continuous. Thus (f_n) has no convergent subsequence and so $\overline{B}(0, 1)$ is not compact.