Chapter 5. Connectedness and Compactness

Connectedness

5.1 Definition: Let X be a metric space and let A C X. For sets U,V C X, we say that
U and V separate A (in X) when

UNA4D, VNA#O), UNV =0and ACUUYV.

We say that A is connected (in X) when there do not exist open sets U and V in X
which separate A. We say that A is disconnected (in X) when it is not connected, that
is when there do exist open sets U and V in X which separate A.

5.2 Example: Show that the connected sets in R are the intervals.

Solution: Recall (or verify) that the intervals in R are the sets with the intermediate value
property: for all a,b,€ A and all x € R, if a < x < b then z € A. Let A C R. Suppose
that A is not an interval. Then A does not have the intermediate value property so we can
choose a,b € A and u € R witha <u <band u ¢ A. Then U = (—oo,u) and V = (u, 00)
separate A and so A is disconnected.

Suppose, conversely, A is disconnected. Choose open sets U and V' which separate A.
Choose a € U and b € V. Note that a # b since U NV = (). Suppose that a < b (the
case that b < a is similar). Let u = sup (U N [a,b]). Note that u # a since we can choose
& > 0 such that [a,a+8) € U N [a,b] and then we have u = sup (U N [a,b]) > a + §. Note
that u # b since we can choose § > 0 such that (b—3J,b] C V N [a,b] and then we have
u = sup (UN{a,b]) <b—4§since UNV = . Thus we have a < u < b. Note that u ¢ U
since if we had u € U we could choose § > 0 such that (u—d,u+d) C U N [a,b] which
contradicts the fact that u = sup (U N [a, b]). Note that u ¢ V since if we had u € V then
we could choose d > 0 such that (u—d,u+d) C V N a,b] which contradicts the fact that
u = sup (U N [a,b]) because UNV = . Since u ¢ U and u ¢ V and A C U NV we have
u ¢ A, so A does not have the intermediate value property, and so A is not an interval.

5.3 Example: Show that the non-empty connected sets in Q are the one-point sets.

Solution: Every one-point set (in any metric space) is clearly connected. Suppose that
A C Q contains at least two points, say a,b € A with a < b. We choose an irrational
number r € (a,b), and then the open sets U = {x€Q|x<r} and {xe@} x>r} separate
Ain Q.

5.4 Theorem: Let X and Y be metric spaces, let f: X — Y, andlet A C X. If f is
continuous and A is connected in X then f(A) is connected in Y.

Proof: Suppose that f is continuous and f(A) is disconnected. Choose open sets U and V' in
Y which separate f(A) in Y, that is UNf(A)#£D, VNf(A)#D, UNV =0 and f(A) CUUV.
Since f is continuous, the sets f~1(U) and f~(V) are open in X. Since U N f(A) # 0
and VN f(A) # 0, we have f~H(U)NA#Dand f~H(V)NA#). Since UNV =0, we
have f~1(U) N f~1(V) = 0. Since f(A) CUUV, we have A C f~Y(U)U f~1(V). Thus
the open sets f~1(U) and f~(V) separate A in X, so A is disconnected in X.



5.5 Theorem: Let X be a metric space and let A C P C X. Then A is connected in P
if and only if A is connected in X.

Proof: Suppose that A is not connected in X. Choose open sets U and V in X which
separate Ain X, that isUNA# D, VNA#D,UNV =0and ACUUV. Let E=UNP
and F'=V N P. Note that F and F are open in P and F and F separate A in P.

Suppose, conversely, that there exist sets E, ' C P which are open in P and which
separate A in P, that is ANE # 0, ANF #0, ENF =0 and A C EUF. Choose
open sets U,V C X such that E =U NP and F = V N P. Note that it is possible that
UNV # () and so U and V might not separate A in X. For this reason, we shall construct
open subsets Uy C U and V; C V which do separate A in X. For each a € E choose
rq > 0 such that B(a,2r,) € U and then let Uy = {J,cp B(a,rq). Note that Uy is open
in X (since it is a union of open sets in X) and that we have E C Uy C U. Similarly, for
each b € F choose s, > 0 so that B(b,2s;) C V, and then let Vo = (J,cp B(b, s,). Note
that V4 is open in X and F' C Vy C V. We claim that the open sets Uy and Vj separate A
in X. Since E CUpyand F CVywehave ) # ANECANUy, 0 #ANFEF C ANV, and
ACEUF CUyUYV,. It remains to show that Uy NV = (). Suppose, for a contradiction,
that Up NV # 0. Choose z € UgNVp. Since x € Up = |J,cp B(a,r.) we can choose a € E
such that x € B(a,r,). Similarly, we can choose b € F' so that x € B(b,s;). Suppose
that r, > s, (the case that s, > r, is similar). By the Triangle Inequality, it follows that
b—al < |b—z|+ |z —a|] < sp+ 71y < 2r, and so we have b € B(a,2r,) C U. Since
be FCPandbeU wehave be UNP = E. Thus we have b € EN F which contradicts
the fact that £ N F = (), and so Uy NV = (), as required.

5.6 Corollary: Let X be a metric space and let A C X. Then A is connected in X if
and only if A is connected in itself if and only if the only subsets of A which are both open
and closed in A are the sets () and A.

Proof: By the above theorem, with P = A, we see that A is connected in X if and only
if A is connected in itself. If there is a set U in A, with () % U % A, which is both open

and closed in A, then its complement V =U¢= A\ U is also both open and closed in A,
and then U and V separate A so that A is disconnected (in itself). Conversely, if A is
disconnected (in itself) then we can choose open sets U and V' in A which separate A (that
isU#AD,V#0O,UNV =0 and UUV = A) and then each of the sets U and V is both
open and closed, and neither is empty, and neither is equal to all of A.

5.7 Remark: Because of the above theorem and corollary, when A is a connected subset
of a metric space X, we do not normally say that A is connected in X; we simply say that
A is connected. Also, again because of the above corollary, we can extend our definition
of connectedness so that it applies to topological spaces:

5.8 Definition: For a topological space X, we say that X is disconnected when it is
the union of two disjoint nonempty open sets, otherwise, we say that X is connected.



5.9 Theorem: Let X be a metric space. The union of any set of connected sets in X,
which share a common point, is connected.

Proof: Let a € X and for each k € K (where K is any set), let Ay C X be connected in

X with a € Ag. Let B= |J A, and note that a € B. Suppose, for a contradiction, that
keK
B is not connected. Choose open sets U,V C X which separate B (so we have U N B # (),

VNAB#(), UNV =0and BCUUYV). Since BCUUYV and a € B, we must have a € U
or a € V. Suppose that a € U (the case that a € V is similar). Let £k € K. Note that
ApNU # 0 (since a € AxyNU) and UNV =P and Ay C B CUUYV. Since Ay is connected
we must have Ay NV = () (otherwise U and V would separate Ay). Since Ay C U UV and
ANV =0, we have A C U. Since k € K was arbitrary, we have A, C U for all k € K,

and hence B= |J Ax CU. Since BC U and UNV = (), we have BNV = (), which gives
keK
the desired contradiction.

5.10 Definition: Let X be a metric space. Define a relation = on X by stipulating that
for a,b € X we have a = b if and only if there exists a connected set A C X such that
a,b € A. Note that & is an equivalence relation (Which means that for all a,b,c € X we
have a = a, and a 2 b = b = a, and (a = band b = ¢) => a = ¢). Recall the the
equivalence class of a € X is the set

[a] = {z € X |z = a}.

Recall (or verify) that the equivalence classes are disjoint, with [a] = [b] <= a = b, and
that X is equal to the disjoint union of the equivalence classes. The equivalence classes of
X, under this equivalence relation 22, are called the (connected) components of X.

5.11 Theorem: Let X be a metric space. The connected components of X are connected,
and every connected subset of X is contained in one of the connected components of X .

Proof: First let us show that every connected subset of X is contained in one of the
components. Let P C X be connected. If P is empty then of course it is contained in one
of the components of X. Suppose P # () and let p € P. Since the components cover X,
we can choose a € X such that p € [a]. We claim that P C [a]. Let x € P. Since p € P
and € P and P is connected, we have z = p (by the definition of the relation 2¢). Since
p € [a] we have p 2 a hence [p] = [a]. Since = = p we have = € [p] = [a]. Since z € P was
arbitrary, P C [a], as claimed.

Now let us show that the components of X are connected. Let a € X. We claim that
[a] is connected. For each x € [a], we have x = a and so (by the definition of ) we can
choose a connected set A, C X with x,a € A,. As shown above, A, is contained in one
of the components of X, and since a € A, N [a], that component must be [a], so we have
Ay C [a]. Since A, C [a] for every = € [a], we see that [a] = [J,¢[, As- By the above
lemma (since the sets A, are connected with a € A, for every = € [a]) the set |, .y As is
connected.



Path Connectedness

5.12 Definition: Let X be a metric space (or a topological space) and let A C X. For
a,b € A, a (continuous) path from a to b in A is a continuous map « : [0,1] — A with
a(0) = a and «(1) = b. When there exists a path from a to b in A, we write a ~ b in A.
We say that A is path connected (in X) when it has the property that for all a,b € A,
we have a ~ b in A.

5.13 Remark: It is clear from the definition that A is path connected in X if and only if
A is path connected in itself (because the continuity of a map « : [0,1] — A is unchanged
if we regard o as a map « : [0,1] — X). Because of this, we do not normally say that A
is path connected in X; we simply say that A is path connected.

5.14 Example: When X is a normed linear space (over F = R or C) and A C X, note that
if A is convex then A is path connected (because when A is convex, the map « : [0,1] — X
given by «a(t) = a + t(b — a) is continuous and takes values in the set A). In particular,
note that the open and closed balls B(a,r) and B(a,r) are path-connected.

5.15 Theorem: Let X and Y be metric spaces (or topological spaces), let A C X, and
let f: AC X — Y. If f is continuous on A, and A is path connected, then f(A) is path
connected.

Proof: Suppose that f is continuous on A and A is path connected. Let ¢,d € f(A). Choose
a,b € Awith f(a) = cand f(b) = d. Since A is path connected, we can choose a continuous
map « : [0,1] - A with a(0) = a and a(1) = b. Then the map 5 : [0,1] — f(A) given by
B(t) = f(a(t)) is continuous with (0) = ¢ and (1) = d, and so f(A) is path-connected.

5.16 Theorem: Let X be a metric space (or a topological space). The relation ~ on
X (given by stipulating that a ~ b when there exists a path from a to b in X) is an
equivalence relation on X.

Proof: Let a,b,c € X. We have a ~ a because we can define « : [0,1] — X by «a(t) = a
for all ¢, and then « is continuous with «(0) = a and «(1) = a.

Suppose that a ~ b. Let a be a path from a to b, so « : [0,1] — X is continuous with
a(0) = a and «(1) = b. Define g : [0,1] — X by B(t) = a(1 —t). Note that g is continuous
since it is the composite of the continuous map « with the continuous map s : [0, 1] — [0, 1]
given by s(t) = 1 — ¢, and note that we have 5(0) = «(1) = b and B(1) = «(0) = a. Thus
B is a path in X from b to a and so b ~ a.

Finally, suppose that a ~ b and b ~ ¢. Let a be a path from a to b in X and let § be
a path from b to ¢ in X. Define v:[0,1] — X by

. a(2t) L for0<t <

() = B2t —1), for 3 <t <1

Note that ¥(0) = a(0) = a, v(3) = a(1) = B(0) = b, and (1) = B(1) = c. We claim
that ~ is continuous. Note that the sets A = [0, %] and B = [%, 1} are closed in [0, 1] with
AUB = [0, 1], and the restriction of 7 to A is given by «(2t), which is continuous (being the
composite of two continuous functions), and the restriction of v to B is given by (2t —1),
which is also continuous. Let C' C X. Since « is continuous, the set a=!(C) is closed in
[0, %], hence also in [0, 1], and since (3 is continuous, the set 371(C) is closed in [%7 1},
hence also in [0, 1], and so the set v~ 1(C) = a=1(C) U 71(C) is closed in [0, 1] (since it
is the union of two closed sets). Thus « is continuous by Theorem 3.29 (the Topological
Characterization of Continuity).



5.17 Definition: Let X be a metric space (or a topological space). The equivalence
classes [a] = {z € X }:L' ~a} are called the path components of X. Recall (or verify)
that since ~ is an equivalence relation on X, the path components of X are disjoint with
l[a] = [b] <= a ~ b, and X is equal to the disjoint union of its path components.

5.18 Theorem: Let X be a metric space (or a topological space). The path components
of X are path connected, and every path connected subset of X is contained in one of the
path components of X.

Proof: The proof is left as an exercise.

5.19 Theorem: (Path Connectedness Implies Connectedness) Let X be a metric space
(or a topological space). If X is path connected then X is connected.

Proof: Suppose that X is path connected. Suppose, for a contradiction, that X is not
connected. Choose nonempty disjoint open sets U and V in X such that X = U U V.
Choose a € U and b € V. Choose a path a : [0,1] — X from a to b in X. Since «
is continuous, the sets a~1(U) and a~1(V) are open in [0,1]. Since a(0) = a € U and
a(l)=beV wehave 0 € a~}(U) so that a=}(U) # P and 1 € a=(V) so that a=1(V) # 0.
Since X = U UV we have [01] = o~} (U)Ua (V). Thus [0, 1] is the union of the disjoint
nonempty subsets f~1(U) and f~1(V). This contradicts the fact that [0, 1] is connected.

5.20 Corollary: In a metric space X, every path component is contained in one of the
connected components, and every connected component is a disjoint union of the path
components which it contains.

5.21 Note: The converse of the above theorem does not always hold. For example, let
A = BUC with B = {(z,y)€R? |z>0,y =sin 1} and C = {(z,y) eR? |2=0,-1<y<1}.
As an exercise, verify that A is connected and B and C' are the path components of A.

5.22 Theorem: Let X be a normed linear space and let A C X. If A is open in X and
A is connected, then A is path connected.

Proof: Suppose that A is open in X and that A is connected. Let a € A. Let
U={be Ala~b}.

We claim that U is open in A. Let b € U. Since b € A and A is open in X, we can
choose r > 0 so that B(b,7) C A. Let ¢ € B(b,r). Since b € U we have a ~ b. Since
¢ € B(b,r) C A we have b ~ ¢, indeed we can define o : [0,1] — B(b,r) C A by
a(t) = b+t(c—b) and then « is continuous with a(0) = b and «(1) = ¢, and «(t) € B(b,r)
for all ¢ € [0,1] because ||a(t) — b|| = [[t(c = b)|| = [t|llc = b]| < [lc —b]| < r. Since a ~ b
and b ~ ¢ we have a ~ ¢. Since a ~ ¢ we have ¢ € U, hence B(b,r) C U. This shows that
U is open.

We claim that U is also closed in A. Let b € A\ U. Since b € A and A is open in
X, we can choose r > 0 so that B(b,r) C A. Let ¢ € B(b,r). Since b ¢ U we have a ¢ b.
Since ¢ € B(b,7) C A we have b ~ ¢, as above. It follows that a 7 ¢ since otherwise we
would have a ~ ¢ and ¢ ~ b and hence a ~ b. Since ¢ % a we have ¢ € A\ U. Thus
B(b,r) C A\ U. This shows that A\ U is open so that U is closed in A.

Since A is connected, the only subsets of A which are both open and closed are () and
A. Since U is both open and closed we must have U = () or U = A. Since a ~ a we have
a €UsoU#( and so U = A. SinceA:U:{bEA‘awb} we have a ~ b for every
b€ A. Thus A is path connected.



Compactness

5.23 Definition: Let X be a metric space (or a topological space) and let A C X. An
open cover for A (in X) is a set S of open sets in X such that A C S = UyqU.
When S is an open cover for A in X, a subcover of S for A is a subset T" C S such that
ACUT =UyerU. We say that A is compact (in X) when every open cover for A has
a finite subcover.

5.24 Example: Recall that for A C R”, the Heine-Borel Theorem states that A is
compact if and only if A is closed and bounded. Note that this also holds for A C C"
because (C",dy) = (R?", dy).

5.25 Example: When X is a metric space and A C X is closed and bounded, it is not
always the case that A is compact. For example, if X is any infinite set and d is the discrete
metric on X, then every infinite subset A C X is closed and bounded but not compact. In
particular, closed unit balls are not compact, indeed for all a € X we have B(a,1) = X.

5.26 Theorem: Let A C X CY whereY is a metric space (or a topological space). Then
A is compact in X if and only if A is compact in'Y .

Proof: Suppose that A is compact in X. Let T be an open cover for Ain Y. Foreach V € T,
let Uy =V N X. Note that each set Uy is open in X by Theorem 2.51 (or by Definition
2.52). Since A € X and A C [Jy ¢V, we also have A C [Jy, (VN X) = Uyer Uv.
Thus the set S = {UV‘V eT } is an open cover for A in X. Since A is compact in
X we can choose a finite subcover, say {UV17 e Uvn} of S, where each V; € T. Since
ACUL, Uy, =U,(V;NX), we also have A C |J_, V; and so {Vi,---,V,,} is a finite
subcover of T

Suppose, conversely, that A is compact in Y. Let S be an open cover for A in X. For
each U € S, by Theorem 2.51 (or by Definition 2.52) we can choose an open set Vi in Y
such that U = Vy N X. Then T = {VU|U € S} is an open cover of A in Y. Since A is
compact in Y we con choose a finite subcover, say {VU1; e VUn} of T', where each U; € S.
Then we have A C |J!_,(Vy, N X) = Ui, U; and so {Uy,---,U,} is a finite subcover of S.

5.27 Remark: Let A C X where X is a metric space (or a topological space). By the
above theorem, note that A is compact in X if and only if A is compact in itself. For this
reason, we do not usually say that A is compact in X, we simply say that A is compact.

5.28 Theorem: Let X be a metric space and let A C X . If A is compact then A is closed
and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let a € A¢. For each

x € A, let v, = d(a,z) > 0, let U, = B(a, %”), and let V, = B(:Jc,%) so that U, and

V. are disjoint. Note that the set § = {Vx’x € A} is an open cover for A. Since A
is compact we can choose a finite subcover, say {V;,,---,V,, } where each z; € A. Let
r=min{ry,, -, 7y, } so that B(a,5) C U,, for all i, and hence B(a,%) is disjoint from

each set V,. Since B(a, %) is disjoint from each set V,,, and the sets V,, cover A, it follows

that B(OL7 g) is disjoint from A, hence B(a, g) C A°. Thus A€ is open, hence A is closed.

We claim that A is bounded. Let a € A. For each n € Z", let U, = B(a,n). Then the
set S = {Uy,Us,Us,---} is an open cover for A. Since A is compact, we can choose a finite
subcover, say {U,,,Up,,  +,Une} C S, with each n; € ZT. Let m = max{ni,no, -+, ne}
so that U,, C U, for all indices . Then we have A C Ule Un, = Up = B(a,m) and so
A is bounded.



5.29 Theorem: Let X be a metric space (or a topological space) and let A C X. If X is
compact and A is closed in X, then A is compact.

Proof: Suppose that X is compact and A is closed in X. Let S be an open cover for A.
Then SU{A°} is an open cover for X. Since X is compact, we can choose a finite subcover
T of SU{A}. Note that 7" may or may not contain the set A¢ but, in either case, T'\ {A°}
is an open cover for A with 7"\ {A°} C S, so that T\ {A°} is a finite subcover of S.

5.30 Corollary: Let X be a metric space (or a topological space), let A C X be closed,
and let K C X be compact. Then AN K is compact.

5.31 Theorem: Let X andY be metric spaces (or topological spaces) and let f : X — Y.
If X is compact and f is continuous then f(X) is compact.

Proof: Suppose that X is compact and f is continuous. Let T be an open cover for
f(X) in Y. Since f is continuous, so that f=1(V) is open in X for each V € T, the set
S = {f_l(V)}V € T} is an open cover for X. Since X is compact, we can choose a
finite subcover, say {f~*(V1), f~*(Va), -+, f~* (V) } of S, with each V; € T. Then the set
{V1,Va,---,V,,} is a finite subcover of T for f(X).

5.32 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f : R — R given by f(z) = %tan_l(aﬁ) sends the closed set R
homeomorphically to the open interval (—1,1).

5.33 Theorem: (The Extreme Value Theorem) Let X be a compact metric space (or
topological space) and let f : X — R be continuous. Then there exist a,b € X such that
f(a) < f(x) < f(b) for all x € X.

Proof: Since X is compact and f is continuous, it follows that f(X) is compact in R. Since
f(X) is compact, it is closed and bounded in R. Since f(X) is bounded in R, it follows
that m = inf f(X) and M = sup f(X) are both finite real numbers, and since f(X) is
closed in R it follows that m € f(X) and M € f(X) so that we can choose a,b € X such
that f(a) =m =inf f(X) and f(b) = M = sup f(X).

5.34 Theorem: Let X and Y be metric spaces with X compact. Let f : X — Y be
continuous and bijective. Then f is a homeomorphism.

Proof: Let ¢ = f~! : Y — X. We need to prove that g is continuous. Let A C X be
closed in X. Since X is compact and A C X is closed, it follows (from Theorem 5.29) that
A is compact. Since the map f: A — Y is continuous and A is compact, it follows (from
Theorem 5.31) that f(A) is compact. Since f(A) is compact it follows (from Theorem
5.28) that f(A) is closed. Since g = f~! we have g~ !(A4) = f(A), which is closed. Since
g 1(A) is closed in Y for every closed set A in X, it follows that g is continuous, by the
Topological Characterization of Continuity (Theorem 3.29).

5.35 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0,27) and Y is the unit circle Y = {z € C|| 2| = 1},
then the map f : X — Y given by f(t) = e'! is continuous and bijective, but the inverse
map is not continuous at 1.



5.36 Theorem: (The Lebesgue Number) Let X be a compact metric space and let S
be an open cover for X. Then there exists a number A > 0, which is called a Lebesgue
number for the cover S, such that for all a € X there exists U € S such that B(a,\) C U.

Proof: For each x € X, since S is an open cover for X we can choose U, € S with x € U,
and then, since U, is open we can choose r, > 0 so that B(a,2r,) C U,. Note that the
set T' = {B(:Jc,rm)‘m € X} is an open cover for X. Since X is compact, we can choose
a finite subcover, say {B(z1,75,), -, B(2pn,7s,)} of T for X, with each z; € X. Let
A =min{ry,, -+, 7, }. We claim that X is a Lebesgue number for S. Let a € X. Choose
an index ¢ such that a € B(z;,r,,), and let U = U,, € S. For all y € B(a,\) we have
d(y,z;) < d(y,a) +d(a,z;) < A+ 71z, < 2r,, and hence y € B(z;,2r,,) C U,, = U. This
shows that B(a,\) C U, as required.

5.37 Theorem: Let X and Y be metric spaces with X compact and let f : X — Y be
continuous. Then f is uniformly continuous.

Proof: We leave the proof as an exercise.

5.38 Definition: Let X be a metric space. We say that X is totally bounded when for
n
every € > 0 there exists a finite subset {ai,as,---,a,} C X such that X = |J B(a,¢€).
i=1
We say that X has the finite intersection property on closed sets when for every set
T of closed sets in X, if every finite subset of T has non-empty intersection, then 7' has
non-empty intersection.

5.39 Theorem: Let X be a metric space. Then the following are equivalent.

(1) X is compact.

(2) X has the finite intersection property on closed sets.

(3) Every sequence (x,) in X has a convergent subsequence.
(4) Every infinite subset A C X has a limit point.

(5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set
of closed sets in X. Suppose that T' has empty intersection, that is suppose (4.7 A = 0.
Then |Jyep A° = X so the set S = {AC‘A € T} is an open cover for X. Since X is
compact, we can choose a finite subcover, say {Alc, cee Anc} of S for X. Then we have
A1NAynN---NA, =0, showing that some finite subset of T has empty intersection.
Next we prove that (2) implies (3). Suppose X has the finite intersection property on
closed sets. Let (x,,)n>1 be a sequence in X. For each m € Z*, let A,,, = {x,|n > m} and
note that each A,, is closed with A1 2 Ay D A3 D ---. Let T'={A,,|m € Z"}. Note that
every finite subset of T' has non-empty intersection because given A,,,,---, A4, € T we
can let m = max{my,---, my} and then we have ﬂle Am, = A, and we have x,, € A,,.
Since X has the finite intersection property on closed sets, it follows that 7" has non-empty
intersection. Choose a point a € () ~_; A,,. We construct a subsequence (x,, )r>1 of

(Tn)n>1 With klim Zn, = a as follows. Since a € A; = {z,|n > 1} we can choose n; > 1
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such that d(z,,,a) < 1. Since a € A,, = {z,|n >n1} we can choose ny > n; such
that d(z,,,a) < 3. Since a € A,, = {z,|n > n2} we can choose n3 > ny such that
d(xp,,a) < % Repeating this procedure, we can choose 1 < nj; < ng < ng < --- such that
d(zn,,a) < 3 for all indices k, and then we have constructed a subsequence (z,,) such
that lim z,, = a.
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Next we prove that (3) implies (4). Suppose that every sequence (z,) in X has a
convergent subsequence. Let A C X be an infinite subset. Choose a sequence (z,) in A
with the terms z,, all distinct. Choose a convergent subsequence (z,,) of (x,) and let

a = lim z,,. Then a is a limit point of the set A.
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Now let us prove that (4) implies (5). Suppose that every infinite subset A C X has a
limit point. We claim that X is complete. Let (z,) be a Cauchy sequence in X. We claim
that (z,) has a convergent subsequence. If the set {x,,|n € ZT} is finite, then some term in
the sequence occurs infinitely often, so we can choose indices n; < ngs < ng < --- such that
1 =9 = x3 = ---, and so in this case (z,) has a constant subsequence. Suppose the set
{zn|n € ZT} is infinite. Let a be a limit point of the infinite set A = {x,,|n € ZT}. Since a
is a limit point of the set {z,} we can choose indices ny with ny < ns < ng < --- such that
0 < d(2n,,a) < 1 for each index k. Then (z,, ) is a subsequence of (z,,) with kl;ngo Ty, = a.

Since the sequence (x,,) is Cauchy and has a convergent subsequence, it follows, from Part
3 of Theorem 4.11, that the sequence (x,,) converges. Thus X is complete, as claimed.

Continuing our proof that (4) implies (5), suppose that X is not totally bounded.
Choose € > 0 such that there do not exist finitely many points aq,---,a, € X for which
X =, B(a;,€). Let a1 € X. Since X # B(a1,€) we can choose az € X \ B(ay,¢).
Since X # B(a1,€) U B(az, €) we can choose az € X with ag ¢ B(a1,€) U B(asg, €). Repeat
this procedure to choose points a1, as,as, -+ with an,41 ¢ Ujp_; Bag,€). Then the set
A ={ay|n € Z*} is an infinite subset of X which has no limit point.

Finally we prove that prove that (5) implies (1). Suppose that X is complete and
totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open
cover S for X which has no finite subcover for X. Since X is totally bounded, we can
cover X by finitely many balls of radius 1. Choose one of the balls, say U; = B(aq,1)
such that there is no finite subcover of S for U; (if there was a finite subcover for each
ball, then the union of all these subcovers would be a finite subcover for X). Since X
is totally bounded, we can cover X (hence also Uj) by finitely many balls of radius %
Choose one of these balls, say Uy = B(as, %) such that there is no finite subcover of S
for U; N Us. Repeat the procedure to obtain balls U,, = B(an, %) such that, for each n,
there is no finite subcover of S for ();_; Ux. In particular, each intersection (;_, Uy is
nonempty so we can choose an element z,, € (),_, Uy. Since for all k,¢ > m we have
Tp,xy € Uy, = B(am, %) it follows that (x,) is Cauchy. Since X is complete, it follows

that (x,) converges in X. Let a = lim z,. Since S covers X we can choose U € S with
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a € U. Since U is open we can choose r > 0 such that B(a,r) C U. Since z,, — a we
can choose m > % such that d(z,,,a) < 5. Then for all x € U,, = B(am, %) we have
d(z,a) < d(z,am) + d(am, Tm) + d(Tm,a) < =+ L + % <7 and so U, C Bla,r) CU.
But then S has a finite subcover for U,,, namely the singleton {U}, which contradicts the

fact that S has no finite subcover for (-, Uy.

5.40 Example: Let F = R. Show that in the metric space (C[O, 1], doo), the closed unit
ball B(0,1) is not compact.

Solution: Let f,(z) = z™ for n € Z*. Note that | f,| ., = 1 so that each f,, € B(0,1).
Note that the pointwise limit of the sequence (f,) is the function ¢ : [0,1] — R given by
g(z) =0 when z < 1 and g(1) = 1, which is not continuous. If some subsequence (f,, ) of
(fn) were to converge in (C 0, 1], doo) then it would need to converge uniformly on [0, 1] to
the function g. But this is not possible since the uniform limit of a sequence of continuous
functions is always continuous. Thus (f,) has no convergent subsequence and so B(0,1)
is not compact.



