
Chapter 5. Connectedness and Compactness

Connectedness

5.1 Definition: Let X be a metric space and let A ⊆ X. For sets U, V ⊆ X, we say that
U and V separate A (in X) when

U ∩A 6= ∅ , V ∩A 6= ∅ , U ∩ V = ∅ and A ⊆ U ∪ V.
We say that A is connected (in X) when there do not exist open sets U and V in X
which separate A. We say that A is disconnected (in X) when it is not connected, that
is when there do exist open sets U and V in X which separate A.

5.2 Example: Show that the connected sets in R are the intervals.

Solution: Recall (or verify) that the intervals in R are the sets with the intermediate value
property: for all a, b,∈ A and all x ∈ R, if a < x < b then x ∈ A. Let A ⊆ R. Suppose
that A is not an interval. Then A does not have the intermediate value property so we can
choose a, b ∈ A and u ∈ R with a < u < b and u /∈ A. Then U = (−∞, u) and V = (u,∞)
separate A and so A is disconnected.

Suppose, conversely, A is disconnected. Choose open sets U and V which separate A.
Choose a ∈ U and b ∈ V . Note that a 6= b since U ∩ V = ∅. Suppose that a < b (the
case that b < a is similar). Let u = sup

(
U ∩ [a, b]

)
. Note that u 6= a since we can choose

δ > 0 such that [a, a+δ) ⊆ U ∩ [a, b] and then we have u = sup
(
U ∩ [a, b]

)
≥ a+ δ. Note

that u 6= b since we can choose δ > 0 such that (b−δ, b] ⊆ V ∩ [a, b] and then we have
u = sup

(
U ∩ [a, b]

)
≤ b − δ since U ∩ V = ∅. Thus we have a < u < b. Note that u /∈ U

since if we had u ∈ U we could choose δ > 0 such that (u−δ, u+δ) ⊆ U ∩ [a, b] which
contradicts the fact that u = sup

(
U ∩ [a, b]

)
. Note that u /∈ V since if we had u ∈ V then

we could choose δ > 0 such that (u−δ, u+δ) ⊆ V ∩ [a, b] which contradicts the fact that
u = sup

(
U ∩ [a, b]

)
because U ∩ V = ∅. Since u /∈ U and u /∈ V and A ⊆ U ∩ V we have

u /∈ A, so A does not have the intermediate value property, and so A is not an interval.

5.3 Example: Show that the non-empty connected sets in Q are the one-point sets.

Solution: Every one-point set (in any metric space) is clearly connected. Suppose that
A ⊆ Q contains at least two points, say a, b ∈ A with a < b. We choose an irrational
number r ∈ (a, b), and then the open sets U =

{
x∈Q

∣∣x<r} and
{
x∈Q

∣∣ x>r} separate
A in Q.

5.4 Theorem: Let X and Y be metric spaces, let f : X → Y , and let A ⊆ X. If f is
continuous and A is connected in X then f(A) is connected in Y .

Proof: Suppose that f is continuous and f(A) is disconnected. Choose open sets U and V in
Y which separate f(A) in Y , that is U∩f(A) 6=∅, V ∩f(A) 6=∅, U∩V =∅ and f(A) ⊆ U∪V .
Since f is continuous, the sets f−1(U) and f−1(V ) are open in X. Since U ∩ f(A) 6= ∅
and V ∩ f(A) 6= ∅, we have f−1(U) ∩ A 6= ∅ and f−1(V ) ∩ A 6= ∅. Since U ∩ V = ∅, we
have f−1(U) ∩ f−1(V ) = ∅. Since f(A) ⊆ U ∪ V , we have A ⊆ f−1(U) ∪ f−1(V ). Thus
the open sets f−1(U) and f−1(V ) separate A in X, so A is disconnected in X.
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5.5 Theorem: Let X be a metric space and let A ⊆ P ⊆ X. Then A is connected in P
if and only if A is connected in X.

Proof: Suppose that A is not connected in X. Choose open sets U and V in X which
separate A in X, that is U ∩A 6= ∅, V ∩A 6= ∅, U ∩V = ∅ and A ⊆ U ∪V . Let E = U ∩P
and F = V ∩ P . Note that E and F are open in P and E and F separate A in P .

Suppose, conversely, that there exist sets E,F ⊆ P which are open in P and which
separate A in P , that is A ∩ E 6= ∅, A ∩ F 6= ∅, E ∩ F = ∅ and A ⊆ E ∪ F . Choose
open sets U, V ⊆ X such that E = U ∩ P and F = V ∩ P . Note that it is possible that
U ∩V 6= ∅ and so U and V might not separate A in X. For this reason, we shall construct
open subsets U0 ⊆ U and V0 ⊆ V which do separate A in X. For each a ∈ E choose
ra > 0 such that B(a, 2ra) ⊆ U and then let U0 =

⋃
a∈E B(a, ra). Note that U0 is open

in X (since it is a union of open sets in X) and that we have E ⊆ U0 ⊆ U . Similarly, for
each b ∈ F choose sb > 0 so that B(b, 2sb) ⊆ V , and then let V0 =

⋃
b∈F B(b, sb). Note

that V0 is open in X and F ⊆ V0 ⊆ V . We claim that the open sets U0 and V0 separate A
in X. Since E ⊆ U0 and F ⊆ V0 we have ∅ 6= A ∩ E ⊆ A ∩ U0, ∅ 6= A ∩ F ⊆ A ∩ V0 and
A ⊆ E ∪ F ⊆ U0 ∪ V0. It remains to show that U0 ∩ V0 = ∅. Suppose, for a contradiction,
that U0 ∩V0 6= ∅. Choose x ∈ U0 ∩V0. Since x ∈ U0 =

⋃
a∈E B(a, ra) we can choose a ∈ E

such that x ∈ B(a, ra). Similarly, we can choose b ∈ F so that x ∈ B(b, sb). Suppose
that ra ≥ sb (the case that sb ≥ ra is similar). By the Triangle Inequality, it follows that
|b − a| ≤ |b − x| + |x − a| < sb + ra ≤ 2ra and so we have b ∈ B(a, 2ra) ⊆ U . Since
b ∈ F ⊆ P and b ∈ U we have b ∈ U ∩ P = E. Thus we have b ∈ E ∩ F which contradicts
the fact that E ∩ F = ∅, and so U0 ∩ V0 = ∅, as required.

5.6 Corollary: Let X be a metric space and let A ⊆ X. Then A is connected in X if
and only if A is connected in itself if and only if the only subsets of A which are both open
and closed in A are the sets ∅ and A.

Proof: By the above theorem, with P = A, we see that A is connected in X if and only
if A is connected in itself. If there is a set U in A, with ∅ ⊂6= U ⊂6= A, which is both open

and closed in A, then its complement V =U c =A \ U is also both open and closed in A,
and then U and V separate A so that A is disconnected (in itself). Conversely, if A is
disconnected (in itself) then we can choose open sets U and V in A which separate A (that
is U 6= ∅, V 6= ∅, U ∩ V = ∅ and U ∪ V = A) and then each of the sets U and V is both
open and closed, and neither is empty, and neither is equal to all of A.

5.7 Remark: Because of the above theorem and corollary, when A is a connected subset
of a metric space X, we do not normally say that A is connected in X; we simply say that
A is connected. Also, again because of the above corollary, we can extend our definition
of connectedness so that it applies to topological spaces:

5.8 Definition: For a topological space X, we say that X is disconnected when it is
the union of two disjoint nonempty open sets, otherwise, we say that X is connected.
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5.9 Theorem: Let X be a metric space. The union of any set of connected sets in X,
which share a common point, is connected.

Proof: Let a ∈ X and for each k ∈ K (where K is any set), let Ak ⊆ X be connected in
X with a ∈ Ak. Let B =

⋃
k∈K

Ak, and note that a ∈ B. Suppose, for a contradiction, that

B is not connected. Choose open sets U, V ⊆ X which separate B (so we have U ∩B 6= ∅,
V ∩B 6= ∅, U ∩ V = ∅ and B ⊆ U ∪ V ). Since B ⊆ U ∪ V and a ∈ B, we must have a ∈ U
or a ∈ V . Suppose that a ∈ U (the case that a ∈ V is similar). Let k ∈ K. Note that
Ak ∩U 6= ∅ (since a ∈ Ak ∩U) and U ∩V = ∅ and Ak ⊆ B ⊆ U ∪V . Since Ak is connected
we must have Ak ∩V = ∅ (otherwise U and V would separate Ak). Since Ak ⊆ U ∪V and
Ak ∩ V = ∅, we have A ⊆ U . Since k ∈ K was arbitrary, we have Ak ⊆ U for all k ∈ K,
and hence B =

⋃
k∈K

Ak ⊆ U . Since B ⊆ U and U ∩V = ∅, we have B ∩V = ∅, which gives

the desired contradiction.

5.10 Definition: Let X be a metric space. Define a relation ∼= on X by stipulating that
for a, b ∈ X we have a ∼= b if and only if there exists a connected set A ⊆ X such that
a, b ∈ A. Note that ∼= is an equivalence relation

(
which means that for all a, b, c ∈ X we

have a ∼= a, and a ∼= b =⇒ b ∼= a, and (a ∼= b and b ∼= c) =⇒ a ∼= c
)
. Recall the the

equivalence class of a ∈ X is the set

[a] =
{
x ∈ X

∣∣x ∼= a
}
.

Recall (or verify) that the equivalence classes are disjoint, with [a] = [b] ⇐⇒ a ∼= b, and
that X is equal to the disjoint union of the equivalence classes. The equivalence classes of
X, under this equivalence relation ∼=, are called the (connected) components of X.

5.11 Theorem: Let X be a metric space. The connected components of X are connected,
and every connected subset of X is contained in one of the connected components of X.

Proof: First let us show that every connected subset of X is contained in one of the
components. Let P ⊆ X be connected. If P is empty then of course it is contained in one
of the components of X. Suppose P 6= ∅ and let p ∈ P . Since the components cover X,
we can choose a ∈ X such that p ∈ [a]. We claim that P ⊆ [a]. Let x ∈ P . Since p ∈ P
and x ∈ P and P is connected, we have x ∼= p (by the definition of the relation ∼=). Since
p ∈ [a] we have p ∼= a hence [p] = [a]. Since x ∼= p we have x ∈ [p] = [a]. Since x ∈ P was
arbitrary, P ⊆ [a], as claimed.

Now let us show that the components of X are connected. Let a ∈ X. We claim that
[a] is connected. For each x ∈ [a], we have x ∼= a and so (by the definition of ∼=) we can
choose a connected set Ax ⊆ X with x, a ∈ Ax. As shown above, Ax is contained in one
of the components of X, and since a ∈ Ax ∩ [a], that component must be [a], so we have
Ax ⊆ [a]. Since Ax ⊆ [a] for every x ∈ [a], we see that [a] =

⋃
x∈[a]Ax. By the above

lemma (since the sets Ax are connected with a ∈ Ax for every x ∈ [a]) the set
⋃
x∈X Ax is

connected.
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Path Connectedness

5.12 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. For
a, b ∈ A, a (continuous) path from a to b in A is a continuous map α : [0, 1] → A with
α(0) = a and α(1) = b. When there exists a path from a to b in A, we write a ∼ b in A.
We say that A is path connected (in X) when it has the property that for all a, b ∈ A,
we have a ∼ b in A.

5.13 Remark: It is clear from the definition that A is path connected in X if and only if
A is path connected in itself (because the continuity of a map α : [0, 1]→ A is unchanged
if we regard α as a map α : [0, 1] → X). Because of this, we do not normally say that A
is path connected in X; we simply say that A is path connected.

5.14 Example: When X is a normed linear space (over F = R or C) and A ⊆ X, note that
if A is convex then A is path connected (because when A is convex, the map α : [0, 1]→ X
given by α(t) = a + t(b − a) is continuous and takes values in the set A). In particular,
note that the open and closed balls B(a, r) and B(a, r) are path-connected.

5.15 Theorem: Let X and Y be metric spaces (or topological spaces), let A ⊆ X, and
let f : A ⊆ X → Y . If f is continuous on A, and A is path connected, then f(A) is path
connected.

Proof: Suppose that f is continuous on A and A is path connected. Let c, d ∈ f(A). Choose
a, b ∈ A with f(a) = c and f(b) = d. Since A is path connected, we can choose a continuous
map α : [0, 1]→ A with α(0) = a and α(1) = b. Then the map β : [0, 1]→ f(A) given by
β(t) = f

(
α(t)

)
is continuous with β(0) = c and β(1) = d, and so f(A) is path-connected.

5.16 Theorem: Let X be a metric space (or a topological space). The relation ∼ on
X (given by stipulating that a ∼ b when there exists a path from a to b in X) is an
equivalence relation on X.

Proof: Let a, b, c ∈ X. We have a ∼ a because we can define α : [0, 1] → X by α(t) = a
for all t, and then α is continuous with α(0) = a and α(1) = a.

Suppose that a ∼ b. Let α be a path from a to b, so α : [0, 1]→ X is continuous with
α(0) = a and α(1) = b. Define β : [0, 1]→ X by β(t) = α(1− t). Note that β is continuous
since it is the composite of the continuous map α with the continuous map s : [0, 1]→ [0, 1]
given by s(t) = 1− t, and note that we have β(0) = α(1) = b and β(1) = α(0) = a. Thus
β is a path in X from b to a and so b ∼ a.

Finally, suppose that a ∼ b and b ∼ c. Let α be a path from a to b in X and let β be
a path from b to c in X. Define γ : [0, 1]→ X by

γ(t) =

{
α(2t) , for 0 ≤ t ≤ 1

2 ,

β(2t− 1) , for 1
2 ≤ t ≤ 1.

Note that γ(0) = α(0) = a, γ
(
1
2

)
= α(1) = β(0) = b, and γ(1) = β(1) = c. We claim

that γ is continuous. Note that the sets A =
[
0, 12
]

and B =
[
1
2 , 1
]

are closed in [0, 1] with
A∪B = [0, 1], and the restriction of γ to A is given by α(2t), which is continuous (being the
composite of two continuous functions), and the restriction of γ to B is given by β(2t−1),
which is also continuous. Let C ⊆ X. Since α is continuous, the set α−1(C) is closed in[
0, 12
]
, hence also in [0, 1], and since β is continuous, the set β−1(C) is closed in

[
1
2 , 1
]
,

hence also in [0, 1], and so the set γ−1(C) = α−1(C) ∪ β−1(C) is closed in [0, 1] (since it
is the union of two closed sets). Thus γ is continuous by Theorem 3.29 (the Topological
Characterization of Continuity).
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5.17 Definition: Let X be a metric space (or a topological space). The equivalence
classes [a] =

{
x ∈X

∣∣x ∼ a} are called the path components of X. Recall (or verify)
that since ∼ is an equivalence relation on X, the path components of X are disjoint with
[a] = [b] ⇐⇒ a ∼ b, and X is equal to the disjoint union of its path components.

5.18 Theorem: Let X be a metric space (or a topological space). The path components
of X are path connected, and every path connected subset of X is contained in one of the
path components of X.

Proof: The proof is left as an exercise.

5.19 Theorem: (Path Connectedness Implies Connectedness) Let X be a metric space
(or a topological space). If X is path connected then X is connected.

Proof: Suppose that X is path connected. Suppose, for a contradiction, that X is not
connected. Choose nonempty disjoint open sets U and V in X such that X = U ∪ V .
Choose a ∈ U and b ∈ V . Choose a path α : [0, 1] → X from a to b in X. Since α
is continuous, the sets α−1(U) and α−1(V ) are open in [0, 1]. Since α(0) = a ∈ U and
α(1) = b ∈ V we have 0 ∈ α−1(U) so that α−1(U) 6= ∅ and 1 ∈ α−1(V ) so that α−1(V ) 6= ∅.
Since X = U ∪V we have [0 1] = α−1(U)∪α−1(V ). Thus [0, 1] is the union of the disjoint
nonempty subsets f−1(U) and f−1(V ). This contradicts the fact that [0, 1] is connected.

5.20 Corollary: In a metric space X, every path component is contained in one of the
connected components, and every connected component is a disjoint union of the path
components which it contains.

5.21 Note: The converse of the above theorem does not always hold. For example, let
A = B∪C with B =

{
(x, y)∈R2

∣∣x>0, y = sin 1
x

}
and C =

{
(x, y)∈R2

∣∣x=0,−1≤y≤1
}

.
As an exercise, verify that A is connected and B and C are the path components of A.

5.22 Theorem: Let X be a normed linear space and let A ⊆ X. If A is open in X and
A is connected, then A is path connected.

Proof: Suppose that A is open in X and that A is connected. Let a ∈ A. Let

U =
{
b ∈ A

∣∣a ∼ b} .
We claim that U is open in A. Let b ∈ U . Since b ∈ A and A is open in X, we can
choose r > 0 so that B(b, r) ⊆ A. Let c ∈ B(b, r). Since b ∈ U we have a ∼ b. Since
c ∈ B(b, r) ⊆ A we have b ∼ c, indeed we can define α : [0, 1] → B(b, r) ⊆ A by
α(t) = b+ t(c− b) and then α is continuous with α(0) = b and α(1) = c, and α(t) ∈ B(b, r)
for all t ∈ [0, 1] because

∥∥α(t) − b
∥∥ =

∥∥t(c − b)∥∥ = |t|‖c − b‖ ≤ ‖c − b‖ < r. Since a ∼ b
and b ∼ c we have a ∼ c. Since a ∼ c we have c ∈ U , hence B(b, r) ⊆ U . This shows that
U is open.

We claim that U is also closed in A. Let b ∈ A \ U . Since b ∈ A and A is open in
X, we can choose r > 0 so that B(b, r) ⊆ A. Let c ∈ B(b, r). Since b /∈ U we have a 6∼ b.
Since c ∈ B(b, r) ⊆ A we have b ∼ c, as above. It follows that a 6∼ c since otherwise we
would have a ∼ c and c ∼ b and hence a ∼ b. Since c 6∼ a we have c ∈ A \ U . Thus
B(b, r) ⊆ A \ U . This shows that A \ U is open so that U is closed in A.

Since A is connected, the only subsets of A which are both open and closed are ∅ and
A. Since U is both open and closed we must have U = ∅ or U = A. Since a ∼ a we have
a ∈ U so U 6= ∅ and so U = A. Since A = U =

{
b ∈ A

∣∣a ∼ b
}

we have a ∼ b for every
b ∈ A. Thus A is path connected.
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Compactness

5.23 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. An
open cover for A (in X) is a set S of open sets in X such that A ⊆

⋃
S =

⋃
U∈S U .

When S is an open cover for A in X, a subcover of S for A is a subset T ⊆ S such that
A ⊆

⋃
T =

⋃
U∈T U . We say that A is compact (in X) when every open cover for A has

a finite subcover.

5.24 Example: Recall that for A ⊆ Rn, the Heine-Borel Theorem states that A is
compact if and only if A is closed and bounded. Note that this also holds for A ⊆ Cn
because (Cn, d2) = (R2n, d2).

5.25 Example: When X is a metric space and A ⊆ X is closed and bounded, it is not
always the case that A is compact. For example, if X is any infinite set and d is the discrete
metric on X, then every infinite subset A ⊆ X is closed and bounded but not compact. In
particular, closed unit balls are not compact, indeed for all a ∈ X we have B(a, 1) = X.

5.26 Theorem: Let A ⊆ X ⊆ Y where Y is a metric space (or a topological space). Then
A is compact in X if and only if A is compact in Y .

Proof: Suppose that A is compact inX. Let T be an open cover for A in Y . For each V ∈ T ,
let UV = V ∩X. Note that each set UV is open in X by Theorem 2.51 (or by Definition
2.52). Since A ⊆ X and A ⊆

⋃
V ∈T V , we also have A ⊆

⋃
V ∈T (V ∩ X) =

⋃
V ∈T UV .

Thus the set S =
{
UV
∣∣V ∈ T

}
is an open cover for A in X. Since A is compact in

X we can choose a finite subcover, say
{
UV1

, · · ·UVn

}
of S, where each Vi ∈ T . Since

A ⊆
⋃n
i=1 UVi

=
⋃n
i=1(Vi ∩ X), we also have A ⊆

⋃n
i=1 Vi and so {V1, · · · , Vn} is a finite

subcover of T .
Suppose, conversely, that A is compact in Y . Let S be an open cover for A in X. For

each U ∈ S, by Theorem 2.51 (or by Definition 2.52) we can choose an open set VU in Y
such that U = VU ∩ X. Then T =

{
VU
∣∣U ∈ S} is an open cover of A in Y . Since A is

compact in Y we con choose a finite subcover, say
{
VU1

, · · · , VUn

}
of T , where each Ui ∈ S.

Then we have A ⊆
⋃n
i=1(VUi ∩X) =

⋃n
i=1 Ui and so {U1, · · · , Un} is a finite subcover of S.

5.27 Remark: Let A ⊆ X where X is a metric space (or a topological space). By the
above theorem, note that A is compact in X if and only if A is compact in itself. For this
reason, we do not usually say that A is compact in X, we simply say that A is compact.

5.28 Theorem: Let X be a metric space and let A ⊆ X. If A is compact then A is closed
and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let a ∈ Ac. For each
x ∈ A, let rx = d(a, x) > 0, let Ux = B

(
a,

rx
2

)
, and let Vx = B

(
x,

rx
2

)
so that Ux and

Vx are disjoint. Note that the set S =
{
Vx
∣∣x ∈ A

}
is an open cover for A. Since A

is compact we can choose a finite subcover, say {Vx1 , · · · , Vxn} where each xi ∈ A. Let
r = min{rx1

, · · · , rxn
} so that B

(
a, r2

)
⊆ Uxi

for all i, and hence B
(
a, r2

)
is disjoint from

each set Vxi
. Since B

(
a, r2

)
is disjoint from each set Vxi and the sets Vxi cover A, it follows

that B
(
a, r2

)
is disjoint from A, hence B

(
a, r2

)
⊆ Ac. Thus Ac is open, hence A is closed.

We claim that A is bounded. Let a ∈ A. For each n ∈ Z+, let Un = B(a, n). Then the
set S = {U1, U2, U3, · · ·} is an open cover for A. Since A is compact, we can choose a finite
subcover, say {Un1 , Un2 , · · · , Un,`} ⊆ S, with each ni ∈ Z+. Let m = max{n1, n2, · · · , n`}
so that Uni

⊆ Um for all indices i. Then we have A ⊆
⋃`
i=1 Uni

= Um = B(a,m) and so
A is bounded.
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5.29 Theorem: Let X be a metric space (or a topological space) and let A ⊆ X. If X is
compact and A is closed in X, then A is compact.

Proof: Suppose that X is compact and A is closed in X. Let S be an open cover for A.
Then S∪{Ac} is an open cover for X. Since X is compact, we can choose a finite subcover
T of S∪{Ac}. Note that T may or may not contain the set Ac but, in either case, T \{Ac}
is an open cover for A with T \ {Ac} ⊆ S, so that T \ {Ac} is a finite subcover of S.

5.30 Corollary: Let X be a metric space (or a topological space), let A ⊆ X be closed,
and let K ⊆ X be compact. Then A ∩K is compact.

5.31 Theorem: Let X and Y be metric spaces (or topological spaces) and let f : X → Y .
If X is compact and f is continuous then f(X) is compact.

Proof: Suppose that X is compact and f is continuous. Let T be an open cover for
f(X) in Y . Since f is continuous, so that f−1(V ) is open in X for each V ∈ T , the set
S =

{
f−1(V )

∣∣V ∈ T
}

is an open cover for X. Since X is compact, we can choose a

finite subcover, say {f−1(V1), f−1(V2), · · · , f−1(Vn)
}

of S, with each Vi ∈ T . Then the set
{V1, V2, · · · , Vn} is a finite subcover of T for f(X).

5.32 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f : R→ R given by f(x) = 2

π tan−1(x) sends the closed set R
homeomorphically to the open interval (−1, 1).

5.33 Theorem: (The Extreme Value Theorem) Let X be a compact metric space (or
topological space) and let f : X → R be continuous. Then there exist a, b ∈ X such that
f(a) ≤ f(x) ≤ f(b) for all x ∈ X.

Proof: Since X is compact and f is continuous, it follows that f(X) is compact in R. Since
f(X) is compact, it is closed and bounded in R. Since f(X) is bounded in R, it follows
that m = inf f(X) and M = sup f(X) are both finite real numbers, and since f(X) is
closed in R it follows that m ∈ f(X) and M ∈ f(X) so that we can choose a, b ∈ X such
that f(a) = m = inf f(X) and f(b) = M = sup f(X).

5.34 Theorem: Let X and Y be metric spaces with X compact. Let f : X → Y be
continuous and bijective. Then f is a homeomorphism.

Proof: Let g = f−1 : Y → X. We need to prove that g is continuous. Let A ⊆ X be
closed in X. Since X is compact and A ⊆ X is closed, it follows (from Theorem 5.29) that
A is compact. Since the map f : A→ Y is continuous and A is compact, it follows (from
Theorem 5.31) that f(A) is compact. Since f(A) is compact it follows (from Theorem
5.28) that f(A) is closed. Since g = f−1 we have g−1(A) = f(A), which is closed. Since
g−1(A) is closed in Y for every closed set A in X, it follows that g is continuous, by the
Topological Characterization of Continuity (Theorem 3.29).

5.35 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0, 2π) and Y is the unit circle Y = {z ∈ C

∣∣‖z‖ = 1
}

,
then the map f : X → Y given by f(t) = ei t is continuous and bijective, but the inverse
map is not continuous at 1.
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5.36 Theorem: (The Lebesgue Number) Let X be a compact metric space and let S
be an open cover for X. Then there exists a number λ > 0, which is called a Lebesgue
number for the cover S, such that for all a ∈ X there exists U ∈ S such that B(a, λ) ⊆ U .

Proof: For each x ∈ X, since S is an open cover for X we can choose Ux ∈ S with x ∈ Ux
and then, since Ux is open we can choose rx > 0 so that B(a, 2rx) ⊆ Ux. Note that the
set T =

{
B(x, rx)

∣∣x ∈ X} is an open cover for X. Since X is compact, we can choose

a finite subcover, say
{
B(x1, rx1

), · · · , B(xn, rxn
)
}

of T for X, with each xi ∈ X. Let
λ = min{rx1 , · · · , rxn}. We claim that λ is a Lebesgue number for S. Let a ∈ X. Choose
an index i such that a ∈ B(xi, rxi), and let U = Uxi ∈ S. For all y ∈ B(a, λ) we have
d(y, xi) ≤ d(y, a) + d(a, xi) ≤ λ + rxi

≤ 2rxi
and hence y ∈ B(xi, 2rxi

) ⊆ Uxi
= U . This

shows that B(a, λ) ⊆ U , as required.

5.37 Theorem: Let X and Y be metric spaces with X compact and let f : X → Y be
continuous. Then f is uniformly continuous.

Proof: We leave the proof as an exercise.

5.38 Definition: Let X be a metric space. We say that X is totally bounded when for

every ε > 0 there exists a finite subset {a1, a2, · · · , an} ⊆ X such that X =
n⋃
i=1

B(ai, ε).

We say that X has the finite intersection property on closed sets when for every set
T of closed sets in X, if every finite subset of T has non-empty intersection, then T has
non-empty intersection.

5.39 Theorem: Let X be a metric space. Then the following are equivalent.

(1) X is compact.
(2) X has the finite intersection property on closed sets.
(3) Every sequence (xn) in X has a convergent subsequence.
(4) Every infinite subset A ⊆ X has a limit point.
(5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set
of closed sets in X. Suppose that T has empty intersection, that is suppose

⋂
A∈T A = ∅.

Then
⋃
A∈T A

c = X so the set S =
{
Ac
∣∣A ∈ T

}
is an open cover for X. Since X is

compact, we can choose a finite subcover, say
{
A1

c, · · · , Anc
}

of S for X. Then we have
A1 ∩A2 ∩ · · · ∩An = ∅, showing that some finite subset of T has empty intersection.

Next we prove that (2) implies (3). Suppose X has the finite intersection property on
closed sets. Let (xn)n≥1 be a sequence in X. For each m ∈ Z+, let Am = {xn|n > m} and
note that each Am is closed with A1 ⊇ A2 ⊇ A3 ⊇ · · ·. Let T = {Am|m ∈ Z+}. Note that
every finite subset of T has non-empty intersection because given Am1

, · · · , Am`
∈ T we

can let m = max{m1, · · · ,m`} and then we have
⋂`
i=1Ami = Am and we have xn ∈ Am.

Since X has the finite intersection property on closed sets, it follows that T has non-empty
intersection. Choose a point a ∈

⋂∞
m=1Am. We construct a subsequence (xnk

)k≥1 of

(xn)n≥1 with lim
k→∞

xnk
= a as follows. Since a ∈ A1 = {xn|n > 1} we can choose n1 > 1

such that d(xn1
, a) < 1. Since a ∈ An1

= {xn|n > n1} we can choose n2 > n1 such
that d(xn2

, a) < 1
2 . Since a ∈ An2

= {xn|n > n2} we can choose n3 > n2 such that
d(xn3

, a) < 1
3 . Repeating this procedure, we can choose 1 < n1 < n2 < n3 < · · · such that

d(xnk
, a) < 1

k for all indices k, and then we have constructed a subsequence (xnk
) such

that lim
k→∞

xnk
= a.
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Next we prove that (3) implies (4). Suppose that every sequence (xn) in X has a
convergent subsequence. Let A ⊆ X be an infinite subset. Choose a sequence (xn) in A
with the terms xn all distinct. Choose a convergent subsequence (xnk

) of (xn) and let
a = lim

k→∞
xnk

. Then a is a limit point of the set A.

Now let us prove that (4) implies (5). Suppose that every infinite subset A ⊆ X has a
limit point. We claim that X is complete. Let (xn) be a Cauchy sequence in X. We claim
that (xn) has a convergent subsequence. If the set {xn|n ∈ Z+} is finite, then some term in
the sequence occurs infinitely often, so we can choose indices n1 < n2 < n3 < · · · such that
x1 = x2 = x3 = · · ·, and so in this case (xn) has a constant subsequence. Suppose the set
{xn|n ∈ Z+} is infinite. Let a be a limit point of the infinite set A = {xn|n ∈ Z+}. Since a
is a limit point of the set {xn} we can choose indices nk with n1 < n2 < n3 < · · · such that
0 < d(xnk

, a) < 1
k for each index k. Then (xnk

) is a subsequence of (xn) with lim
k→∞

xnk
= a.

Since the sequence (xn) is Cauchy and has a convergent subsequence, it follows, from Part
3 of Theorem 4.11, that the sequence (xn) converges. Thus X is complete, as claimed.

Continuing our proof that (4) implies (5), suppose that X is not totally bounded.
Choose ε > 0 such that there do not exist finitely many points a1, · · · , an ∈ X for which
X =

⋃n
i=1B(ai, ε). Let a1 ∈ X. Since X 6= B(a1, ε) we can choose a2 ∈ X \ B(a1, ε).

Since X 6= B(a1, ε) ∪B(a2, ε) we can choose a3 ∈ X with a3 /∈ B(a1, ε) ∪B(a2, ε). Repeat
this procedure to choose points a1, a2, a3, · · · with an+1 /∈

⋃n
k=1B(ak, ε). Then the set

A = {an|n ∈ Z+} is an infinite subset of X which has no limit point.
Finally we prove that prove that (5) implies (1). Suppose that X is complete and

totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open
cover S for X which has no finite subcover for X. Since X is totally bounded, we can
cover X by finitely many balls of radius 1. Choose one of the balls, say U1 = B(a1, 1)
such that there is no finite subcover of S for U1 (if there was a finite subcover for each
ball, then the union of all these subcovers would be a finite subcover for X). Since X
is totally bounded, we can cover X (hence also U1) by finitely many balls of radius 1

2 .
Choose one of these balls, say U2 = B(a2,

1
2

)
such that there is no finite subcover of S

for U1 ∩ U2. Repeat the procedure to obtain balls Un = B
(
an,

1
n

)
such that, for each n,

there is no finite subcover of S for
⋂n
k=1 Uk. In particular, each intersection

⋂n
k=1 Uk is

nonempty so we can choose an element xn ∈
⋂n
k=1 Uk. Since for all k, ` ≥ m we have

xk, x` ∈ Um = B
(
am,

1
m

)
it follows that (xn) is Cauchy. Since X is complete, it follows

that (xn) converges in X. Let a = lim
n→∞

xn. Since S covers X we can choose U ∈ S with

a ∈ U . Since U is open we can choose r > 0 such that B(a, r) ⊆ U . Since xn → a we
can choose m > 3

r such that d(xm, a) < r
3 . Then for all x ∈ Um = B

(
am,

1
m

)
we have

d(x, a) ≤ d(x, am) + d(am, xm) + d(xm, a) < 1
m + 1

m + r
3 < r, and so Um ⊆ B(a, r) ⊆ U .

But then S has a finite subcover for Um, namely the singleton {U}, which contradicts the
fact that S has no finite subcover for

⋂m
k=1 Uk.

5.40 Example: Let F = R. Show that in the metric space
(
C[0, 1], d∞

)
, the closed unit

ball B(0, 1) is not compact.

Solution: Let fn(x) = xn for n ∈ Z+. Note that ‖fn‖∞ = 1 so that each fn ∈ B(0, 1).
Note that the pointwise limit of the sequence (fn) is the function g : [0, 1] → R given by
g(x) = 0 when x < 1 and g(1) = 1, which is not continuous. If some subsequence (fnk

) of
(fn) were to converge in

(
C[0, 1], d∞

)
then it would need to converge uniformly on [0, 1] to

the function g. But this is not possible since the uniform limit of a sequence of continuous
functions is always continuous. Thus (fn) has no convergent subsequence and so B(0, 1)
is not compact.
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