
Chapter 3. Limits and Continuity

Limits of Sequences

3.1 Definition: Let r ∈ Z and let (xn)n≥r be a sequence in a metric space X. We say
that the sequence (xn)n≥r is bounded when the set {xn}n≥r is bounded, that is when
there exists a ∈ X and R > 0 such that xn ∈ B(a,R) for all indices n ≥ r.

For a ∈ X, we say that the sequence (xn)n≥r converges to a (or that the limit of
xn is equal to a) and we write lim

n→∞
xn = a (or we write xn → a) when

∀ε>0 ∃m∈Z≥r ∀n∈Z≥r
(
n ≥ m =⇒ d(xn, a) < ε

)
.

We say that the sequence (xn)n≥r converges (in X) when it converges to some point
a ∈ X, and otherwise we say that (xn)n≥r diverges (in X).

3.2 Theorem: (Basic Properties of Limits of Sequences) Let (xn)n≥r be a sequence in a
metric space X, and let a ∈ X.

(1) If (xn)n≥r converges then its limit is unique.
(2) If s ≥ r and yn = xn for all n ≥ s, then (xn)n≥r converges if and only if (yn)n≥s
converges and, in this case, lim

n→∞
yn = lim

n→∞
xn.

(3) If (xnk
)k≥s is a subsequence of (xn)n≥r, and lim

n→∞
xn = a, then lim

k→∞
xnk

= a.

(4) If (xn)n≥r converges then it is bounded.
(5) We have lim

n→∞
xn = a in X if and only if lim

n→∞
d(xn, a) = 0 in R.

Proof: We prove Parts 1, 4 and 5 and leave the proofs of the other parts as an exercise.
To prove Part 1, suppose that xn → a in X and xn → b in X. We need to show that
a = b. Suppose, for a contradiction, that a 6= b, and note that d(a, b) > 0. Since xn → a

and xn → b, we can choose m ∈ Z≥r such that when n ≥ m we have d(xn, a) < d(a,b)
2 , and

d(xn, b) <
d(a,b)

2 . Then we have d(a, b) ≤ d(a, xm) + d(xm, b) <
d(a,b)

2 + d(a,b)
2 = d(a, b),

giving the desired contradiction.
To prove Part 4, suppose that (xn)n≥r converges, say xn → a in X. Choose m ∈ Z≥r

such that when n ≥ m we have d(xn, a) < 1. Then for all n ∈ Z≥r we have d(xn, a) ≤ R
where R = max

{
d(xr, a), d(xr+1, a), · · · , d(xm−1, a), 1

}
so that xn ∈ B(a,R+1).

To prove Part 5, note that since d(xn, a) ≥ 0 we have d(xn, a) =
∣∣d(xn, a)− 0

∣∣ and so

lim
n→∞

xn = a in X ⇐⇒ ∀ε>0 ∃m∈Z≥r ∀n∈Z≥r d(xn, a) < ε

⇐⇒ ∀ε>0 ∃m∈Z≥r ∀n∈Z≥r
∣∣d(xn, a)− 0

∣∣ < ε

⇐⇒ lim
n→∞

d(xn, a) = 0 in R.

3.3 Note: Because of Part 2 of the above theorem, the initial index r of a sequence
(xn)n≥r does not effect whether or not the sequence converges and it does not effect the
limit. For this reason, we often omit the initial index r from our notation and write (xn)
for the sequence (xn)n≥r. Also, we often choose a specific value of r, usually r = 1, in the
statements or the proofs of various theorems with the understanding that any other initial
value would work just as well.
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3.4 Theorem: (Components of Sequences in Fm) Let F = R or C. Let (xn)n≥1 be a
sequence in Fm, say xn =

(
xn,1, xn,2, · · · , xn,m

)
∈ Fm, and let a = (a1, a2, · · · , am) ∈ Fm.

Then using any of the metrics d1, d2 or d∞ in Fm, we have lim
n→∞

xn = a in Fm if and only

if lim
n→∞

xn,k = ak in F for all indices k with 1 ≤ k ≤ m.

Proof: Let p = 1, 2 or ∞. Suppose lim
n→∞

xn = a in (Fm, dp). Let 1 ≤ k ≤ m and let ε > 0.

Choose ` ∈ Z+ such that when n ≥ ` we have dp(xn, a) < ε, that is ‖xn − a‖p < ε. Then
when n ≥ ` we have

|xn,k − ak| =
(
|xn,k − ak|p

)1/p ≤ ( m∑
j=1

|xn,j − aj |p
)1/p

= ‖xn − a‖p < ε ,

and so xn,k → ak in F, as required.

Suppose, conversely, that for all k with 1 ≤ k ≤ m we have lim
n→∞

xn,k = ak in F. Let

ε > 0. Choose ` ∈ Z+ such that for all n ≥ ` we have |xn,k − ak| < ε
m for 1 ≤ k ≤ m.

Then, letting ek denote the kth standard basis vector in Fm, when n ≥ ` we have

‖xn − a‖p =
∥∥∥ m∑
k=1

(xn,k − ak) ek

∥∥∥
p
≤

m∑
k=1

∥∥(xn,k − ak)ek
∥∥
p

=
m∑
k=1

∣∣xn,k − ak∣∣ ‖ek‖p =
m∑
k=1

∣∣xn,k − ak∣∣ < m∑
k=1

ε
m = ε

so that xn → a in Fm, as required.

3.5 Note: When (xn)n≥1 is a sequence in F∞, `1, `2 or `∞, each term xn is itself a
sequence (so that (xn) is a sequence of sequences) and we can write xn = (xn,k)k≥1. We
have sequences x1 = (x1,1, x1,2, · · ·), x2 = (x2,1, x2,2, x2,3, · · ·), and x3 = (x3,1, x3,2, · · ·)
and so on. This is not the same thing as a subsequence of a sequence (xn) in F, which is
a single sequence (xnk

)k≥1 = (xn1
, xn2

, xn3
, · · ·).

3.6 Theorem:
(
Components of Sequences in `p

)
. Let F = R or C and let p = 1, 2 or ∞.

Let (xn)n≥1 be a sequence in `p, say xn = (xn,k)k≥1 ∈ `p, and let a = (ak)k≥1 ∈ `p. If
lim
n→∞

xn = a in (`p, dp) then lim
n→∞

xn,k = ak in F for all k ∈ Z+.

Proof: The proof is the same as the first half of the proof of Theorem 3.4. Suppose that
lim
n→∞

xn = a in (`p, dp). Let k ∈ Z+ and let ε > 0. Choose m ∈ Z+ such that when n ≥ m
we have ‖xn − a‖p < ε. Then when n ≥ m we have

|xn,k − ak| =
(
|xn,k − ak|p

)1/p ≤ ( ∞∑
j=1

|xn,j − aj |p
)1/p

= ‖xn − a‖p < ε

and so xn,k → ak in F, as required.

3.7 Note: Unlike the case in Fm, in the infinite-dimensional spaces `p, when xn,k → ak
in F for all indices k, it does not necessarily follow that xn → a in (`p, dp). For example,
you can verify, as an exercise, that when xn = en (the nth standard basis vector in F∞),
we have lim

n→∞
xn,k = 0 in F for all k ∈ Z+, but lim

n→∞
xn 6= 0 in (`p, dp) for p = 1, 2, 3.

3.8 Exercise: For each n ∈ Z+, let xn ∈ R∞ be the sequence given by xn = 1
n

n∑
k=1

ek,

that is by xn = (xn,k)k≥1 =
(
1
n ,

1
n , · · · ,

1
n , 0, 0, 0, · · ·

)
with n non-zero terms. Show that

(xn) converges in (R∞, d2) but diverges in (R∞, d1).
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3.9 Definition: Let A be a set, let X be a metric space, and let fn, g : A→ X. We say
that the sequence (fn) converges pointwise to g on A, and we write fn → g pointwise
on A, when

∀x∈A ∀ε>0 ∃m∈Z+ ∀n∈Z+
(
n≥m =⇒ d(fn(x), g(x)) < ε

)
.

We say that the sequence (fn) converges uniformly to g on A, and we write fn → g
uniformly on A, when

∀ε>0 ∃m∈Z+ ∀n∈Z+ ∀x∈A
(
n ≥ m =⇒ d(fn(x), g(x)) < ε

)
.

3.10 Remark: In the definition of the limit of a sequence in a metric space X (Definition
3.1), we can replace the strict inequality d(xn, a) < ε by the inequality d(xn, a) ≤ ε without
changing the meaning. In other words, for a sequence (xn)n≥p in X and an element a ∈ X
we have

lim
n→∞

xn = a in X ⇐⇒ ∀ε>0 ∃m∈Z≥p∀n∈Z≥p
(
n ≥ m =⇒ d(xn, a) ≤ ε

)
.

The same holds for various other definitions, such as the defiinition of uniform convergence.

3.11 Remark: Note that for h ∈ B[a, b] and r > 0, we have

‖h‖∞ ≤ r ⇐⇒ sup
{
|h(x)|

∣∣ a≤x≤b} ≤ r ⇐⇒ |h(x)| ≤ r for all x ∈ [a, b].

We also remark that we would not have equivalence if we replaced ≤ r by < r, as we only
have a one way implication: if |h(x)| < r for all x ∈ [a, b] then sup

{
|h(x)|

∣∣ a≤x≤b} ≤ r.
3.12 Theorem: (Limits in B[a, b] and Uniform Convergence) Let (fn)n≥1 be a sequence
in B[a, b], and let g ∈ B[a, b]. Then fn → g in

(
B[a, b], d∞

)
if and only if fn → g uniformly

on [a, b].

Proof: This follows immediately from the definition of uniform convergence and from the
two preceding remarks. Indeed we have

fn → g in B[a, b] ⇐⇒ ∀ε>0 ∃m∈Z+ ∀n∈Z+
(
n ≥ m =⇒ ‖fn − g‖∞ ≤ ε

)
⇐⇒ ∀ε>0 ∃m∈Z+ ∀n∈Z+

(
n ≥ m =⇒

∣∣fn(x)− g(x)
∣∣ ≤ ε for all x ∈ [a, b]

)
⇐⇒ fn → g uniformly on [a, b].

3.13 Remark: For a metric space X whose elements are functions, such as B[a, b] or
C[a, b], a sequence in X is a sequence of functions, so we can consider several different no-
tions of convergence for sequences of functions, including pointwise convergence, uniform
convergence, and convergence in the metric space. The above theorem shows that conver-
gence in the metric space B[a, b]

(
hence also in C[a, b]

)
using the supremum metric d∞,

is the same thing as uniform convergence. One might ask whether convergence in C[a, b]
using the metrics d1 or d2 implies, or is implied by, pointwise convergence. The answer is
negative, as the following exercises illustrate.

3.14 Exercise: Define fn : [0, 1]→ R by fn(x) = 1− nx for 0 ≤ x ≤ 1
n and fn(x) = 0 for

1
n ≤ x ≤ 1. Show that fn → 0 in C[0, 1] using either of the metrics d1 or d2, but fn 6→ 0
pointwise on [0, 1].

3.15 Exercise: Define fn : [0, 1]→ R by fn(x) = n2x−n3x2 for 0 ≤ x ≤ 1
n and fn(x) = 0

for 1
n ≤ x ≤ 1. Show that fn → 0 pointwise on [0, 1] but fn 6→ 0 in C[0, 1] using either of

the metrics d1 or d2.

3.16 Exercise: Define fn : [0, 1]→ R by fn(x) =
√
nxn. Show that (fn)n≥1 converges in(

C[0, 1], d1
)

but diverges in
(
C[0, 1], d2

)
.
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Limits and Closed Sets

3.17 Theorem: (The Sequential Characterization of Limit Points and Closed Sets) Let
X be a metric space, let a ∈ X, and let A ⊆ X.

(1) a ∈ A′ if and only if there exists a sequence (xn) in A \ {a} with lim
n→∞

xn = a in X.

(2) a ∈ A if and only if there exists a sequence (xn) in A with lim
n→∞

xn = a in X.

(3) A is closed in X if and only if for every sequence (xn) in A which converges in X, we
have lim

n→∞
xn ∈ A.

Proof: We prove Parts 1 and 3 and leave the proof of Part 2 as an exercise. Suppose that
a ∈ A′ (which means that for every r > 0 we have B∗(a, r) ∩ A 6= ∅). For each n ∈ Z+,
choose xn ∈ B∗

(
a, 1

n

)
∩ A, that is choose xn ∈ A \ {a} with d(xn, a) < 1

n . Then (xn)n≥1
is a sequence in A \ {a} with lim

n→∞
xn = a.

Suppose, conversely, that (xn)n≥1 is a sequence in A \ {a} with lim
n→∞

xn = a. Let

r > 0. Choose m ∈ Z+ such that d(xn, a) < r for all n ≥ m. Since xm ∈ A \ {a} with
d(xm, a) < r, we have xm ∈ B∗(a, r) ∩A and so B∗(a, r) ∩A 6= ∅. This proves Part 1.

To prove Part 3, suppose that A is closed in X. Let (xn)n≥1 be a sequence in A which
converges in X, and let a = lim

n→∞
xn ∈ X. Suppose, for a contradiction, that a /∈ A. Since

a /∈ A we have A = A\{a} so in fact (xn) is a sequence in A\{a}. Since (xn) is a sequence
in A \ {a} with lim

n→∞
xn = a, it follows from Part 1 that a ∈ A′. Since A is closed we have

A′ ⊆ A and so a ∈ A giving the desired contradiction.
Suppose, conversely, that for every sequence in A which converges in X, the limit of

the sequence lies in A. Let a ∈ A′. By Part 1, we can choose a sequence (xn) in A \ {a}
with lim

n→∞
xn = a. Then (xn) is a sequence in A which converges in X, so its limit lies in

A, that is a ∈ A. Since a ∈ A′ was arbitrary, this shows that A′ ⊆ A, and so A is closed.
This proves Part 3.

3.18 Example: Let U be a normed linear space, let a ∈ U and let r > 0. Show that
B(a, r) = B(a, r) (so the closed ball is equal to the closure of the open ball).

Solution: We saw, in Example 2.32, that B(a, r) is closed. Since B(a, r) is closed and
B(a, r) ⊆ B(a, r), it follows that B(a, r) ⊆ B(a, r). Let b ∈ B(a, r), that is let b ∈ U with
‖b− a‖ ≤ r. If ‖b− a‖ < r then we have b ∈ B(a, r) ⊆ B(a, r). Suppose that ‖b− a‖ = r.
For n ∈ Z+, let xn = a+

(
1− 1

n

)
(b− a) ∈ U . Note that

‖xn − a‖ =
∥∥(1− 1

n

)
(b− a)

∥∥ =
(
1− 1

n

)
‖b− a‖ =

(
1− 1

n

)
r < r

so that xn ∈ B(a, r). Note that

‖xn − b‖ =
∥∥ 1
n (a− b)

∥∥ = 1
n‖a− b‖ = r

n → 0 in R

so that we have xn → b in U (by Part 6 of Theorem 3.2). Since (xn) is a sequence in
B(a, r) with xn → b in U , it follows that b ∈ B(a, r) by Part 2 of the above theorem.

3.19 Example: In the previous example, it might have seemed intuitively obvious that
B(a, r) = B(a, r), but in fact this is not true in all metric spaces. For example in Z
(using the same standard metric used in R) we have B(0, 1) = {0} and B(0, 1) = {0}, but
B(0, 1) = {−1, 0, 1}.
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3.20 Exercise: Let F = R or C. Recall that F∞ ⊆ `1 ⊆ `2 ⊆ `∞. Determine whether
F∞ is closed in (`1, d1). Determine which of the spaces F∞ and `1 is closed in (`2, d2).
Determine which of the spaces F∞, `1 and `2 is closed in (`∞, d∞)

3.21 Exercise: Let F = R and let

R[a, b] =
{
f ∈ B[a, b]

∣∣ f is Riemann integrable
}
,

P[a, b] =
{
f ∈ B[a, b]

∣∣ f is a polynomial
}
,

C1[a, b] =
{
f ∈ B[a, b]

∣∣ f is continuously differentiable
}
.

Note that
P[a, b] ⊆ C1[a, b] ⊆ C[a, b] ⊆ R[a, b] ⊆ B[a, b].

Determine which of the above spaces are closed in the metric space B[a, b], using the
supremum metric d∞ (we deal with the space C[a, b] in the following example).

3.22 Example: Let F = R. Show that C[a, b] is closed in the metric space
(
B[a, b], d∞

)
.

Solution: Let (fn) be a sequence in C[a, b] which converges in the metric space
(
B[a, b], d∞

)
.

Let g = lim
n→∞

fn in
(
B[a, b], d∞

)
. By Theorem 3.12, we know that fn → g uniformly on

[a, b]. Since each function fn is continuous on [a, b], and fn → g uniformly on [a, b], it follows
that g is continuous on [a, b], that is g ∈ C[a, b]. By the Sequential Characterization of
Closed Sets (Part 3 of Theorem 3.17), it follows that C[a, b] is closed in B[a, b].
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Limits and Continuity of Functions

3.23 Definition: Let (X, dX) and (Y, dY ) be metric spaces. Let A ⊆ X, let f : A → Y ,
let a ∈ A′, and let b ∈ Y . We say that the limit of f(x) as x tends to a is equal to b, and
we write lim

x→a
f(x) = b, when

∀ε>0 ∃δ>0 ∀x∈A
(
0 < dX(x, a) < δ =⇒ dY

(
f(x), b

)
< ε
)
.

3.24 Theorem: (The Sequential Characterization of Limits) Let X and Y be metric
spaces, let A ⊆ X, let f : A → Y , let a ∈ A′ ⊆ X, and let b ∈ Y . Then lim

x→a
f(x) = b if

and only if for every sequence (xn) in A \ {a} with xn → a we have lim
n→∞

f(xn) = b.

Proof: Suppose that lim
x→A

f(x) = b. Let (xn) be a sequence in A \ {a} with xn → a. Let

ε > 0. Since lim
x→a

f(x) = b we can choose δ > 0 such that 0 < d(x, a) < δ =⇒ d
(
f(x), b

)
< ε.

Since xn → a we can choose m ∈ Z+ such that n ≥ m =⇒ d(xn, a) < δ. For n ≥ m we
have d(xn, a) < δ and we have xn 6= a

(
since (xn) is a sequence in A \ {a}

)
, so that

0 < d(xn, a) < δ, and hence d
(
f(xn), b

)
< ε. Thus lim

n→∞
f(xn) = b, as required.

Suppose, conversely, that lim
x→a

f(x) 6= b. Choose ε > 0 such that for every δ > 0 there

exists x ∈ A such that 0 < d(x, a) < δ and d
(
f(x), b

)
≥ ε. For each n ∈ Z+, choose xn ∈ A

such that 0 < d(xn, a) < 1
n and d

(
f(xn), b

)
≥ ε. For each n, since 0 < d(xn, a) we have

xn 6= a so the sequence (xn) lies in A \ {a}. Since d(xn, a) < 1
n for all n ∈ Z+, it follows

that xn → a. Since d
(
f(xn), b

)
≥ ε for all n ∈ Z+, it follows that lim

n→∞
f(x) 6= b. Thus we

have found a sequence (xn) in A \ {a} with xn → a such that lim
n→∞

f(xn) 6= b.

3.25 Definition: Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y . For
a ∈ X, we say that f is continuous at a when for every ε > 0 there exists δ > 0 such that
for all x ∈ X, if dX(x, a) < δ then dY

(
f(x), f(a)

)
< ε. We say that f is continuous (on

X) when f is continuous at every point a ∈ X. We say that f is uniformly continuous
(on X) when for every ε > 0 there exists δ > 0 such that for all x, y ∈ X, if dX(x, y) < δ
then dY

(
f(x), f(y)

)
< ε. We say that f is Lipschitz continuous (on X) when there is

a constant ` ≥ 0, called a Lipschitz constant for f , such that for all x, y ∈ X we. have
d
(
f(x), f(y)

)
≤ ` · d(x, y). Note that if f is Lipschitz continuous then f is also uniformly

continuous (indeed we can take δ = ε
` in the definition of uniform continuity). A bijective

map f : X → Y such that both f and f−1 are continuous is called a homeomorphism.

3.26 Note: Let X and Y be metric spaces and let a ∈ X. If a is a limit point of X then
f is continuous at a if and only if lim

x→a
f(x) = f(a). If a is an isolated point of X then f

is necessarily continuous at a, vacuously.

3.27 Theorem: (The Sequential Characterization of Continuity) Let X and Y be metric
spaces using metrics dX and dY , let f : X → Y , and let a ∈ X. Then f is continuous at a
if and only if for every sequence (xn) in X with xn → a we have lim

n→∞
f(xn) = f(a).

Proof: The proof is left as an exercise.

3.28 Exercise: Let X, Y and Z be metric spaces, let f : X → Y , let g : Y → Z. Show
that if f is continuous at the point a ∈ X and g is continuous at the point f(a) ∈ Y then
the composite function g ◦ f is continuous at a.
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3.29 Theorem: (The Topological Characterization of Continuity) Let X and Y be metric
spaces and let f : X → Y . Then

(1) f is continuous (on X) if and only if f−1(V ) is open in X for every open set V in Y ,
(2) f is continuous (on X) if and only if f−1(C) is closed in X for every closed set C in Y .

Proof: To prove Part 1, suppose f is continuous in X. Let V be open in Y . Let a ∈ f−1(V )
and let f(a) ∈ V . Since V is open, we can choose ε > 0 such that B

(
f(a), ε

)
⊆ V . Since

f is continuous at a we can choose δ > 0 such that for all x ∈ X with d(x, a) < δ we have
d
(
f(x), f(a)

)
< ε. Then we have f

(
B(a, δ)

)
⊆ B

(
f(a), ε

)
⊆ V and so B(a, δ) ⊆ f−1(V ).

Thus f−1(V ) is open in X, as required.
Suppose, conversely, that f−1(V ) is open in X for every open set V in Y . Let a ∈ X

and let ε > 0. Taking V = B
(
f(a), ε

)
, which is open in Y , we see that f−1

(
B
(
f(a), ε

))
is open in X. Since a ∈ f−1

(
B(f(a), ε

)
and f−1

(
B
(
f(a), ε

))
is open in X, we can choose

δ > 0 such that B(a, δ) ⊆ f−1
(
B
(
f(a), ε

))
. Then we have f

(
B(a, δ)

)
⊆ B

(
f(a), ε

)
or, in

other words, for all x ∈ X, if d(x, a) < δ then d
(
f(x), f(a)

)
< ε. Thus f is continuous at

a hence, since a was arbitrary, f is continuous on X.
This completes the proof of Part 1, and Part 2 follows by taking complements since

for every set B ⊆ Y we have
(
f−1(B)

)c
= f−1(Bc). Indeed for all x ∈ A we have

x ∈
(
f−1(B)

)c ⇐⇒ x /∈ f−1(B) ⇐⇒ f(x) /∈ B ⇐⇒ f(x) ∈ Bc ⇐⇒ x ∈ f−1(Bc).

3.30 Definition: Let X and Y be topological spaces and let f : X → Y . We say that f
is continuous (on X) when f−1(V ) is open in X for every open set V in Y . A bijective
map f : X → Y such that both f and f−1 are continuous is called a homeomorphism.

3.31 Theorem: (Composition of Continuous Functions) Let X, Y and Z be metric spaces
(or topological spaces), let f : X → Y , and let g : Y → Z. If f and g are continuous then
the composite function g ◦ f : X → Z is continuous.

Proof: Let h = g ◦ f : X → Z. If W ⊆ Z is open in Z, then g−1(W ) is open in Y (since g
is continuous), hence h−1(W ) = f−1

(
g−1(W )

)
is open in X (since f is continuous). Thus

h is continuous, by Theorem 3.29 (or by Definition 3.30)

3.32 Example: Let A =
{

(x, y) ∈ R2
∣∣ y < x2

}
. Show that A is open in R2.

Solution: We remark that it is surprisingly difficult to show that A is open directly from
the definition of an open set (as mentioned in Remark 2.34). But we can make use of
the Topological Characterization of Continuity to give a quick proof. Define f : R2 → R
by f(x, y) = y − x2. Note that f is continuous (polynomial functions, and indeed all
elementary functions, are continuous) and we have A =

{
(x, y)

∣∣ f(x, y) < 0
}

= f−1(B)
where B is the open interval (−∞, 0). Since B is open in R and f is continuous, it follows
that A = f−1(B) is open in R2.

3.33 Example: Recall from Example 2.41 that every set U ⊆ C[a, b] which is open using
the metric d1 is also open using the metric d∞, but not vice versa. It follows (from Theorem
3.29) that the identity map I : C → C[a, b] given by I(f) = f is continuous as a map from
the metric space

(
C[a, b], d∞

)
to the metric space

(
C[a, b], d1

)
, but not vice versa.
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Continuity of Linear Maps

3.34 Note: If U and V are inner product spaces over F = R or C, and L : U → V is an
inner product space isomorphism, then L and its inverse preserve distance so they are both
continuous (we can take δ = ε in the definition of continuity), hence L is a homeomorphism.

If U and V are finite-dimensional inner product spaces with say dimU = n and
dimV = m, and if φ : Fn → U and ψ : Fm → V are inner product space isomorphisms
(obtained by choosing orthonormal bases for U and V ) then a map F : U → V is continuous
if and only if the composite map ψ−1Fφ : Fn → Fm is continuous. In particular, if F is
linear then F is continuous (since ψ−1Fφ : Fn → Fm is linear, hence continuous).

We shall see below (in Corollary 3.39) that the same is true for finite dimensional
normed linear spaces: every linear map between finite dimensional normed linear spaces is
continuous. But this is not always true (see Example 3.33) for infinite dimensional spaces.

3.35 Theorem: Let U and V be normed linear spaces over F = R or C and let F : U → V
be a linear map. Then the following are equivalent:

(1) F is Lipschitz continuous on U ,

(2) F is continuous at some point a ∈ U ,

(3) F is continuous at 0, and

(4) F
(
B(0, 1)

)
is bounded.

In this case, if m ≥ 0 with F
(
B(0, 1)

)
⊆ B(0,m) then m is a Lipschitz constant for F .

Proof: It is clear that if F is Lipschitz continuous on U then F is continuous at some point
a ∈ U (indeed F is continuous at every point a ∈ U). Let us show that if F is continuous
at some point a ∈ U then F is continuous at 0. Suppose that F is continuous at a ∈ U .
Let ε > 0. Since F is continuous at a ∈ U , we can choose δ1 > 0 such that for all u ∈ U we
have ‖u− a‖ ≤ δ1 =⇒

∣∣∣∣F (u)− F (a)
∣∣∣∣ ≤ 1. Choose δ = δ1ε. Let x ∈ U with ‖x− 0‖ < δ.

If x = 0 then
∣∣∣∣F (x) − F (0)

∣∣∣∣ = ‖0‖ = 0. Suppose that x 6= 0. Then for u = a + δ1x
‖x‖ we

have ‖u−a‖ =
∣∣∣∣ δ1x
‖x‖
∣∣∣∣ = δ1 and so

∣∣∣∣F (u−a)
∣∣∣∣ =

∣∣∣∣F (u)−F (a)
∣∣∣∣ ≤ 1, that is

∣∣∣∣F ( δ1x‖x‖)∣∣∣∣ ≤ 1

hence, by the linearity of F and the scaling property of the norm, we have∣∣∣∣F (x)− F (0)
∣∣∣∣ =

∣∣∣∣F (x)
∣∣∣∣ = ‖x‖

δ1

∣∣∣∣F ( δ1x‖x‖)∣∣∣∣ ≤ ‖x‖δ1 < δ1ε
δ1

= ε.

Thus F is continuous at 0, as required

Next we show that if F is continuous at 0 then F
(
B(0, 1)

)
is bounded. Suppose that

F is continuous at 0. Choose δ > 0 so that for all u ∈ U we have ‖u‖ ≤ δ =⇒ ‖F (u)‖ ≤ 1.
Let m = 1

δ . For x ∈ U , when x = 0 we have ‖F (x)‖ = 0 ≤ m and when 0 < ‖x‖ ≤ 1 we
have

‖F (x)‖ =
∣∣∣∣∣∣‖x‖δ F

(
δx
‖x‖
)∣∣∣∣∣∣ = ‖x‖

δ

∣∣∣∣∣∣F ( δx‖x‖)∣∣∣∣∣∣ ≤ ‖x‖δ = m‖x‖ ≤ m.

Thus F
(
B(0, 1)

)
is bounded, as required.

Finally we show that if F
(
B(0, 1)

)
is bounded then F is Lipschitz continuous. Suppose

that F
(
B(0, 1)

)
is bounded. Choose m > 0 so that ‖F (u)‖ ≤ m for all u ∈ U with ‖u‖ ≤ 1.

Let x, y ∈ U . If x = y then
∣∣∣∣F (x) − F (y)

∣∣∣∣ = 0. Suppose that x 6= y. Then we have∣∣∣∣ x−y
‖x−y‖

∣∣∣∣ = 1 so that
∣∣∣∣F ( x−y

‖x−y‖
)∣∣∣∣ ≤ m and so∣∣∣∣F (x)− F (y)

∣∣∣∣ =
∣∣∣∣F (x− y)

∣∣∣∣ = ‖x− y‖
∣∣∣∣F ( x−y

‖x−y‖
)∣∣∣∣ ≤ m‖x− y‖.

Thus F is Lipschitz continuous with Lipschitz constant m, as required.
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3.36 Example: Let F = R so C[a, b] =
(
C[a, b],R

)
. Define L :

(
C[a, b], d∞

)
→
(
C[a, b], d∞

)
by L(f)(x) =

∫ x

a

f(t) dt. Show that L is Lipschitz continuous.

Solution: Let f ∈ C[a, b] with ‖f‖∞ ≤ 1, that is with max
a≤x≤b

|f(x)| ≤ 1. Then

∣∣∣∣F (f)
∣∣∣∣
∞ = max

a≤x≤b

∣∣∣∣ ∫ x

a

f(t) dt

∣∣∣∣ ≤ max
a≤x≤b

∫ x

a

1 dt = max
a≤x≤b

|x− a| = |b− a|.

Thus F
(
B(0, 1)

)
is bounded and so F is uniformly continuous.

3.37 Example: Let F = R. Let C1[0, 1] be the set of continuously differentiable maps
f : [0, 1]→ R. Define D :

(
C1[0, 1], d∞

)
→
(
C[0, 1], d∞

)
by D(f) = f ′. Show that D is not

continuous.

Solution: For n ∈ Z+, define fn : [0, 1] → R by fn(x) = xn. Then fn ∈ C1[a, b], and
‖fn‖∞ = max

0≤x≤1
|xn| = 1 so that fn ∈ B(0, 1), and

∣∣∣∣D(fn)
∣∣∣∣
∞ = max

0≤x≤1

∣∣nxn−1∣∣ = n. Thus

D
(
B(0, 1)

)
is not bounded, so D is not continuous

(
at any point g ∈ C[0, 1]

)
.

3.38 Theorem: Let U be an n-dimensional normed linear space over F = R or C.
Let {u1, · · · , un} be any basis for U and let φ : Fn → U be the associated vector space

isomorphism given by φ(t) =
n∑
k=1

tkuk. Then both φ and φ−1 are Lipschitz continuous.

Proof: Let M =
( n∑
k=1

‖uk‖2
)1/2

. For t ∈ Fn we have

∣∣∣∣φ(t)
∣∣∣∣ =

∣∣∣∣∣∣ n∑
k=1

tkuk

∣∣∣∣∣∣ ≤ n∑
k=1

|tk| ‖uk‖ , by the Triangle Inequality,

≤
( n∑
k=1

|tk|2
)1/2( n∑

k=1

‖uk‖2
)1/2

, by the Cauchy-Schwarz Inequality,

= M‖t‖.

For all s, t ∈ Fn,
∣∣∣∣φ(s)− φ(t)

∣∣∣∣ =
∣∣∣∣φ(s− t)

∣∣∣∣ ≤M ‖s− t‖, so φ is Lipschitz continuous.

Note that the map N : U → R given by N(x) = ‖x‖ is (uniformly) continuous, indeed
we can take δ = ε in the definition of continuity. Since φ and N are both continuous, so is
the composite G = N ◦ φ : Fn → R, which given by G(t) =

∣∣∣∣φ(t)
∣∣∣∣. By the Extreme Value

Theorem, the map G attains its minimum value on the unit sphere
{
t ∈ Fn

∣∣‖t‖ = 1
}

,

which is compact. Let m = min
‖t‖=1

G(t) = min
‖t‖=1

∣∣∣∣φ(t)
∣∣∣∣. Note that m > 0 because when

t 6= 0 we have φ(t) 6= 0 (since φ is a bijective linear map) and hence ‖φ(t)‖ 6= 0. For t ∈ Fn,
if ‖t‖ > 1 then we have

∣∣∣∣ t
‖t‖
∣∣∣∣ = 1 so, by the choice of m,∣∣∣∣φ(t)
∣∣∣∣ = ‖t‖

∣∣∣∣∣∣φ( t
‖t‖
)∣∣∣∣∣∣ ≥ ‖t‖ ·m > m.

It follows that for all t ∈ Fn, if
∣∣∣∣φ(t)

∣∣∣∣ ≤ m then ‖t‖ ≤ 1. Since φ is bijective, it follows

that for x ∈ U , if ‖x‖ ≤ m then
∣∣∣∣φ−1(x)

∣∣∣∣ ≤ 1. Thus for all x ∈ U , if x = 0 then

‖φ−1(x)‖ = 0 = ‖x‖
m and if x 6= 0 then since

∣∣∣∣mx
‖x‖
∣∣∣∣ = m we have∣∣∣∣φ−1(x)

∣∣∣∣ = ‖x‖
m

∣∣∣∣φ−1(mx‖x‖)∣∣∣∣ ≤ ‖x‖m .

For all x, y ∈ U , we have
∣∣∣∣φ−1(x) − φ−1(y)

∣∣∣∣ =
∣∣∣∣φ−1(x − y)

∣∣∣∣ ≤ 1
m ‖x − y‖, so φ−1 is

Lipschitz continuous.
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3.39 Corollary: When U and V are finite-dimensional normed linear spaces, every linear
map F : U → V is Lipschitz continuous.

Proof: Let U and V be finite-dimensional vector spaces over F = R or C and let F : U → V
be linear. Let {u1, · · · , un} and {v1, · · · , vm} be bases for U and V , and let φ : Fn → U

and ψ : Fm → V be the isomorphisms given by φ(t) =
n∑
k=1

tkuk and ψ(s) =
m∑
k=1

skvk.

Since ψ−1 and φ are both linear, the composite G = ψ−1Fφ : Fn → Fm is linear, hence
continuous (linear maps from Fn to Fm, using the standard metric, are continuous). By
the above theorem, we know that ψ and φ−1 are continuous, and so the composite map
F = ψGφ−1 is continuous, hence also Lipschitz continuous, by Theorem 3.35.

3.40 Corollary: Any two norms on a finite-dimensional vector space U induce the same
topology on U .

Proof: Let U have two norms ‖ ‖1 and ‖ ‖2, inducing two metrics d1 and d2, determining
two topologies on U . Let I : (U, d1) → (U, d2) be the identity map (given by I(x) = x),
and let J = I−1 : (U, d2)→ (U, d1) (so J is also the identity map). By the above corollary,
I and J are continuous. Let A ⊆ U . If A is open in (U, d1) then, since J is continuous,
J−1(A) is open in (U, d2), but J−1(A) = I(A) = A and so A is open in (U, d2). Similarly,
if A is open in (U, d2) then A = J(A) = I−1(A) is open in (U, d1).

3.41 Corollary: Let U be a finite-dimensional vector space. Let ‖ ‖1 and ‖ ‖2 be two
norms on U inducing the two metric d1 and d2 on U . Let (xn)n≥1 be a sequence in U , and
let a ∈ U . Then xn → a in (U, d1) if and only if xn → a in (U, d2).

Proof: Let I : (U, d1)→ (U, d2) be the identity map (given by I(x) = x). By Corollary 3.38,
I is Lipschitz continuous. Let ` ≥ 0 be a Lipschitz constant for I. Suppose that xn → a in
(U, d1). Let ε > 0. Choose m ∈ Z+ such that when n ≥ m we have d1(xn, a) < ε

`+1 . Then

when n ≥ m we have d2(xn, a) = d2
(
I(xn), I(a)

)
≤ ` ·d1(xn, a) < ` · ε

`+1 < ε. Thus xn → a
in (U, d2). Similarly, since the identity map J : (U, d2) → (U, d1) is Lipschitz continuous,
it follows that if xn → a in (U, d2) then xn → a in (U, d1). We remark that I and J might
have different Lipschitz constants (even though I and J are both the identity map from U
to itself).
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