Chapter 3. Limits and Continuity

Limits of Sequences

3.1 Definition: Let r € Z and let (z,),>, be a sequence in a metric space X. We say
that the sequence (z,),>, is bounded when the set {z,},>, is bounded, that is when
there exists a € X and R > 0 such that z,, € B(a, R) for all indices n > r.

For a € X, we say that the sequence (z,),>, converges to a (or that the limit of

Z, is equal to a) and we write lim z, = a (or we write x,, — a) when
n—oo

Ve>0 ImeZs>, VnEZZT(n >m = d(xp,a) < e).

We say that the sequence (z,),>, converges (in X) when it converges to some point
a € X, and otherwise we say that (z,),>, diverges (in X).

3.2 Theorem: (Basic Properties of Limits of Sequences) Let (x,,)n>, be a sequence in a
metric space X, and let a € X.

(1) If (x,)n>r converges then its limit is unique.
(2) If s > r and y, = m, for all n > s, then (xy,),>, converges if and only if (yn)n>s

converges and, in this case, lim y, = lim x,.
n—oo n— o0

(3) If (zy,, )k>s Is a subsequence of (x,)n>r, and nh_)ngo x, = a, then klg{)lo T, = G.

(4) If (xy,)n>r converges then it is bounded.
(5) We have lim x,, = a in X if and only if lim d(z,,a) =0 in R.
n—oo n—oo

Proof: We prove Parts 1, 4 and 5 and leave the proofs of the other parts as an exercise.
To prove Part 1, suppose that z,, - a in X and z,, — b in X. We need to show that
a = b. Suppose, for a contradiction, that a # b, and note that d(a,b) > 0. Since z,, — a

and x,, — b, we can choose m € Z>, such that when n > m we have d(z,,a) < d(aTb), and

d(xn,b) < w. Then we have d(a,b) < d(a,z;,) + d(xm,b) < @ + @ = d(a,b),
giving the desired contradiction.

To prove Part 4, suppose that (x,,),>, converges, say x,, — a in X. Choose m € Z>,
such that when n > m we have d(z,,a) < 1. Then for all n € Z>, we have d(z,,a) < R
where R = max {d(z,,a),d(z;41,a), -, d(xm_1,a),1} so that z, € B(a, R+1).

To prove Part 5, note that since d(z,,a) > 0 we have d(x,,a) = ‘d(xn, a)— 0‘ and so

lim 2, =ain X <= Ve>03ImeZs>, Vn€Zs>, d(x,,a) <e€

n— o0

<= Ve>0IMEL>, VnE€L>, ‘d(:cn,a) — 0‘ <e€
<= lim d(z,,a) =01in R.

n—oo

3.3 Note: Because of Part 2 of the above theorem, the initial index r of a sequence
(25 )n>r does not effect whether or not the sequence converges and it does not effect the
limit. For this reason, we often omit the initial index r from our notation and write (z,,)
for the sequence (z,,)n>,. Also, we often choose a specific value of r, usually » = 1, in the
statements or the proofs of various theorems with the understanding that any other initial
value would work just as well.



3.4 Theorem: (Components of Sequences in F™) Let F = R or C. Let (x,),>1 be a
sequence in F™, say x, = (l‘n’l,%n’Q, e 7$n,m) € ™, and let a = (a1,az2, -, a,,) € F™.

Then using any of the metrics dy, ds or do in F™, we have lim x,, = a in F™ if and only
n—oo

if lim x, = ay in F for all indices k with 1 <k < m.

n—oo
Proof: Let p =1, 2 or co. Suppose lim z, =ain (F™,d,). Let 1 <k < m and let € > 0.
n—oo

Choose ¢ € Z" such that when n > ¢ we have d,(z,,a) < €, that is ||z,, — a||, < e. Then
when n > ¢ we have

m 1/p
one = el = (e = ) 7 < (2 fons = asl?) =l —ally <.

and so z,,  — ax in F, as required.

Suppose, conversely, that for all £ with 1 <k < m we have lim z, ; = a; in F. Let

n—oo

e > 0. Choose ¢ € Z* such that for all n > ¢ we have |Tp e — ak| < = for1 <k <m.
Then, letting ej denote the k*" standard basis vector in F™, when n > ¢ we have

oo —ally = || & @~ av)er] < 3 @ns —an)ea],
k=1

m m
= 5" Janp = axl ferllp = 3 fos —ai] < 3 5 =
k=1 k=1

so that z,, — a in F™ as required.

3.5 Note: When (z,),>1 is a sequence in F>, {1, ¢5 or ¢, each term z, is itself a
sequence (so that (z,) is a sequence of sequences) and we can write x,, = (p x)k>1. We
have sequences x1 = (11,212, "), 2 = (T21,%22,T23,---), and xz3 = (31,232, ")
and so on. This is not the same thing as a subsequence of a sequence (z,,) in F, which is
a single sequence (T, )k>1 = (Tnys Tng, Tngs =+ *)-

3.6 Theorem: (Components of Sequences in €p). Let F =R or C and let p =1, 2 or co.
Let (zy,)n>1 be a sequence in 0, say =, = (Tnk)k>1 € {p, and let a = (ax)k>1 € £p. If
lim x,, =a in ({p,d,) then lim x, ; =ay inF for all k € Z*.

n—oo

n—oo

Proof: The proof is the same as the first half of the proof of Theorem 3.4. Suppose that
lim x, =ain ({,,d,). Let k € Z* and let € > 0. Choose m € Z* such that when n > m

n—oo
we have ||z, — a||, < e. Then when n > m we have

e — al = (|2ns — anl?) " ( > fons = ai?) " = o —all, < e

and so x, ; — ar in F, as required.

3.7 Note: Unlike the case in F™, in the infinite-dimensional spaces ¢,, when x,,  — ax
in IF for all indices k, it does not necessarily follow that x,, — a in (¢,,d,). For example,
you can verify, as an exercise, that when z,, = e,, (the n*® standard basis vector in F>),
we have lim x,, =0 in F for all k € ZT, but hm zn, # 0 1in (¢p,dy) for p=1,2,3.

n—oo

NE

3.8 Exercise: For each n € Z™, let z,, € R*® be the sequence given by z, = % ek,
k=1
that is by ,, = (Znk)k>1 = (%, %, cee 711,0 0,0, - ) with n non-zero terms. Show that

(x,,) converges in (R, ds) but diverges in (R, dl).



3.9 Definition: Let A be a set, let X be a metric space, and let f,,,g: A — X. We say
that the sequence (f,) converges pointwise to g on A, and we write f,, — g pointwise
on A, when

Ve € AVe>03ImeZ" VneZt (n>m = d(fn(z),g(x)) <e).

We say that the sequence (f,) converges uniformly to g on A, and we write f, — ¢
uniformly on A, when

Ve>0ImeZt VneZt Vze A (n>m = d(fu(z), g(z)) < €).

3.10 Remark: In the definition of the limit of a sequence in a metric space X (Definition
3.1), we can replace the strict inequality d(z,,a) < € by the inequality d(z,,a) < e without
changing the meaning. In other words, for a sequence (z,),>, in X and an element a € X
we have

lim z, =ain X <= Ve>0 EImEZZanEZZP(n >m = d(zn,a) < 6).

n—oo

The same holds for various other definitions, such as the defiinition of uniform convergence.
3.11 Remark: Note that for h € Bla,b] and r > 0, we have
[hlloo <7 <= sup {|h(z)||a<z<b} <7 < |h(z)| <7 for all z € [a,b)].

We also remark that we would not have equivalence if we replaced < r by < r, as we only
have a one way implication: if |h(z)| < r for all z € [a,b] then sup {|h(z)||a<z<b} <.

3.12 Theorem: (Limits in Bla,b] and Uniform Convergence) Let (f,)n>1 be a sequence
in Bla,b], and let g € Bla,b]. Then f,, — g in (B[a, b], doo) if and only if f, — ¢ uniformly
on [a,b].

Proof: This follows immediately from the definition of uniform convergence and from the
two preceding remarks. Indeed we have

fn = g in Bla,b] <= VYe>03ImeZ" VneZ' (n>m = | fo — gllec <€)
< Ve>03ImeZ" VneZt (n > m = |fu(z) — g(x)| < € for all z € [a, b))
< f, — ¢ uniformly on [a, b].

3.13 Remark: For a metric space X whose elements are functions, such as Bla,b] or
Cla, b], a sequence in X is a sequence of functions, so we can consider several different no-
tions of convergence for sequences of functions, including pointwise convergence, uniform
convergence, and convergence in the metric space. The above theorem shows that conver-
gence in the metric space Bla,b] (hence also in Cla,b]) using the supremum metric do,
is the same thing as uniform convergence. One might ask whether convergence in Cla, b
using the metrics d; or dy implies, or is implied by, pointwise convergence. The answer is
negative, as the following exercises illustrate.

3.14 Exercise: Define f,, : [0,1] = R by f,(z) =1—nz for 0 <z < % and f,(x) =0 for
% < z < 1. Show that f,, — 0 in C[0, 1] using either of the metrics dy or ds, but f, 4 0
pointwise on [0, 1].

3.15 Exercise: Define f,, : [0,1] = R by f.(z) = n?z—n32? for 0 < x < % and f,(x) =0
for L <z <1. Show that f, — 0 pointwise on [0, 1] but f, # 0 in C[0, 1] using either of
the metrics d; or ds.

3.16 Exercise: Define f,, : [0,1] — R by f,(x) = v/nz™. Show that (f,)n>1 converges in
(C[0,1],d1) but diverges in (C[0,1],d2).



Limits and Closed Sets

3.17 Theorem: (The Sequential Characterization of Limit Points and Closed Sets) Let
X be a metric space, let a € X, and let A C X.

(1) a € A’ if and only if there exists a sequence (z,,) in A\ {a} with lim x,, =a in X.
n—oo
(2) a € A if and only if there exists a sequence (x,) in A with lim z, = a in X.
n—oo

(3) A is closed in X if and only if for every sequence (x,) in A which converges in X, we

have lim =z, € A.
n— oo

Proof: We prove Parts 1 and 3 and leave the proof of Part 2 as an exercise. Suppose that
a € A’ (which means that for every r > 0 we have B*(a,r) N A # ()). For each n € Z*,
choose z,, € B*(a, -) N A, that is choose z,, € A\ {a} with d(z,,a) < +. Then (z,),>1
is a sequence in A\ {a} with nh_)rr;o Ty = a.

Suppose, conversely, that (x,),>1 is a sequence in A \ {a} with lim z, = a. Let
- n— oo

r > 0. Choose m € Z* such that d(x,,a) < r for all n > m. Since z,, € A\ {a} with
d(xm,a) < r, we have x,, € B*(a,r) N A and so B*(a,r) N A # (). This proves Part 1.

To prove Part 3, suppose that A is closed in X. Let (x,),>1 be a sequence in A which

converges in X, and let a = lim z, € X. Suppose, for a contradiction, that a ¢ A. Since
n—oo

a ¢ A wehave A= A\ {a} soin fact (x,,) is a sequence in A\ {a}. Since (z,) is a sequence
in A\ {a} with lim z, = a, it follows from Part 1 that a € A’. Since A is closed we have
n—oo

A’ C A and so a € A giving the desired contradiction.
Suppose, conversely, that for every sequence in A which converges in X, the limit of
the sequence lies in A. Let a € A’. By Part 1, we can choose a sequence (z,) in A\ {a}

with lim x, = a. Then (z,) is a sequence in A which converges in X, so its limit lies in
n—oo

A, that is a € A. Since a € A’ was arbitrary, this shows that A’ C A, and so A is closed.
This proves Part 3.

3.18 Example: Let U be a normed linear space, let a € U and let » > 0. Show that

B(a,r) = B(a,r) (so the closed ball is equal to the closure of the open ball).

Solution: We saw, in Example 2.32, that B(a,r) is closed. Since B(a,r) is closed and
B(a,r) C B(a,r), it follows that B(a,r) C B(a,r). Let b € B(a,r), that is let b € U with
|b—al| <r. If ||b—al|| <r then we have b € B(a,r) C B(a,r). Suppose that ||b — al| = r.
For n € Z*, let x, =a+ (1 — 1)(b—a) € U. Note that

lzn —all = |1 = 5)0-a)[| = (A= F)b—all = (1-3)r<r
so that x,, € B(a,r). Note that

lzn = bl = [|5(a = b)] = Zlla=b] = - 0in R

so that we have x,, — b in U (by Part 6 of Theorem 3.2). Since (z,) is a sequence in
B(a,r) with x,, — b in U, it follows that b € B(a,r) by Part 2 of the above theorem.

3.19 Example: In the previous example, it might have seemed intuitively obvious that

B(a,r) = B(a,r), but in fact this is not true in all metric spaces. For example in Z

(using the same standard metric used in R) we have B(0,1) = {0} and B(0,1) = {0}, but

B(0,1) = {-1,0,1}.



3.20 Exercise: Let F = R or C. Recall that F*° C /1 C ¢35 C ¢.,. Determine whether
F*° is closed in (¢1,d;). Determine which of the spaces F* and ¢; is closed in ({3,ds).
Determine which of the spaces F*°, ¢; and /5 is closed in ({0, doo)

3.21 Exercise: Let F =R and let
Rla,b] = {f € Bla,b]| f is Riemann integrable },
Pla,b] = {f € Bla,b] | f is a polynomial },
C'la,b] = {f € Bla,b] | f is continuously differentiable}.
Note that
Pla,b] € C'la,b] C Cla,b] C Rla,b] C Bla,b].

Determine which of the above spaces are closed in the metric space B[a,b|, using the
supremum metric do, (we deal with the space Cla,b] in the following example).

3.22 Example: Let F = R. Show that Cla,b] is closed in the metric space (B[a, b], doo).

Solution: Let (f,,) be a sequence in C|a, b] which converges in the metric space (B[a, b], doo).

Let g = lim f, in (B[a, b],doo). By Theorem 3.12, we know that f,, — ¢ uniformly on
n—oo

[a, b]. Since each function f,, is continuous on [a, b], and f,, — ¢ uniformly on [a, b], it follows
that g is continuous on [a,b], that is g € C[a,b]. By the Sequential Characterization of
Closed Sets (Part 3 of Theorem 3.17), it follows that C[a, ] is closed in Bla, b].



Limits and Continuity of Functions

3.23 Definition: Let (X,dx) and (Y,dy) be metric spaces. Let A C X let f: A=Y,
let a € A’ and let b € Y. We say that the limit of f(x) as x tends to a is equal to b, and

we write lim f(z) = b, when
Tr—a

Ve>036>0VeeA (0 <dx(z,a) <d = dy(f(x),b) <e).

3.24 Theorem: (The Sequential Characterization of Limits) Let X and Y be metric
spaces, let AC X, let f: A—Y,letac A C X, and let b € Y. Then lim f(x) = b if

Tr—a
and only if for every sequence (z,) in A\ {a} with z,, — a we have lim f(x,)="0.
n—oo

Proof: Suppose that J};rri‘ f(xz) =0b. Let (x,) be a sequence in A\ {a} with z,, — a. Let
€ > 0. Since lim f(z) = b we can choose § > 0 such that 0 < d(z,a) < § = d(f(z),b) < e.
Since z,, — Z—)vxcfbe can choose m € Z* such that n > m = d(z,,a) < §. For n > m we
have d(zn,a) < § and we have z, # a (since (z,) is a sequence in A\ {a}), so that
0 < d(zn,a) < 4, and hence d(f(z,),b) < e. Thus nh_)n;o f(zn) = b, as required.

Suppose, conversely, that :ll_% f(x) # b. Choose € > 0 such that for every § > 0 there

exists z € A such that 0 < d(z,a) < § and d(f(z),b) > €. For each n € Z*, choose z,, € A
such that 0 < d(zn,a) <  and d(f(z,),b) > e. For each n, since 0 < d(z,,,a) we have
Tn, # a so the sequence (z,,) lies in A\ {a}. Since d(z,,a) < L for all n € ZT, it follows
that z,, — a. Since d(f(zy),b) > € for all n € Z*, it follows that nl;ngo f(x) #b. Thus we

have found a sequence (z,) in A\ {a} with x,, — a such that lim f(z,) # b.
n—oo

3.25 Definition: Let (X,dx) and (Y,dy) be metric spaces, and let f : X — Y. For
a € X, we say that f is continuous at a when for every € > 0 there exists 6 > 0 such that
for all x € X, if dx(z,a) < 0 then dy (f(:z;), f(a)) < e. We say that f is continuous (on
X) when f is continuous at every point a € X. We say that f is uniformly continuous
(on X) when for every € > 0 there exists 6 > 0 such that for all z,y € X, if dx(x,y) <9
then dy (f(z), f(y)) < e. We say that f is Lipschitz continuous (on X) when there is
a constant £ > 0, called a Lipschitz constant for f, such that for all x,y € X we. have
d( flx), f (y)) < /¢ -d(z,y). Note that if f is Lipschitz continuous then f is also uniformly
continuous (indeed we can take 6 = < in the definition of uniform continuity). A bijective
map f: X — Y such that both f and f~! are continuous is called a homeomorphism.

3.26 Note: Let X and Y be metric spaces and let a € X. If a is a limit point of X then

f is continuous at a if and only if lim f(x) = f(a). If a is an isolated point of X then f
Tr—ra

is necessarily continuous at a, vacuously.

3.27 Theorem: (The Sequential Characterization of Continuity) Let X and Y be metric

spaces using metrics dx and dy, let f : X — Y, and let a € X. Then f is continuous at a
if and only if for every sequence (x,,) in X with x, — a we have lim f(x,)= f(a).
n—oo

Proof: The proof is left as an exercise.

3.28 Exercise: Let X, Y and Z be metric spaces, let f : X — Y let g: Y — Z. Show
that if f is continuous at the point a € X and g is continuous at the point f(a) € Y then
the composite function g o f is continuous at a.



3.29 Theorem: (The Topological Characterization of Continuity) Let X and Y be metric
spaces and let f : X — Y. Then

(1) f is continuous (on X) if and only if f~Y(V') is open in X for every open set V inY,
(2) f is continuous (on X ) if and only if f=1(C) is closed in X for every closed set C in Y.

Proof: To prove Part 1, suppose f is continuous in X. Let V beopenin Y. Let a € f~1(V)
and let f(a) € V. Since V is open, we can choose € > 0 such that B(f(a),e) C V. Since
f is continuous at a we can choose > 0 such that for all z € X with d(z,a) < § we have
d(f(z), f(a)) < e. Then we have f(B(a,6)) C B(f(a),e) CV and so B(a,d) C f~1(V).
Thus f~1(V) is open in X, as required.

Suppose, conversely, that f~1(V) is open in X for every open set V in Y. Let a € X
and let € > 0. Taking V = B(f(a),e), which is open in Y, we see that f_l(B(f(a),e))
is open in X. Since a € f~(B(f(a),€) and f~'(B(f(a),€)) is open in X, we can choose
§ > 0 such that B(a,0) C f~*(B(f(a),€)). Then we have f(B(a,d)) C B(f(a),e) or, in
other words, for all z € X, if d(z,a) < § then d(f(z), f(a)) < e. Thus f is continuous at
a hence, since a was arbitrary, f is continuous on X.

This completes the proof of Part 1, and Part 2 follows by taking complements since
for every set B C Y we have (ffl(B))c = f~Y(B°). Indeed for all z € A we have

ze(f1(B)" <= ¢ f1(B) & flr)¢B < f(zv)€B° < zc f}(B).

3.30 Definition: Let X and Y be topological spaces and let f : X — Y. We say that f
is continuous (on X) when f~1(V) is open in X for every open set V in Y. A bijective
map f: X — Y such that both f and f~! are continuous is called a homeomorphism.

3.31 Theorem: (Composition of Continuous Functions) Let X, Y and Z be metric spaces
(or topological spaces), let f: X — Y, andlet g:Y — Z. If f and g are continuous then
the composite function go f : X — Z is continuous.

Proof: Let h=go f: X — Z. If W C Z is open in Z, then g~*(W) is open in Y (since g
is continuous), hence h=*(W) = f~!(g~*(W)) is open in X (since f is continuous). Thus
h is continuous, by Theorem 3.29 (or by Definition 3.30)

3.32 Example: Let A = {(x,y) € R? ‘ y < CL’Q}. Show that A is open in R?.

Solution: We remark that it is surprisingly difficult to show that A is open directly from
the definition of an open set (as mentioned in Remark 2.34). But we can make use of
the Topological Characterization of Continuity to give a quick proof. Define f : R? — R
by f(z,y) = y — 2%2. Note that f is continuous (polynomial functions, and indeed all
elementary functions, are continuous) and we have A = {(z,y)| f(z,y) < 0} = f~1(B)
where B is the open interval (—o0,0). Since B is open in R and f is continuous, it follows
that A = f~(B) is open in R2.

3.33 Example: Recall from Example 2.41 that every set U C Cla, b] which is open using
the metric d; is also open using the metric d, but not vice versa. It follows (from Theorem
3.29) that the identity map I : C — Cla, b] given by I(f) = f is continuous as a map from
the metric space (C [a, b], doo) to the metric space (C [a, b], dl), but not vice versa.



Continuity of Linear Maps

3.34 Note: If U and V are inner product spaces over F =R or C, and L : U — V is an
inner product space isomorphism, then L and its inverse preserve distance so they are both
continuous (we can take & = € in the definition of continuity), hence L is a homeomorphism.

If U and V are finite-dimensional inner product spaces with say dimU = n and
dimV = m, and if ¢ : F* — U and ¢ : F™ — V are inner product space isomorphisms
(obtained by choosing orthonormal bases for U and V') then amap F : U — V is continuous
if and only if the composite map 1~ 'F¢ : F* — F™ is continuous. In particular, if F is
linear then F is continuous (since ¢ ~'F'¢ : F* — F™ is linear, hence continuous).

We shall see below (in Corollary 3.39) that the same is true for finite dimensional
normed linear spaces: every linear map between finite dimensional normed linear spaces is
continuous. But this is not always true (see Example 3.33) for infinite dimensional spaces.

3.35 Theorem: Let U and V' be normed linear spaces over F =R or C and let F : U — V
be a linear map. Then the following are equivalent:

(1) F is Lipschitz continuous on U,

(2) F is continuous at some point a € U,
(3) F is continuous at 0, and

(4) F(B(0,1)) is bounded.

In this case, if m > 0 with F(B(0,1)) C B(0,m) then m is a Lipschitz constant for F.

Proof: It is clear that if F' is Lipschitz continuous on U then F' is continuous at some point
a € U (indeed F' is continuous at every point a € U). Let us show that if F' is continuous
at some point a € U then F' is continuous at 0. Suppose that F' is continuous at a € U.
Let € > 0. Since F'is continuous at a € U, we can choose d; > 0 such that for all u € U we

have ||u —a| < 6 = HF (a)|| < 1. Choose § = d1e. Let « € U with ||z — OH < 6.
If z = 0 then ||F(z) - H = HO|| = 0. Suppose that z 7& 0. Then for u = a + § ‘T‘ we
have ||lu—al| = Hﬁ;—ﬁ” = 51 and so ||F(u—a)|| = ||F(v) — F(a)|| <1, that is HF(ﬁ”ﬁ)H <1

hence, by the linearity of F' and the scaling property of the norm, we have

7 - FO) = [ F@)] = B ()] < 15 < 4 =

Thus F' is continuous at 0, as required
Next we show that if F' is continuous at 0 then F' (E(O, 1)) is bounded. Suppose that
F is continuous at 0. Choose 6 > 0 so that for all u € U we have ||u|| <6 = [|[F(u)|| < 1.

Let m = }. For « € U, when z = 0 we have ||[F(z)|| =0 < m and when 0 < |[z]| <1 we

have

|F ()] = | =L
Thus F(B(0,1)) is bounded, as required.

Finally we show that if F’ ( B(0, 1)) is bounded then F is Lipschitz continuous. Suppose
that F( B(0,1)) is bounded. Choose m > 0 so that ||F(u)|| < m for allu € U with [|u|| < 1.
Let z,y € U. If x = y then HF(:I;) — F(y)H = 0. Suppose that x # y. Then we have
‘ =1 so that HF(Hw y”)H < m and so

5L ()

i)

: ‘ < l=ll — m|z| < m.

H\Iw yll
|1F@) ~F@)| = [|F@ =l = |z~ F (=)l < mile —y].

Thus F'is Lipschitz continuous with Lipschitz constant m, as required.

8



3.36 Example: Let F = R so Cla,b] = (C[a,b],R). Define L : (Cla,b],dss) — (Cla, b], doo)
by L(f)(z) = / f(t)dt. Show that L is Lipschitz continuous.

Solution: Let f € Cla,b] with ||f||., < 1, that is with max, |f(x)] <1. Then

T

|17(f)

|l = max
o0 a<z<b

x
f(t)dt‘ < max/ 1dt = max |z —a|=1|b—al.
<z<b J, a<x<b

Thus F( B(0,1)) is bounded and so F is uniformly continuous.

3.37 Example: Let F = R. Let C'[0,1] be the set of continuously differentiable maps
f:[0,1] = R. Define D : (C*[0,1],dos) — (C[0,1],dso) by D(f) = f’. Show that D is not
continuous.

Solution: For n € Z*, define f, : [0,1] — R by f,(z) = 2. Then f, € Cl[a,b], and

| frll oo —Orga§1|xn| = 1 so that f, € B(0,1), and HD (fn) H = glax Ina™~ 1| = n. Thus

D('B(0,1)) is not bounded, so D is not continuous (at any point g € C[0,1]).

3.38 Theorem: Let U be an n-dimensional normed linear space over F = R or C.
Let {uy,---,u,} be any basis for U and let ¢ : F* — U be the associated vector space
n

isomorphism given by ¢(t) = > tpug. Then both ¢ and ¢! are Lipschitz continuous.
k=1

n 1/2
Proof: Let M = ( Z Huk|\2> . For t € F™ we have

ot H—HZtkukH > [te] Jlul , by the Triangle Inequality,

k=1
n 1/2
< ( > |tk > ( 21 ||uk||2> , by the Cauchy-Schwarz Inequality,

k=1
= MJ¢].

For all s5,t € F", ||¢(s) — ¢(t)|| = ||¢(s — ¢)|| < M ||s — ¢]|, so ¢ is Lipschitz continuous.

Note that the map N : U — R given by N(z) = ||z|| is (uniformly) continuous, indeed
we can take § = € in the definition of continuity. Since ¢ and N are both continuous, so is

the composite G = N o ¢ : F” — R, which given by G(t) = Hgb H By the Extreme Value
Theorem, the map G attains its minimum value on the unit sphere {¢t € F"|[|t| = 1},
which is compact. Let m = min G(t) = min H¢ H Note that m > 0 because when

||t\| 1 litll=
t # 0 we have ¢(t) # 0 (since ¢ is a bijective hnear map) and hence [|¢(t)|| # 0. For t € F",
if ||t]| > 1 then we have HH’;—”H = 1 so, by the choice of m,

lo@l = el ()| = et m > m.

It follows that for all ¢ € F", if ||¢(t)|| < m then ||t < 1. Since ¢ is bijective, it follows
that for € U, if ||z|| < m then ||¢~*(x)|| < 1. Thus for all z € U, if 2 = 0 then

o~ (z)]|=0= % and if  # 0 then since Hﬁ“ = m we have
|67 (@) = |7 o~ (5l < L=,
For all z,y € U, we have Hgb‘l(x — ¢y H = Hqﬁ (x — y)H < % |z — yl|, so ¢~ is

Lipschitz continuous.



3.39 Corollary: When U and V are finite-dimensional normed linear spaces, every linear
map F : U — V is Lipschitz continuous.

Proof: Let U and V' be finite-dimensional vector spaces over F = Ror Candlet F: U — V
be linear. Let {ui,---,u,} and {v1, -, vy} be bases for U and V, and let ¢ : F" — U
n m
and ¢ : F™ — V be the isomorphisms given by ¢(t) = > tpug and ¥(s) = > spvk.
k=1 k=1
Since 1! and ¢ are both linear, the composite G = )" 'F¢ : F* — F™ is linear, hence
continuous (linear maps from F” to F™, using the standard metric, are continuous). By
the above theorem, we know that v/ and ¢! are continuous, and so the composite map
F =1 G¢~! is continuous, hence also Lipschitz continuous, by Theorem 3.35.

3.40 Corollary: Any two norms on a finite-dimensional vector space U induce the same
topology on U.

Proof: Let U have two norms || ||; and || ||2, inducing two metrics dy and ds, determining
two topologies on U. Let I : (U,d1) — (U, ds) be the identity map (given by I(z) = z),
and let J =171 : (U,dy) — (U,dy) (so J is also the identity map). By the above corollary,
I and J are continuous. Let A C U. If A is open in (U,d;) then, since J is continuous,
J7Y(A) is open in (U,ds), but J~*(A) = I(A) = A and so A is open in (U,ds). Similarly,
if A is open in (U,dy) then A = J(A) = I71(A) is open in (U, d;).

3.41 Corollary: Let U be a finite-dimensional vector space. Let || || and || |2 be two
norms on U inducing the two metric dq and de on U. Let (z,,),>1 be a sequence in U, and
let a € U. Then x, — a in (U,dy) if and only if x,, — a in (U, ds).

Proof: Let I : (U,dy) — (U, d2) be the identity map (given by I(x) = z). By Corollary 3.38,
I is Lipschitz continuous. Let ¢ > 0 be a Lipschitz constant for I. Suppose that x,, — a in
(U,d1). Let € > 0. Choose m € Z" such that when n > m we have di(,,,a) < zf7. Then

when n > m we have da(xp, a) = do(I(zy,), 1(a)) < L-di(zy,a) < - 71 <¢ Thusz, —a
in (U,d3). Similarly, since the identity map J : (U,d2) — (U, d;) is Lipschitz continuous,
it follows that if ,, — a in (U, d2) then x,, — a in (U,d;). We remark that I and J might
have different Lipschitz constants (even though I and J are both the identity map from U

to itself).
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