
Chapter 2. Metric Spaces

Inner Product Spaces

2.1 Definition: Let F = R or C. Let U be a vector space over F. An inner product on
U (over F) is a function 〈 , 〉 : U × U → F (meaning that if u, v ∈ U then 〈u, v〉 ∈ F) such
that for all u, v, w ∈ U and all t ∈ F we have

(1) (Sesquilinearity) 〈u + v, w〉 = 〈u,w〉+ 〈v, w〉 , 〈tu, v〉 = t 〈u, v〉,
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 , 〈u, tv〉 = t 〈u, v〉,

(2) (Conjugate Symmetry) 〈u, v〉 = 〈v, u〉, and
(3) (Positive Definiteness) 〈u, u〉 ∈ R with 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇐⇒ u = 0.

For u, v ∈ U , 〈u, v〉 is called the inner product of u with v. We say that u and v are
orthogonal when 〈u, v〉 = 0. An inner product space (over F) is a vector space over
F equipped with an inner product. Given two inner product spaces U and V over F, a
linear map L : U → V is called a homomorphism of inner product spaces (or we say
that L preserves inner product) when

〈
L(x), L(y)

〉
= 〈x, y〉 for all x, y ∈ U . A bijective

homomorphism is called an isomorphism.

2.2 Example: The standard inner product on Fn is given by

〈u, v〉 = v∗u =
n∑
k=1

ukvk.

2.3 Example: We write Fω to denote the space of sequences in F, and we write F∞
to denote the space of eventually zero sequences in F, that is

Fω =
{
u = (u1, u2, u3, · · ·)

∣∣ each uk ∈ F
}

F∞ =
{
u ∈ Fω | ∃n∈Z+ ∀k≥n uk = 0

}
.

Recall that F∞ is a countable-dimensional vector space with standard basis {e1, e2, e3, · · ·}
where e1 = (1, 0, 0, · · ·), e2 = (0, 1, 0, · · ·) and so on. Note that {e1, e2, e3, · · ·} spans F∞
(and not all of Fω) because linear combinations are given by finite sums (not by infinite
series). The standard inner product on F∞ is given by

〈u, v〉 = v∗u =
∞∑
k=1

ukvk .

Note that the sum here does make sense because only finitely many of the terms are
nonzero (but we cannot use the same formula to give an inner product on Fω).

2.4 Example: For a, b ∈ R with a ≤ b, we write

B[a, b] = B
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣ f is bounded
}

C[a, b] = C
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣f is continuous
}
.

The standard inner product on C[a, b] is given by

〈f, g〉 =

∫ b

a

f g =

∫ b

a

f(x) g(x) dx.

Note that this is positive definite because 〈f, f〉 =
∫ b
a

∣∣f(x)
∣∣2dx ≥ 0 and if

∫ b
a

∣∣f(x)
∣∣2dx = 0

then we must have f(x) = 0 for all x ∈ [a, b], using the fact that if g is non-negative and

continuous on [a, b] with
∫ b
a
g(x) dx = 0, then we must have g(x) = 0 for all x ∈ [a, b].
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2.5 Theorem: Let U be an inner product space and let u, v ∈ U . If 〈u, x〉 = 〈v, x〉 for all
x ∈ U , or if 〈x, u〉 = 〈x, v〉 for all x ∈ U , then u = v.

Proof: Suppose that 〈u, x〉 = 〈v, x〉 for all x ∈ U . Then 〈u− v, x〉 = 〈u, x〉 − 〈v, x〉 = 0 for
all x ∈ U . In particular, taking x = u − v we have 〈u − v, u − v〉 = 0 so that u = v, by
positive definiteness. Similarly, if 〈x, u〉 = 〈x, v〉 for all x ∈ U then u = v.

2.6 Definition: Let U be an inner product space. For u ∈ U , we define the norm (or
length) of u to be

‖u‖ =
√
〈u, u〉.

2.7 Theorem: (Basic Properties of Inner Product and Norm) Let U be an inner product
space. For u, v ∈ U and t ∈ R we have

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with ‖u‖ = 0 ⇐⇒ u = 0,
(3) ‖u± v‖2 = ‖u‖2 ± 2 Re 〈u, v〉+ ‖v‖2,
(4) (Pythagoras’ Theorem) If F = R then 〈u, v〉 = 0 ⇐⇒ ‖u + v‖2 = ‖u‖2 + ‖v‖2,
(5) (Parallelogram Law) ‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2,
(6) (Polarization Identity) If F = R then 〈u, v〉 = 1

4

(
‖u + v‖2 − ‖u− v‖2

)
and

if F = C then 〈u, v〉 = 1
4

(
‖u + v‖2 + i‖u + iv‖2 − ‖u− v‖2 − i‖u− iv‖2

)
,

(7) (The Cauchy-Schwarz Inequality)
∣∣〈u, v〉∣∣ ≤ ‖u‖ ‖v‖ with |〈u, v〉| = ‖u‖ ‖v‖ if and only

if {u, v} is linearly dependent, and
(8) (The Triangle Inequality)

∣∣‖u‖ − ‖v‖∣∣ ≤ ‖u + v‖ ≤ ‖u‖+ ‖v‖.

Proof: You will have already seen a proof in a linear algebra course, but let us remind you
of some of the proofs. The first 6 parts are all easy to prove. To prove Part 7, suppose first
that {u, v} is linearly dependent. Then one of u and v is a multiple of the other, say v = tu
with t ∈ F. Then we have |〈u, v〉| = |〈u, tu〉| =

∣∣ t 〈u, u〉∣∣ = |t| ‖u‖2 = ‖u‖ ‖tu‖ = ‖u‖ ‖v‖.
Next suppose that {u, v} is linearly independent. Then 1 · v + t · u 6= 0 for all t ∈ F, so in

particular v − 〈v,u〉‖u‖2 u 6= 0. Thus we have

0 <
∣∣∣∣v − 〈v,u〉‖u‖2 u

∣∣∣∣2 = ‖v‖2 − 2 Re
〈
v, 〈v,u〉‖u‖2 u

〉
+
∥∥ 〈v,u〉
‖u‖2 u

∥∥2
= ‖v‖2 − 2 Re 〈v,u〉〈v,u〉‖u‖2 + |〈v,u〉|2

‖u‖2 = ‖v‖2 − |〈v,u〉|
2

‖u‖2

so that |〈u,v〉|
2

|u|2 = |〈v,u〉|2
‖u‖2 < ‖v‖2, and hence |〈u, v〉| ≤ ‖u‖ ‖v‖. This proves Part 7.

Using Parts 3 and 7, and the inequality |Re (z)‖ ≤ ‖z‖ for z ∈ C (which follows from
Pythagoras’ Theorem in R2), we have

‖u + v‖2 = ‖u‖2 + 2 Re 〈u, v〉+ ‖v‖2 ≤ ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 =
(
‖u‖+ ‖v‖

)2
.

Taking the square root on both sides gives ‖u + v‖ ≤ ‖u‖ + ‖v‖. Finally note that
‖u‖ = ‖(u+v)−v‖ ≤ ‖u+v‖+‖−v‖ = ‖u+v‖+‖v‖ so that we have ‖u‖−‖v‖ ≤ ‖u+v‖,
and similarly ‖v‖ − ‖u‖ ≤ ‖u + v‖, hence

∣∣‖u‖ − ‖v‖∣∣ ≤ ‖u + v‖. This proves Part 8.
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Normed Linear Spaces

2.8 Definition: Let F = R or C. Let U be a vector space over F. A norm on U is a
function ‖ ‖ : U → R (meaning that if u ∈ U then ‖u‖ ∈ R) such that for all u, v ∈ U and
all t ∈ R we have

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with ‖u‖ = 0 ⇐⇒ u = 0, and
(3) (Triangle Inequality) ‖u + v‖ ≤ ‖u‖+ ‖v‖.
For u ∈ U , the real number ‖u‖ is called the norm (or length) of u, and we say that u is a
unit vector when ‖u‖ = 1. A normed linear space (over R) is a vector space equipped
with a norm. Given two normed linear spaces U and V over R, a linear map L : U → V
is called a homomorphism of normed linear spaces (or we say that L preserves norm)
when

∣∣∣∣L(x)
∣∣∣∣ = ‖x‖ for all x ∈ U . A bijective homomorphism is called an isomorphism.

2.9 Example: The standard inner product on Fn induces the standard norm on Fn,
which is also called the 2-norm on Fn, given by

‖u‖2 = ‖u‖ =
√
〈u, u〉 =

( n∑
k=1

|uk|2
)1/2

.

We also define the 1-norm and the supremum norm (also called the infinity norm)
on Fn by

‖u‖1 =
n∑
k=1

|uk| ,

‖u‖∞ = max
{
|u1|, |u2|, · · · , |un|

}
.

2.10 Example: The standard inner product on F∞ induces the standard norm, also
called the 2-norm, on F∞ given by

‖u‖2 = ‖u‖ =
√
〈u, u〉 =

( ∞∑
k=1

|uk|2
)1/2

.

We also define the 1-norm and the supremum norm (also called the infinity norm)
on F∞ by

‖u‖1 =
∞∑
k=1

|uk| ,

‖u‖∞ = sup
{
|uk|

∣∣ k∈Z+} = max
{
|uk|

∣∣ k∈Z+}.

2.11 Definition: For u ∈ Fw, we define the 1-norm of u, the 2-norm of u, and the
supremum norm (or infinity norm) of u to be the extended real numbers

‖u‖1 =
∞∑
k=1

|uk| , ‖u‖2 =
( ∞∑
k=1

|uk|2
)1/2

and ‖u‖∞ = sup
{
|uk|

∣∣ k∈Z+
}

Note that these can be infinite (so they are not actually norms according to Definition 2.8),
with ‖u‖∞ =∞ in the case that

{
|uk|

∣∣ k∈Z+
}

is not bounded above (by a real number).
Define

`1 = `1(F) =
{
u ∈ Fω

∣∣ ‖u‖1 <∞},
`2 = `2(F) =

{
u ∈ Fω

∣∣ ‖u‖2 <∞
}
,

`∞ = `∞(F) =
{
u ∈ Fω

∣∣ ‖u‖∞ <∞
}
.

For p = 1, 2,∞, we shall show (in Theorem 2.14 below) that the p-norm is a (well-defined,
finite-valued) norm on `p.
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2.12 Example: For the sequence (uk)k≥1 in R given by uk = 1
2k

, we have

‖u‖1 =
∞∑
k=1

1
2k

= 1 , ‖u‖2 =
( ∞∑
k=1

1
4k

)1/2
= 1√

3
, and ‖u‖∞ = |u1| = 1

2 .

For the sequence (vk)k≥1 given by vk = 1
k , we have

‖v‖1 =
∞∑
k=1

1
k =∞ , ‖v‖2 =

( ∞∑
k=1

1
k2

)1/2
<∞ , and ‖v‖∞ = |v1| = 1(

in fact ‖v‖2 = π√
6

)
. For the sequence (wk)k≥1 given by wk = 1√

k
we have

‖w‖1 =
∞∑
k=1

1√
k

=∞ , ‖w‖2 =
( ∞∑
k=1

1
k

)1/2
=∞ , and ‖w‖∞ = |w1| = 1.

2.13 Theorem: We have F∞ ⊆ `1 ⊆ `2 ⊆ `∞ ⊆ Fω.

Proof: If u ∈ F∞ then ‖u‖1 =
∞∑
k=1

|uk| < ∞ (because only finitely many of the terms are

nonzero) and so u ∈ `1. Thus we have F∞ ⊆ `1.

Suppose that u ∈ `1. Since ‖u‖1 =
∑
|uk| < ∞, we know that |uk| → 0 (by the

Divergence Test from calculus) so we can choose m ∈ Z+ such that when k ≥ m we have
|ak| ≤ 1. Then for k ≥ m we have |ak|2 ≤ |ak|. Since

∑
|ak| converges and |ak|2 ≤ |ak| for

k ≥ m, it follows that
∑
|ak|2 converges by the Comparison Test (from calculus). Thus

‖u‖2 =
( ∞∑
k=1

|ak|2
)1/2

<∞ and so u ∈ `2. Thus we have `1 ⊆ `2.

Suppose u ∈ `2. Since ‖u‖22 =
∞∑
k=1

|ak|2 < ∞ we have |ak|2 → 0 (by the Divergence

Test) hence also |ak| → 0. Choose m ∈ Z+ such that when k ≥ m we have |ak| ≤ 1. Then
the set

{
|ak|

∣∣ k ∈ Z+
}

is bounded above by M = max
{
|a1|, |a2|, · · · , |am−1|, 1

}
, and so we

have ‖u‖∞ ≤M , and hence u ∈ `∞. Thus we have `2 ⊆ `∞.

Finally note that `∞ ⊆ Fω, by definition.

2.14 Theorem:

(1) The space `2 is an inner product space with inner product defined by

〈u, v〉 =
∞∑
k=1

ukvk.

(2) For p = 1, 2,∞, the space `p is a normed linear space with norm given by ‖u‖p.

Proof: To prove Part 1, we must verify that if u, v ∈ `2 then the sum
∞∑
k=1

ukvk converges

so that the inner product is well-defined. Let u, v ∈ `2. We claim that
∑

ukvk converges
absolutely, that is

∑
|ukvk| converges. For n ∈ Z+, let x = (|u1|, |u2|, · · · , |un|) ∈ Rn and

y = (|v1|, |v2|, · · · , |vn|) ∈ Rn, and note that ‖x‖2 =
( n∑
k=1

|uk|2
)1/2
≤
( ∞∑
k=1

|uk|2
)1/2

= ‖u‖2
and similarly ‖y‖2 ≤ ‖v‖2. By applying the Cauchy-Schwarz Inequality in Rn we have
n∑
k=1

|ukvk| =
∣∣〈x, y〉∣∣ ≤ ‖x‖2 ‖y‖2 ≤ ‖u‖2‖v‖2. By the Monotone Convergence Theorem,

since
n∑
k=1

|ukvk| ≤ ‖u‖2‖v‖2 for every n ∈ Z+, it follows that
∑
|ukvk| converges with

∞∑
k=1

|ukvk| ≤ ‖u‖2‖v‖2. Thus
∑

ukvk converges absolutely, as claimed.
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All students will have seen that absolute convergence implies convergence for sequences
in R, that is if for a sequence (xk) in R, if

∑
|xk| converges then so does

∑
xk. Let us

show that the same is true for a sequence (zk) in C. Suppose that
∑
|zk| converges, where

zk = xk + iyk with xk, yk ∈ R. Since |xk| ≤ |zk| and |yk| ≤ |zk| for all k, it follows that∑
|xk| and

∑
|yk| both converge (by the Comparison Test) and hence

∑
xk and

∑
yk both

converge (since absolute convergence implies convergence for sequences in R). Since
∑

xk
and

∑
yk converge, it follows that

∑
zk converges in C

(
indeed if un → u in R and vn → v

in R, then un + ivn → u + iv in C because
∣∣(un + ivn)− (u + iv)

∣∣ ≤ |un − u|+ |vn − v|
)
.

Thus, whether F = R or C, since
∑

ukvk converges absolutely, it follows that
∑

ukvk

converges so that 〈u, v〉 =
∞∑
k=1

ukvk ∈ F (so the inner product is well-defined).

We leave it as an exercise to verify that the 3 properties which define an inner product
(in Definition 2.1) are all satisfied.

Because 〈u, v〉 =
∞∑
k=1

ukvk gives a (well-defined, finite-valued) inner product on `2, it

follows (from Theorem 2.7) that this inner product induces a (well-defined, finite-valued)

norm given by ‖u‖ =
√
〈u, u〉 =

( ∞∑
k=1

|uk|2
)1/2

. This is the formula we used to define the

2-norm, so the 2-norm is a norm on `2. To complete the proof of Part 2 of the theorem,
it remains to show that ‖u‖1 and ‖u‖∞ are norms on `1 and `∞. We leave this as an
exercise

(
but we remark that that unlike the situation for the inner product 〈u, v〉, we do

not need to verify that ‖u‖1 and ‖u‖∞ are finite-valued because this is immediate from
the definition of `1 and `∞

)
.

2.15 Example: For a, b ∈ R with a ≤ b, recall that

B[a, b] = B
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣ f is bounded
}
,

C[a, b] = C
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣f is continuous
}
.

For f ∈ C[a, b], we define the 1-norm and the 2-norm of f to be

‖f‖1 =

∫ b

a

|f | ,

‖f‖2 =

(∫ b

a

|f |2
)1/2

.

and for f ∈ B[a, b], we define the supremum norm (also called the infinity norm) of f
to be

‖f‖∞ = sup
{∣∣f(x)

∣∣ ∣∣∣ a ≤ x ≤ b
}
.

We leave it as an exercise to show that these are indeed norms (in particular, show that
the 1-norm is positive-definite). The 2-norm on C[a, b] is induced by the inner product on
C[a, b] given by

〈f, g〉 =

∫ b

a

f g =

∫ b

a

f(x) g(x) dx .
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Metric Spaces

2.16 Definition: Let F = R or C. Let U be a normed linear space. For u, v ∈ U , we
define the distance between u and v to be

d(u, v) = ‖v − u‖ ∈ R.

2.17 Theorem: Let U be as normed linear space. For all u, v, w ∈ U ,

(1) (Symmetry) d(u, v) = d(v, u),
(2) (Positive Definiteness) d(u, v) ≥ 0 with d(u, v) = 0 ⇐⇒ u = v, and
(3) (Triangle Inequality) d(u,w) ≤ d(u, v) + d(v, w).

Proof: The proof is left as an easy exercise.

2.18 Definition: Let X be a set. A metric on X is a map d : X ×X → R such that for
all a, b, c ∈ X we have

(1) (Symmetry) d(a, b) = d(b, a),
(2) (Positive Definiteness) d(a, b) ≥ 0 with d(a, b) = 0 ⇐⇒ a = b, and
(3) (Triangle Inequality) d(a, c) ≤ d(a, b) + d(b, c).

For a, b ∈ X, d(a, b) is called the distance between a and b. A metric space is a set
X which is equipped with a metric d, and we sometimes denote the metric space by X
and sometimes by the pair (X, d). Given two metric spaces (X, dX) and (Y, dY ), a map
f : X → Y is called a homomorphism of metric spaces (or we say that f is distance
preserving) when dY

(
f(a), f(b)

)
= dX(a, b) for all a, b ∈ X. A bijective homomorphism

is called an isomorphism or an isometry.

2.19 Note: Every inner product space is also a normed linear space, using the induced
norm given by ‖u‖ =

√
〈u, u〉. Every normed linear space is also a metric space, using

the induced metric given by d(u, v) = ‖v − u‖. If U is an inner product space then every
subspace of U is also an inner product space using (the restriction of) the same inner
product used in U . If U is a normed linear space then every subspace of U is also a
normed linear space using the same norm. If X is a metric space then so is every subset
of X using the same metric.

2.20 Example: In Fn (or in any subset X ⊆ Fn), the standard metric (also called the
2-metric) is given by

d(a, b) = d2(a, b) = ‖a− b‖2 =
( n∑
k=1

|ak − bk|2
)1/2

.

We also have the 1-metric and the supremum metric (or the infinity metric) given
by

d1(a, b) = ‖a− b‖1 =
∞∑
k=1

|ak − bk| and

d∞(a, b) = ‖a− b‖∞ = max
{
|ak − bk|

∣∣ 1≤ k≤ n
}
.

2.21 Exercise: In R3, let u = (1, 2, 5) and v = (3, 5,−1). Find d1(u, v), d2(u, v) and
d∞(u, v).
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2.22 Example: In `1
(
or in any subset X ⊆ `1

)
, we have the 1-metric given by

d1(a, b) = ‖a− b‖1 =
∞∑
k=1

|ak − bk| .

In `2
(
or in any nonempty subset X ⊆ `2

)
we have the 2-metric given by

d2(a, b) = ‖a− b‖2 =
( ∞∑
k=1

|ak − bk|2
)1/2

.

In `∞
(
or in any nonempty subset X ⊆ `∞

)
we have the supremum metric (or the

infinity metric) given by

d∞(a, b) = ‖a− b‖∞ = sup
{
|ak − bk|

∣∣ k ∈ Z+
}
.

Since R∞ ⊆ `1 ⊆ `2 ⊆ `∞, we could (if we wanted) use any of the metrics dp in the space
R∞ (just as we can use any of the metrics dp in Rn). We could also use any of the metrics
dp in the space `1, and we could use either of the metrics d2 or d∞ in the space `2.

2.23 Exercise: Let (uk)k≥1 and (vk)k≥1 be the sequences in `1 given by uk = 1
2k

and

vk = 1
3k

. Find d1(u, v), d2(u, v) and d∞(u, v).

2.24 Example: Let a, b ∈ R with a ≤ b. In C[a, b]
(
or in any subset X ⊆ C[a, b]

)
, we have

the 1-metric and the 2-metric, given by

d1(f, g) = ‖f − g‖1 =

∫ b

a

|f − g| =
∫ b

a

∣∣f(x)− g(x)
∣∣ dx ,

d2(f, g) = ‖f − g‖2 =

(∫ b

a

|f − g|2
)1/2

=

(∫ b

a

∣∣f(x)− g(x)
∣∣2dx)1/2

,

and in B[a, b]
(
or in any subset X ⊆ B[a, b]

)
we have the supremum metric (also called the

infinity metric) given by

d∞(f, g) = ‖f − g‖∞ = sup
{∣∣f(x)− g(x)

∣∣ ∣∣∣ a ≤ x ≤ b
}
.

2.25 Exercise: Define f, g : [0, 1]→ R be f(x) = x and g(x) = x2. Find d1(f, g), d2(f, g)
and d∞(f, g).

2.26 Example: For any nonempty set X 6= ∅, the discrete metric on X is given by
d(x, y) = 1 for all x, y ∈ X with x 6= y and d(x, x) = 0 for all x ∈ X.

2.27 Remark: There are, in fact, a ridiculously vast number of metrics that one could
define on R. For example, if we let f : R → R be any bijective map then we can define
a metric on R by d(x, y) = |f(x) − f(y)|. But in this course, we shall usually concern
ourselves with the metrics described in the above examples.
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Open and Closed Sets in Metric Spaces

2.28 Definition: Let X be a metric space. For a ∈ X and 0 < r ∈ R, the open ball, the
closed ball, and the (open) punctured ball in X centred at a of radius r are defined to
be the sets

B(a, r) = BX(a, r) =
{
x ∈ X

∣∣ d(x, a) < r
}
,

B(a, r) = BX(a, r) =
{
x ∈ X

∣∣ d(x, a) ≤ r
}
,

B∗(a, r) = B∗X(a, r) =
{
x ∈ X

∣∣ 0 < d(x, a) < r
}
.

When the metric on X is denoted by dp with 1 ≤ p ≤ ∞, we often write B(a, r), B(a, r)
and B∗(a, r) as Bp(a, r), Bp(a, r) and B∗p(a, r). For A ⊆ X, we say that A is bounded
when A ⊆ B(a, r) for some a ∈ X and some 0 < r ∈ R.

2.29 Exercise: Draw a picture of the open balls B1(0, 1), B2(0, 1) and B∞(0, 1) in R2

(using the metrics d1, d2 and d∞).

2.30 Definition: Let X be a metric space. For A ⊆ X, we say that A is open (in X)
when for every a ∈ A there exists r > 0 such that B(a, r) ⊆ A, and we say that A is
closed (in X) when its complement Ac = X \A is open in X.

2.31 Example: Let X be a metric space and let a ∈ X. Show that {a} is closed in X.

Solution: To show that {a} is closed, we shall show that {a}c = X \ {a} is open. Let
b ∈ X \ {a}. Let r = d(a, b) and note that since b 6= a we have r > 0. Let x ∈ B(b, r).
Then d(x, b) < r = d(a, b). Since d(x, b) 6= d(a, b) we have x 6= a so that x ∈ X \{a}. Thus
B(b, r) ⊆ X \ {a}. This proves that X \ {a} is open, and so {a} is closed.

2.32 Example: Let X be a metric space. Show that for a ∈ X and 0 < r ∈ R, the set
B(a, r) is open and the set B(a, r) is closed.

Solution: Let a ∈ X and let r > 0. We claim that B(a, r) is open. We need to show that
for all b ∈ B(a, r) there exists s > 0 such that B(b, s) ⊆ B(a, r). Let b ∈ B(a, r) and note
that d(a, b) < r. Let s = r − d(a, b) and note that s > 0. Let x ∈ B(b, s), so we have
d(x, b) < s. Then, by the Triangle Inequality, we have

d(x, a) ≤ d(x, b) + d(b, a) < s + d(a, b) = r

and so x ∈ B(a, r). This shows that B(b, s) ⊆ B(a, r) and hence B(a, r) is open.
Next we claim that B(a, r) is closed, that is B(a, r)c is open. Let b ∈ B(a, r)c, that is

let b ∈ X with b /∈ B(a, r). Since b /∈ B(a, r) we have d(a, b) > r. Let s = d(a, b)− r > 0.
Let x ∈ B(b, s) and note that d(x, b) < s. Then, by the Triangle Inequality, we have

d(a, b) ≤ d(a, x) + d(x, b) < d(x, a) + s

and so d(x, a) > d(a, b)− s = r. Since d(x, a) > r we have x /∈ B(a, r) and so x ∈ B(a, r)c.
This shows that B(b, s) ⊆ B(a, r)c and it follows that B(a, r)c is open and hence that
B(a, r) is closed.

2.33 Example: In R (using its standard metric), an open ball is the same thing as a
bounded non-degenerate open interval, and a closed ball is the same thing as a bounded
non-degenerate closed interval. The unbounded open intervals (a,∞), (−∞, b) are open,
and the unbounded closed intervals [a,∞) and (−∞, b] are closed. The degenerate closed
intervals [a, a] = {a} are closed. The degenerate interval (a, a) = ∅ and the interval
(−∞,∞) = R are both open and closed (see Theorem 2.35 below). The bounded non-
degenerate half-open intervals [a, b) and (a, b] are neither open nor closed.
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2.34 Remark: It is often fairly difficult to determine whether a given set is open or closed
(or neither or both) directly from the definition of open and closed sets. We will be able
to do this more easily after we have discussed limits of sequences and continuous functions
in the next chapter.

2.35 Theorem: (Basic Properties of Open Sets) Let X be a metric space.

(1) The sets ∅ and X are open in X.
(2) If S is a set of open sets in X then the union

⋃
S =

⋃
U∈S

U is open in X.

(3) If S is a finite set of open sets in X then the intersection
⋂

S =
⋂
U∈S

U is open in X.

Proof: The empty set is open because any statement of the form “for all x∈∅ F” (where
F is any statement) is considered to be true (by convention). The set X is open because
given a ∈ X we can choose any value of r > 0 and then we have B(a, r) ⊆ X by the
definition of B(a, r). This proves Part 1.

To prove Part 2, let S be any set of open sets in X. Let a ∈
⋃

S =
⋃
U∈S U . Choose

an open set U ∈ S such that a ∈ U . Since U is open we can choose r > 0 such that
B(a, r) ⊆ U . Since U ∈ S we have U ⊆

⋃
S. Since B(a, r) ⊆ U and U ⊆

⋃
S we have

B(a, r) ⊆
⋃

S. Thus
⋃

S is open, as required.
To prove Part 3, let S be a finite set of open sets in X. If S = ∅ then we use the

convention that
⋂
S = X, which is open. Suppose that S 6= ∅, say S = {U1, U2, · · · , Um}

where each Uk is an open set. Let a ∈
⋂

S =
⋂m
k=1 Uk. For each index k, since a ∈ Uk

we can choose rk > 0 so that B(a, rk) ⊆ Uk. Let r = min{r1, r2, · · · , rm}. Then for each
index k we have B(a, r) ⊆ B(a, rk) ⊆ Uk. Since B(a, r) ⊆ Uk for every index k, it follows
that B(a, r) ⊆

⋂m
k=1 Uk =

⋂
S. Thus

⋂
S is open, as required.

2.36 Theorem: (Basic Properties of Closed Sets) Let X be a metric space.

(1) The sets ∅ and X are closed in X.
(2) If S is a set of closed sets in X then the intersection

⋂
S =

⋂
K∈S

K is closed in X.

(3) If S is a finite set of closed sets in X then the union
⋃
S =

⋃
K∈S

K is closed in X.

Proof: This follows from Theorem 2.35, by taking complements using the fact that for a
set S of subsets of X we have

( ⋃
A∈S

A
)c

=
⋂
A∈S

Ac and
( ⋂
A∈S

A
)c

=
⋃
A∈S

Ac (these rules are

called DeMorgan’s Laws, and you should convince yourself that they are true if you have
not seen them).

2.37 Example: When X is a metric space, a ∈ X and r > 0, the punctured ball B∗(a, r)
is open (by Part 3 of Theorem 2.35) because B∗(a, r) = B(a, r)∩{a}c, and the sets B(a, r)
and {a}c are both open.

2.38 Example: In R, note that
∞⋂
n=1

(
− 1

n , 1 + 1
n

)
= [0, 1], which is closed and not open,

so the intersection of an infinite set of open sets is not always open. Similarly, note that
∞⋃
n=1

[
1
n , 1 −

1
n

]
= (0, 1), which is open and not closed, so the union of an infinite set of

closed sets is not always closed.,
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Topological Spaces

2.39 Definition: A topology on a set X is a set T of subsets of X such that

(1) ∅ ∈ T and X ∈ T ,
(2) for every set S ⊆ T we have

⋃
S ∈ T , and

(3) for every finite subset S ⊆ T we have
⋂

S ∈ T .

A topological space is a set X with a topology T . When X is a metric space, the set of
all open sets in X is a topology on X, which we call the metric topology (or the topology
induced by the metric). When X is any topological space, the sets in the topology T are
called the open sets in X and their complements are called the closed sets in X. When
S and T are both topologies on a set X with S ⊆ T , we say that the topology T is finer
than the topology S, and that the topology S is coarser than the topology T . When
S ⊂6= T we say that T is strictly finer than S and that S is strictly coarser than T .

2.40 Example: Show that on Fn, the metrics d1, d2 and d∞ all induce the same topology.

Solution: For a, x ∈ Fn we have

max
1≤k≤n

|xk − ak| ≤
( n∑
k=1

|xk − ak|2
)1/2 ≤ n∑

k=1

|xk − ak| ≤ n max
1≤k≤n

|xk − ak|

and so
d∞(a, x) ≤ d2(a, x) ≤ d1(a, x) ≤ nd∞(a, x).

It follows that for all a ∈ Fn and r > 0 we have

B∞(a, r) ⊇ B2(a, r) ⊇ B1(a, r) ⊇ B∞
(
a, rn

)
.

Thus for U ⊆ Fn, if U is open in Fn using d∞ then it is open using d2, and if U is open
using d2 then it is open using d1, and if U is open using d1 then it is open using d∞.

2.41 Example: Show that on the space C[a, b], the topology induced by the metric d∞ is
strictly finer than the topology induced by the metric d1.

Solution: For f, g ∈ C[a, b] we have

d1(f, g) =

∫ b

a

|f − g| ≤
∫ b

a

max
a≤x≤b

∣∣f(x)− g(x)
∣∣ = (b− a) d∞(f, g).

It follows that for f ∈ C[a, b] and r > 0 we have

B∞(f, r) ⊆ B1

(
f, (b− a)r

)
.

Thus for U ⊆ C[a, b], if U is open using d1 then U is also open using d∞, and so the
topology induced by the metric d∞ is finer (or equal to) the topology induced by d1.

On the other hand, we claim that for f ∈ C[a, b] and r > 0, the set B∞(f, r) is not
open in the topology induced by d1. Fix g ∈ B∞(f, r) and let s > 0. Choose a bump

function h ∈ C
(
[a, b],R

)
with h ≥ 0,

∫ b
a
h < s and maxa≤x≤b h(x) > 2r

(
for example,

choose c ∈ (a, b) with c − a < s
2r and then define h by h(x) = 3r

(
1 − x−a

c−a
)

for a ≤ x ≤ c

and h(x) = 0 for c ≤ x ≤ b
)
. Then we have g + h ∈ B1(g, s) but g + h /∈ B∞(f, r). It

follows that B∞(f, r) is not open in the topology induced by d1, as claimed.

2.42 Example: For any set X, the trivial topology on X is the the topology in which
the only open sets in X are the sets ∅ and X, and the discrete topology on X is the
topology in which every subset of X is open. Note that the discrete metric on a nonempty
set X induces the discrete topology on X.
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Interior and Closure

2.43 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. The
interior and the closure of A (in X) are the sets

Ao =
⋃{

U ⊆ X
∣∣U is open, and U ⊆ A

}
,

A =
⋂{

K ⊆ X
∣∣K is closed and A ⊆ K

}
.

2.44 Example: Show that Q = R where Q is the closure of Q in R.

Solution: Let S =
{
K ⊆ R

∣∣K is closed in R and Q ⊆ K
}

so that Q =
⋂

S =
⋂
K∈S

K. It

is immediate that Q ⊆ R (since every K ∈ S is a subset of R), so we need to show that
R ⊆ Q. Let a ∈ R. To show that a ∈ Q we need to show that a ∈ K for every K ∈ S.
Let K ∈ S, that is let K be a closed set in R with Q ⊆ K. Suppose, for a contradiction,
that a /∈ K. Then a ∈ Kc = R \K, which is open. Choose r > 0 so that B(a, r) ⊆ Kc,
that is B(a, r) ∩ K = ∅, that is (a − r, a + r) ∩ K = ∅. Since Q ⊆ K, we also have
(a−r, a+r)∩Q = ∅. This contradicts the fact that for all u, v ∈ R with u < v, there exists
x ∈ Q with u < x < v.

2.45 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. We
say that A is dense in X when A = X.

2.46 Theorem: Let X be a metric space (or a topological space) and let A ⊆ X.

(1) The interior of A is the largest open set which is contained in A. In other words,
Ao ⊆ A and Ao is open, and for every open set U with U ⊆ A we have U ⊆ Ao.

(2) The closure of A is the smallest closed set which contains A. In other words, A ⊆ A
and A is closed, and for every closed set K with A ⊆ K we have A ⊆ K.

Proof: Let S =
{
U ⊆ X

∣∣U is open, and U ⊆ A
}

. Note that Ao is open (by Part 2 of
Theorem 2.35 or by Part 2 of Definition 2.39) because Ao is equal to the union of S, which
is a set of open sets. Also note that Ao ⊆ A because Ao is equal to the union of S, which
is a set of subsets of A. Finally note that for any open set U with U ⊆ A we have U ∈ S
so that U ⊆

⋃
S = Ao. This completes the proof of Part 1, and the proof of Part 2 is

similar.

2.47 Corollary: Let X be a metric space (or a topological space) and let A ⊆ X.

(1) (Ao)o = Ao and A = A.
(2) A is open if and only if A = Ao

(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.
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Interior Points, Limit Points and Boundary Points

2.48 Definition: Let X be a metric space and let A ⊆ X. An interior point of A is a
point a ∈ A such that for some r > 0 we have B(a, r) ⊆ A. A limit point of A is a point
a ∈ X such that for every r > 0 we have B∗(a, r) ∩ A 6= ∅. An isolated point of A is a
point a ∈ A which is not a limit point of A. A boundary point of A is a point a ∈ X
such that for every r > 0 we have B(a, r) ∩ A 6= ∅ and B(a, r) ∩ Ac 6= ∅. The set of all
limit points of A is denoted by A′. The boundary of A, denoted by ∂A, is the set of all
boundary points of A.

2.49 Theorem: (Properties of Interior, Limit and Boundary Points) Let X be a metric
space and let A ⊆ X.
(1) Ao is equal to the set of all interior points of A.
(2) A is closed if and only if A′ ⊆ A.
(3) A = A ∪A′.
(4) ∂A = A \Ao.

Proof: We leave the proofs of Parts 1 and 4 as exercises. To prove Part 2, note that when
a /∈ A we have B(a, r) ∩A = B∗(a, r) ∩A and so

A is closed ⇐⇒ Ac is open

⇐⇒ ∀a∈Ac ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈X
(
a /∈A =⇒ ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈X
(
a /∈A =⇒ ∃r>0 B(a, r) ∩A = ∅

)
⇐⇒ ∀a∈X

(
a /∈A =⇒ ∃r>0 B∗(a, r) ∩A = ∅

)
⇐⇒ ∀a∈X

(
∀r>0 B∗(a, r) ∩A 6= ∅ =⇒ a∈A

)
⇐⇒ ∀a∈X

(
a ∈ A′ =⇒ a ∈ A

)
⇐⇒ A′ ⊆ A.

To prove Part 3 we shall prove that A ∪ A′ is the smallest closed set which contains A.
It is clear that A ∪ A′ contains A. We claim that A ∪ A′ is closed, that is (A ∪ A′)c is
open. Let a ∈ (A ∪ A′)c, that is let a ∈ X with a /∈ A and a /∈ A′. Since a /∈ A, we note
that B∗(a, r) ∩ A = B(a, r) ∩ A. Since a /∈ A and a /∈ A′ we can choose r > 0 so that
B(a, r) ∩ A = ∅. We claim that because B(a, r) ∩ A = ∅ it follows that B(a, r) ∩ A′ = ∅.
Suppose, for a contradiction, that B(a, r) ∩ A′ 6= ∅. Choose b ∈ B(a, r) ∩ A′. Since
b ∈ B(a, r) and B(a, r) is open, we can choose s > 0 so that B(b, s) ⊆ B(a, r). Since b ∈ A′

it follows that B(b, s)∩A 6= ∅. Choose x ∈ B(b, s)∩A. Then we have x ∈ B(b, s) ⊆ B(a, r)
and x ∈ A and so x ∈ B(a, r) ∩ A, which contradicts the fact that B(a, r) ∩ A = ∅. Thus
B(a, r) ∩ A′ = ∅, as claimed. Since B(a, r) ∩ A = ∅ and B(a, r) ∩ A′ = ∅ it follows that
B(a, r)∩ (A∪A′) = ∅ hence B(a, r) ⊆ (A∪A′)c. Thus proves that (A∪A′)c is open, and
hence A ∪A′ is closed.

It remains to show that for every closed set K in X with A ⊆ K we have A∪A′ ⊆ K.
Let K be a closed set in X with A ⊆ K. Note that since A ⊆ K it follows that A′ ⊆ K ′

because if a ∈ A′ then for all r > 0 we have B∗(a, r) ∩ A 6= ∅ hence B∗(a, r) ∩K 6= ∅ and
so a ∈ K ′. Since K is closed we have K ′ ⊆ K by Part 2. Since A′ ⊆ K ′ and K ′ ⊆ K we
have A′ ⊆ K. Since A ⊆ K and A′ ⊆ K we have A∪A′ ⊆ K, as required. This completes
the proof of Part 3.
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Open and Closed Sets in Subspaces

2.50 Note: Let X be a metric space and let P ⊆ X. Note that P is also a metric space
using (the restriction of) the metric used in X. For a ∈ P and 0 < r ∈ R, note that the
open and closed balls in P , centred at a and of radius r, are related to the open and closed
balls in X by

BP (a, r) =
{
x ∈ P

∣∣ d(x, a) < r
}

= BX(a, r) ∩ P,

BP (a, r) =
{
x ∈ P

∣∣ d(x, a) ≤ r
}

= BX(a, r) ∩ P.

2.51 Theorem: Let X be a metric space and let A ⊆ P ⊆ X.

(1) A is open in P if and only if there exists an open set U in X such that A = U ∩ P .
(2) A is closed in P if and only if there exists a closed set K in X such that A = K ∩ P .

Proof: To prove Part 1, suppose first that A is open in P . For each a ∈ A, choose
ra > 0 so that BP (a, ra) ⊆ A, that is BX(a, ra) ∩ P ⊆ A, and let U =

⋃
a∈ABX(a, ra).

Since U is equal to the union of a set of open sets in X, it follows that U is open in
X. Note that A ⊆ U ∩ P and, since BX(a, ra) ∩ P ⊆ A for every a ∈ A, we also have

U ∩ P =
(⋃

a∈U BX(a, ra)
)
∩ P =

⋃
a∈A

(
BX(a, ra) ∩ P

)
⊆ A. Thus A = U ∩ P , as

required.
Suppose, conversely, that A = U ∩ P with U open in X. Let a ∈ A. Since we

have a ∈ A = U ∩ P , we also have a ∈ U . Since a ∈ U and U is open in X we can
choose r > 0 so that BX(a, r) ⊆ U . Since BX(a, r) ⊆ U and U ∩ P = A we have
BP (a, r) = BX(a, r) ∩ P ⊆ U ∩ P = A. Thus A is open, as required.

To prove Part 2, suppose first that A is closed in P . Let B be the complement of A
in P , that is B = P \ A. Then B is open in P . Choose an open set U in X such that
B = U ∩ P . Let K be the complement of U in X, that is K = X \ U . Then A = K ∩ P
since for x ∈ X we have x ∈ A ⇐⇒

(
x ∈ P and x /∈ B

)
⇐⇒

(
x ∈ P and x /∈ U ∩ P

)
⇐⇒

(
x ∈ P and x /∈ U

)
⇐⇒

(
x ∈ P and x ∈ K

)
⇐⇒ x ∈ K ∩ P .

Suppose, conversely, that K is a closed set in X with A = K ∩ P . Let B be the
complement of A in P , that is B = P \ A, and let U be the complement of K in X,
that is U = X \ K, and note that U is open in X. Then we have B = U ∩ P since
for x ∈ P we have x ∈ B ⇐⇒

(
x ∈ P and x /∈ A

)
⇐⇒

(
x ∈ P and x /∈ K ∩ P

)
⇐⇒

(
x ∈ P and x /∈ K

)
⇐⇒

(
x ∈ P and x ∈ U

)
⇐⇒ x ∈ U ∩ P . Since U is open in

X and B = U ∩ P we know that B is open in P . Since B is open in P , its complement
A = P \B is closed in P .

2.52 Definition: Let X be a topological space and let P ⊆ X. Verify, as an exercise, that
we can use the topology on X to define a topology on P as follows. Given a set A ⊆ P ,
we define A to be open in P when A = U ∩ P for some open set U in X. The resulting
topology on P is called the subspace topology. The above theorem asserts that when
X is a metric space and P ⊆ X, the metric topology on P (obtained by restricting the
metric on X to P ) is the same as the subspace topology on P .
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Appendix: The p-Norms

2.53 Definition: Let F = R or C. For p ∈ (1,∞) and for x = (xn)n≥1 ∈ Fω, define ‖x‖p
to be the extended real number

‖x‖p =
( ∞∑
n=1
|xn|p

)1/p
∈ [0,∞].

For p ∈ (1,∞), let
`p = `p(F) =

{
x∈Fω

∣∣ ‖x‖p<∞}.
Also, for x, y ∈ Fω let xy = (x1y1, x2y2, · · ·).
2.54 Theorem: (The p-Norms) Let F = R or C and let p, q ∈ (1,∞) with 1

p + 1
q = 1.

(1) For all 0 ≤ a, b ∈ R, we have ab ≤ ap

p + bq

q .

(2) (Hölder’s Inequality) For all x, y ∈ Fω we have ‖xy‖1 ≤ ‖x‖p‖y‖q.
(3) (Minkowski’s Inequality) For all x, y ∈ Fω we have ‖x + y‖p ≤ ‖x‖p + ‖y‖p.
Proof: To prove Part 1, let a, b ≥ 0. Note that for p, q ∈ (1,∞) we have

1
p + 1

q = 1 ⇐⇒ 1
q = 1− 1

p = p−1
p ⇐⇒ q(p− 1) = p ⇐⇒ p(q − 1) = q.

For x, y ≥ 0 we have

y = xp−1 ⇐⇒ yq = xq(p−1) ⇐⇒ yq = xp ⇐⇒ yp(q−1) = xp ⇐⇒ yq−1 = x

so the functions f(x) = xp−1 and g(y) = yq−1 are inverses of each other. By considering
the area under y = f(x) with 0 ≤ x ≤ a and the area to the left of y = f(x) with 0 ≤ y ≤ b
(the union of these two regions is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b) we see that

ab ≤
∫ a

x=0

xp−1 dx +

∫ b

y=0

yq−1 dy =
[
1
p x

p
]a
x=0

+
[
1
q y

q
]b
y=0

= ap

p + bq

q .

To prove Part 2, let x, y ∈ Fω. If x = 0 or y = 0 then we have ‖xy‖1 = 0 = ‖x‖p‖y‖q,
so suppose x 6= 0 and y 6= 0 (hence ‖x‖p 6= 0 and ‖y‖q 6= 0). If ‖x‖p = ∞ or ‖y‖q = ∞
then ‖xy‖1 ≤ ∞ = ‖x‖p‖y‖q, so suppose that 0 6= ‖x‖p <∞ and 0 6= ‖y‖q <∞. For each

index k, apply Part 1 using a = |xk|
‖x‖p and b = |yk|

‖y‖q to get

|xkyk|
‖x‖p‖y‖q

≤ |xk|
p

p‖x‖pp
+
|yk|q

q‖y‖qq
.

Sum over k to get
‖xy‖1
‖x‖p‖y‖q

≤
‖x‖pp
p‖x‖pp

+
‖y‖qq
q‖y‖qq

= 1
p + 1

q = 1 .

To prove Part 3, let x, y ∈ Fω. If ‖x‖p = ∞ or ‖y‖p = ∞ then ‖x + y‖p ≤ ∞ =
‖x‖p + ‖y‖q. Suppose that ‖x‖p < ∞ and ‖y‖p < ∞. Since the function f(x) = xp is
concave for p > 1, we have

(
a+b
2

)p ≤ ap+bp

2 for all a, b ≥ 0, so for all k ∈ Z+ we have∣∣xk+yk
2

∣∣p ≤ ( |xk|+|yk|
2

)p ≤ |xk|p+|yk|p
2 , hence |xk + yk|p ≤ 2p−1

(
|xk|p + |yk|p

)
. Sum over k

to get

‖x + y‖pp =
∞∑
k=1

|xk + yk|p ≤
∞∑
k=1

2p−1
(
|xk|p + |yk|p

)
= 2p−1

(
‖x‖pp + ‖y‖pp

)
<∞.

Choose q ∈ (1,∞) so that 1
p + 1

q = 1 hence 1
q = 1− 1

p = p−1
p . For each index k we have

|xk + yk|p = |xk + yk| |xk + yk|p−1 ≤
(
|xk|+ |yk|

)
|xk + yk|p−1

= |xk| |xk + yk|p−1 + |yk| |xk + yk|p−1.
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Sum over k then apply Hölder’s Inequality, writing |x| for the sequence |x| =
(
|x1|, |x2|, · · ·

)
and similarly |y| =

(
|y1|, |y2|, · · ·

)
and |x + y|p−1 =

(
|x1 + y1|p−1, |x2 + y2|p−1, · · ·

)
, to get

‖x + y‖pp ≤
∥∥∥|x| |x + y|p−1

∥∥∥
1
+
∥∥∥|y| |x + y|p−1

∥∥∥
1
≤ ‖x‖p

∥∥∥|x + y|p−1
∥∥∥
q
+ ‖y‖p

∥∥∥|x + y|p−1
∥∥∥
q

=
(
‖x‖p + ‖y‖p

)∥∥∥|x + y|p−1
∥∥∥
q

=
(
‖x‖p + ‖y‖p

)( ∞∑
k=1

|x + y|q(p−1)
)1/q

=
(
‖x‖p + ‖y‖p

)( ∞∑
k=1

|x + y|p
)(p−1)/p

=
(
‖x‖p + ‖y‖p

)
‖x + y‖p−1p .

If ‖x+y‖p 6= 0 then we can divide both sides by ‖x+y‖p−1p to get ‖x+y‖p ≤ ‖x‖p+‖y‖p,
and if ‖x + y‖p = 0 then of course ‖x + y‖p ≤ ‖x‖p + ‖y‖q.

2.55 Definition: Minkowski’s Theorem shows that ‖ ‖p satisfies the Triangle Inequality
on `p. It is easy to verify that it satisfies the other two properties which define a norm,
and so ‖ ‖p is a norm on `p, which we call the p-norm.
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