

Lecture Notes on Groups and Rings

by Stephen New

Chapter 1. Definition and Examples of Groups and Subgroups

1.1 Definition: A **binary operation** on a set S is a function $* : S^2 \rightarrow S$, where

$$S^2 = S \times S = \{(a, b) \mid a, b \in S\}.$$

We usually write $a * b$ instead of $*(a, b)$.

1.2 Definition: A **group** is a set G together with a binary operation $* : G^2 \rightarrow G$ and an element $e = e_G \in G$ such that

- (1) $*$ is associative: $(a * b) * c = a * (b * c)$ for all $a, b, c \in G$.
- (2) e is an *identity* element: $a * e = e * a = a$ for all $a \in G$, and
- (3) every $a \in G$ has an *inverse*: for all $a \in G$ there exists $b \in G$ such that $a * b = b * a = e$.

If, in addition, $*$ is *commutative*, that is $a * b = b * a$ for all $a, b \in G$, then we say that G is **abelian**.

1.3 Theorem: (*Uniqueness of the Identity*) Let G be a group under $*$. For all $u, v \in G$, if $u * a = a$ for all $a \in G$ and $a * v = a$ for all $a \in G$ then $u = v$.

Proof: Let $u, v \in G$. Suppose that $u * a = a$ for all $a \in G$ and $a * v = a$ for all $a \in G$. Since $u * a = a$ for all $a \in G$ we have $u * v = v$. Since $a * v = a$ for all $a \in G$ we have $u * v = u$. Thus $u = u * v = v$.

1.4 Theorem: (*Uniqueness of the Inverse*) Let G be a group under $*$ with identity e , and let $a \in G$. Then for all $u, v \in G$, if $u * a = e$ and $a * v = e$ then $u = v$.

Proof: Let $u, v \in G$. Suppose that $u * a = e$ and $a * v = e$. Then

$$u = u * e = u * (a * v) = (u * a) * v = e * v = v.$$

1.5 Notation: Let G be a group. If the operation in G is called *addition*, then we denote the operation by $+$ and we assume that it is commutative, we denote the (unique) identity in the group by 0 , and we denote the (unique) inverse of a given point $a \in G$ by $-a$. For $a, b \in G$, we write $a - b = a + (-b)$. For $a \in G$ and $k \in \mathbf{Z}^+$ we write $ka = a + a + \cdots + a$ (with k terms in the sum), $0a = 0$, and $(-k)a = k(-a) = -a - a - \cdots - a$. With this notation, for all $a, b \in G$ and all $k, l \in \mathbf{Z}$ we have $(k + l)a = ka + la$, $(-k)a = -(ka) = k(-a)$, $-(-a) = a$ and $-(a + b) = -a - b = -b - a$. This notation is called **additive notation**, and any group G in which the operation is called addition, and is written using additive notation, is called an **additive group**. Additive groups are always assumed to be abelian.

1.6 Notation: When the operation $*$ of a group G is any operation other than addition (or when the operation is unspecified), we usually write $a * b$ simply as ab , we usually denote the (unique) identity element by e , 1 or I , and we denote the (unique) inverse of $a \in G$ by a^{-1} . For $a \in G$ and $k \in \mathbf{Z}^+$ we write $a^k = aa \cdots a$ (with k terms in the product), $a^0 = e$, and $a^{-k} = (a^{-1})^k = a^{-1}a^{-1} \cdots a^{-1}$. With this notation, for all $a, b \in G$ and all $k, l \in \mathbf{Z}$ we have $a^{k+l} = a^k a^l$, $a^{-k} = (a^k)^{-1} = (a^{-1})^k$, $(a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1}a^{-1}$. The above notation is called **multiplicative notation**, and any group G in which the operation is written using multiplicative notation is called a **multiplicative group**.

1.7 Note: From now on, we shall use multiplicative notation as our default notation, unless the operation is known to be addition.

1.8 Theorem: (Cancellation) Let G be a group with identity e . Let $a, b, c \in G$. Then

- (1) if $ab = ac$ or if $ba = ca$ then $b = c$.
- (2) if $ab = e$ then $a^{-1} = b$ and $b^{-1} = a$.
- (3) if $ab = a$ or if $ba = a$ then $b = e$.

Proof: To prove (1) note that if $ab = ac$ then multiplying both sides on the left by a^{-1} gives $b = c$; in greater detail, we have

$$b = eb = (a^{-1}a)b = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)c = ec = c.$$

Similarly, if $ba = ca$ then multiplying on the right by a^{-1} gives $b = c$. To prove part (2) note that if $ab = e$ then multiplying both sides on the left by a^{-1} gives $b = a^{-1}$, and multiplying on the right by b^{-1} gives $a = b^{-1}$. To prove part (3), note that if $ab = a$ then multiplying on the left by a^{-1} gives $b = e$, and if $ba = a$ then multiplying on the right by a^{-1} gives $b = e$.

1.9 Example: If R is a ring (as defined later) under the operations $+$ and \cdot , then R is also an abelian group under $+$ with identity 0. For example, \mathbf{Z} , \mathbf{Q} , \mathbf{R} , \mathbf{C} , \mathbf{H} and \mathbf{Z}_n are abelian groups under $+$ with identity 0.

1.10 Example: If R is a ring under \cdot with identity 1 (as defined later) then the set of units

$$R^* = \{a \in R \mid a \text{ has an inverse under } \cdot\}$$

is a group under \cdot with identity 1. For example, $\mathbf{Z}^* = \{\pm 1\}$, $\mathbf{Q}^* = \mathbf{Q} \setminus \{0\}$, $\mathbf{R}^* = \mathbf{R} \setminus \{0\}$, $\mathbf{C}^* = \mathbf{C} \setminus \{0\}$, $\mathbf{H}^* = \mathbf{H} \setminus \{0\}$ and

$$U_n = \mathbf{Z}_n^* = \{a \in \mathbf{Z}_n \mid \gcd(a, n) = 1\}$$

are abelian groups under multiplication with identity 1.

1.11 Example: If S is a set and G is a group, then the set of functions

$$\text{Func}(S, G) = G^S = \{f : S \rightarrow G\}$$

is a group under the operation given by $(fg)(x) = f(x)g(x)$ for all $x \in S$.

1.12 Example: For a set S , the set of permutations

$$\text{Perm}(S) = \{f : S \rightarrow S \mid f \text{ is bijective}\}$$

is a group under composition with identity $I : S \rightarrow S$ given by $I(x) = x$ for all $x \in S$. This group is non-abelian when $|S| \geq 3$. For $n \in \mathbf{Z}^+$, the n^{th} **symmetric group** is the group

$$S_n = \text{Perm}(\{1, 2, \dots, n\}).$$

1.13 Example: When R is a commutative ring with identity, the set $M_n(R)$ of $n \times n$ matrices with entries in R is an abelian group under matrix addition with identity 0, and the **general linear group**

$$GL_n(R) = M_n(R)^* = \{A \in M_n(R) \mid \det(A) \in R^*\}$$

is a group under matrix multiplication with identity I . This group is non-abelian for $n \geq 2$.

1.14 Example: If G and H are groups with identities e_G and e_H , then the **product**

$$G \times H = \{(a, b) \mid a \in G, b \in H\}$$

is a group under the operation given by $(a, b)(c, d) = (ac, bd)$ with identity (e_G, e_H) . More generally, if G_1, G_2, \dots, G_n are groups then the direct product

$$\prod_{i=1}^n G_i = G_1 \times G_2 \times \dots \times G_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in G_i\}$$

is a group under the operation $(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)$. For a group G , we write $G^n = \prod_{i=1}^n G = G \times G \times \dots \times G$. More generally still, if A is any set (possibly infinite) and G_α is a group for each $\alpha \in A$ the the direct product

$$\prod_{\alpha \in A} G_\alpha = \left\{ f : A \rightarrow \bigcup_{\alpha \in A} G_\alpha \mid f(\alpha) \in G_\alpha \text{ for all } \alpha \in A \right\}$$

is a group with operation $(fg)(\alpha) = f(\alpha)g(\alpha) \in G_\alpha$ for all $\alpha \in A$. The **direct sum**

$$\sum_{\alpha \in A} G_\alpha = \left\{ f \in \prod_{\alpha \in A} G_\alpha \mid f(\alpha) = e_\alpha \text{ for all but finitely many } \alpha \in A \right\}$$

where e_α is the identity in G_α , is also a group under the same operation $(fg)(x) = f(x)g(x)$.

1.15 Definition: For a finite group G , we can specify its operation $*$ by making a table showing the value of the product $a * b$ for each pair $(a, b) \in G^2$. Such a table is called an **operation table** (or an addition, multiplication or composition table) for G .

1.16 Example: The multiplication table for the group $U_{12} = \{1, 5, 7, 11\}$ is shown below.

$a \setminus b$	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

1.17 Definition: Let G be a group and let $a \in G$. The **order** of G is its cardinality $|G|$. The **order** of a in G , denoted by $|a|$ or by $\text{ord}_G(a)$, is the smallest positive integer n such that $a^n = e$ (or in additive notation, the smallest positive integer n such that $na = 0$), provided that such an integer exists. If no such positive integer n exists, then the order of a is infinite.

1.18 Example: The order of \mathbf{Z}_n is $|\mathbf{Z}_n| = n$. The order of $a \in \mathbf{Z}_n$ is $|a| = \frac{n}{\gcd(a, n)}$. Indeed if we let $d = \gcd(a, n)$ and write $a = sd$ and $n = td$, then $\gcd(s, t) = 1$ and we have $ka = 0 \in \mathbf{Z}_n \iff n|ka \iff td|ksd \iff t|ks \iff t|k$ and so $|a| = t = \frac{n}{d}$.

1.19 Example: The order of U_n is $|U_n| = \phi(n)$ where ϕ is the Euler phi function. We shall see later (in Corollary 4.22) that if $n = \prod p_i^{k_i}$ is the prime factorization of n then $\phi(n) = \prod (p_i^{k_i} - p_i^{k_i-1}) = n \cdot \prod (1 - \frac{1}{p_i})$.

1.20 Example: The order of the group \mathbf{C}^* is $|\mathbf{C}^*| = \infty$ (or more accurately $|\mathbf{C}^*| = 2^{\aleph_0}$). For $a = re^{i\theta} \in \mathbf{C}^*$ where $r, \theta \in \mathbf{R}$ with $r > 0$, when $r \neq 1$ or when θ is not a rational multiple of 2π we have $|a| = \infty$, and when $r = 1$ and $\theta = \frac{2\pi k}{n}$ with $k, n \in \mathbf{Z}$ and $n \neq 0$ we have $|a| = \frac{n}{\gcd(k, n)}$.

1.21 Example: If S is a set and G is a group then $|\text{Func}(S, G)| = |G|^{|S|}$.

1.22 Example: If S is a finite set then $|\text{Perm}(S)| = |S|!$. In particular $|S_n| = n!$.

1.23 Example: When p is prime (so that \mathbf{Z}_p is a field, as defined later), we have

$$|GL_n(\mathbf{Z}_p)| = (p^n - 1)(p^n - p)(p^n - p^2) \cdots (p^n - p^{n-1}).$$

Indeed, for a matrix $A \in M_n(\mathbf{Z}_p)$, in order for A to be invertible its columns must be linearly independent. The first column u_1 of A can be any non-zero vector in \mathbf{Z}_p^n so there are $p^n - 1$ choices for u_1 . Having chosen u_1 , the second column u_2 can be any vector in \mathbf{Z}_p^n which is not a multiple of u_1 , $t_1 \in \mathbf{Z}_p$. Since there are p such multiples, there are $p^n - p$ choices for the u_2 . Having chosen u_1 and u_2 , the third column u_3 can be any vector in \mathbf{Z}_p^n which is not a linear combination of u_1, u_2 , $t_1, t_2 \in \mathbf{Z}_p$. There are p^2 such linear combinations, so there are $p^n - p^2$ choices for u_3 . And so on.

1.24 Example: If G and H are groups then $|G \times H| = |G| |H|$. For $a \in G$ and $b \in H$,

$$|(a, b)| = \text{lcm}(|a|, |b|).$$

Indeed if $|a| = n$ and $|b| = m$ then for $k \in \mathbf{Z}$ we have

$$\begin{aligned} (a, b)^k = e_{G \times H} &\iff (a^k, b^k) = (e_G, e_H) \\ &\iff (a^k = e_G \text{ and } b^k = e_H) \\ &\iff n|k \text{ and } m|k \\ &\iff k \text{ is a common multiple of } n \text{ and } m. \end{aligned}$$

1.25 Definition: Let G be a group. For $a, b \in G$, we say that a and b are **conjugate** in G , and we write $a \sim b$, when $b = xax^{-1}$ for some $x \in G$. For $a \in G$, we define the **conjugacy class** of a in G to be the set

$$Cl(a) = Cl_G(a) = \{b \in G \mid b \sim a\} = \{xax^{-1} \mid x \in G\}.$$

1.26 Note: The relation \sim is an **equivalence relation** on G . This means that for all $a, b, c \in G$ we have

- (1) $a \sim a$,
- (2) if $a \sim b$ then $b \sim a$, and
- (3) if $a \sim b$ and $b \sim c$ then $a \sim c$.

Indeed, given $a, b, c \in G$ we have $a \sim a$ since $a = eae^{-1}$, and if $a \sim b$, say $b = xax^{-1}$, then $a = x^{-1}b(x^{-1})^{-1}$ so $b \sim a$, and finally if $a \sim b$ and $b \sim c$ with say $b = xax^{-1}$ and $c = yby^{-1}$, then we have $c = yxay^{-1}x^{-1} = (yx)a(yx)^{-1}$ so $a \sim c$. It follows that G is the disjoint union of the distinct conjugacy classes.

1.27 Example: As an exercise, show that if $a \sim b$ in G , then $|a| = |b|$.

1.28 Definition: A **subgroup** of a group G is a subset $H \subseteq G$ which is also a group using the same operation as in G . When H is a subgroup of G , we write $H \leq G$.

1.29 Example: In any group G we have the subgroups $\{e\} \leq G$ and $G \leq G$. The group $\{e\}$ is called the **trivial** group. A subgroup $H \leq G$ with $H \neq G$ is called a **proper** subgroup of G .

1.30 Example: We have $\mathbf{Z} \leq \mathbf{Q} \leq \mathbf{R} \leq \mathbf{C} \leq \mathbf{H}$. and we have $\mathbf{Z}^* \leq \mathbf{Q}^* \leq \mathbf{R}^* \leq \mathbf{C}^* \leq \mathbf{H}^*$.

1.31 Example: Note that $\mathbf{Z}_n = \{0, 1, \dots, n-1\}$ is not a subgroup of \mathbf{Z} , indeed it is not even a subset. Also, U_n is not a subgroup of \mathbf{Z}_n since it uses a different operation.

1.32 Theorem: (The Subgroup Test I) Let G be a group and let $H \subseteq G$. Then $H \leq G$ if and only if

- (1) H contains the identity, that is $e \in H$,
- (2) H is closed under the operation, that is $ab \in H$ for all $a, b \in H$, and
- (3) H is closed under inversion, that is $a^{-1} \in H$ for all $a \in H$.

Proof: Note first that the operation on the group G restricts to a well defined operation on H if and only if H is closed under the operation. In this case, the operation will be associative on H since it is associative on G . Next note that if $e = e_G \in H$ then e is an identity element for H , and conversely if e_H is an identity for H then since $e_H e_H = e_H$ (both in H and in G), cancellation in the group G gives $e_H = e_G$. Thus H has an identity if and only if $e = e_G \in H$. A similar argument shows that a given element $a \in H$ has an inverse in H if and only if $a^{-1} \in H$ where a^{-1} denotes the inverse of a in G .

1.33 Theorem: (The Subgroup Test II) Let G be a group and let $H \subseteq G$. Then $H \leq G$ if and only if

- (1) $H \neq \emptyset$, and
- (2) for all $a, b \in H$ we have $ab^{-1} \in H$.

Proof: From the Subgroup Test I, it is clear that if $H \leq G$ then (1) and (2) hold. Suppose, conversely, that (1) and (2) hold. By (1) we can choose an element $a \in H$, and then by (2) we have $e = aa^{-1} \in H$, so H contains the identity. For $a \in H$, we have $a^{-1} = ea^{-1} \in H$ by (2), so H is closed under inversion. For $a, b \in H$, we have $ab = a(b^{-1})^{-1} \in H$, so H is closed under the operation.

1.34 Theorem: (The Finite Subgroup Test) Let G be a group and let H be a finite subset of G . Then $H \leq G$ if and only if

- (1) $H \neq \emptyset$, and
- (2) H is closed under the operation, that is $ab \in H$ for all $a, b \in H$.

Proof: The proof is left as an exercise.

1.35 Example: The set $\{(x, y) \in \mathbf{R}^2 \mid xy \geq 0\}$ is not a subgroup of \mathbf{R}^2 since it is not closed under addition.

1.36 Example: For $n \in \mathbf{Z}^+$ we have $\mathbf{C}_n \leq \mathbf{C}_\infty \leq \mathbf{S}^1 \leq \mathbf{C}^*$ where

$$\begin{aligned}\mathbf{C}_n &= \{z \in \mathbf{C}^* \mid z^n = 1\} \\ \mathbf{C}_\infty &= \{z \in \mathbf{C}^* \mid z^n = 1 \text{ for some } n \in \mathbf{Z}^+\} \\ \mathbf{S}^1 &= \{z \in \mathbf{C}^* \mid \|z\| = 1\}\end{aligned}$$

1.37 Example: When R is a commutative ring with 1, in the general linear group $GL_n(R)$ we have the following subgroups, called the **special linear group**, the **orthogonal group** and the **special orthogonal group**.

$$SL_n(R) = \{A \in M_n(R) \mid \det(A) = 1\}$$

$$O_n(R) = \{A \in M_n(R) \mid A^t A = I\}$$

$$SO_n(R) = \{A \in M_n(R) \mid A^t A = I, \det(A) = 1\}$$

1.38 Example: For $\theta \in \mathbf{R}$, the **rotation** in \mathbf{R}^2 about $(0, 0)$ by the angle θ is given by the matrix

$$R_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

and the **reflection** in \mathbf{R}^2 in the line through $(0, 0)$ and the point $(\cos \frac{\theta}{2}, \sin \frac{\theta}{2})$ is given by the matrix

$$F_\theta = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

We have

$$O_2(\mathbf{R}) = \{R_\theta, F_\theta \mid \theta \in \mathbf{R}\}$$

$$SO_2(\mathbf{R}) = \{R_\theta \mid \theta \in \mathbf{R}\}$$

In $O_2(\mathbf{R})$, for $\alpha, \beta \in \mathbf{R}$ we have

$$F_\beta F_\alpha = R_{\beta-\alpha}, \quad F_\beta R_\alpha = F_{\beta-\alpha}, \quad R_\beta F_\alpha = F_{\alpha+\beta}, \quad R_\beta R_\alpha = R_{\alpha+\beta}.$$

1.39 Example: For $n \in \mathbf{Z}^+$, the **dihedral group** D_n is the group

$$D_n = \{R_k, F_k \mid k \in \mathbf{Z}_n\} = \{R_0, R_1, \dots, R_{n-1}, F_0, F_1, \dots, F_{n-1}\}$$

where for $k \in \mathbf{Z}_n$ we write $R_k = R_{\theta_k}$ and $F_k = F_{\theta_k}$ with $\theta_k = \frac{2\pi k}{n}$. We have

$$D_n \leq O_2(\mathbf{R}) \leq GL_2(\mathbf{R}) \leq \text{Perm}(\mathbf{R}^2)$$

and for $k, l \in \mathbf{Z}_n$, the operation in D_n is given by

$$F_l F_k = R_{l-k}, \quad F_l R_k = F_{l-k}, \quad R_l F_k = F_{k+l}, \quad R_l R_k = R_{k+l}.$$

1.40 Definition: Let G be a group and let $a \in G$. The **centre** of G is the set

$$Z(G) = \{a \in G \mid ax = xa \text{ for all } x \in G\}$$

and the **centralizer** of a in G is the set

$$C(a) = C_G(a) = \{x \in G \mid ax = xa\}.$$

As an exercise, show that $Z(G)$ and $C_a(G)$ are both subgroups of G .

1.41 Example: Find the centre of D_4 and find the centralizers of R_k and F_k in D_4 .

Chapter 2. Cyclic Groups and Generators

2.1 Example: If H and K are subgroups of G then so is $H \cap K$. More generally, if A is a set and $H_\alpha \leq G$ for each $\alpha \in A$, then $\bigcap_{\alpha \in A} H_\alpha \leq G$ by the Subgroup Test II. Indeed we have $e_G \in H_\alpha$ for all $\alpha \in A$ so that $e_G \in \bigcap_{\alpha \in A} H_\alpha$, and if $a, b \in \bigcap_{\alpha \in A} H_\alpha$ then for every $\alpha \in A$ we have $a, b \in H_\alpha$ hence $ab^{-1} \in H_\alpha$, and so $ab^{-1} \in \bigcap_{\alpha \in A} H_\alpha$.

2.2 Definition: Let G be a group and let $S \subseteq G$. The **subgroup of G generated by S** , denoted by $\langle S \rangle$, is the smallest subgroup of G which contains S , that is the intersection of all subgroups of G which contain S . The elements of S are called **generators** of the group $\langle S \rangle$. When S is a finite set, we omit set brackets and write $\langle a_1, a_2, \dots, a_n \rangle = \langle \{a_1, a_2, \dots, a_n\} \rangle$. We say that G is **finitely generated** when $G = \langle S \rangle$ for some finite set $S \subseteq G$. We say that G is **cyclic** when $G = \langle a \rangle$ for some $a \in G$. When G is any group and $a \in G$, the group $\langle a \rangle$ is called the **cyclic subgroup of G generated by a** .

2.3 Theorem: (Elements of a Cyclic Group) Let G be a group and let $a \in G$. Then

- (1) we have $\langle a \rangle = \{a^k \mid k \in \mathbf{Z}\}$.
- (2) If $|a| = \infty$ then the elements $a^k, k \in \mathbf{Z}$ are all distinct so we have $|\langle a \rangle| = \infty$.
- (3) If $|a| = n$ then for $k, l \in \mathbf{Z}$ we have $a^k = a^l \iff k = l \pmod{n}$ and so

$$\langle a \rangle = \{a^k \mid k \in \mathbf{Z}_n\} = \{e, a, a^2, \dots, a^{n-1}\}$$

with the listed elements in the above set all distinct so that $|\langle a \rangle| = n$. In particular, for $k \in \mathbf{Z}$ we have $a^k = e \iff n \mid k$.

Proof: First we show that $\langle a \rangle = \{a^k \mid k \in \mathbf{Z}\}$. By definition, $\langle a \rangle$ is the intersection of all subgroups $H \leq G$ with $a \in H$. By closure under the operation and under inversion, if $H \leq G$ with $a \in H$ then $a^k \in H$ for all $k \in \mathbf{Z}$, and so $\{a^k \mid k \in \mathbf{Z}\} \subseteq \langle a \rangle$. On the other hand, since $e = a^0$ and $a^k(a^l)^{-1} = a^{k-l}$, we see that $\{a^k \mid k \in \mathbf{Z}\} \leq G$ by the Subgroup Test. Since $\{a^k \mid k \in \mathbf{Z}\} \leq G$ and $a = a^1 \in \{a^k \mid k \in \mathbf{Z}\}$, it follows that $\langle a \rangle \subseteq \{a^k \mid k \in \mathbf{Z}\}$.

Now suppose that $|a| = \infty$ and suppose, for a contradiction, that $a^k = a^l$ with $k < l$. Then $a^{l-k} = a^l(a^k)^{-1} = a^l(a^l)^{-1} = e$ but this contradicts the fact that $|a| = \infty$.

Next suppose that $|a| = n$. Suppose that $a^k = a^l$. Then, as above, $a^{l-k} = e$. Write $l - k = qn + r$ with $0 \leq r < n$. Then $e = a^{l-k} = a^{qn+r} = (a^n)^q a^r = a^r$. Since $|a| = n$ we must have $r = 0$. Thus $l - k = qn$, that is $k = l \pmod{n}$. Conversely, suppose that $k = l \pmod{n}$, say $k = l + qn$. Then $a^k = a^{l+qn} = a^l(a^n)^q = a^l$.

2.4 Notation: When G is an abelian group under $+$, we have $\langle a \rangle = \{ka \mid k \in \mathbf{Z}\}$.

2.5 Example: The groups \mathbf{Z} and \mathbf{Z}_n are cyclic with $\mathbf{Z} = \langle 1 \rangle$ and $\mathbf{Z}_n = \langle 1 \rangle$. The group $\mathbf{C}_n = \{z \in \mathbf{C}^* \mid z^n = 1\}$ is cyclic with $\mathbf{C}_n = \langle e^{i2\pi/n} \rangle$.

2.6 Example: In the group \mathbf{Z} we have $\langle 2 \rangle = \{\dots, -2, 0, 2, 4, \dots\}$, but in the group \mathbf{R}^* we have $\langle 2 \rangle = \{\dots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \dots\}$.

2.7 Example: The group $U_{18} = \{1, 5, 7, 11, 13, 17\}$ is cyclic with $U_{18} = \langle 5 \rangle$ because in U_{18} we have

k	0	1	2	3	4	5
5^k	1	5	7	17	13	11

2.8 Theorem: (The Classification of Subgroups of a Cyclic Group) Let G be group and let $a \in G$. Then

- (1) every subgroup of $\langle a \rangle$ is cyclic.
- (2) If $|a| = \infty$ then $\langle a^k \rangle = \langle a^l \rangle \iff l = \pm k$ so the distinct subgroups of $\langle a \rangle$ are the trivial group $\langle a^0 \rangle = \{e\}$ and the groups $\langle a^d \rangle = \{a^{kd} \mid k \in \mathbf{Z}\}$ where $d \in \mathbf{Z}^+$.
- (3) If $|a| = n$ then we have $\langle a^k \rangle = \langle a^l \rangle \iff \gcd(k, n) = \gcd(l, n)$ and so the distinct subgroups of $\langle a \rangle$ are the groups $\langle a^d \rangle = \{a^{kd} \mid k \in \mathbf{Z}_{n/d}\} = \{a^0, a^d, a^{2d}, \dots, a^{n-d}\}$ where d is a positive divisor of n .

Proof: First we show that every subgroup of $\langle a \rangle$ is cyclic. Let $H \leq \langle a \rangle$. If $H = \{e\}$ then $H = \langle e \rangle$, which is cyclic. Suppose that $H \neq \{e\}$. Note that H contains some element of the form a^k with $k \in \mathbf{Z}^+$ since we can choose $a^l \in H$ for some $l \neq 0$, and if $l < 0$ then we also have $a^{-l} = (a_l)^{-1} \in H$. Let k be the smallest positive integer such that $a^k \in H$. We claim that $H = \langle a^k \rangle$. Since $a^k \in H$, by closure under the operation and under inversion we have $(a^k)^i \in H$ for all $i \in \mathbf{Z}$ and so $\langle a^k \rangle \subseteq H$. Let $a^l \in H$, where $l \in \mathbf{Z}$. Write $l = kq + r$ with $0 \leq r < k$. Then $a^l = a^{kq}a^r$ so we have $a^r = a^l(a^{kq})^{-1} \in H$. By our choice of k we must have $r = 0$, so $l = qk$ and so $a^l \in \langle a^k \rangle$. Thus $H \subseteq \langle a^k \rangle$.

Suppose that $|a| = \infty$. If $l = \pm k$ then clearly $\langle a^l \rangle = \langle a^k \rangle$. Suppose that $\langle a^l \rangle = \langle a^k \rangle$. Since $a^k \in \langle a^l \rangle$ we have $l = kt$ for some $t \in \mathbf{Z}$, so $k|l$. Since $a^k \in \langle a^l \rangle$ we have $l|k$. Since $k|l$ and $l|k$ we have $l = \pm k$.

Now suppose that $|a| = n$. Note first that for any divisor $d|n$ we have

$$\langle a^d \rangle = \{a^{dk} \mid k \in \mathbf{Z}_{n/d}\} = \{a^0, a^d, a^{2d}, \dots, a^{n-d}\}$$

with the listed elements distinct so that $|a^d| = \frac{n}{d}$. We claim that $\langle a^k \rangle = \langle a^d \rangle$ where $d = \gcd(k, n)$. Since $d|k$ we have $a^k \in \langle a^d \rangle$ so $\langle a^k \rangle \subseteq \langle a^d \rangle$. Choose $s, t \in \mathbf{Z}$ so that $ks + nt = d$. Then $a^d = a^{ks+nt} = (a^k)^s(a^n)^t = (a^k)^s \in \langle a^k \rangle$ and so $\langle a^d \rangle \subseteq \langle a^k \rangle$. Thus $\langle a^k \rangle = \langle a^d \rangle$, as claimed. Now if $\langle a^k \rangle = \langle a^l \rangle$ and $d = \gcd(k, n)$ and $c = \gcd(l, n)$ then $\langle a^d \rangle = \langle a^k \rangle = \langle a^l \rangle = \langle a^c \rangle$ and so $|\langle a^d \rangle| = |\langle a^c \rangle|$, that is $\frac{n}{d} = \frac{n}{c}$, and so $d = c$. Conversely, if $d = \gcd(k, n) = \gcd(l, n) = c$ then we have $\langle a^k \rangle = \langle a^d \rangle = \langle a^l \rangle = \langle a^c \rangle$.

2.9 Corollary: (Orders of Elements in a Cyclic Group) Let G be a group and let $a \in G$.

- (1) If $|a| = \infty$ then $|a^0| = 1$ and $a^k = \infty$ for all $0 \neq k \in \mathbf{Z}$, and
- (2) if $|a| = n$ then $|a^k| = \frac{n}{\gcd(k, n)}$ for all $k \in \mathbf{Z}$.

2.10 Corollary: (Generators of a Cyclic Group) Let G be a group and let $a \in G$. Then

- (1) if $|a| = \infty$ then $\langle a^k \rangle = \langle a \rangle \iff k = \pm 1$, and
- (2) if $|a| = n$ then $\langle a^k \rangle = \langle a \rangle \iff \gcd(k, n) = 1 \iff k \in U_n$.

2.11 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let G be a group and let $a \in G$ with $|a| = n$. Then for each $k \in \mathbf{Z}$, the order of a^k is a positive divisor of n , and for each positive divisor $d|n$, the number of elements in $\langle a \rangle$ of order d is equal to $\phi(d)$.

2.12 Corollary: For $n \in \mathbf{Z}^+$ we have $\sum_{d|n} \phi(d) = n$.

2.13 Corollary: (The Number of Elements of Each Order in a Finite Group) Let G be a finite group. For each $d \in \mathbf{Z}^+$, the number of elements in G of order d is equal to $\phi(d)$ multiplied by the number of cyclic subgroups of G of order d .

2.14 Theorem: (Elements of $\langle S \rangle$) Let G be a group and let $\emptyset \neq S \subseteq G$. Then

$$\begin{aligned} \langle S \rangle &= \{a_1^{k_1} a_2^{k_2} \cdots a_l^{k_l} \mid l \geq 0, a_i \in S, k_i \in \mathbf{Z}\} \\ &= \{a_1^{k_1} a_2^{k_2} \cdots a_l^{k_l} \mid l \geq 0, a_i \in S \text{ with } a_i \neq a_{i+1}, 0 \neq k_i \in \mathbf{Z}\} \end{aligned}$$

where the empty product (when $l = 0$) is the identity element. If G is abelian then

$$\langle S \rangle = \{a_1^{k_1} a_2^{k_2} \cdots a_l^{k_l} \mid l \geq 0, a_i \in S \text{ with } a_i \neq a_j \text{ for } i \neq j, 0 \neq k_i \in \mathbf{Z}\}.$$

Proof: The proof is left as an exercise.

2.15 Notation: If G is an additive abelian group then

$$\langle S \rangle = \text{Span}_{\mathbf{Z}}\{S\} = \{k_1 a_1 + k_2 a_2 + \cdots + k_l a_l \mid l \geq 0, a_i \in S, a_i \neq a_j \text{ for } i \neq j, 0 \neq k_i \in \mathbf{Z}\}.$$

2.16 Example: As an exercise, show that in \mathbf{Z} we have $\langle k, l \rangle = \langle d \rangle$ where $d = \gcd(k, l)$.

2.17 Example: In \mathbf{Z}^2 , the elements of $\langle (1, 3), (2, 1) \rangle$ are the vertices of parallelograms which cover \mathbf{R}^2 .

2.18 Example: We have $D_n = \langle R_1, F_0 \rangle \leq O_2(\mathbf{R})$ because $R_k = R_1^k$ and $F_k = R_k F_0$.

2.19 Definition: Let S be a set. The **free group** on S is the set whose elements are

$$F(S) = \{a_1^{k_1} a_2^{k_2} \cdots a_l^{k_l} \mid l \geq 0, a_i \in S, 0 \neq k_i \in \mathbf{Z}\}$$

with the operation given by concatenation

$$(a_1^{j_1} \cdots a_l^{j_l})(b_1^{k_1} \cdots b_m^{k_m}) = a_1^{j_1} \cdots a_l^{j_l} b_1^{k_1} \cdots b_m^{k_m}$$

followed by grouping and cancellation in the sense that if $a_l = b_1$ then we replace $a_l^{j_l} b_1^{k_1}$ by $a_l^{j_l+k_1}$ and if, in addition, $j_l + k_1 = 0$ then we omit the term a_l^0 and perform further grouping if $a_{l-1} = b_2$. For example, in $F(a, b)$ we have

$$(a b^2 a^{-3} b)(b^{-1} a^3 b a^{-2}) = a b^2 a^{-3} b b^{-1} a^3 b a^{-2} = a b^2 a^{-3} a^3 b a^{-2} = a b^2 b a^{-2} = a b^3 a^{-2}.$$

Note that in the free group $F(S)$ we have $F(S) = \langle S \rangle$.

2.20 Definition: Let S be a set. The **free abelian group** on S is the set

$$A(S) = \{k_1 a_1 + \cdots + k_l a_l \mid l \geq 0, a_i \in S \text{ with } a_i \neq a_j, 0 \neq k_i \in \mathbf{Z}\}.$$

If we identify the element $k_1 a_1 + k_2 a_2 + \cdots + k_l a_l$ with the function $f : S \rightarrow \mathbf{Z}$ given by $f(a_i) = k_i$ and $f(a) = 0$ for $a \neq a_i$ for any i , then we can identify $A(S)$ with the set

$$A(S) = \sum_{a \in S} \mathbf{Z} = \{f : S \rightarrow \mathbf{Z} \mid f(a) = 0 \text{ for all but finitely many } a \in S\}.$$

Under this identification, we use the operation given by $(f + g)(a) = f(a) + g(a)$.

Chapter 3. The Symmetric Group

3.1 Definition: An element $\alpha \in S_n$ can be specified by giving its table of values in the form

$$\alpha = \begin{pmatrix} 1 & 2 & \cdots & n \\ \alpha(1) & \alpha(2) & \cdots & \alpha(n) \end{pmatrix}$$

This is called **array notation** for α .

3.2 Example: In array notation, we have

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}.$$

Note that S_3 is not abelian because for example

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

(since the operation is composition, in the product $\alpha\beta$, the permutation β is performed before the permutation α).

3.3 Example: For $n \geq 3$, we can think of D_n as a subgroup of S_n because an element of D_n permutes the elements of $C_n = \{e^{i2\pi k/n} \mid k = 1, 2, \dots, n\}$ and this determines a permutation of $\{1, 2, \dots, n\}$. For example, in D_6 we have

$$R_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$$

$$F_0 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix}, \quad F_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$

3.4 Definition: When a_1, a_2, \dots, a_ℓ are distinct elements in $\{1, 2, \dots, n\}$ we write

$$\alpha = (a_1, a_2, \dots, a_\ell)$$

for the permutation $\alpha \in S_n$ given by

$$\begin{aligned} \alpha(a_1) &= a_2, \quad \alpha(a_2) = a_3, \quad \dots, \quad \alpha(a_{\ell-1}) = a_\ell, \quad \alpha(a_\ell) = a_1 \\ \alpha(k) &= k \text{ for all } k \notin \{a_1, a_2, \dots, a_\ell\}. \end{aligned}$$

Such a permutation is called a **cycle of length ℓ** or an **ℓ -cycle**.

3.5 Note: We make several remarks.

- (1) We have $e = (1) = (2) = \dots = (n)$.
- (2) We have $(a_1, a_2, \dots, a_\ell) = (a_2, a_3, \dots, a_\ell, a_1) = (a_3, a_4, \dots, a_\ell, a_1, a_2) = \dots$.
- (3) An ℓ -cycle with $\ell \geq 2$ can be expressed *uniquely* in the form $\alpha = (a_1, a_2, \dots, a_\ell)$ with $a_1 = \min\{a_1, a_2, \dots, a_\ell\}$.
- (4) For an ℓ -cycle $\alpha = (a_1, a_2, \dots, a_\ell)$ we have $|\alpha| = \ell$.
- (5) If $n \geq 3$ then we have $(12)(23) = (123)$ and $(23)(12) = (132)$ so S_n is not abelian.

3.6 Definition: Two cycles $\alpha = (a_1, a_2, \dots, a_\ell)$ and $\beta = (b_1, b_2, \dots, b_m)$ are said to be **disjoint** when $\{a_1, \dots, a_\ell\} \cap \{b_1, \dots, b_m\} = \emptyset$, that is when the a_i and b_j are all distinct. More generally the cycles $\alpha_1 = (a_{1,1}, \dots, a_{1,\ell_1}), \dots, \alpha_m = (a_{m,1}, \dots, a_{m,\ell_m})$ are **disjoint** when all of the $a_{i,j}$ are distinct.

3.7 Note: Disjoint cycles commute. Indeed if $\alpha = (a_1, \dots, a_\ell)$ and $\beta = (b_1, \dots, b_m)$ are disjoint, then

$$\begin{aligned}\alpha(\beta(a_i)) &= \alpha(a_i) = a_{i+1} = \beta(a_{i+1}) = \beta(\alpha(a_i)) \text{ , with subscripts in } \mathbf{Z}_\ell \\ \alpha(\beta(b_j)) &= \alpha(b_{j+1}) = b_{j+1} = \beta(b_j) = \beta(\alpha(b_j)) \text{ , with subscripts in } \mathbf{Z}_m \\ \alpha(\beta(k)) &= \alpha(k) = k = \beta(k) = \beta(\alpha(k)) \text{ for } k \neq a_i, b_j.\end{aligned}$$

3.8 Theorem: (Cycle Notation) Every $\alpha \in S_n$ can be written as a product of disjoint cycles. Indeed every $\alpha \neq e$ can be written uniquely in the form

$$\alpha = (a_{1,1}, \dots, a_{1,\ell_1})(a_{2,1}, \dots, a_{2,\ell_2}) \cdots (a_{m,1}, \dots, a_{m,\ell_m})$$

with $m \geq 1$, each $\ell_i \geq 2$, each $a_{i,1} = \min\{a_{i,1}, a_{i,2}, \dots, a_{i,\ell_i}\}$ and $a_{1,1} < a_{2,1} < \dots < a_{m,1}$.

Proof: Let $e \neq \alpha \in S_n$ where $n \geq 2$. To write α in the given form, we must take $a_{1,1}$ to be the smallest element $k \in \{1, 2, \dots, n\}$ with $\alpha(k) \neq k$. Then we must have $a_{1,2} = \alpha(a_{1,1})$, $a_{1,3} = \alpha(a_{1,2}) = \alpha^2(a_{1,1})$, and so on. Eventually we must reach ℓ_1 such that $a_{1,1} = \alpha^{\ell_1}(a_{1,1})$, indeed since $\{1, 2, \dots, n\}$ is finite, eventually we find $\alpha^i(a_{1,1}) = \alpha^j(a_{1,1})$ for some $1 \leq i < j$ and then $a_{1,1} = \alpha^{-i}\alpha^i(a_{1,1}) = \alpha^{-i}\alpha^j(a_{1,1}) = \alpha^{j-i}(a_{1,1})$. For the smallest such ℓ_1 the elements $a_{1,1}, \dots, a_{1,\ell_1}$ will be disjoint since if we had $a_{1,i} = a_{1,j}$ for some $1 \leq i < j \leq \ell_1$ then, as above, we would have $\alpha^{j-i}(a_{1,1}) = a_{1,1}$ with $1 \leq j - i < \ell_1$. This gives us the first cycle $\alpha_1 = (a_{1,1}, a_{1,2}, \dots, a_{1,\ell_1})$.

If we have $\alpha = \alpha_1$ we are done. Otherwise there must be some $k \in \{1, 2, \dots, n\}$ with $k \notin \{a_{1,1}, a_{1,2}, \dots, a_{1,\ell_1}\}$ such that $\alpha(k) \neq k$, and we must choose $a_{2,1}$ to be the smallest such k . As above we obtain the second cycle $\alpha_2 = (a_{2,1}, a_{2,2}, \dots, a_{2,\ell_2})$. Note that α_2 must be disjoint from α_1 because if we had $\alpha^i(a_{2,1}) = \alpha^j(a_{1,1})$ for some i, j then we would have $a_{2,1} = \alpha^{-i}\alpha^i(a_{2,1}) = \alpha^{-i}\alpha^j(a_{1,1}) = \alpha^{j-i}(a_{1,1}) \in \{a_{1,1}, \dots, a_{1,\ell_1}\}$.

At this stage, if $\alpha = \alpha_1\alpha_2$ we are done, and otherwise we continue the procedure.

3.9 Definition: When a permutation $e \neq \alpha \in S_n$ is written in the unique form of the above theorem, we say that α is written in **cycle notation**. We usually write e as $e = (1)$.

3.10 Example: In cycle notation we have

$$\begin{aligned}S_3 &= D_3 = \{(1), (12), (13), (23), (123), (132)\} \\ S_4 &= \{(1), (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), \\ &\quad (123), (132), (124), (142), (134), (143), (234), (243), \\ &\quad (1234), (1243), (1324), (1342), (1423), (1432)\} \\ D_4 &= \{I, R_1, R_2, R_3, R_4, R_5, F_0, F_1, F_2, F_3, F_4, F_5\} \\ &= \{(1), (1234), (13)(24), (1432), (13), (14)(23), (24), (12)(34)\}\end{aligned}$$

3.11 Example: For $\alpha = (1352)(46)$, $\beta = (145)(263) \in S_6$, express $\alpha\beta$ in cycle notation.

3.12 Example: Find the number of elements in S_{15} which can be written as a product of 3 disjoint 4-cycles.

Solution: When we write $\alpha = (a_1a_2a_3a_4)(a_5a_6a_7a_8)(a_9a_{10}a_{11}a_{12})$, there are $\binom{15}{12}$ ways to choose the set $\{a_1, \dots, a_{12}\}$ from $\{1, 2, \dots, 15\}$, then there is one choice for a_1 (it must be the smallest of the a_i), then there are 11 choices for a_2 , then 10 choices for a_3 , then 9 choices for a_4 , and then there is only one choice for a_5 (it must be the smallest of the remaining a_i , and so on. Thus there are $\binom{15}{12} \cdot \frac{12!}{12 \cdot 8 \cdot 4}$ such elements in S_{15} .

3.13 Example: Find the number of elements in S_{20} which can be written as a product of 7 disjoint cycles, with 4 of length 2, 2 of length 3, and 1 of length 4.

Solution: When we write $\alpha = (a_1a_2)(a_3a_4)(a_5a_6)(a_7a_8)(b_1b_2b_3)(b_4b_5b_6)(c_1c_2c_3c_4)$, there are $\binom{20}{8}$ ways to choose $\{a_1, a_2, \dots, a_8\}$ from $\{1, 2, \dots, 20\}$, then $\binom{12}{6}$ ways to choose $\{b_1, \dots, b_6\}$ from $\{1, \dots, 20\} \setminus \{a_1, \dots, a_8\}$, and then there are $\binom{4}{4} = 1$ way to choose $\{c_1, \dots, c_4\}$. From the set $\{a_1, \dots, a_8\}$, there is 1 way to choose a_1 , then 7 ways to choose a_2 , then 1 way to choose a_3 , then 5 ways to choose a_4 , then 1 way to choose a_5 , then 3 ways to choose a_6 , then 1 way to choose a_7 and then 1 way to choose a_8 . From the set $\{b_1, \dots, b_6\}$, there is 1 way to choose b_1 , then 5 ways to choose b_2 , then 4 ways to choose b_3 , then 1 way to choose b_4 , then 2 ways to choose b_5 and then 1 way to choose b_6 . From the set $\{c_1, \dots, c_4\}$, there is 1 way to choose c_1 , then 3 ways to choose c_2 , then 2 ways to choose c_3 and then 1 way to choose c_4 . Thus the number of such elements in S_{20} is

$$\binom{20}{8} \binom{12}{6} \binom{4}{4} \cdot \frac{8!}{8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{6!}{6 \cdot 3} \cdot \frac{4!}{4}.$$

3.14 Theorem: (The Order of a Permutation) Let $\alpha = \alpha_1\alpha_2 \cdots \alpha_m$ where the α_i are disjoint cycles with each α_i of length ℓ_i . Then $|\alpha| = \text{lcm}\{\ell_1, \dots, \ell_m\}$.

Proof: Since the α_i are disjoint, if we write $\alpha_k = (a_{k,1}, \dots, a_{k,\ell_k})$ then we have

$$\alpha(a_{k,1}) = a_{k,2}, \alpha^2(a_{k,1}) = a_{k,3}, \dots, \alpha^{\ell_m-1}(a_{k,1}) = a_{k,\ell_m}, \alpha^{\ell_m}(a_{k,1}) = a_{k,1}.$$

If p is a common multiple of all the ℓ_i , say $p = \ell_i q_i$, then

$$\alpha_i^p = \alpha_i^{\ell_i q_i} = (\alpha_i^{\ell_i})^{q_i} = e^{q_i} = e \text{ for all } i.$$

Since the α_i commute, we have $\alpha^p = (\alpha_1\alpha_2 \cdots \alpha_m)^p = \alpha_1^p\alpha_2^p \cdots \alpha_m^p = e$.

If, on the other hand, p is not a common multiple of the ℓ_i , then we can choose k so that p is not a multiple of ℓ_k . Write $p = \ell_k q + r$ with $0 < r < \ell_k$. Then

$$\alpha_k^p = \alpha_k^{\ell_k q + r} = (\alpha_k^{\ell_k})^q \alpha_k^r = \alpha_k^r$$

and we have $\alpha^p(a_{k,1}) = \alpha_k^p(a_{k,1}) = \alpha_k^r(a_{k,1}) \neq a_{k,1}$ since $0 < r < \ell_k$, and so $\alpha^p \neq e$.

3.15 Theorem: (The Conjugacy Class of a Permutation) Let $\alpha, \beta \in S_n$. Then α and β are conjugate in S_n if and only if, when written in cycle notation, α and β have the same number of cycles of each length.

Proof: Write α in cycle notation as $\alpha = (a_{11}, a_{12}, \dots, a_{1,\ell_1}) \cdots (a_{m1}, a_{m2}, \dots, a_{m,\ell_m})$. Note that for all $\sigma \in S_n$ we have

$$\sigma\alpha\sigma^{-1} = (\sigma(a_{11}), \sigma(a_{12}), \dots, \sigma(a_{1,\ell_1})) \cdots (\sigma(a_{m1}), \sigma(a_{m2}), \dots, \sigma(a_{m,\ell_m})).$$

Indeed, for the permutation on the right, $\sigma(a_{i,j})$ is sent to $\sigma(a_{i,j+1})$, and on the left, $\sigma(a_{i,j})$ is sent by σ to $a_{i,j}$, which is then sent to $a_{i,j+1}$ by α , which is then sent by σ to $\sigma(a_{i,j+1})$.

3.16 Example: Let $\alpha = (1693)(275)(15873) \in S_{10}$. Find $|\alpha|$.

Solution: First we write α in as a product of disjoint cycles. We have $\alpha = (127)(369)(58)$ and so $|\alpha| = \text{lcm}(3, 3, 2) = 6$.

3.17 Example: As an exercise, find the number of elements of each order in S_6 .

3.18 Theorem: (Even and Odd Permutations) In S_n , with $n \geq 2$,

- (1) every $\alpha \in S_n$ is a product of 2-cycles,
- (2) if $e = (a_1, b_1)(a_2, b_2) \cdots (a_\ell, b_\ell)$ then ℓ is even, that is $\ell = 0 \pmod{2}$, and
- (3) if $\alpha = (a_1, b_1)(a_2, b_2) \cdots (a_\ell, b_\ell) = (c_1, d_1)(c_2, d_2) \cdots (c_m, d_m)$ then $\ell = m \pmod{2}$.

Solution: To prove part (1), note that given $\alpha \in S_n$ we can write α as a product of cycles, and we have

$$(a_1, a_2, \dots, a_\ell) = (a_1, a_\ell)(a_1, a_{\ell-1}) \cdots (a_1, a_2).$$

We shall prove part (2) by induction. First note that we cannot write e as a single 2-cycle, but we can write e as a product of two 2-cycles, for example $e = (1, 2)(1, 2)$. Fix $\ell \geq 3$ and suppose, inductively, that for all $k < \ell$, if we can write e as a product of k 2-cycles the k must be even. Suppose that e can be written as a product of ℓ 2-cycles, say $e = (a_1, b_1)(a_2, b_2) \cdots (a_\ell, b_\ell)$. Let $a = a_1$. Of all the ways we can write e as a product of ℓ 2-cycles, in the form $e = (x_1, y_1)(x_2, y_2) \cdots (x_\ell, y_\ell)$, with $x_i = a$ for some i , choose one way, say $e = (r_1, s_1)(r_2, s_2) \cdots (r_\ell, s_\ell)$ with $r_m = a$ and $r_i, s_i \neq a$ for all $i < m$, with m being as large as possible. Note that $m \neq \ell$ since for $\alpha = (r_1, s_1) \cdots (r_\ell, s_\ell)$ with $r_\ell = a$ and $r_i, s_i \neq a$ for $i < \ell$ we have $\alpha(s_\ell) = a \neq s_\ell$ and so $\alpha \neq e$. Consider the product $(r_m, s_m)(r_{m+1}, s_{m+1})$. This product must be (after possibly interchanging r_{m+1} and s_{m+1}) of one of the forms

$$(a, b)(a, b), (a, b)(a, c), (a, b)(b, c), (a, b)(c, d)$$

where a, b, c, d are distinct. Note that

$$\begin{aligned} (a, b)(a, c) &= (a, c, b) = (b, c)(a, b), \\ (a, b)(b, c) &= (a, b, c) = (b, c)(a, c), \text{ and} \\ (a, b)(c, d) &= (c, d)(a, b), \end{aligned}$$

and so in each of these three cases we could rewrite e as a product of ℓ 2-cycles with the first occurrence of a being farther to the right, contradicting the fact that we chose m to be as large as possible. Thus the product $(r_m, s_m)(r_{m+1}, s_{m+1})$ is of the form $(a, b)(a, b)$. By cancelling these two terms, we can write e as a product of $(\ell - 2)$ 2-cycles. By the induction hypothesis, $(\ell - 2)$ is even, and so ℓ is even.

Finally, to prove part (3), suppose that $\alpha = (a_1, b_1) \cdots (a_\ell, b_\ell) = (c_1, d_1) \cdots (c_m, d_m)$. Then we have

$$e = \alpha \alpha^{-1} = (a_1, b_1) \cdots (a_\ell, b_\ell)(c_m, d_m) \cdots (c_1, d_1).$$

By part (2), $\ell + m$ is even, and so $\ell = m \pmod{2}$.

3.19 Example: Show that

$$S_n = \langle (12), (13), (14), \dots, (1n) \rangle = \langle (12), (23), (34), \dots, (n-1, n) \rangle = \langle (12), (123 \cdots n) \rangle.$$

Solution: By Part (1) of the above theorem, S_n is generated by the set of all 2-cycles (kl). Any 2-cycle (kl) can be written as $(kl) = (1k)(1l)(1k)$ so $S_n = \langle (12), (13), (14), \dots, (1n) \rangle$. Any 2-cycle of the form $(1k)$ can be written as $(1k) = (12)(23) \cdots (k-1, k) \cdots (23)(12)$ and so $S_n = \langle (12), (23), \dots, (n-1, n) \rangle$. Any 2-cycle of the form $(k, k+1)$ can be written as $(k, k+1) = (123 \cdots n)^{k-1}(12)(123 \cdots n)^{-(k-1)}$ and so $S_n = \langle (12)(123 \cdots n) \rangle$.

3.20 Definition: For $n \geq 2$, a permutation $\alpha \in S_n$ is called **even** if it can be written as a product of an even number of 2-cycles. Otherwise α can be written as a product of an odd number of 2-cycles, and then it is called **odd**. We define the **parity** of $\alpha \in S_n$ to be

$$(-1)^\alpha = \begin{cases} 1 & \text{if } \alpha \text{ is even,} \\ -1 & \text{if } \alpha \text{ is odd.} \end{cases}$$

3.21 Theorem: (Properties of Parity) Let $n \geq 2$ and let $\alpha, \beta \in S_n$. Then

- (1) $(-1)^e = 1$,
- (2) if α is an ℓ -cycle then $(-1)^\alpha = (-1)^{\ell-1}$,
- (3) $(-1)^{\alpha\beta} = (-1)^\alpha(-1)^\beta$, and
- (4) $(-1)^{\alpha^{-1}} = (-1)^\alpha$.

Proof: Part (1) holds because, for example, $e = (1, 2)(1, 2)$. Part (2) holds because we have $(a_1, a_2, \dots, a_\ell) = (a_1, a_\ell)(a_1, a_{\ell-1}) \cdots (a_1, a_2)$. Part (3) holds because if α is a product of ℓ 2-cycles and β is a product of m 2-cycles then $\alpha\beta$ is a product of $(\ell + m)$ 2-cycles. Part (4) holds because if $\alpha = (a_1, b_1)(a_2, b_2) \cdots (a_\ell, b_\ell)$ then $\alpha^{-1} = (a_\ell, b_\ell) \cdots (a_2, b_2)(a_1, b_1)$.

3.22 Example: Let $\alpha = (1793)(245)(164385) \in S_{10}$. Find $(-1)^\alpha$ and $|\alpha|$.

Solution: By the above theorem, we have $(-1)^\alpha = (-1)^3(-1)^2(-1)^5 = 1$. To find $|\alpha|$, we first write α as a product of disjoint cycles. We find that $\alpha = (165793824)$ and so $|\alpha| = 9$.

3.23 Definition: For $n \geq 2$ we define the **alternating group** A_n to be

$$A_n = \{\alpha \in S_n \mid (-1)^\alpha = 1\}.$$

Note that $A_n \leq S_n$ by the Properties of Parity Theorem. Note that

$$|A_n| = \frac{1}{2}|S_n| = \frac{n!}{2}$$

because we have a bijective correspondence

$$F : \{\alpha \in S_n \mid (-1)^\alpha = 1\} \rightarrow \{\alpha \in S_n \mid (-1)^\alpha = -1\}$$

given by $F(\alpha) = (12)\alpha$.

3.24 Remark: The rotation group of the regular tetrahedron can be identified with A_4 by labelling the vertices of the tetrahedron by 1, 2, 3 and 4 and identifying each rotation with a permutation of $\{1, 2, 3, 4\}$.

3.25 Example: Show that A_n is generated by the set of all 3-cycles, then show that for any $a \neq b \in \{1, 2, \dots, n\}$, A_n is generated by the 3-cycles of the form (abk) with $k \neq a, b$.

Solution: We already know that every permutation in A_n is equal to a product of an even number of 2-cycles. Every product of a pair of 2-cycles is of one of the forms $(ab)(ab)$, $(ab)(ac)$ or $(ab)(cd)$, where a, b, c, d are distinct, and we have

$$(ab)(ab) = (abc)(acb), \quad (ab)(ac) = (acb), \quad (ab)(cd) = (adc)(abc),$$

and so A_n is generated by the set of all 3-cycles. Now fix $a, b \in \{1, 2, \dots, n\}$ with $a \neq b$. Note that every 3-cycle is of one of the forms (abk) , (akb) , (akl) , (bkl) or (klm) , where a, b, k, l, m are all distinct, and we have

$$(abk) = (abk)^2, \quad (akl) = (abl)(abk)^2, \quad (bkl) = (abl)^2(abk), \quad (klm) = (abk)^2(abm)(abl)^2(abk).$$

Chapter 4. Homomorphisms and Isomorphisms of Groups

4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that f is a **function** or a **map** from X to Y , written $f : X \rightarrow Y$, we mean that for every $x \in X$ there exists a unique corresponding element $y = f(x) \in Y$. The set X is called the **domain** of f and the **range** or **image** of f is the set $\text{Image}(f) = f(X) = \{f(x) \mid x \in X\}$. For a set $A \subseteq X$, the **image** of A under f is the set $f(A) = \{f(a) \mid a \in A\}$ and for a set $B \subseteq Y$, the **inverse image** of B under f is the set $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$.

For a function $f : X \rightarrow Y$, we say f is **one-to-one** (written 1 : 1) or **injective** when for every $y \in Y$ there exists at most one $x \in X$ such that $y = f(x)$, we say f is **onto** or **surjective** when for every $y \in Y$ there exists at least one $x \in X$ such that $y = f(x)$, and we say f is **invertible** or **bijective** when f is 1:1 and onto, that is for every $y \in Y$ there exists a unique $x \in X$ such that $y = f(x)$. When f is invertible, the **inverse** of f is the function $f^{-1} : Y \rightarrow X$ defined by $f^{-1}(y) = x \iff y = f(x)$.

For $f : X \rightarrow Y$ and $g : Y \rightarrow Z$, the **composite** $g \circ f : X \rightarrow Z$ is given by $(g \circ f)(x) = g(f(x))$. Note that if f and g are both injective then so is the composite $g \circ f$, and if f and g are both surjective then so is $g \circ f$.

4.2 Definition: Let G and H be groups. A group **homomorphism** from G to H is a function $\phi : G \rightarrow H$ such that

$$\phi(ab) = \phi(a)\phi(b)$$

for all $a, b \in G$, or to be more precise, such that $\phi(a * b) = \phi(a) \times \phi(b)$ for all $a, b \in G$, where $*$ is the operation on G and \times is the operation on H . The **kernel** of ϕ is the set

$$\text{Ker}(\phi) = \phi^{-1}(e) = \{a \in G \mid \phi(a) = e\}$$

where $e = e_H$ is the identity in H , and the **image** (or **range**) of ϕ is

$$\text{Image}(\phi) = \phi(G) = \{\phi(a) \mid a \in G\}.$$

A group **isomorphism** from G to H is a bijective group homomorphism $\phi : G \rightarrow H$. For two groups G and H , we say that G and H are **isomorphic** and we write $G \cong H$ when there exists an isomorphism $\phi : G \rightarrow H$. An **endomorphism** of a group G is a homomorphism from G to itself. An **automorphism** of a group G is an isomorphism from G to itself. The set of all homomorphisms from G to H , the set of all isomorphisms from G to H , the set of all endomorphisms of G , and the set of all automorphisms of G will be denoted by

$$\text{Hom}(G, H), \text{Iso}(G, H), \text{End}(G), \text{Aut}(G).$$

4.3 Remark: In algebra, we consider isomorphic groups to be (essentially) equivalent. The **classification problem** for finite groups is to determine, given any $n \in \mathbf{Z}^+$, the complete list of all groups, up to isomorphism, of order n .

4.4 Example: The groups U_{12} and \mathbf{Z}_2^2 are isomorphic. One way to see this is to compare their operation tables.

	1	5	7	11		(0, 0)	(0, 1)	(1, 0)	(1, 1)
1	1	5	7	11	(0, 0)	(0, 0)	(0, 1)	(1, 0)	(1, 1)
5	5	1	11	7	(0, 1)	(0, 1)	(0, 0)	(1, 1)	(1, 0)
7	7	11	1	5	(1, 0)	(1, 0)	(1, 1)	(0, 0)	(0, 1)
11	11	7	5	1	(1, 1)	(1, 1)	(1, 0)	(0, 1)	(0, 0)

We see that all the entries in these tables correspond under the map $\phi : U_{12} \rightarrow \mathbf{Z}_2^2$ given by $\phi(1) = (0, 0)$, $\phi(5) = (0, 1)$, $\phi(7) = (1, 0)$ and $\phi(11) = (1, 1)$, so ϕ is an isomorphism.

4.5 Example: Let G be a group and let $a \in G$. Then the map $\phi_a : \mathbf{Z} \rightarrow G$ given by $\phi_a(k) = a^k$ is a group homomorphism since $\phi_a(k + \ell) = a^{k+\ell} = a^k a^\ell = \phi_a(k)\phi_a(\ell)$. The image of ϕ_a is

$$\text{Image}(\phi_a) = \{a^k \mid k \in \mathbf{Z}\} = \langle a \rangle$$

and the kernel of ϕ_a is

$$\text{Ker}(\phi_a) = \{k \in \mathbf{Z} \mid a^k = e\} = \begin{cases} \langle n \rangle = n\mathbf{Z}, & \text{if } |a| = n, \\ \langle 0 \rangle = \{0\}, & \text{if } |a| = \infty. \end{cases}$$

4.6 Example: Let G be a group and let $a \in G$. If $|a| = \infty$ then the map $\phi_a : \mathbf{Z} \rightarrow \langle a \rangle$ given by $\phi_a(k) = a^k$ is an isomorphism, and if $|a| = n$ then the map $\phi_a : \mathbf{Z}_n \rightarrow \langle a \rangle$ given by $\phi_a(k) = a^k$ is an isomorphism (note that ϕ_a is well-defined because if $k = \ell \pmod n$ then $a^k = a^\ell$ by Theorem 2.3). In each case, ϕ is a homomorphism since $a^{k+\ell} = a^k a^\ell$ and ϕ is bijective by Theorem 2.3.

4.7 Example: When R is a commutative ring with 1, the map $\phi : GL_n(R) \rightarrow R^*$ given by $\phi(A) = \det(A)$ is a group homomorphism since $\det(AB) = \det(A)\det(B)$. The kernel is

$$\text{Ker}(\phi) = \{A \in GL_n(R) \mid \det(A) = 1\} = SL_n(R)$$

and the image is

$$\text{Image}(\phi) = \{\det(A) \mid A \in GL_n(R)\} = R^*$$

since for $a \in R^*$ we have $\det(\text{diag}(a, 1, 1, \dots, 1)) = a$.

4.8 Example: The map $\phi : \mathbf{R} \rightarrow \mathbf{R}^+$ given by $\phi(x) = e^x$ is a group isomorphism since it is bijective and $\phi(x+y) = e^{x+y} = e^x e^y = \phi(x)\phi(y)$.

4.9 Example: The map $\phi : SO_2(\mathbf{R}) \rightarrow \mathbf{S}^1$ given by $\phi(R_\theta) = e^{i\theta}$ is a group isomorphism.

4.10 Theorem: Let G and H be groups and let $\phi : G \rightarrow H$ be a group homomorphism. Then

- (1) $\phi(e_G) = e_H$,
- (2) $\phi(a^{-1}) = \phi(a)^{-1}$ for all $a \in G$,
- (3) $\phi(a^k) = \phi(a)^k$ for all $a \in G$ and all $k \in \mathbf{Z}$, and
- (4) for $a \in G$, if $|a|$ is finite then $|\phi(a)|$ divides $|a|$.

Proof: To prove (1), note that $\phi(e_G) = \phi(e_G e_G) = \phi(e_G)\phi(e_G)$ so $\phi(e_G) = e_H$ by cancellation. To prove (2) note that $\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(e_G) = e_H$, so $\phi(a)^{-1} = \phi(a^{-1})$ by cancellation. For part (3), note first that $\phi(a^0) = \phi(a)^0$ by part (1), and then note that when $k \in \mathbf{Z}^+$ we have $\phi(a^k) = \phi(aa \cdots a) = \phi(a)\phi(a) \cdots \phi(a) = \phi(a)^k$ and hence also $\phi(a^{-k}) = \phi((a^{-1})^k) = \phi(a^{-1})^k = (\phi(a)^{-1})^k = \phi(a)^{-k}$. For part (4) note that if $|a| = n$ then we have $\phi(a)^n = \phi(a^n) = \phi(e_G) = e_H$ and so $|\phi(a)|$ divides n by Theorem 2.3.

4.11 Theorem: Let G , H and K be groups. Let $\phi : G \rightarrow H$ and $\psi : H \rightarrow K$ be group homomorphisms. Then

- (1) the identity $I : G \rightarrow G$ given by $I(x) = x$ for all $x \in G$, is an isomorphism,
- (2) the composite $\psi \circ \phi : G \rightarrow K$ is a group homomorphism, and
- (3) if $\phi : G \rightarrow H$ is an isomorphism then so is its inverse $\phi^{-1} : H \rightarrow G$.

Proof: We prove part (3) and leave the proofs of (1) and (2) as an exercise. Suppose that $\phi : G \rightarrow H$ is an isomorphism. Let $\psi = \phi^{-1} : H \rightarrow G$. We know that ψ is bijective, so we just need to show that ψ is a homomorphism. Let $c, d \in H$. Let $a = \phi(c)$ and $b = \psi(d)$. Since ϕ is a homomorphism we have $\phi(ab) = \phi(a)\phi(b)$, and so

$$\psi(cd) = \psi(\phi(a)\phi(b)) = \psi(\phi(ab)) = ab = \psi(c)\psi(d).$$

4.12 Corollary: Isomorphism is an equivalence relation on the class of groups. This means that for all groups G , H and K we have

- (1) $G \cong G$,
- (2) if $G \cong H$ and $H \cong K$ then $G \cong K$, and
- (3) if $G \cong H$ then $H \cong G$.

4.13 Corollary: For a group G , $\text{Aut}(G)$ is a group under composition.

4.14 Theorem: Let $\phi : G \rightarrow H$ be a homomorphism of groups. Then

- (1) if $K \leq G$ then $\phi(K) \leq H$, in particular $\text{Image}(\phi) \leq H$,
- (2) if $L \leq H$ then $\phi^{-1}(L) \leq G$, in particular $\text{Ker}(\phi) \leq G$.

Proof: The proof is left as an exercise.

4.15 Theorem: Let $\phi : G \rightarrow H$ be a homomorphism of groups. Then

- (1) ϕ is injective if and only if $\text{Ker}(\phi) = \{e\}$, and
- (2) ϕ is surjective if and only if $\text{Image}(\phi) = H$.

Proof: The proof is left as an exercise.

4.16 Theorem: Let $\phi : G \rightarrow H$ be an isomorphism of groups. Then

- (1) G is abelian if and only if H is abelian,
- (2) for $a \in G$ we have $|\phi(a)| = |a|$,
- (3) G is cyclic with $G = \langle a \rangle$ if and only if H is cyclic with $H = \langle \phi(a) \rangle$,
- (4) for $n \in \mathbf{Z}^+$ we have $\left| \{a \in G \mid |a| = n\} \right| = \left| \{b \in H \mid |b| = n\} \right|$,
- (5) for $K \leq G$ the restriction $\phi : K \rightarrow \phi(K)$ is an isomorphism of groups, and
- (6) for any group C we have $\left| \{K \leq G \mid K \cong C\} \right| = \left| \{L \leq H \mid L \cong C\} \right|$.

Proof: The proof is left as an exercise.

4.17 Example: Note that $\mathbf{Q}^* \not\cong \mathbf{R}^*$ since $|\mathbf{Q}^*| \neq |\mathbf{R}^*|$. Similarly, $GL_3(\mathbf{Z}_2) \not\cong S_5$ because $|GL_3(\mathbf{Z}_2)| = 168$ but $|S_5| = 120$.

4.18 Example: $\mathbf{C}^* \not\cong GL_2(\mathbf{R})$ since \mathbf{C}^* is abelian but $GL_n(\mathbf{R})$ is not. Similarly, $S_4 \not\cong U_{35}$ because U_{35} is abelian but S_4 is not.

4.19 Example: $\mathbf{R}^* \not\cong \mathbf{C}^*$ since \mathbf{C}^* has elements of order $n \geq 3$, for example $|i| = 4$ in \mathbf{C}^* , but \mathbf{R}^* has no elements of order $n \geq 3$, indeed in \mathbf{R}^* , $|1| = 1$ and $|-1| = 2$ and for $x \neq \pm 1$ we have $|x| = \infty$.

4.20 Example: Determine whether $U_{35} \cong \mathbf{Z}_{24}$.

Solution: In U_{35} we have

k	0	1	2	3	4	5	6	7	8	9	10	11	12
2^k	1	2	4	8	16	32	29	23	11	22	9	18	1

We notice that U_{35} has at least two elements of order 2, namely 29 and 34, but \mathbf{Z}_{24} has only one element of order 2, namely 12. Thus $U_{35} \not\cong \mathbf{Z}_{24}$.

4.21 Theorem: Let $a, b \in \mathbf{Z}^+$ with $\gcd(a, b) = 1$. Then

- (1) $\mathbf{Z}_{ab} \cong \mathbf{Z}_a \times \mathbf{Z}_b$ and
- (2) $U_{ab} \cong U_a \times U_b$.

Proof: We prove part (2) (the proof of part (1) is similar). Define $\phi : U_{ab} \rightarrow U_a \times U_b$ by $\phi(k) = (k, k)$. This map ϕ is well-defined because if $k = \ell \pmod{ab}$ then $k = \ell \pmod{a}$ and $k = \ell \pmod{b}$ and because if $\gcd(k, ab) = 1$ so that $k \in U_{ab}$ then $\gcd(k, a) = \gcd(k, b) = 1$. Also, ϕ is a group homomorphism since $\phi(k\ell) = (k\ell, k\ell) = (k, k)(\ell, \ell) = \phi(k)\phi(\ell)$. Finally note that ϕ is bijective by the Chinese Remainder Theorem, indeed ϕ is onto because given $k \in U_a$ and $\ell \in U_b$ there exists $x \in \mathbf{Z}$ with $x = k \pmod{a}$ and $x = \ell \pmod{b}$ and we then have $\gcd(x, a) = \gcd(k, a) = 1$ and $\gcd(x, b) = \gcd(\ell, b) = 1$ so that $\gcd(x, ab) = 1$, that is $x \in U_{ab}$, and ϕ is 1:1 because this solution x is unique modulo ab .

4.22 Corollary: If $n = \prod_{i=1}^{\ell} p_i^{k_i}$ where the p_i are distinct primes and each $k_i \in \mathbf{Z}^+$ then

$$\phi(n) = \prod_{i=1}^{\ell} (p_i^{k_i} - p_i^{k_i-1}) = n \cdot \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i}\right).$$

4.23 Definition: Let G be a group. For $a \in G$, we define **left multiplication** by a to be the map $L_a : G \rightarrow G$ given by

$$L_a(x) = ax \text{ for } x \in G.$$

Note that $L_e = I$ (since $L_e(x) = ex = x = I(x)$ for all $x \in G$) and $L_a L_b = L_{ab}$ since $L_a(L_b(x)) = L_a(bx) = abx = L_{ab}(x)$ for all $x \in G$. Similarly, we define **right-multiplication** by a to be the map $R_a : G \rightarrow G$ given by $R_a(x) = ax$ for $x \in G$. Also, we define **conjugation** by a to be the map $C_a : G \rightarrow G$ by

$$C_a(x) = a x a^{-1} \text{ for } x \in G.$$

The map $L_a : G \rightarrow G$ is not necessarily a group homomorphism since $L_a(xy) = axy$ while $L_a(x)L_a(y) = axay$. On the other hand, the map $C_a : G \rightarrow G$ is a group homomorphism because $C_a(xy) = axya^{-1} = axa^{-1}aya^{-1} = C_a(x)C_a(y)$. Indeed C_a is an automorphism of G because it is invertible with $C_a^{-1} = C_{a^{-1}}$. An automorphism of G of the form C_a is called an **inner automorphism** of G . The set of all inner automorphisms of G is denoted by $\text{Inn}(G)$, so we have

$$\text{Inn}(G) = \{C_a \mid a \in G\}.$$

Note that $\text{Inn}(G) \leq \text{Aut}(G)$ because $I = C_e$, $C_a C_b = C_{ab}$ and $C_a^{-1} = C_{a^{-1}}$. Note that when $H \leq G$, the restriction of the conjugation map C_a gives an isomorphism from H to the group

$$C_a(H) = aHa^{-1} = \{aha^{-1} \mid h \in H\} \cong H.$$

The isomorphic groups H and $C_a(H) = aHa^{-1}$ are called **conjugate** subgroups of G .

4.24 Example: As an exercise, find $\text{Inn}(D_4)$ and show that $\text{Inn}(D_4) \neq \text{Aut}(D_4)$.

4.25 Example: Let G be a finite set with $|G| = n$. Let $S = \{1, 2, \dots, n\}$ and let $f : G \rightarrow S$ be a bijection. The map $C_f : \text{Perm}(G) \rightarrow S_n$ given by $C_f(g) = f g f^{-1}$ is a group isomorphism. Indeed, C_f is well-defined since when $g \in \text{Perm}(G)$ the map $f g f^{-1}$ is invertible with $(f g f^{-1})^{-1} = f g^{-1} f^{-1}$, and C_f is a group homomorphism since $C_f(gh) = fghf^{-1} = fgf^{-1}fhf^{-1} = C_f(g)C_f(h)$, and C_f is bijective with inverse $C_f^{-1} = C_{f^{-1}}$.

4.26 Theorem: (Cayley's Theorem) Let G be a group.

- (1) G is isomorphic to a subgroup of $\text{Perm}(G)$.
- (2) If $|G| = n$ then G is isomorphic to a subgroup of S_n .

Proof: Define $\phi : G \rightarrow \text{Perm}(G)$ by $\phi(a) = L_a$. Note that $L_a \in \text{Perm}(G)$ because L_a is invertible with inverse $L_a^{-1} = L_{a^{-1}}$. Also, ϕ is a group homomorphism because $\phi(ab) = L_{ab} = L_a L_b$ and ϕ is injective because $L_a = I \implies a = e$ (indeed if $L_a = I$ then $a = ae = L_a(e) = I(e) = e$). Thus ϕ is an isomorphism from G to $\phi(G)$, which is a subgroup of $\text{Perm}(G)$.

Now suppose that $|G| = n$, say $f : G \rightarrow \{1, 2, \dots, n\}$ is a bijection. Then the map $C_f \circ \phi$ is an injective group homomorphism (where $C_f(g) = f g f^{-1}$, as above), and so G is isomorphic to $C_f(\phi(G))$ which is a subgroup of S_n .

4.27 Example: Show that $\text{Hom}(\mathbf{Z}, G) = \{\phi_a \mid a \in G\}$, where $\phi_a(k) = a^k$.

Solution: Let $\phi \in \text{Hom}(\mathbf{Z}, G)$. Let $a = \phi(1)$. Then for all $k \in \mathbf{Z}$ we have $\phi(k) = \phi(k \cdot 1) = \phi(1)^k = a^k$, and so $\phi = \phi_a$. On the other hand, note that for $a \in G$ the map ϕ_a given by $\phi_a(k) = a^k$ is a group homomorphism because $\phi_a(k+l) = a^{k+l} = a^k a^l = \phi_a(k)\phi_a(l)$.

4.28 Example: Show that $\text{Hom}(\mathbf{Z}_n, G) = \{\phi_a \mid a \in G, a^n = e\}$, where $\phi_a(k) = a^k$.

Solution: Let $\phi \in \text{Hom}(\mathbf{Z}_n, G)$. Let $a = \phi(1)$. Then for all $k \in \mathbf{Z}$ we have $\phi(k) = \phi(k \cdot 1) = \phi(1)^k = a^k$ so that $\phi = \phi_a$, and we have $a^n = \phi(n) = \phi(0) = e$. On the other hand, note that for $a \in G$ with $a^n = e$, the map ϕ_a is well-defined because if $k = l \pmod n$ then $a^k = a^l$ and it is a homomorphism because $a^{k+l} = a^k a^l$.

4.29 Example: As an exercise, describe $\text{Hom}(\mathbf{Z}_n \times \mathbf{Z}_m, G)$.

4.30 Example: As an exercise, describe $\text{Hom}(D_n, G)$.

Chapter 5. Cosets, Normal Subgroups, and Quotient Groups

5.1 Definition: Let G be a group with operation $*$, let $H \leq G$ and let $a \in G$. The **left coset** of H in G containing a is the set

$$a * H = \{ax \mid x \in H\}.$$

Similarly the **right coset** of H in G containing a is the set $H * a = \{xa \mid x \in H\}$. Usually, unless the operation is addition, we write $a * H$ as aH and we write $H * a$ as Ha . We denote the set of left cosets of H in G by G/H so we have

$$G/H = \{aH \mid a \in G\}.$$

The **index** of H in G , denoted by $[G : H]$ is the cardinality of the set of cosets, that is

$$[G : H] = |G/H|.$$

When G is abelian there is no difference between left and right cosets so we simply call them **cosets**.

5.2 Example: In the group \mathbf{Z}_{12} , the cosets of $H = \langle 4 \rangle = \{0, 4, 8\}$ are

$$\begin{aligned} 0 + H &= 4 + H = 8 + H = \{0, 4, 8\} = H \\ 1 + H &= 5 + H = 9 + H = \{1, 5, 9\} \\ 2 + H &= 6 + H = 10 + H = \{2, 6, 10\} \\ 3 + H &= 7 + H = 11 + H = \{3, 7, 11\} \end{aligned}$$

5.3 Example: In the group \mathbf{Z} , for $n \in \mathbf{Z}^+$, the cosets of $\langle n \rangle = n\mathbf{Z}$ are

$$k + n\mathbf{Z} = \{\dots, k - 2n, k - n, k, k + n, k + 2n, \dots\} \text{ where } k \in \mathbf{Z}.$$

These are exactly the elements of \mathbf{Z}_n , so we have $\mathbf{Z}/\langle n \rangle = \mathbf{Z}_n$.

5.4 Theorem: Let G be a group, let $H \leq G$, and let $a, b \in G$. Then

- (1) $b \in aH \iff a^{-1}b \in H \iff aH = bH$,
- (2) either $aH = bH$ or $aH \cap bH = \emptyset$, and
- (3) $|aH| = |H|$.

Analogous results hold for right cosets.

Proof: If $b \in aH$, say $b = ah$ with $h \in H$, then $a^{-1}b = h \in H$. Conversely if $a^{-1}b \in H$ then $b = ah \in aH$. Thus we have $b \in aH \iff a^{-1}b \in H$. Now suppose that $b \in aH$, say $b = ah$ with $h \in H$. Let $x \in aH$, say $x = ak$ with $k \in H$. Then $x = ak = bh^{-1}k \in bH$. Thus $aH \subseteq bH$. Let $y \in bH$, say $y = bl$ with $l \in H$. Then $y = bl = ahl \in aH$. Thus $bH \subseteq aH$. Conversely, suppose that $aH = bH$. Then $b = be \in bH = aH$. This completes the proof of (1).

To prove (2), suppose that $aH \cap bH \neq \emptyset$. Choose $x \in aH \cap bH$, say $x = ah = bl$ with $h, l \in H$. Then $a^{-1}b = hl^{-1} \in H$ so $aH = bH$ by (1).

To prove (3), define $\phi : H \rightarrow aH$ by $\phi(h) = ah$. Then ϕ is clearly surjective, and ϕ is injective since if $\phi(h) = \phi(k)$ then $ah = ak$ and so $h = k$ by cancellation.

5.5 Corollary: (Lagrange's Theorem) Let G be a group and let $H \leq G$. Then

$$|G| = |G/H| |H|.$$

Proof: The above theorem shows that the group G is partitioned into left cosets and that these cosets all have the same cardinality.

5.6 Corollary: Let G be a finite group, let $H \leq G$ and let $a \in G$. Then $|H|$ divides $|G|$ and $|a|$ divides $|G|$.

5.7 Corollary: (The Euler-Fermat Theorem) For $a \in U_n$ we have $a^{\phi(n)} = 1$.

5.8 Corollary: (The Classification of Groups of Order p) Let p be prime. Let G be a group with $|G| = p$. Then $G \cong \mathbf{Z}_p$.

Proof: Let $a \in \mathbf{Z}_p$ with $a \neq e$. Since $|a|$ divides $|G| = p$ we have $|a| = 1$ or $|a| = p$. Since $a \neq e$, $|a| \neq 1$ so $|a| = p$. Since $\langle a \rangle = |a| = p = |G|$ and $\langle a \rangle \subseteq G$ we have $\langle a \rangle = G$ and so $G = \langle a \rangle \cong \mathbf{Z}_p$.

5.9 Theorem: Let G be a group and let $H \leq G$. The following are equivalent.

- (1) we can define a binary operation $*$ on G/H by $(aH) * (bH) = (ab)H$,
- (2) $aha^{-1} \in H$ for all $a \in G$, $h \in H$, and
- (3) $aH = Ha$ for all $a \in G$.
- (4) $aHa^{-1} = H$ for all $a \in G$.

In this case, G/H is a group under the above operation $*$ with identity $eH = H$.

Proof: Suppose that we can define an operation $*$ on G/H by $(aH) * (bH) = (ab)H$. The fact that this operation is well-defined means that for all $a_1, a_2, b_1, b_2 \in G$, if $a_1H = a_2H$ and $b_1H = b_2H$ then $(a_1b_1)H = (a_2b_2)H$, or equivalently if $a_1^{-1}a_2 \in H$ and $b_1^{-1}b_2 \in H$ then $(a_1b_1)^{-1}(a_2b_2) \in H$, that is $b_1^{-1}a_1^{-1}a_2b_2 \in H$. For $a_1^{-1}a_2 = h \in H$ and $b_1^{-1}b_2 = k \in H$, we have $b_1^{-1}a_1^{-1}a_2b_2 = b_1^{-1}h b_2 = b_1^{-1}b_2 b_2^{-1}k b_2 = k b_2^{-1}h b_2$, and this lies in H if and only if $b_2^{-1}h b_2 \in H$. This proves that (1) \iff (2).

Suppose that (2) holds and let $a \in G$. Let $x \in aH$, say $x = ah$ with $h \in H$. Then $x = ah = aha^{-1}a \in Ha$ since $aha^{-1} \in H$. Thus $aH \subseteq Ha$. Now let $y \in Ha$, say $y = ka$ with $k \in H$. Then $y = ka = aa^{-1}ka \in aH$ since $a^{-1}ka \in H$ by (2). Thus $Ha \subseteq aH$. This proves that (2) \implies (3).

Conversely, suppose that (3) holds. Let $a \in G$ and $h \in H$. Then $ah \in aH = Ha$ so we can choose $k \in H$ so that $ah = ka$. Then we have $aha^{-1} = kaa^{-1} = k \in H$. This proves that (3) \implies (2).

The proof that (3) \iff (4) is left as an exercise.

Now suppose that (1) holds and let $*$ be the above operation. We claim that G/H is a group. Indeed, the operation $*$ is associative since

$$((aH) * (bH)) * (cH) = ((ab)H) * (cH) = (abc)H = (aH) * ((bc)H) = (aH) * ((bH) * (cH)),$$

the coset $eH = H$ is the identity for G/H since for $a \in G$ we have

$$(aH) * (eH) = (ae)H = aH \quad \text{and} \quad (eH) * (aH) = (ea)H = aH,$$

and for $a \in G$, the inverse of the coset aH is the coset $a^{-1}H$ since

$$(aH) * (a^{-1}H) = (a a^{-1})H = eH \quad \text{and} \quad (a^{-1}H) * (aH) = (a^{-1}a)H = eH.$$

5.10 Definition: Let G be a group and let $H \leq G$. If H satisfies the equivalent conditions of the above theorem, then we say that H is a **normal** subgroup of G and we write $H \trianglelefteq G$. When $H \trianglelefteq G$, the group G/H is called the **quotient group** of G by H .

5.11 Theorem: (*The First Isomorphism Theorem*)

(1) if $\phi : G \rightarrow H$ is a group homomorphism and $K = \text{Ker}(\phi)$ then $K \trianglelefteq G$ and $G/K \cong \phi(G)$, indeed the map $\Phi : G/K \rightarrow \phi(G)$ given by $\Phi(aK) = \phi(a)$ is a group isomorphism.

(2) if $K \trianglelefteq G$ then the map $\phi : G \rightarrow G/K$ given by $\phi(a) = aK$ is a group homomorphism with $\text{Ker}(\phi) = K$.

Proof: To prove (1), let $\phi : G \rightarrow H$ be a group homomorphism and let $K = \text{Ker}(\phi)$. Let $a \in G$ let $k \in K$ so $\phi(k) = e$. Then $\phi(aka^{-1}) = \phi(a)\phi(k)\phi(a^{-1}) = \phi(a)\phi(a)^{-1} = e$ and so $aka^{-1} \in \text{Ker}(\phi) = K$. This shows that $K \trianglelefteq G$. Define $\Phi : G/H \rightarrow \phi(G)$ by $\Phi(aK) = \phi(a)$. Note that Φ is well-defined since if $aK = bK$ then $a^{-1}b \in K$ so we have $\phi(a)^{-1}\phi(b) = \phi(a^{-1}b) = e$ and hence $\phi(a) = \phi(b)$. Note that Φ is a group homomorphism since $\Phi((aK)(bK)) = \Phi((ab)K) = \phi(ab)\phi(a)\phi(b) = \Phi(aK)\Phi(bK)$. Finally note that Φ is clearly onto, and Φ is 1:1 since if $\Phi(aK) = e$ then $\phi(a) = e$ so $a \in K$ and hence $aK = K$, which is the identity element of G/K .

To prove (2) let $K \trianglelefteq G$. Define $\phi : G \rightarrow G/K$ by $\phi(a) = aK$. Then ϕ is a group homomorphism since $\phi(ab) = (ab)K = (aK)(bK) = \phi(a)\phi(b)$, and $\text{Ker}(\phi) = K$ since for $a \in G$ we have $a \in \text{Ker}(\phi) \iff \phi(a) = eK \iff aK = eK \iff a \in eK = K$.

5.12 Theorem: (*The Second Isomorphism Theorem*) Let G be a group, let $H \leq G$ and let $K \trianglelefteq G$. Then $K \cap H \trianglelefteq H$, $KH = \langle K \cup H \rangle$, and $H/(K \cap H) \cong KH/K$.

Proof: The proof is left as an exercise.

5.13 Theorem: (*The Third Isomorphism Theorem*) Let G be a group and let $H, K \trianglelefteq G$ with $K \leq H$. Then $H/K \trianglelefteq G/K$ and $(G/K)/(H/K) \cong G/H$.

Proof: The proof is left as an exercise.

5.14 Example: The map $\phi : \mathbf{Z} \rightarrow \mathbf{Z}_n$ given by $\phi(k) = k$ is a group homomorphism with $\text{Image}(\phi) = \langle n \rangle$ and $\text{Ker}(\phi) = \langle n \rangle$, so we have $\mathbf{Z}/\langle n \rangle \cong \mathbf{Z}_n$ (in fact $\mathbf{Z}/\langle n \rangle = \mathbf{Z}_n$).

5.15 Example: The map $\phi : \mathbf{R} \rightarrow \mathbf{S}^1$ given by $\phi(t) = e^{i2\pi t}$ is a group homomorphism, since $e^{i2\pi(s+t)} = e^{i2\pi s}e^{i2\pi t}$, with $\text{Image}(\phi) = \mathbf{S}^1$ and $\text{Ker}(\phi) = \mathbf{Z}$ so we have $\mathbf{R}/\mathbf{Z} \cong \mathbf{S}^1$.

5.16 Example: The map $\phi : \mathbf{C}^* \rightarrow \mathbf{R}^+$ given by $\phi(z) = ||z||$ is a group homomorphism, since $||zw|| = ||z|| ||w||$, with $\text{Image}(\phi) = \mathbf{R}^+$ and $\text{Ker}(\phi) = \mathbf{S}^1$ so we have $\mathbf{C}^*/\mathbf{S}^1 \cong \mathbf{R}^+$.

5.17 Example: The map $\phi : \mathbf{C}^* \rightarrow \mathbf{S}^1$ given by $\phi(z) = \frac{z}{||z||}$, is a group homomorphism, since $\frac{zw}{||zw||} = \frac{z}{||z||} \frac{w}{||w||}$, with $\text{Image}(\phi) = \mathbf{S}^1$ and $\text{Ker}(\phi) = \mathbf{R}^+$ and so $\mathbf{C}^*/\mathbf{R}^+ \cong \mathbf{S}^1$.

5.18 Example: When R is a commutative ring with 1, the map $\phi : GL_n(R) \rightarrow R^*$ given by $\phi(A) = \det(A)$ is a group homomorphism, since $\det(AB) = \det(A)\det(B)$, and it is surjective since for $a \in R^*$ we have $A = \text{diag}(a, 1, \dots, 1) \in GL_n(R)$ and $\det(A) = a$, and we have $\text{Ker}(\phi) = \{A \in GL_n(R) \mid \det(A) = 1\} = SL_n(R)$, and so $SL_n(R) \trianglelefteq GL_n(R)$ with $GL_n(R)/SL_n(R) \cong R^*$.

5.19 Example: For $n \geq 2$, the map $\phi : S_n \rightarrow \mathbf{Z}^* = \{\pm 1\}$ given by $\phi(\alpha) = (-1)^\alpha$ is a group homomorphism since $(-1)^{\alpha\beta} = (-1)^\alpha(-1)^\beta$, and it is surjective since $(-1)^e = 1$ and $(-1)^{(12)} = -1$, and we have $\text{Ker}(\phi) = \{\alpha \in S_n \mid (-1)^\alpha = 1\} = A_n$, and so $A_n \trianglelefteq S_n$ with $S_n/A_n \cong \mathbf{Z}^* = \{\pm 1\}$.

5.20 Example: Let $H = \langle (6, 2), (3, 6) \rangle \leq \mathbf{Z}^2$. As an exercise, show that $|\mathbf{Z}^2/H| = 30$ and that \mathbf{Z}^2/H is cyclic, then find a surjective group homomorphism $\phi : \mathbf{Z}^2 \rightarrow \mathbf{Z}_{30}$ with $\text{Ker}(\phi) = H$.

5.21 Example: The map $\phi : G \rightarrow \text{Aut}(G)$ given by $\phi(a) = C_a$ (where C_a is conjugation by a , given by $C_a(x) = axa^{-1}$) is a group homomorphism since $C_{ab} = C_a C_b$, and we have $\text{Image}(\phi) = \{C_a \mid a \in G\} = \text{Inn}(G)$ and

$$\begin{aligned} \text{Ker}(\phi) &= \{a \in G \mid C_a = I\} = \{a \in G \mid axa^{-1} = x \text{ for all } x \in G\} \\ &= \{a \in G \mid ax = xa \text{ for all } x \in G\} = Z(G) \end{aligned}$$

and so $Z(G) \trianglelefteq G$ with $G/Z(G) \cong \text{Inn}(G)$.

5.22 Definition: Let $H \leq G$. The **centralizer** of H in G is the set

$$C(H) = C_G(H) = \{a \in G \mid ax = xa \text{ for all } x \in H\}$$

and the **normalizer** of H in G is the set

$$N(H) = N_G(H) = \{a \in G \mid aH = Ha\}.$$

5.23 Theorem: (*The Normalizer/Centralizer Theorem*) Let $H \leq G$. Then $C(H) \trianglelefteq N(H)$ and $N(H)/C(H)$ is isomorphic to a subgroup of $\text{Aut}(H)$.

Proof: The proof is left as an exercise.

5.24 Theorem: (*The Characterization of Internal Direct Products*) Let G be a group. Let $H \trianglelefteq G$ and $K \trianglelefteq G$. Suppose that $H \cap K = \{e\}$ and that $G = HK = \{hk \mid h \in H, k \in K\}$. Then $G \cong H \times K$.

Proof: Define $\phi : H \times K \rightarrow G$ by $\phi(h, k) = hk$. The map ϕ is a group homomorphism since for $h_1, h_2 \in H$ and $k_1, k_2 \in K$ we have

$$\begin{aligned} \phi((h_1, k_1)(h_2, k_2)) &= \phi(h_1h_2, k_1k_2) = h_1h_2k_1k_2 = h_1k_1k_1^{-1}h_2k_1h_2^{-1}h_2k_2 \\ &= h_1k_1eh_2k_2 = \phi(h_1, k_1)\phi(h_2, k_2), \end{aligned}$$

where we used the fact that the element $k_1^{-1}h_2k_1h_2^{-1}$ lies in both H and K (it lies in H since $H \trianglelefteq G$ so that $k_1^{-1}h_2k_1 \in H$, and it lies in K since $K \trianglelefteq G$ so that $h_2k_1h_2^{-1} \in K$), and we have $H \cap K = \{e\}$. The map ϕ is surjective since $G = HK$ so that every element in G is of the form $hk = \phi(h, k)$ for some $h \in H$, $k \in K$, and the map ϕ is injective since for $h \in H$ and $k \in K$ we have $\phi(h, k) = e \implies hk = e \implies h = k^{-1} \implies h, k \in H \cap K \implies h = k = e$, since $H \cap K = \{e\}$.

5.25 Theorem: (The Classification of Groups of Order $2p$) Let p be prime. Then (up to isomorphism) the distinct groups of order $2p$ are \mathbf{Z}_{2p} and D_p .

Proof: Let G be a group with $|G| = 2p$. Suppose that $G \not\cong \mathbf{Z}_{2p}$, so G is not cyclic. By Lagrange's Theorem, each element $a \in G$ has order $|a| = 1, 2, p$ or $2p$. Since G is not cyclic, no element has order $2p$ so every non-identity element in G has order 2 or p .

Suppose first that every non-identity element has order 2. Note that G must be abelian since for all $a, b \in G$ we have $a^2 = b^2 = (ba)^2 = e$ and so $ab = b^2aba^2 = b(ba)^2a = ba$. Fix two distinct non-identity elements $a, b \in G$ and consider the set $H = \{e, a, b, ab\}$. Note that H is closed under the operation and under inversion (since $a^2 = b^2 = e$ and $ab = ba$) and so $H = \langle a, b \rangle \leq G$. By Lagrange's Theorem, we have $|H||G|$, that is $4|2p$, and so we must have $p = 2$ and so $|G| = 4 = |H|$, and so $G = H \cong \mathbf{Z}_2^2 \cong D_2$.

Now suppose that some non-identity element has order p with $p \neq 2$. Choose $a \in G$ with $|a| = p$. Choose $b \notin \langle a \rangle$. Note that since $\langle a \rangle = p$ and $|G| = 2p$, there are exactly two cosets of $\langle a \rangle$ in G , namely $\langle a \rangle$ and $b\langle a \rangle$, and G is the disjoint union $G = \langle a \rangle \cup b\langle a \rangle$. Note that $b^2\langle a \rangle \neq b\langle a \rangle$ since $b = b^{-1}b^2 \notin \langle a \rangle$, and so we must have $b^2\langle a \rangle = \langle a \rangle$ and hence $b^2 \in \langle a \rangle$. Note that $|b| \neq p$, since if we had $b^p = e$ then (since $p+1$ is even) we would have $b = b^{p+1} \in \langle b^2 \rangle \subseteq \langle a \rangle$, and so $|b| = 2$. Similarly, we have $|x| = 2$ for every $x \notin \langle a \rangle$. Consider the element ab . Note that $ab \notin \langle a \rangle = a\langle a \rangle$ since $b = a^{-1}ab \notin \langle a \rangle$, and so we have $|ab| = 2$. Thus $abab = e$ and so $ab = (ab)^{-1} = b^{-1}a^{-1} = ba^{p-1}$.

We have shown that G is the disjoint union $G = \langle a \rangle \cup b\langle a \rangle$, so we have

$$G = \{e, a, a^2, \dots, a^{p-1}, b, ba, ba^2, \dots, ba^{p-1}\}$$

with the listed elements distinct. Since $ab = ba^{-1}$, we have $a^2b = aba^{-1} = ba^{-2}$ and $a^3b = aba^{-2} = ba^{-3}$ and so on so that $a^k b = ba^{-k}$. This determines the operation on G completely. Indeed we have

$$a^k \cdot a^l = a^{k+l}, \quad a^k \cdot ba^l = ba^{l-k}, \quad ba^k \cdot a^l = ba^{k+l}, \quad ba^k \cdot ba^l = a^{l-k}.$$

Compare this to the operation in $D_p = \{I, R_1, \dots, R_{p-1}, F_0, F_1, \dots, F_{p-1}\}$ given by

$$R_k \cdot R_l = R_{k+l}, \quad R_k \cdot F_{-l} = F_{-(l-k)}, \quad F_{-k}R_l = F_{-(k+l)}, \quad F_{-k}F_{-l} = F_{-(l-k)}.$$

We see that the map $\phi : G \rightarrow D_p$ given by $\phi(a^k) = R_k$ and $\phi(ba^l) = F_{-l}$ is an isomorphism.

5.26 Theorem: (The Classification of Groups of Order p^2) Let p be prime. Then (up to isomorphism) the distinct groups of order p^2 are \mathbf{Z}_{p^2} and $\mathbf{Z}_p \times \mathbf{Z}_p$.

Proof: Let G be a group with $|G| = p^2$. Suppose that $G \not\cong \mathbf{Z}_{p^2}$ so that G is not cyclic. Each $a \in G$ has order $|a| = 1, p$ or p^2 . Since G is not cyclic, every non-identity element has order p .

Let a be a non-identity element in G . We claim that $\langle a \rangle \trianglelefteq G$. Suppose, for a contradiction, that $\langle a \rangle \not\trianglelefteq G$. Choose $x \in G$ and $a^k \in \langle a \rangle$ so that $x a^k x^{-1} \notin \langle a \rangle$. This implies that $x a x^{-1} \notin \langle a \rangle$ since $x a^k x^{-1} = (x a x^{-1})^k$. Since $x a x^{-1} \neq e$ we have $|x a x^{-1}| = p$. Note that $\langle a \rangle \cap \langle x a x^{-1} \rangle = \{e\}$ because $\langle a \rangle \cap \langle x a x^{-1} \rangle$ is a proper subgroup of $\langle a \rangle \cong \mathbf{Z}_p$. It follows that the cosets

$$e \langle x a x^{-1} \rangle, a \langle x a x^{-1} \rangle, a^2 \langle x a x^{-1} \rangle, \dots, a^{p-1} \langle x a x^{-1} \rangle$$

are distinct since if $a^k \langle x a x^{-1} \rangle = a^l \langle x a x^{-1} \rangle$ then $a^{l-k} \in \langle x a x^{-1} \rangle$ so $a^{l-k} \in \langle a \rangle \cap \langle x a x^{-1} \rangle$ and hence $a^{l-k} = e$. Thus G is the disjoint union of these p cosets. In particular, the element x^{-1} lies in some coset. But this is not possible since if $x^{-1} \in a^k \langle x a x^{-1} \rangle$ with say $x^{-1} = a^k x a^l x^{-1}$, then we would have $a^k x a^l = e$ and hence $x = a^{-k-l} \in \langle a \rangle$. This proves the claim.

Fix a non-identity element $a \in G$ and choose an element $b \in G$ with $b \notin \langle a \rangle$. Then we have $\langle a \rangle \trianglelefteq G$ and $\langle b \rangle \trianglelefteq G$. As above, we have $\langle a \rangle \cap \langle b \rangle = \{e\}$ (since $\langle a \rangle \cap \langle b \rangle$ is a proper subgroup of $\langle a \rangle \cong \mathbf{Z}_p$), and as above this implies that the cosets

$$e \langle b \rangle, a \langle b \rangle, a^2 \langle b \rangle, \dots, a^{p-1} \langle b \rangle$$

are distinct (since if $a^k \langle b \rangle = a^l \langle b \rangle$ then $a^{l-k} \in \langle b \rangle$ hence $a^{l-k} \in \langle a \rangle \cap \langle b \rangle = \{e\}$). Thus every element of G is of the form $a^i b^j$, that is $G = \langle a \rangle \langle b \rangle$. By the Characterization of Internal Direct Products, we have $G \cong \langle a \rangle \times \langle b \rangle \cong \mathbf{Z}_p \times \mathbf{Z}_p$.

5.27 Definition: A group G is **simple** when its only normal subgroups are $\{e\}$ and G .

5.28 Theorem: For $n \geq 5$, the alternating group A_n is simple.

Proof: Let $H \trianglelefteq A_n$. We shall show that $H = A_n$. We consider 5 cases. Case 1: suppose first that H contains a 3-cycle, say $(abc) \in H$. Then for any $k \neq a, b, c$ we have $(abk) = (ab)(ck)(abc)^2(ck)(ab) \in H$. It follows that $A_n = H$ because A_n is generated by the 3-cycles of the form (abk) with $k \neq a, b$ (as shown in Example 3.25). Case 2: suppose that H contains an element α which, when written in cycle notation, has a cycle of length $r \geq 4$, say $\alpha = (a_1 a_2 a_3 \cdots a_r) \beta \in H$. Then $(a_1 a_3 a_r) = \alpha^{-1} (a_1 a_2 a_3) \alpha (a_1 a_2 a_3)^{-1} \in H$ and so $H = A_n$ by Case 1. Case 3: suppose that H contains an element α which, when written in cycle notation, has at least two 3-cycles, say $\alpha = (a_1 a_2 a_3) (a_4 a_5 a_6) \beta \in H$. Then we have $(a_1 a_4 a_2 a_6 a_3) = \alpha^{-1} (a_1 a_2 a_4) \alpha (a_1 a_2 a_4)^{-1} \in H$ and so $H = A_n$ by Case 2. Case 4: suppose that H contains an element α which, when written in cycle notation, is a product of one 3-cycle and some 2-cycles, say $\alpha = (a_1 a_2 a_3) \beta \in H$ where β is a product of disjoint 2-cycles so that $\beta^2 = e$. Then $(a_1 a_3 a_2) = \alpha^2 \in H$ and so $H = A_n$ by Case 1. Case 5: suppose that H contains an element α which, when written in cycle notation, is a product of 2-cycles, say $\alpha = (a_1 a_2) (a_3 a_4) \beta \in H$. Then $(a_1 a_3) (a_2 a_4) = \alpha^{-1} (a_1 a_2 a_3) \alpha (a_1 a_2 a_3)^{-1} \in H$. Let $\gamma = (a_1 a_3) (a_2 a_4)$ and choose b distinct from a_1, a_2, a_3, a_4 . Then $(a_1 a_3 b) = \gamma (a_1 a_2 b) \gamma (a_1 a_3 b)^{-1} \in H$ and so $H = A_n$ by Case 1.

Chapter 6. Group Actions on Sets

6.1 Definition: Let G be a group. A **representation** of G is a group homomorphism $\rho : G \rightarrow \text{Perm}(S)$ for some set S . A representation $\rho : G \rightarrow \text{Perm}(S)$ is called **faithful** when it is injective.

6.2 Remark: Given a faithful representation $\rho : G \rightarrow \text{Perm}(S)$, we sometimes identify the group G with its isomorphic image $\rho(G)$, which is a group of permutations of S .

6.3 Definition: Let G be a group and let S be a set. A **group action** of G on S is a map $* : G \times S \rightarrow S$, where for $a \in G$ and $x \in S$ we write $*(a, x)$ as $a * x$ or simply as ax , such that

- (1) $ex = x$ for all $x \in S$, and
- (2) $(ab)x = a(bx)$ for all $a, b \in G$ and all $x \in S$.

6.4 Note: Given a group G and a set S , here is a natural bijective correspondence between representations $\rho : G \rightarrow \text{Perm}(S)$ and group actions $* : G \times S \rightarrow S$. The representation ρ and its corresponding group action $*$ determine one another by the formula

$$a * x = \rho(a)(x) \text{ for all } a \in G, x \in S.$$

As an exercise, verify that given a representation ρ , this formula defines a group action $*$, and conversely that given a group action $*$, the formula defines a representation ρ .

6.5 Definition: Suppose that a group G acts on a set S . The group action is called **faithful** when the corresponding representation is faithful.

6.6 Example: When a group G acts on itself by its own operation, so $a * x = ax = L_a(x)$, the corresponding representation $\rho : G \rightarrow \text{Perm}(G)$ is given by $\rho(a) = L_a$. This is the map that was used in the proof of Cayley's Theorem. The representation is faithful, so it gives an isomorphism from G to its image $\rho(G) \leq \text{Perm}(G)$.

6.7 Example: When a group G acts on itself by conjugation, so $a * x = axa^{-1} = C_a(x)$, the corresponding representation $\rho : G \rightarrow \text{Perm}(G)$ is given by $\rho(a) = C_a$. This is the homomorphism considered in Example 5.21 with $\text{Ker}(\phi) = Z(G)$ and $\text{Image}(\phi) = \text{Inn}(G)$ giving the isomorphism $G/Z(G) \cong \text{Inn}(G)$.

6.8 Example: When R is a commutative ring with 1 and the group $GL_n(R)$ acts on R^n by matrix multiplication, so that $A * x = Ax = L_A(x)$, the corresponding representation $\rho : GL_n(R) \rightarrow \text{Perm}(R^n)$ is given by $\rho(A) = L_A$ (so ρ sends the matrix A to the linear map L_A given by $L_A(x) = Ax$). The representation is faithful, so it gives an isomorphism from $GL_n(R)$ (which is a set of invertible matrices) to its image (which is a set of invertible linear maps).

6.9 Definition: Let G be a group which acts on a set S . For $a \in G$ we define the **fixed set** of a in S to be the set

$$\text{Fix}(a) = \{x \in S \mid ax = x\} \subseteq S.$$

For $x \in S$ we define the **orbit** of x in S to be the set

$$\text{Orb}(x) = \{ax \mid a \in G\} \subseteq S.$$

Verify that for $x, y \in S$ we have $y \in \text{Orb}(x) \iff \text{Orb}(x) = \text{Orb}(y)$ so, for the equivalence relation on S given by $x \sim y \iff \text{Orb}(x) = \text{Orb}(y)$, the equivalence class of x is equal to the orbit of x . The set of distinct orbits is denoted by S/G so we have

$$S/G = \{\text{Orb}(x) \mid x \in S\}.$$

For $x \in S$ we define the **stabilizer** of x in G to be the subgroup

$$\text{Stab}(x) = \{a \in G \mid ax = x\} \leq G.$$

Note that $\text{Stab}(x) \leq G$ because $ex = x$, if $ax = x$ and $bx = x$ then $(ab)x = a(bx) = ax = x$, and if $ax = x$ then $x = ex = (a^{-1}a)x = a^{-1}(ax) = a^{-1}x$.

6.10 Theorem: (The Orbit-Stabilizer Theorem) *Let G be a group which acts on a set S . Then for all $x \in S$ we have*

$$|G| = |\text{Orb}(x)| |\text{Stab}(x)|.$$

Proof: Let $x \in S$. We shall show that $|\text{Orb}(x)| = |G/\text{Stab}(x)|$. Write $H = \text{Stab}(x)$. Define a map $\Phi : G/H \rightarrow \text{Orb}(x)$ by $\Phi(aH) = ax$. Then Φ is well-defined because for $a, b \in G$ we have $aH = bH \implies b^{-1}a \in H \implies b^{-1}ax = x \implies ax = bx$, Φ is injective because for $a, b \in G$ we have $ax = bx \implies b^{-1}ax = x \implies b^{-1}a \in H \implies aH = bH$, and the map Φ is clearly surjective.

6.11 Example: Consider D_6 as a subgroup of S_6 . Find $\text{Orb}(1)$ and $\text{Stab}(1)$.

6.12 Example: Let G be the rotation group of a cube Q . Label the vertices of the cube by elements of $S = \{1, 2, \dots, 6\}$, think of the elements of G as permutations of S and hence identify G with a subgroup of S_6 . Find $|\text{Orb}(1)|$ and $|\text{Stab}(1)|$ and hence find $|G|$.

6.13 Example: (The Class Equation) When G acts on itself by conjugation, so that $a * x = axa^{-1}$, for $a, x \in G$, we have $\text{Orb}(x) = \{axa^{-1} \mid a \in G\} = \text{Cl}(x)$, so the orbit of x is the conjugacy class of x in G , and we have $\text{Stab}(x) = \{a \in G \mid axa^{-1} = x\} = C(x)$, so the stabilizer of x is the centralizer of x in G . Suppose that G is a finite group. Say G has n distinct conjugacy classes, and choose one element $x_i \in G$ from each class so that we have $G = \bigcup_{i=1}^n \text{Orb}(x_i)$. By the Orbit-Stabilizer Theorem, $|\text{Orb}(x_i)| = \frac{|G|}{|C(x_i)|} = |G/C(x_i)|$

and so

$$|G| = \sum_{i=1}^n |G/C(x_i)|.$$

This equation is called the **class equation** for G .

6.14 Example: Let S be the set of all subgroups of a group G . Let G act on S by conjugation, so $a * H = C_a(H) = aHa^{-1}$, where $a \in G$ and $H \leq G$. For $H \in S$, that is $H \leq G$, we have

$$\begin{aligned} \text{Stab}(H) &= \{a \in G \mid aHa^{-1} = H\} = \{a \in G \mid aH = Ha\} = N_G(H), \\ \text{Orb}(H) &= \{aHa^{-1} \mid a \in G\} = \text{Cl}(H), \end{aligned}$$

where $N_G(H)$ is the normalizer of H in G and $\text{Cl}(H)$ is the conjugacy class of H in G , that is the set of all subgroups conjugate to H in G .

6.15 Theorem: (Cauchy's Theorem) Let G be a finite group. Let p be a prime divisor of $|G|$. Then G contains an element of order p . Indeed

$$\left| \{a \in G \mid |a| = p\} \right| = p - 1 \bmod p(p - 1).$$

Proof: Let n be the number of elements of order p in G , that is $n = |\{a \in G \mid |a| = p\}|$. Recall that $n = 0 \bmod (p - 1)$ (indeed n is equal to $(p - 1)$ times the number of cyclic subgroups of order p in G because each of these subgroups has $\phi(p) = p - 1$ generators). Let $S = \{(x_1, x_2, \dots, x_p) \in G^p \mid x_1 x_2 \cdots x_p = e\}$. Note that $|S| = |G|^{p-1}$ since to get $(x_1, x_2, \dots, x_p) \in S$ we can choose x_1, x_2, \dots, x_{p-1} arbitrarily and then x_p must be given by $x_p = (x_1 x_2 \cdots x_{p-1})^{-1}$. Note that \mathbf{Z}_p acts on S by cyclic permutation, that is by

$$k * (x_1, x_2, \dots, x_p) = (x_{1+k}, x_{2+k}, \dots, x_p, x_1, \dots, x_k)$$

since if $x_1 x_2 \cdots x_p = e$ then $x_1 x_2 \cdots x_k = (x_{k+1} \cdots x_p)^{-1}$ so $x_{1+k} x_{2+k} \cdots x_p x_1 \cdots x_k = e$. For $x = (x_1, x_2, \dots, x_p) \in S$, by the Orbit/Stabilizer Theorem $|\text{Orb}(x)|$ divides $|\mathbf{Z}_p| = p$ so that $|\text{Orb}(x)| \in \{1, p\}$, so we have

$$|\text{Orb}(x)| = \begin{cases} 1, & \text{if } x = (a, a, \dots, a) \text{ for some } a \in G, \text{ and} \\ p, & \text{otherwise.} \end{cases}$$

Since S is the disjoint union of the orbits, we have $|S| = k + pl$ where k is the number of orbits of size 1 and l is the number of orbits of size p . Note that k is equal to the number of elements $a \in G$ with $a^p = 1$, and so $k = 1 + n$. Since $|S| = |G|^{p-1} = 0 \bmod p$ we have $n = k - 1 = |S| - pl - 1 = -1 \bmod p$. Since $n = -1 = p - 1 \bmod p$ and $n = 0 = p - 1 \bmod (p - 1)$, we have $n = p - 1 \bmod p(p - 1)$ by the Chinese Remainder Theorem.

6.16 Theorem: Let G be a finite group and let $H \leq G$. Suppose that $|G/H| = p$, where p is the smallest prime divisor of $|G|$. Then $H \trianglelefteq G$.

Proof: Let $S = G/H = \{aH \mid a \in G\}$. Since $|S| = p$ we have $\text{Perm}(S) \cong S_p$. Let G act on S by left multiplication, so we have $a * (bH) = abH$ for $a, b \in G$. Let $\rho : G \rightarrow \text{Perm}(S)$ be the associated representation, so $\rho(a)(bH) = abH$. Let

$$K = \text{Ker}(\rho) = \{a \in G \mid abH = bH \text{ for all } b \in G\} \trianglelefteq G.$$

Note that $K \leq H$ because $a \in K \implies aeH = eH \implies a \in H$. Since $K \trianglelefteq G$ (it is the kernel of a homomorphism) and $K \leq H$, we also have $K \trianglelefteq H$. By the First Isomorphism Theorem, we have $G/K \cong \rho(G) \leq \text{Perm}(S) \cong S_p$. By Lagrange's Theorem $|G/K|$ divides $|S_p| = p!$. By another application of Lagrange's Theorem, $|G/K|$ also divides $|G|$. Since $|G/K| \mid |G|$ and p is the smallest prime factor of $|G|$, $|G/K|$ has no prime factors less than p . Since $|G/K| \mid p!$, we must have $|G/K| = 1$ or p . Since $|G/K| = |G/H| |H/K| = p |H/K|$ we have $|G/K| = p$ and $|H/K| = 1$. Thus in fact $H = K \trianglelefteq G$.

6.17 Theorem: (*The Burnside or Cauchy-Frobenius Lemma*) Let G be a finite group which acts on a set S . Then

$$|G| |S/G| = \sum_{a \in G} |\text{Fix}(a)|.$$

Proof: Let $T = \{(a, x) \mid a \in G, x \in S, ax = x\}$. Then we have

$$|T| = \sum_{a \in G} |\{x \in S \mid ax = x\}| = \sum_{a \in G} |\text{Fix}(a)|$$

and we have

$$\begin{aligned} |T| &= \sum_{x \in S} |\{a \in G \mid ax = x\}| = \sum_{x \in S} |\text{Stab}(x)| = \sum_{x \in S} \frac{|G|}{|\text{Orb}(x)|} \\ &= |G| \sum_{x \in S} \frac{1}{|\text{Orb}(x)|} = |G| \sum_{A \in S/G} \sum_{x \in A} \frac{1}{|A|} = |G| \sum_{A \in S/G} 1 = |G| |S/G|. \end{aligned}$$

6.18 Example: In how many ways (up to symmetry under the action of D_6) can we colour the vertices of the regular hexagon C_6 using 3 colours?

Solution: Let S be the set of possible colourings without considering symmetry under D_6 , and note that $|S| = 3^6$. The natural action of D_6 on C_6 induces an action of D_6 on S . We make a table showing $|\text{Fix}(A)|$ for each $A \in D_6$.

A	# of such A	$ \text{Fix}(A) $
I	1	3^6
R_3	1	3^3
R_2, R_4	2	3^2
R_1, R_5	2	3^1
F_0, F_2, F_4	3	3^4
F_1, F_3, F_5	3	3^3

The number of colourings up to D_6 symmetry is equal to the number of orbits, which is

$$|S/D_6| = \frac{1}{|D_6|} \sum_{A \in D_6} |\text{Fix}(A)| = \frac{1}{12} (3^6 + 3^3 + 2 \cdot 3^2 + 2 \cdot 3^1 + 3 \cdot 3^4 + 3 \cdot 3^2) = 92.$$

6.19 Example: Let G be the rotation group of a cube Q . In how many ways (up to symmetry under the action of G) can we colour the 8 vertices of Q using 2 colours?

Solution: The solution is left as an exercise.

Chapter 7. The Classification of Finite Abelian Groups

7.1 Note: In this chapter we will use additive notation for all abelian groups.

7.2 Definition: A **free abelian group** of **rank** n is an abelian group isomorphic to \mathbf{Z}^n .

7.3 Theorem: The rank of a free abelian group G is unique, that is if $G \cong \mathbf{Z}^n$ and $G \cong \mathbf{Z}^m$ then $n = m$.

Proof: Suppose that $G \cong \mathbf{Z}^n$ and $G \cong \mathbf{Z}^m$ so that $\mathbf{Z}^n \cong \mathbf{Z}^m$. Let $\phi : \mathbf{Z}^n \rightarrow \mathbf{Z}^m$ be an isomorphism. Note that ϕ sends $2\mathbf{Z}^n$ bijectively to $2\mathbf{Z}^m$, so it induces an isomorphism $\psi : \mathbf{Z}^n / 2\mathbf{Z}^n \rightarrow \mathbf{Z}^m / 2\mathbf{Z}^m$ given by $\psi(k + 2\mathbf{Z}^n) = \phi(k) + 2\mathbf{Z}^m$. Also note that $\mathbf{Z}_n / 2\mathbf{Z}^n \cong \mathbf{Z}_2^n$ and $\mathbf{Z}^m / 2\mathbf{Z}^m \cong \mathbf{Z}_2^m$, so we have $\mathbf{Z}_2^n \cong \mathbf{Z}_2^m$. Thus $2^n = |\mathbf{Z}_2^n| = |\mathbf{Z}_2^m| = 2^m$ so $n = m$.

7.4 Definition: Let G be an additive abelian group. Let $u_1, u_2, \dots, u_\ell \in G$ be distinct and let $U = \{u_1, u_2, \dots, u_\ell\}$. A **linear combination** of elements in U (over \mathbf{Z}) is an element of G of the form

$$a = t_1 u_1 + t_2 u_2 + \dots + t_\ell u_\ell \text{ for some } t_i \in \mathbf{Z}.$$

The **span** of U (over \mathbf{Z}) is the set of all linear combinations, that is

$$\text{Span}_{\mathbf{Z}}(U) = \langle U \rangle = \{t_1 u_1 + t_2 u_2 + \dots + t_\ell u_\ell \mid \text{each } t_i \in \mathbf{Z}\}$$

We say that U is **linearly independent** (over \mathbf{Z}) when for all $t_i \in \mathbf{Z}$,

$$\text{if } t_1 u_1 + t_2 u_2 + \dots + t_\ell u_\ell = 0 \text{ then every } t_i = 0.$$

We say that U is a **basis** for G (over \mathbf{Z}) when U is linearly independent and $\text{Span}_{\mathbf{Z}}(U) = G$. An **ordered basis** for G (over \mathbf{Z}) is an ordered n -tuple (u_1, u_2, \dots, u_n) of distinct elements $u_i \in G$ such that $U = \{u_1, u_2, \dots, u_n\}$ is a basis for G (over \mathbf{Z}). Note that if U is a basis for G over \mathbf{Z} , every element in G can be written uniquely (up to the order of the terms) as a linear combination of elements in U over \mathbf{Z} .

7.5 Example: Let $e_k = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbf{Z}^n$ where the 1 is in the k^{th} position. Then $\{e_1, e_2, \dots, e_n\}$ is a basis, which we call the **standard basis** for \mathbf{Z}^n over \mathbf{Z} .

7.6 Theorem: Let G be an abelian group. Then G is a free abelian group of rank n if and only if G has a basis over \mathbf{Z} with n -elements.

Proof: Suppose that $G \cong \mathbf{Z}^n$ and let $\phi : \mathbf{Z}^n \rightarrow G$ is a group isomorphism. Verify that the set $U = \{\phi(e_1), \phi(e_2), \dots, \phi(e_n)\}$ is a basis for G over \mathbf{Z} . Conversely, suppose that $U = \{u_1, u_2, \dots, u_n\}$ is a basis for G over \mathbf{Z} . Verify that the map $\phi : \mathbf{Z}^n \rightarrow G$ given by

$$\phi(t_1, t_2, \dots, t_n) = (t_1 u_1 + t_2 u_2 + \dots + t_n u_n)$$

is a group isomorphism.

7.7 Theorem: Let $U = (u_1, u_2, \dots, u_n)$ be an ordered basis over \mathbf{Z} for the free abelian group G . Then we can perform any of the following operations to the elements in the basis to obtain a new ordered basis for G over \mathbf{Z} .

- (1) $u_i \leftrightarrow u_j$: interchange two elements,
- (2) $u_i \mapsto \pm u_i$: multiply an element by ± 1 ,
- (3) $u_i \mapsto u_i + ku_j$: add an integer multiple of one element to another.

Proof: The proof is left as an exercise.

7.8 Theorem: (Subgroups and Quotient Groups of \mathbf{Z}^n) Let G be a free abelian group of rank n . Let $H \leq G$. Then H is a free abelian group of rank r for some $0 \leq r \leq n$ and

$$G/H \cong \mathbf{Z}_{d_1} \times \mathbf{Z}_{d_2} \times \cdots \times \mathbf{Z}_{d_r} \times \mathbf{Z}^{n-r}$$

for some $d_i \in \mathbf{Z}^+$ with $d_1 \mid d_2, d_2 \mid d_3, \dots, d_{r-1} \mid d_r$.

Proof: We claim that there exists a basis $\{u_1, u_2, \dots, u_n\}$ for G and there exist r and d_1, d_2, \dots, d_r with $0 \leq r \leq n$ and $d_1 \mid d_2, d_2 \mid d_3, \dots, d_{r-1} \mid d_r$ such that $\{d_1 u_1, d_2 u_2, \dots, d_r u_r\}$ is a basis for H . Once we have proven this claim, it is not hard to check that the map $\phi : G \rightarrow \mathbf{Z}_{d_1} \times \mathbf{Z}_{d_2} \times \cdots \times \mathbf{Z}_{d_r} \times \mathbf{Z}^{n-r}$ given by $\phi(t_1 u_1 + \cdots + t_n u_n) = (t_1, \dots, t_n)$ is a surjective group homomorphism with $\text{Ker}(\phi) = H$, so that

$$G/H \cong \mathbf{Z}_{d_1} \times \mathbf{Z}_{d_2} \times \cdots \times \mathbf{Z}_{d_r} \times \mathbf{Z}^{n-r}$$

by the First Isomorphism Theorem.

When $n = 1$ so $G \cong \mathbf{Z}$, we have $G = \langle a \rangle = \text{Span}_{\mathbf{Z}}\{a\}$ for some $a \in G$ with $|a| = \infty$, and $H = \langle ka \rangle$ for some $k \geq 0$. If $k = 0$ so $H = \{0\}$ (so the empty set is a basis for H), the claim holds with $u_1 = a$ and $r = 0$. If $k > 0$, the claim holds with $u_1 = a$, $r = 1$, $d_1 = k$.

Let $n \geq 2$ and suppose, inductively, that the claim holds for free abelian groups of rank $n - 1$. Let $G \cong \mathbf{Z}^n$ with $H \leq G$. If $H = \{0\}$ (so the empty set is a basis for H), the claim holds with $r = 0$. Suppose that $H \neq \{0\}$. Let T be the set of all coefficients t_i in all linear combinations $a = t_1 v_1 + t_2 v_2 + \cdots + t_n v_n$ over all elements $a \in H$ and all possible choices of basis $\{v_1, v_2, \dots, v_n\}$ for G . Let $d_1 \in \mathbf{Z}^+$ be the smallest positive integer in T . Choose a basis $\{v_1, v_2, \dots, v_n\}$ for G and an element $a = d_1 v_1 + t_2 v_2 + t_3 v_3 + \cdots + t_n v_n \in H$. Note that $d_1 \mid t_i$ for all $i \geq 2$ because if we write $t_i = q_i d_1 + r_i$ with $0 \leq r_i < d_i$ then

$$\begin{aligned} a &= d_1 v_1 + (q_2 d_1 + r_2) v_2 + (q_3 d_1 + r_3) v_3 + \cdots + (q_n d_1 + r_n) v_n \\ &= d_1 (v_1 + q_2 v_2 + q_3 v_3 + \cdots + q_n v_n) + r_2 v_2 + r_3 v_3 + \cdots + r_n v_n \end{aligned}$$

and so each $r_i = 0$ by the choice of d_1 since $\{v_1 + \sum q_i v_i, v_2, v_3, \dots, v_n\}$ is a basis for G . Let $u_1 = v_1 + \sum q_i v_i$ so that $\{u_1, v_2, v_3, \dots, v_n\}$ is a basis for G and $a = d_1 u_1 \in H$.

Let $G_0 = \text{Span}\{v_2, v_3, \dots, v_n\}$ and let $H_0 = H \cap G_0$. Let $a \in H$. Since $\{u_1, v_2, \dots, v_n\}$ is a basis for G , we know that a can be written uniquely in the form $a = t_1 u_1 + t_2 v_2 + \cdots + t_n v_n$. Note that we must have $d_1 \mid t_1$ because if we write $t_1 = q_1 d_1 + r_1$ with $0 \leq r_1 < d_1$ then since $a = (q_1 d_1 + r_1) u_1 + t_2 v_2 + \cdots + t_n v_n \in H$, we have $r_1 u_1 + t_2 v_2 + \cdots + t_n v_n = a - q_1 d_1 u_1 \in H$, and so $r_1 = 0$ by the choice of d_1 . Also note that for $b = a - t_1 u_1 = t_2 v_2 + \cdots + t_n v_n$ we have $b \in \text{Span}\{v_2, \dots, v_n\} = G_0$ and since $d_1 \mid t_1$ and $d_1 u_1 \in H$ we have $t_1 u_1 \in H$, and so $b \in H \cap G_0 = H_0$. Thus every $a \in H$ can be written uniquely as $a = t_1 u_1 + b$ with $d_1 \mid t_1$ and $b \in H_0$.

By the induction hypothesis, we can find a basis $\{u_2, u_3, \dots, u_n\}$ for G_0 and we can find r and d_2, d_3, \dots, d_n with $1 \leq r \leq n$ and $d_2 \mid d_3, d_3 \mid d_4, \dots, d_{r-1} \mid d_r$ such that $\{d_2 u_2, \dots, d_r u_r\}$ is a basis for H_0 . Since each $a \in H$ can be written uniquely as $a = t_1 u_1 + b$ with $d_1 \mid t_1$ and $b \in H_0 = \text{Span}\{d_2 u_2, \dots, d_n u_n\}$, it follows that $\{d_1 u_1, d_2 u_2, \dots, d_n u_n\}$ is a basis for H . Finally, note that we must have $d_1 \mid d_2$ because if we write $d_2 = q_2 d_1 + r_2$ with $0 \leq r_2 < d_1$ then we have $d_1 u_1 + d_2 u_2 \in H$, so that $d_1 u_1 + (q_2 d_1 + r_2) u_2 \in H$, hence $d_1(u_1 + q_2 u_2) + r_2 u_2 \in H$ and so $r_2 = 0$ by the choice of d_1 , since $\{u_1 + q_2 u_2, u_2, \dots, u_n\}$ is another basis for G .

7.9 Theorem: (The Classification of Finite Abelian Groups) Every finite abelian group is isomorphic to a unique group of the form

$$\mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2} \times \cdots \times \mathbf{Z}_{n_l}$$

for some integer $l \geq 0$ and some integers n_i with $2 \leq n_1, n_1 | n_2, n_2 | n_3, \dots, n_{l-1} | n_l$.

Alternatively, every finite abelian group is isomorphic to a unique group of the form

$$\mathbf{Z}_{p_1^{k_1}} \times \mathbf{Z}_{p_2^{k_2}} \times \cdots \times \mathbf{Z}_{p_m^{k_m}}$$

for some integer $m \geq 0$ and some primes p_i with $p_1 \leq p_2 \leq \cdots \leq p_m$ and some positive integers k_i with $k_i \leq k_{i+1}$ whenever $p_i = p_{i+1}$.

Proof: First we prove that every finite abelian group is isomorphic to a group of the first form. Let G be a finite additive abelian group, say $|G| = n$ and $G = \{a_1, a_2, \dots, a_n\}$. Define $\phi : \mathbf{Z}^n \rightarrow G$ by $\phi(t_1, t_2, \dots, t_n) = t_1 a_1 + \cdots + t_n a_n$. Then ϕ is a group homomorphism since G is abelian, and ϕ is clearly onto. By the First Isomorphism Theorem we have $G \cong \mathbf{Z}^n / \text{Ker}(\phi)$. By the previous theorem,

$$G \cong \mathbf{Z}_{d_1} \times \mathbf{Z}_{d_2} \times \cdots \times \mathbf{Z}_{d_r} \times \mathbf{Z}^{n-r}$$

for some integers r and d_1, d_2, \dots, d_r with $0 \leq r \leq n$ and $d_1 | d_2, d_2 | d_3, \dots, d_{r-1} | d_r$. Since G is finite we must have $r = n$. Say $d_1 = d_2 = \cdots = d_k = 1$ and $d_{k+1} > 1$. Then we have

$$G = \mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2} \times \cdots \times \mathbf{Z}_{n_l}$$

as required, by taking $n_i = d_{k+i}$.

Next we describe a bijective correspondence between groups of the first form and groups of the second form. Given a group $G = \mathbf{Z}_{n_1} \times \cdots \times \mathbf{Z}_{n_l}$ of the first form, we can obtain an isomorphic group H of the second form as follows. For each $j = 1, 2, \dots, l$, decompose n_j into its prime factorization $n_j = \prod p_{j,i}^{k_{j,i}}$, replace the group \mathbf{Z}_{n_j} by the isomorphic group $\prod \mathbf{Z}_{p_{j,i}^{k_{j,i}}}$, and then let H be the product of all the groups $p_{j,i}^{k_{j,i}}$ arranged in the required order. For example, for $G = \mathbf{Z}_2 \times \mathbf{Z}_4 \times \mathbf{Z}_{12} \times \mathbf{Z}_{24} \times \mathbf{Z}_{720}$, we have

$$\begin{aligned} G &= \mathbf{Z}_2 \times \mathbf{Z}_4 \times \mathbf{Z}_{12} \times \mathbf{Z}_{24} \times \mathbf{Z}_{720} \\ &\cong \mathbf{Z}_2 \times \mathbf{Z}_4 \times (\mathbf{Z}_4 \times \mathbf{Z}_3) \times (\mathbf{Z}_8 \times \mathbf{Z}_3) \times (\mathbf{Z}_{16} \times \mathbf{Z}_9 \times \mathbf{Z}_5) \\ &\cong \mathbf{Z}_2 \times \mathbf{Z}_4 \times \mathbf{Z}_4 \times \mathbf{Z}_8 \times \mathbf{Z}_{16} \times \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_9 \times \mathbf{Z}_5 = H. \end{aligned}$$

Conversely, given the group $H = \mathbf{Z}_{p_1^{k_1}} \times \cdots \times \mathbf{Z}_{p_m^{k_m}}$ of the second form, we can recover the group G of the first form as follows. First rewrite the list of (not necessarily distinct) primes p_1, p_2, \dots, p_m as $q_1, q_1, \dots, q_1, q_2, q_2, \dots, q_2, \dots, q_r, q_r, \dots, q_r$ where the q_i are distinct primes, where say q_i occurs s_i times in the list, and rewrite the list $p_1^{k_1}, \dots, p_m^{k_m}$ in the form $q_1^{k_{1,1}}, \dots, q_1^{k_{1,s_1}}, q_2^{k_{2,1}}, \dots, q_2^{k_{2,s_2}}, \dots, q_r^{k_{r,1}}, \dots, q_r^{k_{r,s_r}}$. Then let $s = \max\{s_1, s_2, \dots, s_r\}$, and replace each of the products $\mathbf{Z}_{q_i^{k_{i,1}}} \times \cdots \times \mathbf{Z}_{q_i^{k_{i,s_i}}}$ by the isomorphic product $\mathbf{Z}_{q_i^{l_{i,1}}} \times \cdots \times \mathbf{Z}_{q_i^{l_{i,s}}}$ where $l_{i,1} = l_{i,2} = \cdots = l_{i,s-s_i} = 0$ and $l_{i,s-s_i+j} = k_{i,j}$ for $j = 1, 2, \dots, s_i$. We then have

$$H = \prod_{i=1}^r \prod_{j=1}^s \mathbf{Z}_{q_i^{l_{i,j}}} \cong \prod_{j=1}^s \prod_{i=1}^r \mathbf{Z}_{q_i^{l_{i,j}}} \cong \prod_{j=1}^s \mathbf{Z}_{n_j} = G, \text{ where } n_j = \prod_{i=1}^r q_i^{l_{i,j}}.$$

For example, for $H = \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_8 \times \mathbf{Z}_3 \times \mathbf{Z}_9 \times \mathbf{Z}_9 \times \mathbf{Z}_{81} \times \mathbf{Z}_5 \times \mathbf{Z}_{25} \times \mathbf{Z}_7$ we have

$$\begin{aligned}
H &= \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_8 \times \mathbf{Z}_3 \times \mathbf{Z}_9 \times \mathbf{Z}_9 \times \mathbf{Z}_{81} \times \mathbf{Z}_5 \times \mathbf{Z}_{25} \times \mathbf{Z}_7 \\
&\cong (\mathbf{Z}_1 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_8) \times (\mathbf{Z}_3 \times \mathbf{Z}_9 \times \mathbf{Z}_9 \times \mathbf{Z}_{81}) \\
&\quad \times (\mathbf{Z}_1 \times \mathbf{Z}_1 \times \mathbf{Z}_5 \times \mathbf{Z}_{25}) \times (\mathbf{Z}_1 \times \mathbf{Z}_1 \times \mathbf{Z}_1 \times \mathbf{Z}_7) \\
&\cong (\mathbf{Z}_1 \times \mathbf{Z}_3 \times \mathbf{Z}_1 \times \mathbf{Z}_1) \times (\mathbf{Z}_2 \times \mathbf{Z}_9 \times \mathbf{Z}_1 \times \mathbf{Z}_1) \\
&\quad \times (\mathbf{Z}_2 \times \mathbf{Z}_9 \times \mathbf{Z}_5 \times \mathbf{Z}_1) \times (\mathbf{Z}_8 \times \mathbf{Z}_{81} \times \mathbf{Z}_{25} \times \mathbf{Z}_7) \\
&\cong \mathbf{Z}_3 \times \mathbf{Z}_{18} \times \mathbf{Z}_{90} \times \mathbf{Z}_{113400} = G.
\end{aligned}$$

You should convince yourself that the above two procedures give a bijective correspondence between groups of the two forms described in the statement of the theorem.

Finally, we show uniqueness for groups G of the second form. To do this, we shall show that the primes p_i and the exponents k_i are uniquely determined by the isomorphism class of the group G . Suppose that

$$G \cong \mathbf{Z}_{p_1^{k_1}} \times \mathbf{Z}_{p_2^{k_2}} \times \cdots \times \mathbf{Z}_{p_m^{k_m}}$$

where the p_i are prime and each $k_i \in \mathbf{Z}^+$. Let p be a prime number. Let n_k be the number of elements in G whose order divides p^k . Let a_k be the number of indices i such that $p_i = p$ and $k_i = k$. Let b_k be the number of indices i such that $p_i = p$ and $k_i \geq k$. Note that $a_k = b_k - b_{k+1}$. Using the fact that for $x_i \in \mathbf{Z}_{p_i^{k_i}}$ we have $|(x_1, x_2, \dots, x_m)| = \text{lcm}(|x_1|, |x_2|, \dots, |x_m|)$, verify that

$$\begin{aligned}
n_1 &= p^{b_1} \\
n_2 &= p^{a_1} p^{2b_2} \\
n_3 &= p^{a_1} p^{2a_2} p^{3b_3} \\
&\vdots \\
n_k &= p^{a_1} p^{2a_2} p^{3a_3} \cdots p^{(k-1)a_{k-1}} p^{kb_k}
\end{aligned}$$

so we have

$$\begin{aligned}
\frac{n_k}{n_{k-1}} &= \frac{p^{(k-1)a_{k-1}} p^{kb_k}}{p^{(k-1)b_{k-1}}} = \frac{p^{(k-1)a_{k-1}} p^{kb_k}}{p^{(k-1)(a_{k-1}+b_k)}} = p^{b_k}, \text{ and so} \\
p^{a_k} &= p^{b_k - b_{k+1}} = p^{b_k} / p^{b_{k+1}} = \frac{n_k}{n_{k-1}} / \frac{n_{k+1}}{n_k} = \frac{n_k^2}{n_{k-1} n_{k+1}}.
\end{aligned}$$

This formula shows that the number of elements of each order in G determines the values of each prime p_i and each exponent k_i .

7.10 Corollary: Let G and H be finite abelian groups. If G and H have the same number of elements of each order then $G \cong H$.

7.11 Corollary: Let $n = \prod p_i^{k_i}$ where the p_i are distinct primes and each $k_i \in \mathbf{Z}^+$. Then the number of distinct abelian groups of order n (up to isomorphism) is equal to $\prod P(k_i)$ where $P(k_i)$ is the number of partitions of k_i .

Proof: The abelian groups of order p^k are the groups $\prod \mathbf{Z}_{p^{j_i}}$ where the j_i partition k .

Chapter 8. Definition and Examples of Rings and Subrings

8.1 Definition: A **ring** is a set R with two binary operations, addition denoted by $+$ and multiplication denoted by \times , by \cdot or by concatenation, and an element $0 \in R$ such that

- (1) $+$ is associative: $(a + b) + c = a + (b + c)$ for all $a, b, c \in R$,
- (2) $+$ is commutative: $a + b = b + a$ for all $a, b, c \in R$,
- (3) 0 is an additive identity: $a + 0 = 0 + a = a$ for all $a \in R$,
- (4) every $a \in R$ has an additive inverse: there exists $b \in R$ such that $a + b = b + a = 0$,
- (5) \times is associative: $(ab)c = a(bc)$ for all $a, b, c \in R$, and
- (6) \times is distributive over $+$: $a(b + c) = ab + ac$ and $(a + b)c = ac + bc$ for all $a, b, c \in R$.

We say that R is **commutative** when \times is commutative, that is $ab = ba$ for all $a, b \in R$. We say that R has an **identity** (or that R has a 1) when it has a multiplicative identity, that is when there is a non-zero element $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$. When R has a 1, for $a \in R$ we say that a is **invertible** (or that a is a **unit**) when there is an element $b \in R$ with $ab = 1 = ba$. A **division ring** is a ring R with identity such that every non-zero element of R is invertible. A **field** is a commutative division ring.

8.2 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

- (1) the additive identity 0 is unique in the sense that if $e \in R$ has the property that $a + e = a = e + a$ for all $a \in R$ then $e = 0$,
- (2) the additive inverse of $a \in G$ is unique in the sense that for all $a, b, c \in G$ if we have $a + b = 0 = b + a$ and $a + c = 0 = c + a$ then $b = c$,
- (3) if R has a 1, then it is unique in the sense that for all $u \in R$, if u has the property that $au = a = ua$ for all $a \in G$ then $u = 1$, and
- (4) if R has a 1 and $a \in R$ has an inverse, then it is unique in the sense that for all $a \in G$ if there exist $b, c \in G$ such that $ab = ba = 1$ and $ac = ca = 1$ then $b = c$.

8.3 Notation: Let R be a ring. For $a \in R$ we denote the unique additive inverse of $a \in R$ by $-a$, and for $a, b \in R$ we write $b - a$ for $b + (-a)$. If R has a 1 and $a \in R$ has a multiplicative inverse, we say that a is a **unit** in R , and we denote its inverse by a^{-1} .

8.4 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all $a, b, c \in R$,

- (1) if $a + c = b + c$ then $a = b$,
- (2) if $a + b = a$ then $b = 0$, and
- (3) if $a + b = 0$ then $b = -a$.

8.5 Note: We do not, in general, have similar rules for cancellation under multiplication. In general, for a, b, c in a ring R , $ac = bc$ does not imply that $a = b$, $ac = a$ does not imply that $c = 1$, $ac = 1$ does not imply that $ca = 1$, and $ac = 0$ does not imply that $a = 0$ or $b = 0$. When $ac = 1$ we say that a is a **left inverse** for c and that c is a **right inverse** for a . When $ac = 0$ but $a \neq 0$ and $b \neq 0$, we say that a and b are **zero divisors**. A commutative ring with 1 which has no zero divisors is called an **integral domain**.

8.6 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all $a, b, c \in R$, if $ac = bc$, or if $ca = cb$, then either $a = b$ or $c = 0$ or c is a zero divisor.

Proof: Suppose $ac = bc$. Then $ac - bc = 0$ so $(a - b)c = 0$. Either $(a - b) = 0$ so $a = b$, or $c = 0$ or $(a - b)$ and c are zero divisors. The case that $ca = cb$ is similar.

8.7 Theorem: (Basic Properties of Rings) Let R be a ring. Then

- (1) $0 \cdot a = a \cdot 0 = 0$ for all $a \in R$,
- (2) $(-a)b = -(ab) = a(-b)$ for all $a, b \in R$,
- (3) $(-a)(-b) = ab$ for all $a, b \in R$,
- (4) if R has a 1 then $(-1)a = -a$ for all $a \in R$.

Proof: Let $a \in R$. Then $0 \cdot a = (0 + 0) \cdot a = 0 \cdot a + 0 \cdot a$. Thus $0 \cdot a = 0$ by additive cancellation. The proof that $a \cdot 0 = 0$ is similar, and the other proofs are left as an exercise.

8.8 Notation: Let R be a ring. For $k \in \mathbf{Z}^+$ we write $ka = a + a + \cdots + a$ with k terms in the sum, and we write $(-k)a = k(-a)$, and we write $a^k = a \cdot a \cdot \dots \cdot a$ with k terms in the product. For $0 \in \mathbf{Z}$ we write $0a = 0$ and if R has a 1 we write $a^0 = 1$. If R has a 1 and $a \in R$ is a unit, we write $a^{-k} = (a^{-1})^k$. For all $k, l \in \mathbf{Z}$ and all $a \in R$ we have $(k + l)a = ka + la$, $(-k)a = -(ka) = k(-a)$, $-(-a) = a$, $-(a + b) = -a - b$, $(ka)(lb) = (kl)(ab)$. For $a \in R$ and $k, l \in \mathbf{Z}^+$ we have $a^{k+l} = a^k a^l$. When R has a 1 and a and b are units, then for $k, l \in \mathbf{Z}$ we have $a^{k+l} = a^k a^l$, $a^{-k} = (a^k)^{-1}$, $(a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1}a^{-1}$.

8.9 Example: \mathbf{Z} , \mathbf{Q} , \mathbf{R} , \mathbf{C} and \mathbf{Z}_n are all commutative rings with 1. Of these, \mathbf{Q} , \mathbf{R} and \mathbf{C} , and also \mathbf{Z}_p when p is prime, are fields.

8.10 Example: The ring of real **quaternions** is the set $\mathbf{H} = \mathbf{R}^4$ in which we write $1 = (1, 0, 0, 0)$, $i = (0, 1, 0, 0)$, $j = (0, 0, 1, 0)$, $k = (0, 0, 0, 1)$ and for $t \in \mathbf{R}$ we write $t = (t, 0, 0, 0)$, $ti = it = (0, t, 0, 0)$, $tj = jt = (0, 0, t, 0)$ and $tk = kt = (0, 0, 0, t)$. We define addition as usual in $\mathbf{H} = \mathbf{R}^4$. and we define multiplication by requiring that $i^2 = j^2 = k^2 = -1$, that $ij = -ji = k$, $jk = -kj = i$ and $ki = -ik = j$, and that every real number commutes with i , j and k . It can be verified that \mathbf{H} is a division ring with

$$(a + ib + jc + kd)^{-1} = \frac{a - ib - jc - kd}{a^2 + b^2 + c^2 + d^2}$$

for all $0 \neq a + ib + jc + kd \in \mathbf{H}$.

8.11 Example: For a set A and a ring R , the set

$$\text{Func}(A, R) = R^A = \{ \text{functions } f : A \rightarrow R \}$$

is a ring under the operations given by $(f + g)(x) = f(x) + g(x)$ and $(fg)(x) = f(x)g(x)$ for all $x \in A$. If R is commutative then so is $\text{Func}(A, R)$. If R has identity 1 then the identity of $\text{Func}(A, R)$ is the constant function $1 : A \rightarrow R$ given by $1(x) = 1$ for all $x \in A$.

8.12 Example: For a group G , an **endomorphism** of G is a group homomorphism $\phi : G \rightarrow G$. If G is an additive abelian group then the set

$$\text{End}(G) = \{ \text{endomorphisms } \phi : G \rightarrow G \}$$

is a ring under the operations given by $(\phi + \psi)(x) = \phi(x) + \psi(x)$ and $(\phi\psi)(x) = \phi(\psi(x))$ for all $x \in G$. The ring $\text{End}(G)$ has an identity, namely the identity function $I : G \rightarrow G$ given by $I(x) = x$ for all $x \in G$.

8.13 Example: Let R be a ring with 1. Then the set

$$R^* = \{ a \in R \mid a \text{ is a unit} \}$$

is a group under multiplication, called the **group of units** of R .

8.14 Example: For a ring R and a variable symbol x , a **formal power series** in x over R is a sequence (a_0, a_1, a_2, \dots) with each $a_i \in R$, and we write this sequence as

$$f(x) = \sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots$$

The elements a_i are called the **coefficients** of f and a_0 is called the **constant coefficient**. A power series of the form $f(x) = a$ with $a \in R$ is called a **constant series**. The set

$$R[[x]] = \{ \text{formal power series in } x \text{ over } R \}$$

is a ring, which we call the **ring of formal power series** in x over R , with the following operations: for $f(x) = \sum_{i=0}^{\infty} a_i x^i$ and $g(x) = \sum_{j=0}^{\infty} b_j x^j$ we have

$$(f+g)(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k, \text{ and } (fg)(x) = \sum_{k=0}^{\infty} c_k x^k \text{ where } c_k = \sum_{i=0}^k a_i b_{k-i}.$$

If R is commutative then so is $R[[x]]$, and if R has identity 1 then the identity of $R[[x]]$ is the constant polynomial 1, that is the sequence $1 = (1, 0, 0, \dots)$. A **polynomial** in x over R is a formal power series with only finitely non-zero coefficients. When we have $a_i = 0$ for all $i > n$ we also write $f(x) = \sum_{i=0}^n a_i x^i$. When $a_n \neq 0$ and $a_i = 0$ for all $i > n$ we say that a_n is the **leading coefficient** of f and that the **degree** of f is $\deg(f) = n$. The set

$$R[x] = \{ \text{polynomials in } x \text{ over } R \}$$

is a ring, which we call the **ring of polynomials** in x over R , using the same operations as in $R[[x]]$.

8.15 Example: For a ring R and variable symbols x_1, \dots, x_n , a **formal power series** in x_1, \dots, x_n over R is a function $a : \mathbf{N}^n \rightarrow R$, and we write this function as

$$f(x_1, \dots, x_n) = \sum_{(i_1, \dots, i_n) \in \mathbf{N}^n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n} \text{ where } a_{i_1, \dots, i_n} = a(i_1, \dots, i_n).$$

The elements $a_{i_1, \dots, i_n} \in R$ are called the **coefficients** of the power series. The set

$$R[[x_1, \dots, x_n]] = \{ \text{formal power series in } x_1, \dots, x_n \text{ over } R \}$$

is a ring, called the **ring of formal power series** in x_1, \dots, x_n over R , under the following operations: for $f(x) = \sum a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}$ and $g(x) = \sum b_{j_1, \dots, j_n} x_1^{j_1} \cdots x_n^{j_n}$ we define

$$(f+g)(x) = \sum (a_{k_1, \dots, k_n} + b_{k_1, \dots, k_n}) x_1^{k_1} \cdots x_n^{k_n}$$

$$(fg)(x) = \sum c_{k_1, \dots, k_n} x_1^{k_1} \cdots x_n^{k_n}$$

where c_{k_1, \dots, k_n} is the sum of all terms $a_{i_1, \dots, i_n} b_{j_1, \dots, j_n}$ for which $i_\alpha + j_\alpha = k_\alpha$ for all $\alpha = 1, \dots, n$. A **polynomial** in x_1, \dots, x_n over R is a formal power series with only finitely many non-zero coefficients, and the set

$$R[x_1, x_2, \dots, x_n] = \{ \text{polynomials in } x_1, \dots, x_n \text{ over } R \}$$

is a ring using the same operations as in $R[[x_1, \dots, x_n]]$.

8.16 Example: For a ring R , the set

$$M_n(R) = \{n \times n \text{ matrices with entries in } R\}$$

is a ring under matrix addition and matrix multiplication, which we call the **ring of $n \times n$ matrices over R** . If R has identity 1 then the identity of $M_n(R)$ is the $n \times n$ identity matrix I .

8.17 Example: If R and S are rings then the cartesian product

$$R \times S = \{(a, b) \mid a \in R, b \in S\}$$

is a ring, called the **product ring** of R and S , with operations

$$(a, b) + (c, d) = (a + c, b + d) \text{ and } (a, b)(c, d) = (ac, bd).$$

More generally, if R_1, \dots, R_n are rings then so is the product

$$\prod_{i=1}^n R_i = R_1 \times \dots \times R_n = \{(a_1, \dots, a_n) \mid \text{each } a_i \in R_i\},$$

which we call the **product ring** of R_1, \dots, R_n , under the operations

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n), \text{ and}$$

$$(a_1, \dots, a_n)(b_1, \dots, b_n) = (a_1 b_1, \dots, a_n b_n).$$

More generally still, if A is any set and R_α is a ring for each $\alpha \in A$, then the product

$$\prod_{\alpha \in A} R_\alpha = \{f : A \rightarrow \bigcup_{\alpha \in A} R_\alpha \mid f(\alpha) \in R_\alpha \text{ for all } \alpha \in A\}$$

is a ring, called the **product ring** of the rings $R_\alpha, \alpha \in A$, under the operations

$$(f + g)(\alpha) = f(\alpha) + g(\alpha) \text{ and } (fg)(\alpha) = f(\alpha)g(\alpha).$$

8.18 Theorem: Let R be a finite ring. Then R is a field if and only if R is an integral domain.

Proof: Suppose that R is a field. Let $a, b \in R$. Suppose that $ab = 0$ and $a \neq 0$. Then $b = 1 \cdot b = (a^{-1}a)b = a^{-1}(ab) = a^{-1} \cdot 0 = 0$. Thus R has no zero divisors.

Conversely, suppose that R is an integral domain. We must show that every non-zero element in R is a unit. Let $0 \neq a \in R$. Consider the left multiplication map $L_a : R \rightarrow R$ given by $L_a(x) = ax$. For $x, y \in R$ we have $L_a(x) = L_a(y) \implies ax = ay \implies x = y$ by cancellation, since $a \neq 0$ and a is not a zero divisor. Thus L_a is injective. Since R is finite, this implies that L_a is bijective. In particular, we can choose $b \in R$ so that $L_a(b) = 1$, that is $ab = 1$. Similarly, right multiplication R_a is bijective, and so we can choose $c \in R$ so that $ca = 1$. Then we have $c = c \cdot 1 = c(ab) = (ca)b = 1 \cdot b = b$, and so a is a unit with $a^{-1} = b = c$.

8.19 Definition: Let R be a ring with 1. We define the **characteristic** of R , written as $\text{char}(R)$, to be the smallest $n \in \mathbf{Z}^+$ such that $n \cdot 1 = 0$ if such an n exists, and if no such n exists then the characteristic of R is 0. Note that when $n \cdot 1 = 0$ we have $n \cdot a = 0$ for all $a \in R$ because $na = a + a + \dots + a = (1 + 1 + \dots + 1)a = (n \cdot 1)a$.

8.20 Theorem: Let R be a ring with 1 with no zero divisors. Then either $\text{char}(R) = 0$ or $\text{char}(R)$ is prime.

Proof: Suppose $\text{char}(R) = n \in \mathbf{Z}^+$. Suppose, for a contradiction, that n is composite, say $n = kl$ with $1 < k, l < n$. Then $0 = n \cdot 1 = (kl) \cdot 1 = (k \cdot 1)(l \cdot 1)$. Since R has no zero divisors, either $k \cdot 1 = 0$ or $l \cdot 1 = 0$. This contradicts the definition of $n = \text{char}(R)$.

8.21 Definition: A **subring** of a ring R is a subset $S \subseteq R$ which is a ring using the same operations used in R . Similarly, a **subfield** of a field F is a subset $K \subseteq F$ which is also a field using the same operations used in F .

8.22 Theorem: If S be a subset of a ring R , then S is a subring of R if and only if

- (1) $0 \in S$,
- (2) S is closed under addition, that is $a + b \in S$ for all $a, b \in S$,
- (3) S is closed under multiplication, that is $ab \in S$ for all $a, b \in S$, and
- (4) S is closed under additive inverse, that is $-a \in S$ for all $a \in S$.

Similarly, if K is a subset of a field F then K is a subfield of F if and only if

- (1) $0 \in K$ and $1 \in K$,
- (2) K is closed under addition, that is $a + b \in K$ for all $a, b \in K$,
- (3) K is closed under multiplication, that is $ab \in K$ for all $a, b \in K$,
- (4) K is closed under additive inverse, that is $-a \in K$ for all $a \in K$, and
- (5) K is closed under multiplicative inverse, that is $a^{-1} \in K$ for all $0 \neq a \in F$.

8.23 Example: \mathbf{Z} is a subring of \mathbf{Q} , \mathbf{Q} is a subring of \mathbf{R} , \mathbf{R} is a subring of \mathbf{C} , and \mathbf{C} is a subring of \mathbf{H} . Also, \mathbf{Q} is a subfield of \mathbf{R} which is a subfield of \mathbf{C} .

8.24 Example: In \mathbf{Z} , the subgroups are of the form $\langle n \rangle = \{kn \mid k \in \mathbf{Z}\}$ where $0 \leq n \in \mathbf{Z}$. Each of these subgroups is also a subring of \mathbf{Z} . In \mathbf{Z}_n , the subgroups are of the form $\langle d \rangle = \{kd \mid k \in \mathbf{Z}_{n/d}\}$ where $d \mid n$, and each of these subgroups is also a subring.

8.25 Example: In \mathbf{Z}_{12} we have the subring $\langle 3 \rangle = \{0, 3, 6, 9\}$. Notice that $9 \cdot 0 = 0$, $9 \cdot 3 = 3$, $9 \cdot 6 = 6$ and $9 \cdot 9 = 9$, so 9 is the identity element in the group $\langle 3 \rangle$. This example shows that the identity element in a subring of R does not need to be equal to the identity element of R .

8.26 Example: Define

$$\begin{aligned}\mathbf{Z}[\sqrt{2}] &= \{a + b\sqrt{2} \mid a, b \in \mathbf{Z}\}, \text{ and} \\ \mathbf{Q}[\sqrt{2}] &= \{a + b\sqrt{2} \mid a, b \in \mathbf{Q}\}.\end{aligned}$$

Then $\mathbf{Z}[\sqrt{2}]$ is a subring of \mathbf{R} and $\mathbf{Q}[\sqrt{2}]$ is a subring of \mathbf{R} because

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$$

In fact $\mathbf{Q}[\sqrt{2}]$ is a subfield of \mathbf{R} because for $a, b \in \mathbf{Q}$, if $a + b\sqrt{2} \neq 0$ then $a^2 \neq 2b^2$ and

$$(a + b\sqrt{2}) \left(\frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2} \sqrt{2} \right) = 1.$$

8.27 Example: More generally, if R is a subring of S and $A \subseteq S$, then we write $R[A]$ for the smallest subring of S which contains R and A , or equivalently the intersection of all subrings of S which contain $R \cup A$. Some particular cases of this include the subrings

$$\begin{aligned}\mathbf{Z}[i] &= \{a + bi \mid a, b \in \mathbf{Z}\} \subseteq \mathbf{C} \\ \mathbf{Q}[\alpha] &= \{a + b\alpha + c\alpha^2 \mid a, b, c \in \mathbf{Q}\} \subseteq \mathbf{C}, \text{ where } \alpha = e^{i2\pi/3} \\ \mathbf{Q}[\sqrt{2}, \sqrt{3}] &= \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbf{Q}\} \subseteq \mathbf{R}.\end{aligned}$$

As an exercise, check that these are all rings and that $\mathbf{Q}[\alpha]$ and $\mathbf{Q}[\sqrt{2}, \sqrt{3}]$ are fields.

8.28 Example: We sometimes use notation, similar to the notation used in the above example, for some other rings. For example, we write

$$\mathbf{Z}_n[i] = \{a + bi \mid a, b \in \mathbf{Z}_n\}.$$

This is a ring under the operations given by $(a + bi) + (c + di) = (a + c) + (b + d)i$ and $(a + bi)(c + di) = (ac - bd) + (ad + bc)i$.

8.29 Example: For an interval $A \subseteq \mathbf{R}$, let $\mathcal{C}^0(A, \mathbf{R})$ denote the set of continuous functions $f : A \rightarrow \mathbf{R}$, for $k \in \mathbf{Z}^+$ let $\mathcal{C}^k(A, \mathbf{R})$ denote the set of functions $f : A \rightarrow \mathbf{R}$ such that the k^{th} derivative $f^{(k)}$ exists and is continuous in A , and let $\mathcal{C}^\infty(A, \mathbf{R})$ denote the set of infinitely differentiable functions $f : A \rightarrow \mathbf{R}$. Then $\mathcal{C}^\infty(A, \mathbf{R})$ is a subring of $\mathcal{C}^k(A, \mathbf{R})$ which is a subring of $\mathcal{C}^0(A, \mathbf{R})$ which, in turn, is a subring of $\text{Func}(A, \mathbf{R})$.

8.30 Example: For a ring R , the polynomial ring $R[x]$ is a subring of the formal power series ring $R[[x]]$. More generally, $R[x_1, \dots, x_n]$ is a subring of $R[[x_1, \dots, x_n]]$. If S is a subring of R then $S[x]$ is a subring of $R[x]$ and $S[[x]]$ is a subring of $R[[x]]$, and more generally, $S[x_1, \dots, x_n]$ is a subring of $R[x_1, \dots, x_n]$ and $S[[x_1, \dots, x_n]]$ is a subring of $R[[x_1, \dots, x_n]]$. We can regard R as a subring of $R[x]$ by identifying an element $a \in R$ with the corresponding constant polynomial in $R[x]$. Similarly, we can regard $R[x_1, \dots, x_n]$ as a subring of $R[x_1, \dots, x_n, x_{n+1}]$ and $R[[x_1, \dots, x_n]]$ as a subring of $R[[x_1, \dots, x_n, x_{n+1}]]$.

8.31 Example: Although we can regard the polynomial ring $\mathbf{R}[x]$ as a subring of the ring of functions $\text{Func}(\mathbf{R}, \mathbf{R})$ (since we can regard a polynomial as a kind of function), in general given a ring R we cannot regard $R[x]$ as a subring of $\text{Func}(R, R)$. For example, if R is finite, say with $|R| = n$, then $|\text{Func}(R, R)| = n^n$ but $|R[x]| = \infty$ (or more precisely $|R[x]| = \aleph_0$).

8.32 Example: For a ring R , the set $T_n(R)$ of upper-triangular matrices with entries in R is a subring of $M_n(R)$. If S is a subring of R then $M_n(S)$ is a subring of $M_n(R)$.

8.33 Definition: For a ring R , we define the **centre** of R to be the ring

$$Z(R) = \{a \in R \mid ax = xa \text{ for all } x \in R\}.$$

As an exercise, verify that $Z(R)$ is in fact a subring of R .

Chapter 9. Ring Homomorphisms, Ideals and Quotient Rings

9.1 Definition: Let R and S be rings. A **ring homomorphism** from R to S is a map $\phi : R \rightarrow S$ such that

$$\begin{aligned}\phi(a + b) &= \phi(a) + \phi(b) \text{ and} \\ \phi(ab) &= \phi(a)\phi(b)\end{aligned}$$

for all $a, b \in R$. The **kernel** of ϕ is the set

$$\text{Ker}(\phi) = \phi^{-1}(0) = \{a \in R \mid \phi(a) = 0\}$$

and the **image** (or **range**) of ϕ is the set

$$\text{Image}(\phi) = \phi(R) = \{\phi(a) \mid a \in R\}.$$

A ring **isomorphism** from R to S is a bijective ring homomorphism from R to S . For two rings R and S , we say that R and S are **isomorphic**, and we write $R \cong S$, when there exists an isomorphism $\phi : R \rightarrow S$.

9.2 Theorem: Let $\phi : R \rightarrow S$ be a ring homomorphism. Then

- (1) $\phi(0) = 0$,
- (2) for $a \in R$ we have $\phi(ka) = k\phi(a)$ for all $k \in \mathbf{Z}$,
- (3) if R has a 1 and ϕ is surjective, then S has a 1 and $\phi(1) = 1$,
- (4) for $a \in R$ we have $\phi(a^k) = \phi(a)^k$ for all $k \in \mathbf{Z}^+$, and
- (5) if R has a 1, ϕ is surjective, and $a \in R$ is a unit, then $\phi(a^k) = \phi(a)^k$ for all $k \in \mathbf{Z}$.

9.3 Theorem: Let $\phi : R \rightarrow S$ and $\psi : S \rightarrow T$ be ring homomorphisms. Then

- (1) the identity map $I : R \rightarrow R$ is a ring homomorphism,
- (2) the composite $\psi \circ \phi : R \rightarrow T$ is a homomorphism, and
- (3) if ϕ is bijective then the inverse $\phi^{-1} : S \rightarrow R$ is a homomorphism.

9.4 Corollary: Isomorphism is an equivalence relation on the class of rings.

9.5 Theorem: Let $\phi : R \rightarrow S$ be a ring homomorphism. Then

- (1) If K is a subgroup of R then $\phi(K)$ is a subgroup of S . In particular, $\text{Image}(\phi)$ is a subgroup of S .
- (2) if L is a subgroup of S then $\phi^{-1}(L)$ is a subgroup of R . In particular, $\text{Ker}(\phi)$ is a subgroup of R .

9.6 Theorem: Let $\phi : R \rightarrow S$ be a ring homomorphism. Then

- (1) ϕ is injective if and only if $\text{Ker}(\phi) = \{0\}$, and
- (2) ϕ is surjective if and only if $\text{Image}(\phi) = S$.

9.7 Example: For rings R and S , the **zero function** $0 : R \rightarrow S$, given by $0(x) = 0$ for all $x \in R$, is a ring homomorphism. For a ring R , the **identity function** $I : R \rightarrow R$, given by $I(x) = x$ for all $x \in R$, is a ring homomorphism.

9.8 Example: Let R be a ring. For $a \in R$, define $\phi_a : \mathbf{Z} \rightarrow R$ by $\phi_a(k) = ka$. Show that the ring homomorphisms $\phi : \mathbf{Z} \rightarrow R$ are the maps $\phi = \phi_a$ with $a \in R$ such that $a^2 = a$.

Solution: For $a \in R$, let $\phi_a : \mathbf{Z} \rightarrow R$ be the map given by $\phi_a(k) = ka$. Note that for any ring homomorphism $\phi : \mathbf{Z} \rightarrow R$, if we let $a = \phi(1)$ then for all $k \in \mathbf{Z}$ we have $\phi(k) = \phi(k \cdot 1) = k \cdot \phi(1) = ka = \phi_a(k)$. Thus every ring homomorphism $\phi : \mathbf{Z} \rightarrow R$ is of the form $\phi = \phi_a$ for some $a \in R$. Also note that in order for ϕ_a to be a ring homomorphism, we must have $a^2 = \phi(1)^2 = \phi(1^2) = \phi(1) = a$. Finally, note that given $a \in R$ with $a^2 = a$, the map ϕ_a is a ring homomorphism because $\phi_a(k+l) = (k+l)a = ka+la = \phi_a(k)+\phi_a(l)$ and $\phi_a(kl) = (kl)a = (kl)a^2 = (ka)(la) = \phi_a(k)\phi_a(l)$. Thus the ring homomorphisms from \mathbf{Z} to R are precisely the maps ϕ_a where $a \in R$ with $a^2 = a$.

9.9 Example: Let R be a ring. For $a, b \in R$, define the map $\phi_{a,b} : \mathbf{Z} \times \mathbf{Z} \rightarrow R$ by $\phi_{a,b}(k, l) = (ka)(lb)$. As an exercise, show that the ring homomorphisms $\phi : \mathbf{Z} \times \mathbf{Z} \rightarrow R$ are the maps $\phi = \phi_{a,b}$ with $a, b \in R$ such that $a^2 = a$, $b^2 = b$ and $ab = ba = 0$.

9.10 Definition: An element a in a ring R is called **idempotent** when $a^2 = a$.

9.11 Example: The complex conjugation map $\phi : \mathbf{C} \rightarrow \mathbf{C}$ given by $\phi(z) = \bar{z}$ is a ring homomorphism since $\overline{z+w} = \bar{z} + \bar{w}$ and $\overline{zw} = \bar{z}\bar{w}$, but the norm map $\psi(z) = \|z\|$ is not a ring homomorphism because, in general, we do not have $\|z+w\| = \|z\| + \|w\|$.

9.12 Definition: Let R be a ring. For $a \in R$, the map $\phi_a : R[x] \rightarrow R$ given by $\phi_a(f(x)) = f(a)$, that is by

$$\phi_a\left(\sum_{i=0}^n c_i x^i\right) = \sum_{i=0}^n c_i a^i,$$

is called the **evaluation map** at a . If $a \in Z(R)$ then ϕ_a is a homomorphism because for $f = \sum b_i x^i$ and $g = \sum c_i x^i$ we have

$$\begin{aligned}\phi_a(f+g) &= \phi_a\left(\sum_i (b_i + c_i)x^i\right) = \sum_i (b_i + c_i)a^i = \sum_i b_i a^i + \sum_i c_i a^i = \phi_a(f) + \phi_a(g) \\ \phi_a(fg) &= \phi_a\left(\sum_{i,j} b_i c_j x^{i+j}\right) = \sum_{i,j} b_i c_j a^{i+j} = \sum_{i,j} b_i a^i c_j a^j = \sum_i b_i a^i \sum_j c_j a^j = \phi_a(f)\phi_a(g).\end{aligned}$$

The **evaluation map** $\phi : R[x] \rightarrow \text{Func}(R, R)$ is then given by $\phi(f)(a) = \phi_a(f) = f(a)$, in other words ϕ sends the polynomial $f(x) = \sum c_i x^i$ to the function $f(x) = \sum c_i x^i$. If R is commutative, then the above calculation shows that this map ϕ is a homomorphism. If R is not commutative, then the multiplication operations in $R[x]$ and in $\text{Func}(R, R)$ are different and the evaluation map is not a homomorphism (in fact we are usually only interested in the polynomial ring $R[x]$ in the case that R is commutative).

9.13 Example: Show that $\mathbf{R} \not\cong \mathbf{C}$ (as rings).

Solution: If $\phi : \mathbf{R} \rightarrow \mathbf{C}$ was a ring isomorphism, then the restriction of ϕ to \mathbf{R}^* would be a group isomorphism $\phi : \mathbf{R}^* \rightarrow \mathbf{C}^*$. But we know that the groups \mathbf{R}^* and \mathbf{C}^* are not isomorphic.

9.14 Example: Show that $2\mathbf{Z} \not\cong 3\mathbf{Z}$ (as rings).

Solution: In $2\mathbf{Z}$ we have $2 \cdot 2 = 4 = 2 + 2$, but there is no element $0 \neq a \in 3\mathbf{Z}$ with $a \cdot a = a + a$.

9.15 Theorem: (Ideals and Quotient Rings) Let S be a subring of a ring R . Note that S is a subgroup of R under addition. Let R/S be the quotient group $R/S = \{a + S \mid a \in \mathbf{R}\}$ with addition operation given by $(a + S) + (b + S) = (a + b) + S$. We can define a multiplication operation on R/S by

$$(a + S)(b + S) = ab + S$$

if and only if S has the property that for all $r \in R$ and $s \in S$ we have

$$rs \in S \text{ and } sr \in S.$$

In this case R/S is a ring under the above addition and multiplication operations. If R has identity 1, then R/S has identity $1 + S$.

Proof: Suppose the formula $(a + S)(b + S) = ab + S$ gives a well-defined operation on R/S . Then for all $a_1, a_2, b_1, b_2 \in R$, if $a_1 + S = a_2 + S$ and $b_1 + S = b_2 + S$ then $a_1 b_1 + S = a_2 b_2 + S$. Equivalently, for all $a_1, b_1, a_2, b_2 \in R$, if $a_1 - a_2 \in S$ and $b_1 - b_2 \in S$ then $a_1 a_2 - b_1 b_2 \in S$. Let $r \in R$ and $s \in S$. Taking $a_1 = a_2 = r$, $b_1 = s$ and $b_2 = 0$, we have $a_1 - a_2 = 0 \in S$ and $b_1 - b_2 = s \in S$ and so $rs = a_1 b_1 - a_2 b_2 \in S$. Similarly, taking $a_1 = s$, $a_2 = 0$ and $b_1 = b_2 = r$ we see that $sr \in S$.

Conversely, suppose that for all $r \in R$ and $s \in S$ we have $rs \in S$ and $sr \in S$. Let $a_1, a_2, b_1, b_2 \in R$ with $a_1 - a_2 \in S$ and $b_1 - b_2 \in S$. Say $a_1 - a_2 = s \in S$ and $b_1 - b_2 = t \in S$. Then $a_1 b_1 - a_2 b_2 = a_1 b_1 - (a_1 - s)(b_1 - t) = a_1 b_1 - (a_1 b_1 - a_1 t - s b_1 + st) = a_1 t + s b_1 + st \in S$. Thus the formula $(a + S)(b + S) = ab + S$ gives a well-defined operation on R/S .

Now we suppose that S has the required property so that $(a + S)(b + S) = ab + S$ does give a well-defined multiplication operation. This multiplication is associative because

$$\begin{aligned} ((a + S)(b + S))(c + S) &= (ab + S)(c + S) = (ab)c + S = a(bc) + S \\ &= (ab + S)(c + S) = (a + S)((b + S)(c + S)) \end{aligned}$$

and it is distributive over the addition operation on R/S because

$$\begin{aligned} (a + S)((b + S) + (c + S)) &= (a + S)((b + c) + S) = a(b + c) + S = ab + ac + S \\ &= (ab + S) + (ac + S) = (a + S)(b + S) + (a + S)(c + S) \end{aligned}$$

and similarly $((a + S) + (b + S))(c + S) = (a + S)(c + S) + (b + S)(c + S)$. Thus R/S is a ring under these two operations.

9.16 Definition: Let R be a ring. An **ideal** in R is a subring $A \subseteq R$ with the property that for all $r \in R$ and $a \in A$ we have $ra \in A$ and $ar \in A$. When A is an ideal in R , the ring R/A , equipped with the operations of the above theorem, is called the **quotient ring** of R by A . It is easy to check that the zero element in R/A is $0 + A$, the additive inverse of $a + A$ in R/A is $-(a + A) = -a + A$, if R has identity 1 then R/A has identity $1 + A$, and if $a \in R$ is a unit then $a + A$ is a unit in R/A with $(a + A)^{-1} = a^{-1} + A$.

9.17 Example: In the cyclic group \mathbf{Z} , the subgroups are the groups $\langle n \rangle = n\mathbf{Z}$ with $n \geq 0$. Each of these subgroups is also an ideal in the ring \mathbf{Z} . For $n \in \mathbf{Z}^+$, the ring \mathbf{Z}_n is the quotient ring $\mathbf{Z}_n = \mathbf{Z}/\langle n \rangle = \mathbf{Z}/n\mathbf{Z}$.

9.18 Example: In the group \mathbf{Z}_n the subgroups are the groups $\langle d \rangle$ where $d|n$. Each of the subgroups is also an ideal in the ring \mathbf{Z}_n .

9.19 Example: In the group \mathbf{Q} , we have the subgroup $\langle 2 \rangle = \{\dots, -2, 0, 2, 4, \dots\} = 2\mathbf{Z}$. This subgroup is also a subring of \mathbf{Q} because it is closed under multiplication. But it is not an ideal in \mathbf{Q} because it is not closed under multiplication by elements in \mathbf{Q} , for example $2 \in \langle 2 \rangle$ and $\frac{1}{2} \in \mathbf{Q}$, but $1 = 2 \cdot \frac{1}{2} \notin \langle 2 \rangle$.

9.20 Definition: Let R be a ring and let $U \subseteq R$. The **ideal in R generated by U** , denoted by $\langle U \rangle$, is the smallest ideal in R which contains U , or equivalently, the intersection of all ideals in R which contain U . The elements in U are called **generators** of $\langle U \rangle$. When U is finite we often omit the set brackets, so for $U = \{u_1, u_2, \dots, u_n\}$ we write $\langle U \rangle = \langle u_1, u_2, \dots, u_n \rangle$. An ideal of the form $\langle u_1, u_2, \dots, u_n \rangle$ for some $u_i \in R$ is said to be **finitely generated**. An ideal of the form $\langle u \rangle$ for some $u \in R$ is called a **principal ideal**.

9.21 Theorem: Let R be a ring and let U be a non-empty subset of R .

- (1) If R has a 1 then $\langle U \rangle = \left\{ \sum_{i=1}^n r_i u_i s_i \mid n \in \mathbf{Z}^+, u_i \in U, r_i, s_i \in R \right\}$.
- (2) If R is commutative with 1 then $\langle U \rangle = \left\{ \sum_{i=1}^n u_i r_i \mid n \in \mathbf{Z}^+, u_i \in U, r_i \in R \right\}$. In particular, for $a \in R$ we have $\langle a \rangle = \{ar \mid r \in R\}$.

9.22 Note: In a field F , the only ideals are $\{0\}$ and F . Indeed let A be an ideal in F with $A \neq \{0\}$. Choose $0 \neq a \in A$. Since $a \in A$ and $a^{-1} \in F$, we must have $1 = a a^{-1} \in A$. Given any element $x \in F$, since $1 \in A$ and $x \in F$ we must have $x = x \cdot 1 \in A$. Thus $A = F$.

9.23 Definition: Let A and B be ideals in a ring R . The **intersection**, **sum** and the **product** of A and B are the sets

$$\begin{aligned} A \cap B &= \{a \in R \mid a \in A \text{ and } a \in B\}, \\ A + B &= \{a + b \mid a \in A, b \in B\}, \text{ and} \\ AB &= \left\{ \sum_{i=1}^n a_i b_i \mid n \in \mathbf{Z}^+, a_i \in A, b_i \in B \right\}. \end{aligned}$$

As an exercise, show that $A \cap B$, $A + B$ and AB are all ideals in R .

9.24 Example: In \mathbf{Z} , for $k, l \in \mathbf{Z}^+$ verify that

$$\begin{aligned} \langle k \rangle \cap \langle l \rangle &= \langle m \rangle \text{ where } m = \text{lcm}(k, l) \\ \langle k \rangle + \langle l \rangle &= \langle d \rangle \text{ where } d = \text{gcd}(k, l), \text{ and} \\ \langle k \rangle \langle l \rangle &= \langle kl \rangle. \end{aligned}$$

9.25 Theorem: (The First Isomorphism Theorem) Let $\phi : R \rightarrow S$ be a homomorphism of rings. Let $K = \text{Ker}(\phi)$. Then K is an ideal in R and we have $R/K \cong \phi(R)$. Indeed the map $\Phi : R/K \rightarrow \phi(R)$ given by $\Phi(a+K) = \phi(a)$ is a ring isomorphism.

9.26 Theorem: (The Second Isomorphism Theorem) Let A and B be ideals in a ring R . Then A is an ideal in $A+B$, $A \cap B$ is an ideal in B , and

$$(A+B)/A \cong B/(A \cap B).$$

9.27 Theorem: (The Third Isomorphism Theorem) Let A and B be ideals in a ring R with $A \subseteq B \subseteq R$. Then B/A is an ideal in R/A and

$$(R/A)/(B/A) \cong R/B.$$

9.28 Example: Let $d, n \in \mathbf{Z}^+$ with $d|n$. Then the map $\phi : \mathbf{Z}_n \rightarrow \mathbf{Z}_d$ given by $\phi(k) = k$ is a ring homomorphism with $\text{Ker}(\phi) = \langle d \rangle$. By the First Isomorphism Theorem, we have $\mathbf{Z}_n/\langle d \rangle \cong \mathbf{Z}_d$.

9.29 Example: Define a map $\phi : \mathbf{Q}[x] \rightarrow \mathbf{Q}[\sqrt{2}]$ by $\phi(f) = f(\sqrt{2})$. Then ϕ is a homomorphism because $\phi(f+g) = (f+g)(\sqrt{2}) = f(\sqrt{2}) + g(\sqrt{2}) = \phi(f) + \phi(g)$ and $\phi(fg) = (fg)(\sqrt{2}) = f(\sqrt{2})g(\sqrt{2}) = \phi(f)\phi(g)$. Also note that ϕ is surjective because $\phi(a+bx) = a+b\sqrt{2}$ for $a, b \in \mathbf{Q}$. Finally note that for $f \in \mathbf{Q}[x]$ we have

$$\begin{aligned} f(x) \in \text{Ker}(\phi) &\iff f(\sqrt{2}) = 0 \in \mathbf{R} \iff f(\sqrt{2}) = f(-\sqrt{2}) = 0 \in \mathbf{R} \\ &\iff (x^2 - 2) \mid f(x) \iff f(x) \in \langle x^2 - 2 \rangle, \end{aligned}$$

where we used the fact that for $f(x) = \sum c_i x^i \in \mathbf{Q}[x]$ we have

$$f(\pm\sqrt{2}) = \left(\sum c_{2k} 2^k \right) \pm \left(\sum c_{2k+1} 2^k \right) \sqrt{2}$$

so that $f(\sqrt{2}) = 0 \iff f(-\sqrt{2}) = 0 \iff \sum c_{2k} 2^k = 0 = \sum c_{2k+1} 2^k$. By the First Isomorphism Theorem, we have $\mathbf{Q}[x]/\langle x^2 - 2 \rangle \cong \mathbf{Q}[\sqrt{2}]$.

9.30 Example: Define $\phi : \mathbf{R}[x] \rightarrow \mathbf{C}$ by $\phi(f) = f(i)$. Then ϕ is a homomorphism since $\phi(f+g) = (f+g)(i) = f(i) + g(i) = \phi(f) + \phi(g)$ and $\phi(fg) = (fg)(i) = f(i)g(i) = \phi(f)\phi(g)$. The map ϕ is surjective because $\phi(a+bx) = a+bi$ for $a, b \in \mathbf{R}$. Also, for $f(x) \in \mathbf{R}[x]$,

$$f(x) \in \text{Ker}(\phi) \iff f(i) = 0 \in \mathbf{C} \iff (x^2 + 1) \mid f(x) \in \mathbf{R}[x] \iff f(x) \in \langle x^2 + 1 \rangle \subseteq \mathbf{R}[x].$$

Thus by the First Isomorphism Theorem, we have $\mathbf{R}[x]/\langle x^2 + 1 \rangle \cong \mathbf{C}$.

9.31 Example: Define $\phi : \mathbf{Z}[i] \rightarrow \mathbf{Z}_5$ by $\phi(a+bi) = a+2b$. The map ϕ is a ring homomorphism because

$$\begin{aligned} \phi((a+bi) + (c+di)) &= \phi((a+c) + (b+d)i) = (a+c) + 2(b+d) \\ &= (a+2b) + (c+2d) = \phi(a+bi) + \phi(c+di), \text{ and} \\ \phi((a+bi)(c+di)) &= \phi((ac-bd) + (ad+bc)i) = (ac-bd) + 2(ad+bc) \\ &= ac + 2ad + 2bc + 4bd = (a+2b)(c+2d) = \phi(a+bi)\phi(c+di). \end{aligned}$$

Also note that ϕ is surjective because $\phi(a+0i) = a$. Finally, note that

$$a+bi \in \text{Ker}(\phi) \iff a+2b = 0 \in \mathbf{Z}_5 \iff b = 2a \in \mathbf{Z}_5 \iff a+ib \in \langle 2-i \rangle,$$

indeed if $b = 2a$ then we have $a+bi = a+2ai = (2-i)(ai) \in \langle 2-i \rangle$ and conversely, if $a+bi \in \langle 2-i \rangle$, say $a+bi = (2-i)(x+yi) = (2x+y) + (2y-x)i$, then we have $a = 2x+y$ and $b = 2y-x$ so that $2a = 2(2x+y) = 4x+2y = 2y-x = b \in \mathbf{Z}_5$. By the First Isomorphism Theorem, we have $\mathbf{Z}[i]/\langle 2-i \rangle \cong \mathbf{Z}_5$.

9.32 Definition: Let R be a commutative ring. Consider the evaluation homomorphism $\phi : R[x] \rightarrow \text{Func}(R, R)$ given by $\phi(f) = f$, that is the map which sends the polynomial $f(x)$ to the function $f(x)$. A polynomial $f \in R[x]$ is equal to zero when all of its coefficients are equal to zero. A function $f \in \text{Func}(R, R)$ is equal to zero when we have $f(a) = 0$ for all $a \in R$. The kernel of the evaluation homomorphism is

$$\text{Ker}(\phi) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in R\}.$$

The image $\phi(R[x]) \subseteq \text{Func}(R, R)$ is called the **ring of polynomial functions** on R . By the First Isomorphism Theorem, it is isomorphic to the quotient ring $R[x]/\text{Ker}(\phi)$.

9.33 Example: If R is an infinite field, then $\text{Ker}(\phi) = 0$ since for $f(x) \in R[x]$, if $f(a) = 0$ for all $a \in R$ then $f(x)$ has infinitely many roots, and so $f(x) = 0$ as a polynomial (a non-zero polynomial of degree $n \geq 0$ over a field has at most n roots). In this case, ϕ is injective so the polynomial ring $R[x]$ is isomorphic to the ring of polynomial functions $\phi(R[x]) \subseteq \text{Func}(R, R)$, and we often identify $R[x]$ with $\phi(R[x])$.

If R is a finite field, the situation is quite different. In this case $R[x]$ is infinite but $\text{Func}(R, R)$ is finite, so $R[x]$ is certainly not isomorphic to a subring of $\text{Func}(R, R)$. Let us consider the case that $R = \mathbf{Z}_p$ where p is prime. By Fermat's Little Theorem, we know that $a^p = a$ for all $a \in \mathbf{Z}_p$, and so every $a \in \mathbf{Z}^p$ is a root of the polynomial $p(x) = x^p - x$. Since there are exactly p elements in \mathbf{Z}_p , it follows that $p(x)$ factors as

$$p(x) = x^p - x = (x - 0)(x - 1)(x - 2) \cdots (x - (p - 1)).$$

For a polynomial $f(x) \in \mathbf{Z}_p[x]$ we have

$$\begin{aligned} f(x) \in \text{Ker}(\phi) &\iff f(a) = 0 \text{ for all } a \in \mathbf{Z}_p \iff (x - a) \mid f(x) \text{ for all } a \in \mathbf{Z}_p \\ &\iff p(x) \mid f(x) \iff f(x) \in \langle p(x) \rangle = \langle x^p - x \rangle. \end{aligned}$$

Furthermore, we claim that ϕ is surjective. For $a \in \mathbf{Z}_p$, let $g_a(x) \in \mathbf{Z}_p[x]$ be the polynomial

$$g_a(x) = \frac{\prod_{i \in \mathbf{Z}_p, i \neq a} (x - i)}{\prod_{i \in \mathbf{Z}_p, i \neq a} (a - i)}.$$

Notice that for all $k \in \mathbf{Z}_p$ we have

$$g_a(k) = \delta_{a,k} = \begin{cases} 1 & \text{if } k = a, \\ 0 & \text{if } k \neq a. \end{cases}$$

Given any function $f(x) \in \text{Func}(\mathbf{Z}_p, \mathbf{Z}_p)$, for all $k \in \mathbf{Z}_p$ we have

$$\sum_{a \in \mathbf{Z}_p} f(a)g_a(k) = \sum_{a \in \mathbf{Z}_p} f(a)\delta_{a,k} = f(k).$$

It follows that $f(x) = \sum_{a \in \mathbf{Z}_p} f(a)g_a(x) \in \text{Func}(\mathbf{Z}_p, \mathbf{Z}_p)$. Notice that $\sum_{a \in \mathbf{Z}_p} f(a)g_a(x) \in \mathbf{Z}_p[x]$ and we have $f(x) = \phi\left(\sum_{a \in \mathbf{Z}_p} f(a)g_a(x)\right)$. Thus ϕ is surjective, as claimed. Thus the ring of polynomial functions $\phi(\mathbf{Z}_p[x])$ is equal to the ring of all functions $\text{Func}(\mathbf{Z}_p, \mathbf{Z}_p)$, and by the First Isomorphism Theorem, we have $\mathbf{Z}_p[x]/\langle x^p - x \rangle \cong \phi(\mathbf{Z}_p[x]) = \text{Func}(\mathbf{Z}_p, \mathbf{Z}_p)$.

Chapter 10. Factorization in Commutative Rings

10.1 Definition: Let R be a ring. An ideal P in R is called **prime** when $P \neq R$ and for all ideals A and B in R , if $AB \subseteq P$ then either $A \subseteq P$ or $B \subseteq P$. An ideal M in R is called **maximal** when $M \neq R$ and there is no ideal A in R with $M \subsetneq A \subsetneq R$.

10.2 Example: As an exercise, use the above definition to show that the maximal ideals in \mathbf{Z} are the ideals of the form $\langle p \rangle$ with p prime, and the prime ideals in \mathbf{Z} are the ideals of the form $\langle p \rangle$ with $p = 0$ or p prime.

10.3 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R with $P \neq R$. Then P is prime if and only if P has the property that for all $a, b \in R$, if $ab \in P$ then either $a \in P$ or $b \in P$.

Proof: Since R is commutative with 1, we have $\langle a \rangle = \{ar \mid r \in R\}$ and $\langle b \rangle = \{bs \mid s \in R\}$ and so

$$\begin{aligned} \langle a \rangle \langle b \rangle &= \left\{ \sum_{i=1}^n a_i b_i \mid a_i \in \langle a \rangle, b_i \in \langle b \rangle \right\} = \left\{ \sum_{i=1}^n (ar_i)(bs_i) \mid r_i, s_i \in R \right\} \\ &= \left\{ \sum_{i=1}^n (ab)t_i \mid t_i \in R \right\} = \langle ab \rangle. \end{aligned}$$

Suppose that P is prime. Let $a, b \in R$ with $ab \in P$. Then $\langle a \rangle \langle b \rangle = \langle ab \rangle \subseteq P$ and so, since P is prime, either $\langle a \rangle \subseteq P$ or $\langle b \rangle \subseteq P$, and hence either $a \in P$ or $b \in P$.

Conversely, suppose that P has the property that for all $a, b \in R$, if $ab \in P$ then either $a \in P$ or $b \in P$. Let A and B be ideals in R with $AB \subseteq P$. Suppose that $A \not\subseteq P$. Choose $a \in A$ with $a \notin P$. Let $b \in B$ be arbitrary. Then $ab \in AB \subseteq P$ and so, because of the property held by P , either $a \in P$ or $b \in P$. Since $a \notin P$ we must have $b \in P$. Thus $B \subseteq P$.

10.4 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R . Then P is prime if and only if R/P is an integral domain.

Proof: Suppose that P is prime. Since $P \neq R$ we have $1 \notin P$ (since $\langle 1 \rangle = R$) and so $1 + P \neq 0 + P \in R/P$. Since R is commutative, so is R/P . Finally, note that R/P has no zero divisors because for $a, b \in R$ we have

$$\begin{aligned} (a + P)(b + P) = (0 + P) &\implies ab + P = 0 + P \implies ab \in P \implies a \in P \text{ or } b \in P \\ &\implies a + P = 0 + P \text{ or } b + P = 0 + P. \end{aligned}$$

Conversely, suppose that R/P is an integral domain. Since $1 + P \neq 0 + P \in R/P$, it follows that $1 \notin P$ and so $P \neq R$. Let $a, b \in R$ with $ab \in P$. Then we have $ab + P = 0 + P$, and so $(a + P)(b + P) = 0 + P$. Since R/P has no zero divisors, this implies that either $a + P = 0 + P$ or $b + P = 0 + P$, and so either $a \in P$ or $b \in P$.

10.5 Example: Let R be a commutative ring with 1. Show that every maximal ideal in R is also prime.

Solution: Let M be a maximal ideal in R . Let $a, b \in R$ with $ab \in M$. Suppose that $a \notin M$. Then we have $M \subsetneq M + \langle a \rangle$ and so, since M is maximal, we must have $M + \langle a \rangle = R$. In particular $1 \in M + \langle a \rangle$, so we have $1 = m + ar$ for some $r \in R$. Thus

$$b = b \cdot 1 = b(m + ar) = bm + abr \in M.$$

We remark that this result also follows from the following theorem.

10.6 Theorem: Let R be a commutative ring with 1. Let M be an ideal in R . Then M is maximal if and only if R/M is a field.

Proof: Suppose M is maximal. Since $M \neq R$ we have $1 \notin M$ and so $1+M \neq 0+M \in R/M$. Since R is commutative, so is R/M . Let $a+M$ be a nonzero element in R/M . We must show that $a+M$ is a unit. Since $a+M \neq 0+M$ we have $a \notin M$. Since $a \notin M$ we have $M \subsetneq M+\langle a \rangle$. Since M is maximal, we must have $M+\langle a \rangle = R$. In particular, $1 \in M+\langle a \rangle$, say $1 = m+ar$ with $r \in R$. Then $1+M = ar+M = (a+M)(r+M)$ and so $r+M$ is the inverse of $a+M$.

Conversely, suppose that R/M is a field. Since $1+M \neq 0+M$ in R/M , we have $1 \notin M$ so $M \neq R$. Let A be an ideal with $M \subseteq A \subseteq R$. Suppose $A \neq M$. Choose $a \in A$ with $a \notin M$. Since $a \notin M$ we have $a+M \neq 0+M$ in R/M . Since R/M is a field, $a+M$ has an inverse, say $(a+M)(b+M) = 1+M$. Then $ab+M = 1+M$ so we have $1-ab \in M$. Since $M \subseteq A$ we have $1-ab \in A$. Since $a \in A$ we have $ab \in A$, so $1 \in A$ and hence $A = R$.

10.7 Example: Find all prime and maximal ideals in \mathbf{Z} (that is redo example 10.2) using Theorems 10.4 and 10.6.

10.8 Example: Since $\mathbf{Q}[x]/\langle x^2 - 2 \rangle \cong \mathbf{Q}[\sqrt{2}]$, which is a field, it follows that $\langle x^2 - 2 \rangle$ is maximal (and prime). In $\mathbf{R}[x]$, however, we have $(x^2 - 2) = (x - \sqrt{2})(x + \sqrt{2})$, and so the ideal $\langle x^2 - 2 \rangle$ is not maximal because $\langle x^2 - 2 \rangle \subsetneq \langle x - \sqrt{2} \rangle \subsetneq \mathbf{R}[x]$ and it is not prime because $(x - \sqrt{2})(x + \sqrt{2}) \in \langle x^2 - 2 \rangle$ but $(x - \sqrt{2}) \notin \langle x^2 - 2 \rangle$ and $(x + \sqrt{2}) \notin \langle x^2 - 2 \rangle$.

10.9 Example: In $\mathbf{Z}[x]$, we have $\langle x \rangle = \{f \in \mathbf{Z}[x] \mid f(0) = 0\}$. The ideal $\langle x \rangle$ is prime because for $f, g \in \mathbf{Z}[x]$, if $fg \in \langle x \rangle$ then $f(0)g(0) = 0$ and so either $f(0) = 0$ or $g(0) = 0$. But the ideal $\langle x \rangle$ is not maximal since $\langle x \rangle \subsetneq \langle 2, x \rangle = \{f \in \mathbf{Z}[x] \mid f(0) \text{ is even}\} \subsetneq \mathbf{Z}[x]$.

10.10 Definition: Let R be a commutative ring with 1. Let $a, b \in R$. We say that a divides b (or that a is a **divisor** or **factor** of b , or that b is a **multiple** of a), and we write $a|b$, when $b = ar$ for some $r \in R$. We say that a and b are **associates**, and we write $a \sim b$, when $a|b$ and $b|a$. Note that association is an equivalence relation on R .

10.11 Theorem: Let R be a commutative ring with 1. Let $a, b \in R$. Then

- (1) $a|b$ if and only if $b \in \langle a \rangle$ if and only if $\langle b \rangle \subseteq \langle a \rangle$,
- (2) $a \sim b$ if and only if $\langle a \rangle = \langle b \rangle$ if and only if a and b have the same multiples and divisors,
- (3) $a \sim 0$ if and only if $a = 0$ if and only if $\langle a \rangle = \{0\}$,
- (4) $a \sim 1$ if and only if a is a unit if and only if $\langle a \rangle = R$.
- (5) if R is an integral domain then $a \sim b$ if and only if $b = au$ for some unit $u \in R$.

Proof: We prove Part (5) and leave the other proofs as an exercise. Suppose that $b = au$ where $u \in R$ is a unit. Since $b = au$ we have $a|b$ and since $a = bu^{-1}$ we have $b|a$. Since $a|b$ and $b|a$ we have $a \sim b$ (we did not need to assume that R is an integral domain for this direction). Now suppose that R is an integral domain and that $a \sim b$, say $a = br$ and $b = as$ with $r, s \in R$. Then we have $b = as = brs$ so that $b(1 - rs) = 0$. Since R is an integral domain, either $b = 0$ or $1 - rs = 0$. If $b = 0$ then $a = br = 0$, so we have $b = a \cdot u$ for any unit u (for example $u = 1$). If $1 - rs = 0$ then $rs = 1$ so that r and s are units, so we have $b = au$ where $u = s$ (which is a unit).

10.12 Example: In the ring \mathbf{Z} , we have $k \sim \ell \iff k = \pm \ell$. Verify that in \mathbf{Z}_{12} the association classes are $\{0\}$, $\{1, 5, 7, 11\}$, $\{2, 10\}$, $\{3, 9\}$, $\{4, 8\}$, $\{6\}$.

10.13 Definition: Let R be a commutative ring with 1. Let $a \in R$ be a non-zero non-unit. We say that a is **reducible** when $a = bc$ for some non-units $b, c \in R$, and otherwise we say that a is **irreducible**. We say that a is **prime** when for all $b, c \in R$, if $a|bc$ then either $a|b$ or $a|c$.

10.14 Theorem: Let R be a commutative ring with 1. Let $a, b \in R$ with $a \sim b$. Then

- (1) $a = 0$ if and only if $b = 0$,
- (2) a is a unit if and only if b is a unit,
- (3) a is reducible if and only if b is reducible,
- (4) a is irreducible if and only if b is irreducible,
- (5) a is prime if and only if b is prime.

Proof: The proof is left as an exercise.

10.15 Example: In the ring \mathbf{Z} , for $k \in \mathbf{Z}$, k is irreducible if and only if k is prime if and only if $k = \pm p$ for some (positive) prime number p .

10.16 Example: As an exercise, verify that in the ring \mathbf{Z}_{12} , the irreducible elements are 2 and 10 and the prime elements are 2, 3, 9 and 10.

10.17 Example: Use the method of the Sieve of Eratosthenes to find several irreducible elements in $\mathbf{Z}[\sqrt{3}i]$ and also some irreducible elements which are not prime.

10.18 Theorem: Let R be a commutative ring with 1. Let $a \in R$. Then

- (1) If a is irreducible then the divisors of a are the units in R and the associates of a in R .
- (2) a is prime if and only if $\langle a \rangle$ is a non-zero prime ideal.

Proof: The proof is left as an exercise.

10.19 Theorem: Let R be an integral domain and let $a \in R$. Then

- (1) if a is prime then a is irreducible,
- (2) a is irreducible if and only if $\langle a \rangle$ is maximal amongst non-zero proper principal ideals,
- (3) if R is a PID and a is irreducible, then a is prime.

Proof: To Prove Part (1), suppose that a is prime. Suppose that $a = bc$ with $b, c \in R$. Since $a = bc$ we have $a|bc$ and hence, since a is prime, either $a|b$ or $a|c$. Suppose that $a|b$, say $b = ar$. Then $a = bc = arc$ so that $a(1 - rc) = 0$. Since R is an integral domain and $a \neq 0$ it follows that $rc = 1$ so that c is a unit. A similar argument shows that if $a|c$ then b is a unit, and so a is irreducible, as required.

To prove Part (2), suppose that a is irreducible. Since $a \neq 0$ we have $\langle a \rangle \neq 0$ and since a is not a unit we have $\langle a \rangle \neq R$. Let $b \in R$ and suppose that $\langle a \rangle \subseteq \langle b \rangle \subseteq R$. Since $\langle a \rangle \subseteq \langle b \rangle$ we have $a \in \langle b \rangle$, say $a = bc$ with $c \in R$. Since a is irreducible, either b is a unit, in which case $\langle b \rangle = R$, or c is a unit in which case $b \sim a$ so that $\langle b \rangle = \langle a \rangle$.

Suppose, conversely, that $\langle a \rangle$ is maximal amongst nonzero proper principal ideals in R . Since $\langle a \rangle \neq \{0\}$ we have $a \neq 0$ and since $\langle a \rangle \neq R$ it follows that a is not a unit. Suppose that $a = bc$ where $b, c \in R$. Since $a = bc$ we have $a \in \langle b \rangle$ so that $\langle a \rangle \subseteq \langle b \rangle$. By the maximality of $\langle a \rangle$, either $\langle b \rangle = \langle a \rangle$ or $\langle b \rangle = R$. If $\langle b \rangle = R$ then b is a unit. Suppose that $\langle b \rangle = \langle a \rangle$, say $b = ar$ with $r \in R$. Then $a = bc = arc$ so that $a(1 - rc) = 0$. Since $a(1 - rc) = 0$ and $a \neq 0$ and R is an integral domain, it follows that $rc = 1$ so that c is a unit. This completes the proof of Part (2).

Finally note that if a is irreducible and R is a PID then, by Part (2), $\langle a \rangle$ is a maximal ideal, hence $\langle a \rangle$ is a prime ideal, hence a is prime. This proves Part (3).

10.20 Definition: A **Euclidean domain** (or ED) is an integral domain R together with a function $N : R \setminus \{0\} \rightarrow \mathbf{N}$, called a **norm**, with the property that for all $a, b \in R$ with $a \neq 0$ there exist $q, r \in R$ such that $b = qa + r$ and either $r = 0$ or $N(r) < N(a)$.

10.21 Definition: A **principal ideal domain** (or PID) is an integral domain R such that every ideal in R is principal.

10.22 Definition: A **unique factorization domain** (or UFD) is an integral domain R with the property that for every nonzero non-unit $a \in R$ we have

- (1) $a = a_1 a_2 \cdots a_l$ for some $l \in \mathbf{Z}^+$ and some irreducible elements $a_i \in R$, and
- (2) if $a = a_1 a_2 \cdots a_l = b_1 b_2 \cdots b_m$ where $l, m \in \mathbf{Z}^+$ and each a_i and b_j is irreducible, then $m = l$ and for some permutation $\sigma \in S_m$ we have $a_i \sim b_{\sigma(i)}$ for all i .

10.23 Example: The ring \mathbf{Z} is a Euclidean domain with norm given by $N(k) = |k|$.

10.24 Example: Every field F is a Euclidean domain, using any function $N : F \setminus \{0\} \rightarrow \mathbf{N}$ as a norm. Indeed, given $a, b \in F$ with $a \neq 0$ we can choose $q = \frac{b}{a}$ and $r = 0$ to get $b = aq + r$.

10.25 Example: If F is a field then $F[x]$ is a Euclidean domain with norm $N(f) = \deg(f)$.

10.26 Example: Show that in the ring $\mathbf{Z}[\sqrt{3}i]$, the elements 2 and $1 \pm \sqrt{3}i$ are irreducible and $2 \not\sim 1 \pm \sqrt{3}i$. It follows that $\mathbf{Z}[\sqrt{3}i]$ is not a unique factorization domain because $4 = 2 \cdot 2 = (1 + \sqrt{3}i)(1 - \sqrt{3}i)$.

10.27 Theorem: Every Euclidean domain is a principal ideal domain.

Proof: Let R be a Euclidean domain with norm N . Let A be an ideal in R . If $A = \{0\}$ then A is principal with $A = \langle 0 \rangle$. Suppose that $A \neq \{0\}$. Choose a nonzero element $0 \neq a \in A$ of smallest possible norm. We claim that $A = \langle a \rangle$. Since $a \in A$ we have $\langle a \rangle \subseteq A$. Let $b \in A$ be arbitrary. Choose $q, r \in R$ such that $b = qa + r$ and either $r = 0$ or $N(r) < N(a)$. Note that $r = b - qa \in A$ so we must have $r = 0$ by the choice of a . Thus $b = qa \in \langle a \rangle$.

10.28 Definition: A ring R is called **Noetherian** when it satisfies the following condition, which is called the **ascending chain condition**: for every ascending chain of ideals $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ in R , there exists $n \in \mathbf{Z}^+$ such that $A_k = A_n$ for all $k \geq n$.

10.29 Theorem: Every principal ideal domain is Noetherian.

Proof: Let R be a principal ideal domain. Let $a_1, a_2, a_3, \dots \in R$ with

$$\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \cdots.$$

Let $A = \bigcup_{k=1}^{\infty} \langle a_k \rangle$. Verify that A is an ideal. Choose $a \in R$ so that $A = \langle a \rangle$. Since $a \in A$, we can choose $n \in \mathbf{Z}^+$ so that $a \in \langle a_n \rangle$. For all $k \geq n$, we have $\langle a_k \rangle \subseteq A = \langle a \rangle \subseteq \langle a_n \rangle \subseteq \langle a_k \rangle$ and so $\langle a_k \rangle = \langle a_n \rangle$.

10.30 Theorem: Every principal ideal domain is a unique factorization domain.

Proof: Let R be a principal ideal domain. Let $a \in R$ be a non-zero non-unit. We claim that a has an irreducible factor. If a is irreducible then we are done. Suppose that a is reducible, say $a = a_1 b_1$ where a_1 and b_1 are non-units. Note that $\langle a \rangle \subsetneq \langle a_1 \rangle$. If a_1 is irreducible then we are done. Suppose that a_1 is reducible, say $a_1 = a_2 b_2$ where a_2 and b_2 are non-units. Then $a = a_1 b_1 = a_2 b_2 b_1$ and $\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle$. If a_2 is irreducible then we are done, and otherwise we continue this procedure. Eventually, the procedure must end giving us an irreducible factor a_n of a , otherwise we would obtain an infinite chain of ideals $\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \dots$, contradicting the fact that R is Noetherian.

Next we claim that $a = a_1 a_2 \dots a_l$ for some $l \in \mathbf{Z}^+$ and some irreducible $a_i \in R$. If a is irreducible then we are done. Suppose that a is reducible. Let a_1 be an irreducible factor of a , and say $a = a_1 b_1$. Note that b_1 is not a unit since, if it was then we would have $a \sim a_1$, but a is reducible and a_1 is not. If b_1 is irreducible then we are done. Suppose b_1 is reducible. Let a_2 be an irreducible factor of b_1 and say $b_1 = a_2 b_2$. As above, note that b_2 is not a unit. If b_2 is irreducible then we are done, and otherwise we continue the procedure. Eventually, the procedure must end giving us $a = a_1 a_2 \dots a_n b_n$ with each a_i and b_n irreducible, otherwise we would obtain an infinite chain $\langle a \rangle \subsetneq \langle b_1 \rangle \subsetneq \langle b_2 \rangle \subsetneq \dots$.

Finally, we claim that if $a = a_1 a_2 \dots a_l = b_1 b_2 \dots b_l$ with $l, m \in \mathbf{Z}^+$ and each a_i and b_j irreducible, then $m = l$ and for some permutation $\sigma \in S_m$ we have $a_i \sim b_{\sigma(i)}$ for all i . Suppose that $a = a_1 a_2 \dots a_l = b_1 b_2 \dots b_m$ where $l, m \in \mathbf{Z}^+$ and the a_i and b_j are irreducible. Since $a_1 | a_1 a_2 \dots a_l$, we have $a_1 | b_1 b_2 \dots b_m$. Since a_1 is irreducible and R is a principal ideal domain, it follows that a_1 is prime by Part 3 of Theorem 10.19. Since a_1 is prime and $a_1 | b_1 b_2 \dots b_m$, it follows that $a_1 | b_k$ for some k . After permuting the elements b_i we can assume $a_1 | b_1$. Since b_1 is irreducible, its divisors are units and associates and, since a_1 is not a unit, we have $a_1 \sim b_1$. Since $a_1 \sim b_1$ we have $b_1 = a_1 u$ for some unit u . Thus we have $a_1 a_2 \dots a_l = b_1 b_2 \dots b_m = a_1 u b_2 b_3 \dots b_m$, and by cancellation, $a_2 a_3 \dots a_l = u b_2 b_3 \dots b_m$. A suitable induction argument gives $l = m$ and $a_i \sim b_i$ for all i .

10.31 Example: Show that $\mathbf{Z}[i]$ is a ED.

10.32 Example: Since $\mathbf{Z}[\sqrt{3}i]$ is not a UFD, it cannot be a PID. Find an ideal in $\mathbf{Z}[\sqrt{3}i]$ which is not principal.

10.33 Example: Show that $\mathbf{Z}\left[\frac{1+\sqrt{19}i}{2}\right]$ is a PID, but not a ED (under any norm).

Chapter 11. Polynomial Rings

11.1 Note: Here are a few remarks about polynomials. Recall that $R[x]$ denotes the ring of polynomials with coefficients in the ring R , and R^R denotes the ring of all functions $f : R \rightarrow R$.

(1) A polynomial $f \in R[x]$ determines a function $f \in R^R$. Given $f(x) = \sum_{i=0}^n a_i x^i \in R[x]$

we obtain the function $f : R \rightarrow R$ given by $f(x) = \sum_{i=0}^n a_i x^i$.

(2) Although we do not usually distinguish notationally between the polynomial $f \in R[x]$ and its corresponding function $f \in R^R$, they are not always identical. If the ring R is not commutative then multiplication of polynomials does not agree with multiplication of functions. For $f, g \in R[x]$ given by $f(x) = a + bx$ and $g(x) = c + dx$, in the ring $R[x]$ we have $(fg)(x) = (a + bx)(c + dx) = (ac) + (ad + bc)x + (bd)x^2$, but in the ring R^R we have $(fg)(x) = (a + bx)(c + dx) = ac + adx + bxc + bxdx$.

(3) Equality of polynomials may not agree with equality of functions. For $f, g \in R[x]$ given by $f(x) = \sum_{i=0}^n a_i x^i$ and $g(x) = \sum_{i=0}^m b_i x^i$ we have $f = g \in R[x]$ if and only if $a_i = b_i$ for all i

(and if say $n < m$ then $b_i = a_i = 0$ for $i > n$), but $f = g \in R^R$ if and only if $f(x) = g(x)$ for all $x \in R$. These two notions of equality do not always agree. For example if R is finite then the ring $R[x]$ is infinite but the ring R^R is finite. Indeed if $|R| = n$ then $R[x]$ is countably infinite but $|R^R| = n^n$. For a more specific example, if $f(x) = x^p - x$ then we have $f \neq 0 \in \mathbf{Z}_p[x]$ (because its coefficients are not equal to zero) but $f = 0 \in \mathbf{Z}_p^{\mathbf{Z}_p}$ because, by Fermat's Little Theorem, we have $f(x) = 0$ for all $x \in \mathbf{Z}_p$.

(4) Recall that for $f(x) = \sum_{i=0}^n a_i x^i$ with each $a_i \in R$ and $a_n \neq 0$, the element $a_n \in R$ is called the leading coefficient of f , and the non-negative integer n is called the degree of $f(x)$, and we write $\deg(f) = n$. For convenience, we also define $\deg(0) = -1$. When R is an integral domain, it is easy to see that for $0 \neq f, g \in R[x]$ we have $\deg(fg) = \deg(f) + \deg(g)$. When R is not an integral domain, however, we only have $\deg(fg) \leq \deg(f) + \deg(g)$ because the product of the two leading coefficients can be equal to zero.

(5) When R is an integral domain, because we have $\deg(fg) = \deg(f) + \deg(g)$ for all $0 \neq f, g \in R[x]$, it is easy to see that the units in $R[x]$ are the constant polynomials $f(x) = c$ where c is a unit in R . In particular, when F is a field, the units in $F[x]$ are the elements $f \in F[x]$ with $\deg(f) = 0$. In the ring $\mathbf{Z}_4[x]$ (which is not an integral domain) we have $(1 + 2x)^2 = 1 + 4x + 4x^2 = 1$, so $f(x) = (1 + 2x)$ is a unit in $\mathbf{Z}_4[x]$.

11.2 Theorem: (Division Algorithm) Let R be a ring. Let $f, g \in R[x]$ and suppose that the leading coefficient of g is a unit in R . Then there exist unique polynomials $q, r \in R$ such that $f = qg + r$ and $\deg(r) < \deg(g)$.

Proof: First we prove existence. If $\deg(f) < \deg(g)$ then we can take $q = 0$ and $r = f$. Suppose that $\deg(f) \geq \deg(g)$, Say $f(x) = \sum_{i=0}^n a_i x^i$ with $a_i \in R$ and $a_n \neq 0$ and $g(x) = \sum_{i=0}^m b_i x^i$ with $b_i \in R$ and b_m is a unit. Note that the polynomial $a_n b_m^{-1} x^{n-m} g(x)$ has degree n and leading coefficient a_n . It follows that the polynomial $f(x) - a_n b_m^{-1} x^{n-m} g(x)$ has degree smaller than n (because the leading coefficients cancel). We can suppose, inductively, that there exist polynomials $p, r \in R[x]$ such that $f(x) - a_n b_m^{-1} x^{n-m} g(x) = p(x)g(x) + r(x)$ and $\deg(r) < \deg(g)$. Then we have $f = qg + r$ by taking $q(x) = a_n b_m^{-1} x^{n-m} - p(x)$.

Next we prove uniqueness. Suppose that $f = qg + r = pg + s$ where $q, p, r, s \in R[x]$ with $\deg(r) < \deg(g)$ and $\deg(s) < \deg(g)$. Then we have $(q - p)g = s - r$ and so $\deg((q - p)g) = \deg(s - r)$. Since the leading coefficient of g is a unit (hence not a zero divisor), it follows that $\deg((q - p)g) = \deg(q - p) + \deg(g)$. If we had $q - p \neq 0$ then we would have $\deg((q - p)g) \geq \deg(g)$ but $\deg(s - r) < \deg(g)$, giving a contradiction. Thus we must have $q - p = 0$. Since $q - p = 0$ we have $s - r = (q - p)g = 0$. Since $q - p = 0$ and $s - r = 0$ we have $q = p$ and $r = s$, proving uniqueness.

11.3 Corollary: (The Remainder Theorem) Let R be a ring, let $f \in R[x]$, and let $a \in R$. When we divide $f(x)$ by $(x - a)$ to obtain the quotient $q(x)$ and remainder $r(x)$, the remainder is the constant polynomial $r(x) = f(a)$.

Proof: Use the division algorithm to obtain $q, r \in R[x]$ such that $f = q(x)(x - a) + r(x)$ and $\deg(r) < \deg(x - a)$. Since $\deg(x - a) = 1$ we have $\deg(r) \in \{-1, 0\}$, and so r is a constant polynomial, say $r(x) = c$ with $c \in R$. Then we have $f(x) = q(x)(x - a) + c$. Put in $x = a$ to get $f(a) = q(a)(a - a) + c = q(a) \cdot 0 + c = c$.

11.4 Corollary: (The Factor Theorem) Let R be a commutative ring, let $f \in R[x]$ and let $a \in R$. Then $f(a) = 0$ if and only if $(x - a) | f(x)$.

Proof: Suppose that $f(a) = 0$. Choose $q, r \in R[x]$ such that $f(x) = q(x)(x - a) + r(x)$ and $\deg(r) < \deg(x - a)$. Then $r(x)$ is the constant polynomial $r(x) = f(a) = 0$ and so we have $f(x) = q(x)(x - a)$. Since $f(x) = (x - a)q(x)$ we have $(x - a) | f(x)$. Conversely, suppose that $(x - a) | f(a)$ and choose $p \in R[x]$ so that $f(x) = (x - a)p(x)$. Then $f(a) = (a - a)p(a) = 0 \cdot p(a) = 0$.

11.5 Definition: Let R be a commutative ring, let $f \in R[x]$, and let $a \in R$. We say that a is a **root** of f when $f(a) = 0$. When $f \neq 0$, we define the **multiplicity** of a as a root of f to be the largest $m = m(f, a) \in \mathbf{N}$ such that $(x - a)^m | f(x)$ (where we use the convention that $(x - a)^0 = 1$). Note that a is a root of f if and only if $m(f, a) \geq 1$.

11.6 Example: Let $f(x) = x^3 - 3x - 2 \in \mathbf{Q}[x]$. Since $f(x) = (x + 1)^2(x - 2) \in \mathbf{Q}[x]$, we have $m(f, 2) = 1$ and $m(f, -1) = 2$.

11.7 Example: Let p be an odd prime and let $f(x) = x^p - a \in \mathbf{Z}_p[x]$. Find $m(f, a)$.

11.8 Theorem: (The Roots Theorem) Let R be an integral domain, let $0 \neq f \in R[x]$ and let $n = \deg(f)$. Then

- (1) f has at most n distinct roots in R , and
- (2) if a_1, a_2, \dots, a_ℓ are all of the distinct roots of f in R and $m_i = m(f, a_i)$ for $1 \leq i \leq \ell$, then $(x - a_1)^{m_1}(x - a_2)^{m_2} \cdots (x - a_\ell)^{m_\ell} \mid f(x)$ and so $\sum_{i=1}^{\ell} m(f, a_i) \leq n$.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. If $\deg(f) = 0$, then $f(x) = c$ for some $0 \neq c \in R$, and so $f(x)$ has no roots. Let f be a polynomial with $\deg(f) = n \geq 1$ and suppose, inductively, that every polynomial $g \in R[x]$ with $\deg(g) = n - 1$ has at most $n - 1$ distinct roots. Suppose that a is a root of f in R . By the Factor Theorem, $(x - a) \mid f(x)$ so we can choose a polynomial $g \in R[x]$ so that $f(x) = (x - a)g(x)$. Note that $\deg(g) = n - 1$ so, by the induction hypothesis, g has at most $n - 1$ distinct roots. Let $b \in R$ be any root of f with $b \neq a$. Since $f(x) = (x - a)g(x)$ and $f(b) = 0$ we have $0 = f(b) = (b - a)g(b)$. Since $(b - a)g(b) = 0$ and $(b - a) \neq 0$ and R has no zero divisors, it follows that $g(b) = 0$. Thus b must be one of the roots of g . Since every root b of f with $b \neq a$ is equal to one of the roots of g , and since g has at most $n - 1$ distinct roots, it follows that f has at most n distinct roots, as required.

11.9 Example: When R is not an integral domain, a polynomial $f \in R[x]$ of degree n can have more than n roots. For example, in the ring $\mathbf{Z}_6[x]$ the polynomial $f(x) = x^2 + x$ has roots 0, 2, 3 and 5.

11.10 Theorem: (The Rational Roots Theorem) Let $f(x) = \sum_{i=0}^n c_i x^i \in \mathbf{Z}[x]$ where $n \in \mathbf{Z}^+$ and $c_n \neq 0$. Let $r, s \in \mathbf{Z}$ with $s \neq 0$ and $\gcd(r, s) = 1$. Then if $f\left(\frac{r}{s}\right) = 0$ then $r \mid c_0$ and $s \mid c_n$.

Proof: Suppose that $f\left(\frac{r}{s}\right) = 0$, that is $c_0 + c_1 \frac{r}{s} + c_2 \frac{r^2}{s^2} + \cdots + c_n \frac{r^n}{s^n} = 0$. Multiply by s^n to get

$$0 = c_0 s^n + c_1 s^{n-1} r^1 + \cdots + c_{n-1} s^1 r^{n-1} + c_n r^n.$$

Thus we have

$$\begin{aligned} c_0 s^n &= -r(c_1 s^{n-1} + \cdots + c_{n-1} s^1 r^{n-2} + c_n r^{n-1}) \text{ and} \\ c_n r^n &= -s(c_0 s^{n-1} + c_1 s^{n-2} r^1 + \cdots + c_{n-1} r^{n-1}) \end{aligned}$$

and it follows that $r \mid c_0 s^n$ and that $s \mid c_n r^n$. Since $\gcd(r, s) = 1$ we also have $\gcd(r, s^n) = 1$, and since $r \mid c_0 s^n$ it follows that $r \mid c_0$. Since $\gcd(s, r) = 1$ we also have $\gcd(s, r^n) = 1$, and since $s \mid c_n r^n$ it follows that $s \mid c_n$.

11.11 Example: Show that $\sqrt{1 + \sqrt{2}} \notin \mathbf{Q}$.

11.12 Note: Here are a few remarks about irreducible polynomials.

(1) When F is a field, we know that $F[x]$ is a unique factorization domain. For $f \in F[x]$ we know that $f = 0$ if and only if $\deg(f) = -1$, and f is a unit if and only if $\deg(f) = 0$, and for $0 \neq f, g \in F[x]$ we know that $\deg(fg) = \deg(f) + \deg(g)$. It follows that for $f \in F[x]$, if $\deg(f) = 1$ then f is irreducible. It also follows that for $f \in F[x]$, if $\deg(f) = 2$ or 3 then f is reducible in $F[x]$ if and only if f has a root in F .

(2) For $f \in \mathbf{C}[x]$, we know (from the Fundamental Theorem of Algebra) that f is irreducible if and only if $\deg(f) = 1$. For $f \in \mathbf{R}[x]$, we know that f is irreducible polynomial if and only if either $\deg(f) = 1$ or $f(x) = ax^2 + bx + c$ for some $a, b, c \in \mathbf{R}$ with $a \neq 0$ and $b^2 - 4ac < 0$.

(3) When p is a fairly small prime number and n is a fairly small positive integer, it is easy to list all reducible and irreducible polynomials $f \in \mathbf{Z}_p[x]$ with $\deg(f) \leq n$. Note that it suffices to list monic polynomials (since for $f \in \mathbf{Z}_p[x]$ and $0 \neq c \in \mathbf{Z}_p[x]$ we have $f \sim cf$). We start by listing all monic polynomials of degree 1, that is all polynomials of the form $f(x) = x + a$ with $a \in \mathbf{Z}_p$, and noting that they are all irreducible. Having constructed all reducible and irreducible monic polynomials of all degrees less than n , we can construct all of the reducible monic polynomials of degree n by forming products of the reducible monic polynomials of smaller degree in all possible ways, and then all the remaining monic polynomials of degree n must be irreducible.

11.13 Example: Note that $f(x) = x^3 - 3x + 1$ is irreducible in $\mathbf{Q}[x]$ because it is cubic and has no roots in \mathbf{Q} by the Rational Roots Theorem. The same polynomial is reducible in $\mathbf{R}[x]$ and in $\mathbf{C}[x]$ because it is cubic.

11.14 Example: List all monic reducible and irreducible polynomials in $\mathbf{Z}_2[x]$ of degree less than 4, then determine the number of irreducible polynomials in $\mathbf{Z}_2[x]$ of degree 4.

11.15 Definition: Let R be an integral domain. Define a binary relation on the set $R \times (R \setminus \{0\})$ by stipulating that

$$(a, b) \sim (b, d) \iff ad = bc.$$

It is easy to check that this is an equivalence relation. Let

$$F = Q(R) = (R \times (R \setminus \{0\})) / \sim = \left\{ [(a, b)] \mid a, b \in R, b \neq 0 \right\}.$$

Define addition and multiplication operations on F by

$$\begin{aligned} [(a, b)] + [(c, d)] &= [(ad + bc, bd)], \\ [(a, b)] \cdot [(c, d)] &= [(ac, bd)]. \end{aligned}$$

It is not hard to verify that these operations are well-defined (noting that when $b \neq 0$ and $d \neq 0$ we also have $bd \neq 0$ because R is an integral domain) and that they make F into a field with zero element $[(0, 1)]$ and identity element $[(1, 1)]$. This field $F = Q(R)$ is called the **quotient field** of the integral domain R . For $a, b \in R$ with $b \neq 0$ we use the following notation:

$$\frac{a}{b} = [(a, b)], \quad a = [(a, 1)], \quad \frac{1}{b} = [(1, b)].$$

The use of the notation $a = [(a, 1)]$, for $a \in R$, allows to consider R as a subring of its quotient field F .

11.16 Example: The quotient field of \mathbf{Z} is equal to \mathbf{Q} , and the quotient field of $\mathbf{Z}[\sqrt{2}]$ is equal to $\mathbf{Q}[\sqrt{2}]$.

11.17 Example: When R is an integral domain, the quotient field of the polynomial ring $R[x]$ is the **field of rational functions** $R(x) = \{\frac{f}{g} \mid f, g \in R[x], g \neq 0\}$. More generally, the quotient field of $R[x_1, \dots, x_n]$ is the field of rational functions $R(x_1, \dots, x_n)$.

11.18 Definition: Let R be a unique factorization domain. For a polynomial $f \in R[x]$, the **content** of f , written as $c(f)$, is a greatest common divisor of the coefficients of f . Note that the greatest common divisor is unique up to association and so $c(f)$ is unique up to association, that is up to multiplication by a unit. We often abuse notation by writing $c(f) = a$ when in fact $c(f) \sim a$. We say that f is **primitive** when $c(f) = 1$ (that is when $c(f)$ is a unit). Note that $f = 0$ if and only if $c(f) = 0$. Note that when $f \in R[x]$ and $a \in R$ we have $c(af) = a c(f)$. In particular, we have $f = c(f)g$ for a primitive polynomial $g \in R[x]$.

11.19 Example: For $f(x) = 6x + 30 \in \mathbf{Z}[x]$ we have $c(f) = 6$. Since $\deg(f) = 1$, it follows that f is irreducible in $\mathbf{Q}[x]$. But since $c(f) = 6$, it follows that f is reducible in $\mathbf{Z}[x]$, indeed in $\mathbf{Z}[x]$ we have $f(x) = 2 \cdot 3 \cdot (x + 5)$.

11.20 Theorem: (Gauss' Lemma) Let R be a UFD with quotient field F .

- (1) For all $f, g \in R[x]$ we have $c(fg) = c(f)c(g)$.
- (2) Let $0 \neq f \in R[x]$ and let $g(x) = \frac{1}{c(f)}f(x) \in R[x]$. Then f is irreducible in $F[x]$ if and only if g is irreducible in $R[x]$.
- (3) Let $0 \neq f \in R[x]$. Then f is reducible in $F[x]$ if and only if f can be factored as a product of two nonconstant polynomials in $R[x]$.

Proof: Let $f, g \in R[x]$. If $f = 0$ or $g = 0$ then we have $c(fg) = 0 = c(f)c(g)$. Suppose that $f \neq 0$ and $g \neq 0$. Let $h(x) = \frac{1}{c(f)}f(x)$ and $k(x) = \frac{1}{c(g)}g(x)$. Then we have $h, k \in R[x]$ with $c(h) = c(k) = 1$ and $fg = c(f)c(g)hk$ so that $c(fg) = c(f)c(g)c(hk)$. Thus to prove Part (1) it suffices to show that $c(hk) = 1$. Let $h(x) = \sum_{i=0}^n a_i x^i$ and $k(x) = \sum_{i=0}^m b_i x^i$ with $a_n \neq 0$ and $b_m \neq 0$. Suppose, for a contradiction, that $c(hk) \neq 1$. Let p be a prime factor of $c(hk)$. Then p divides all of the coefficients of $(hk)(x) = (a_0 b_0) + (a_1 b_0 + a_0 b_1)x + \dots + (a_n b_m)x^{n+m}$. Since $c(h) = 1$, p does not divide all the coefficients of $h(x)$, so we can choose an index $r \geq 0$ so that $p|a_i$ for all $i < r$ and $p \nmid a_r$. Since $c(k) = 1$ we can choose an index $s \geq 0$ so that $p|b_i$ for all $i < s$ and $p \nmid b_s$. Since p divides every coefficient of $(hk)(x)$, it follows that in particular p divides the coefficient

$$c_{r+s} = a_0 b_{r+s} + a_1 b_{r+s-1} + \dots + a_r b_s + \dots + a_{r+s-1} b_1 + a_{r+s}.$$

Since $p|c_{r+s}$ and $p|a_i$ for all $i < r$ and $p|b_i$ for all $i < s$ it follows that $p|a_r b_s$. Since p is prime and $p|a_r b_s$ it follows that $p|a_r$ or $p|b_s$. But r and s were chosen so that $p \nmid a_r$ and $p \nmid b_s$ so we have obtained the desired contradiction. This proves Part (1).

To prove Parts (2) and (3), let $0 \neq f(x) \in R[x]$ and let $g(x) = \frac{1}{c(f)}f(x)$, and note that $g \in R[x]$ with $c(g) = 1$. Suppose that g is reducible in $R[x]$, say $g(x) = h(x)k(x)$ where $h(x)$ and $k(x)$ are non-units in $R[x]$. Since $c(h)c(k) = c(hk) = c(g) = 1$ it follows that $c(h) = c(k) = 1$. Note that $h(x)$ cannot be a constant polynomial since if we had $h(x) = r$ with $r \in R$, then we would have $c(h) = r$ and also $c(h) = 1$ so that r is a unit in R , but then h would be a unit in $R[x]$. Similarly $k(x)$ cannot be a constant polynomial. Since $h(x)$ and

$k(x)$ are nonconstant polynomials in $R[x]$, they are also nonconstant polynomials in $F[x]$. Since $f(x) = c(f)g(x) = c(f)h(x)k(x)$ and since $c(f)h(x)$ and $k(x)$ are both nonconstant polynomials (hence nonunits) in $F[x]$, it follows that $f(x)$ is reducible in $F[x]$.

Conversely, suppose that $f(x)$ is reducible in $F[x]$, say $f(x) = h(x)k(x)$ where h and k are nonzero, nonunits in $F[x]$. Since h and k are nonzero nonunits in $F[x]$, they are nonconstant polynomials. Let a be a least common multiple of the denominators of the coefficients of $h(x)$ and let b be a least common multiple of denominators of the coefficients of $k(x)$, and note that $ah(x) \in R[x]$ and $bk(x) \in R[x]$. Let $p(x) = \frac{1}{c(ah)}ah(x)$ and let $q(x) = \frac{1}{c(bk)}bk(x)$ and note that $p(x), q(x) \in R[x]$ with $c(p) = c(q) = 1$ and that $\deg(p) = \deg(h)$ and $\deg(q) = \deg(k)$. Since $f(x) = ah(x)bk(x) = c(ah)c(bk)p(x)q(x)$ we have $c(f) = c(ah)c(bk)c(pq) = c(ah)c(bk)$ so $g(x) = \frac{1}{c(f)}f(x) = \frac{1}{c(ah)c(bk)}ah(x)bk(x) = p(x)q(x)$. Since $g(x) = p(x)q(x)$ where $p(x)$ and $q(x)$ are nonconstant polynomials in $R[x]$, we see that $g(x)$ is reducible in $R[x]$.

11.21 Theorem: (Modular Reduction) Let $f(x) = \sum_{i=0}^n c_i x^i$ with $n \in \mathbf{Z}^+$, $c_i \in \mathbf{Z}$ and $c_n \neq 0$.

Let p be a prime number with $p \nmid c_n$. Let $\bar{f}(x) = \sum_{i=0}^n \bar{c}_i x^i \in \mathbf{Z}_p[x]$ where $\bar{c}_i = [c_i] \in \mathbf{Z}_p$.

If \bar{f} is irreducible in $\mathbf{Z}_p[x]$ then f is irreducible in $\mathbf{Q}[x]$.

Proof: Suppose that $f(x)$ is reducible in $\mathbf{Q}[x]$. By Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbf{Z}[x]$ such that $f = gh \in \mathbf{Z}[x]$. Write $g(x) = \sum_{i=0}^k a_i x^i \in \mathbf{Z}[x]$ and $h(x) = \sum_{i=0}^{\ell} b_i x^i \in \mathbf{Z}[x]$ with $a_k \neq 0$, $b_\ell \neq 0$ and $k, \ell \geq 1$. Let $\bar{g} = \sum_{i=0}^k \bar{a}_i x^i \in \mathbf{Z}_p[x]$ and $\bar{h}(x) = \sum_{i=0}^{\ell} \bar{b}_i x^i \in \mathbf{Z}_p[x]$, and note that $\bar{f} = \bar{g}\bar{h} \in \mathbf{Z}_p[x]$. Since $c_n = a_k b_\ell$ and $p \nmid c_n$ it follows that $p \nmid a_k$ and $p \nmid b_\ell$ in \mathbf{Z} so $\bar{a}_k \neq 0$ and $\bar{b}_\ell \neq 0$ in \mathbf{Z}_p . Thus $\deg(\bar{g}) = \deg(g) = k$ and $\deg(\bar{h}) = \deg(h) = \ell$ so that \bar{g} and \bar{h} are nonconstant polynomials in $\mathbf{Z}_p[x]$, and so the polynomial $\bar{f} = \bar{g}\bar{h}$ is reducible in $\mathbf{Z}_p[x]$.

11.22 Example: Prove that $f(x) = x^5 + 2x + 4$ is irreducible in $\mathbf{Q}[x]$ by working in $\mathbf{Z}_3[x]$.

11.23 Theorem: (Eisenstein's Criterion) Let $f(x) = \sum_{i=0}^n c_i x^i$ with $n \in \mathbf{Z}^+$, $c_i \in \mathbf{Z}$ and $c_n \neq 0$. Let p be a prime number such that $p_i | c_i$ for $0 \leq i < n$ and $p \nmid c_n$ and $p^2 \nmid c_0$. Then f is irreducible in $\mathbf{Q}[x]$.

Proof: Suppose, for a contradiction, that $f(x)$ is reducible in $\mathbf{Q}[x]$. By Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbf{Z}[x]$ such that $f = gh \in \mathbf{Z}[x]$. Write $g(x) = \sum_{i=0}^k a_i x^i \in \mathbf{Z}[x]$ and $h(x) = \sum_{i=0}^{\ell} b_i x^i \in \mathbf{Z}[x]$ with $k, \ell \geq 1$ and $a_k \neq 0$, $b_\ell \neq 0$. Since $c_0 = a_0 b_0$ and $p \nmid c_0$ but $p^2 \nmid c_0$, it follows that p divides exactly one of the two numbers a_0 and b_0 . Suppose that p divides a_0 but not b_0 (the case that p divides b_0 but not a_0 is similar). Since $p | c_1$, that is $p | (a_0 b_1 + a_1 b_0)$, and $p | a_0$ it follows that $p | a_1 b_0$, and since $p \nmid b_0$ it follows that $p | a_1$. Since $p | c_2$, that is $p | (a_0 b_2 + a_1 b_1 + a_2 b_0)$ and $p | a_0$ and $p | a_1$, it follows that $p | a_2 b_0$, and since $p \nmid b_0$ it then follows that $p | a_2$. Repeating this argument we find, inductively, that $p | a_i$ for all $i \geq 0$, and in particular we have $p | a_k$. Since $c_n = a_k b_\ell$ and $p | a_k$ it follows that $p | c_n$, giving the desired contradiction.

11.24 Example: Note that $f(x) = 5x^5 + 3x^4 - 18x^3 + 12x + 6$ is irreducible in $\mathbf{Q}[x]$ by Eisenstein's Criterion using $p = 3$.

11.25 Example: Let p be a prime number. Show that $f(x) = 1 + x + x^2 + \cdots + x^{p-1}$ is irreducible in $\mathbf{Q}[x]$,

11.26 Theorem: If R is a UFD then so is $R[x]$.

Proof: Suppose that R is a UFD and let F be the quotient field of R . Note that the units in $R[x]$ are the constant polynomials which are also units in R . Let $f \in R[x]$ be a non-zero non-unit. If f is a constant polynomial, then the factorization of f in $R[x]$ is the same as the factorization of f in R . Suppose that $\deg(f) \geq 1$. Let $g = \frac{1}{c(f)} f$ so that $g \in R[x]$ with $c(g) = 1$. The factorization of $c(f)$ in $R[x]$ is the same as the factorization in R , so it suffices to show that the polynomial g factors uniquely into irreducibles in $R[x]$. Since $F[x]$ is a ED, hence a UFD, we know that g factors into irreducibles in $F[x]$. By Gauss' Lemma, we can multiply each of the irreducible factors in $F[x]$ by an element of F to write g as a product of irreducible factors in $R[x]$, say $g = f_1 f_2 \cdots f_\ell$ where each f_j is irreducible in $R[x]$. Since $c(g) = 1$ we must have $c(f_j) = 1$ for each index j .

Suppose that $g = f_1 f_2 \cdots f_\ell = g_1 g_2 \cdots g_m$ where f_j and g_k are irreducible in $R[x]$ with $c(f_j) = c(g_k) = 1$ for all j, k . Note that each f_j must be non-constant since if we had $f_j(x) = r \in R$ then we would have $c(f_j) = r$ and $c(f_j) = 1$ so that r is a unit in R , but then f_j would be a unit in $R[x]$. Similarly each g_k is non-constant. It follows that the polynomials f_j and g_k are also irreducible in $F[x]$. By unique factorization in $F[x]$, we must have $m = \ell$ and, after possibly reordering the polynomials g_k , we have $f_j \sim g_j$ in $F[x]$ for all indices j . Since $f_j \sim g_j$ in $F[x]$, we have $g_j = u f_j$ for some $0 \neq u \in F$. Say $u = \frac{a}{b}$ where $a, b \in R$ with $\gcd(a, b) = 1$. Then we have $a f_j = b g_j$ in $R[x]$. Since $c(f_j) = c(g_j) = 1$ we have $c(a f_j) = a$ and $c(b g_j) = b$ and it follows that $a \sim b$ in R , hence $a = bv$ for some unit $v \in R$. Thus we have $g_j = u f_j = \frac{a}{b} f_j = v f_j$ and so $f_j \sim g_j$ in $R[x]$.

11.27 Corollary: If R is a UFD then so is the polynomial ring $R[x_1, x_2, \dots, x_n]$.