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Chapter 1. Definition and Examples of Groups and Subgroups

1.1 Definition: A binary operation on a set S is a function ∗ : S2 → S, where

S2 = S × S =
{

(a, b)
∣∣a, b ∈ S} .

We usually write a ∗ b instead of ∗(a, b).

1.2 Definition: A group is a set G together with a binary operation ∗ : G2 → G and an
element e = eG ∈ G such that

(1) ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
(2) e is an identity element: a ∗ e = e ∗ a = a for all a ∈ G, and
(3) every a ∈ G has an inverse: for all a ∈ G there exists b ∈ G such that a ∗ b = b ∗ a = e.

If, in addition, ∗ is commutative, that is a ∗ b = b ∗ a for all a, b ∈ G, then we say that G
is abelian.

1.3 Theorem: (Uniqueness of the Identity) Let G be a group under ∗. For all u, v ∈ G,
if u ∗ a = a for all a ∈ G and a ∗ v = a for all a ∈ G then u = v.

Proof: Let u, v ∈ G. Suppose that u∗a = a for all a ∈ G and a∗ v = a for all a ∈ G. Since
u ∗ a = a for all a ∈ G we have u ∗ v = v. Since a ∗ v = a for all a ∈ G we have u ∗ v = u.
Thus u = u ∗ v = v.

1.4 Theorem: (Uniqueness of the Inverse) Let G be a group under ∗ with identity e, and
let a ∈ G. Then for all u, v ∈ G, if u ∗ a = e and a ∗ v = e then u = v.

Proof: Let u, v ∈ G. Suppose that u ∗ a = e and a ∗ v = e. Then

u = u ∗ e = u ∗ (a ∗ v) = (u ∗ a) ∗ v = e ∗ v = v .

1.5 Notation: Let G be a group. If the operation in G is called addition, then we denote
the operation by + and we assume that it is commutative, we denote the (unique) identity
in the group by 0, and we denote the (unique) inverse of a given point a ∈ G by −a. For
a, b ∈ G, we write a−b = a+(−b). For a ∈ G and k ∈ Z+ we write ka = a+a+· · ·+a (with
k terms in the sum), 0a = 0, and (−k)a = k(−a) = −a− a− · · · − a. With this notation,
for all a, b ∈ G and all k, l ∈ Z we have (k + l)a = ka + la, (−k)a = −(ka) = k(−a),
−(−a) = a and −(a+ b) = −a− b = −b− a. This notation is called additive notation,
and any group G in which the operation is called addition, and is written using additive
notation, is called an additive group. Additive groups are always assumed to be abelian.

1.6 Notation: When the operation ∗ of a group G is any operation other than addition
(or when the operation is unspecified), we usually write a ∗ b simply as ab, we usually
denote the (unique) identity element by e, 1 or I, and we denote the (unique) inverse of
a ∈ G by a−1. For a ∈ G and k ∈ Z+ we write ak = aa · · · a (with k terms in the product),
a0 = e, and a−k = (a−1)k = a−1a−1 · · · a−1. With this notation, for all a, b ∈ G and all
k, l ∈ Z we have ak+l = akal, a−k = (ak)−1 = (a−1)k, (a−1)−1 = a and (ab)−1 = b−1a−1.
The above notation is called multiplicative notation, and any group G in which the
operation is written using multiplicative notation is called a multiplicative group.

1.7 Note: From now on, we shall use multiplicative notation as our default notation,
unless the operation is known to be addition.
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1.8 Theorem: (Cancellation) Let G be a group with identity e. Let a, b, c ∈ G. Then

(1) if ab = ac or if ba = ca then b = c.
(2) if ab = e then a−1 = b and b−1 = a.
(3) if ab = a or if ba = a then b = e.

Proof: To prove (1) note that if ab = ac then multiplying both sides on the left by a−1

gives b = c ; in greater detail, we have

b = eb = (a−1a)b = a−1(ab) = a−1(ac) = (a−1a)c = ec = c .

Similarly, if ba = ca then multiplying on the right by a−1 gives b = c. To prove part (2)
note that if ab = e then multiplying both sides on the left by a−1 gives b = a−1, and
multiplying on the right by b−1 gives a = b−1. To prove part (3), note that if ab = a then
multiplying on the left by a−1 gives b = e, and if ba = a then multiplying on the right by
a−1 gives b = e.

1.9 Example: If R is a ring (as defined later) under the operations + and ·, then R is
also an abelian group under + with identity 0. For example, Z, Q, R, C, H and Zn are
abelian groups under + with identity 0.

1.10 Example: If R is a ring under · with identity 1 (as defined later) then the set of
units

R∗ =
{
a ∈ R

∣∣ a has an inverse under ·
}

is a group under · with identity 1. For example, Z∗ = {±1}, Q∗ = Q \ {0}, R∗ = R \ {0},
C∗ = C \ {0}, H∗ = H \ {0} and

Un = Zn
∗ =

{
a ∈ Zn

∣∣ gcd(a, n) = 1
}

are abelian groups under multiplication with identity 1.

1.11 Example: If S is a set and G is a group, then the set of functions

Func(S,G) = GS =
{
f : S → G

}
is a group under the operation given by (fg)(x) = f(x)g(x) for all x ∈ S.

1.12 Example: For a set S, the set of permutations

Perm(S) =
{
f : S → S

∣∣f is bijective
}

is a group under composition with identity I : S → S given by I(x) = x for all x ∈ S. This
group is non-abelian when |S| ≥ 3. For n ∈ Z+, the nth symmetric group is the group

Sn = Perm
(
{1, 2, · · · , n}

)
.

1.13 Example: When R is a commutative ring with identity, the set Mn(R) of n × n
matrices with entries in R is an abelian group under matrix addition with identity 0, and
the general linear group

GLn(R) = Mn(R)∗ =
{
A ∈Mn(R)

∣∣det(A) ∈ R∗
}

is a group under matrix multiplication with identity I. This group is non-abelian for n ≥ 2.
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1.14 Example: If G and H are groups with identities eG and eH , then the product

G×H =
{

(a, b)
∣∣a ∈ G, b ∈ H}

is a group under the operation given by (a, b)(c, d) = (ac, bd) with identity (eG, eH). More
generally, if G1, G2, · · · , Gn are groups then the direct product

n∏
i=1

Gi = G1 ×G2 × · · · ×Gn =
{

(a1, a2, · · · , an)
∣∣ai ∈ Gi}

is a group under the operation (a1, a2, · · · , an)(b1, b2, · · · , bn) = (a1b1, a2b2, · · · , anbn). For

a group G, we write Gn =
n∏
i=1

G = G × G × · · · × G. More generally still, if A is any set

(possibly infinite) and Gα is a group for each α ∈ A the the direct product∏
α∈A

Gα =
{
f : A→

⋃
α∈A

Gα

∣∣∣f(α) ∈ Gα for all α ∈ A
}

is a group with operation (fg)(α) = f(α)g(α) ∈ Gα for all α ∈ A. The direct sum∑
α∈A

Gα =

{
f ∈

∏
α∈A

Gα

∣∣∣∣ f(α) = eα for all but finitely many α ∈ A
}

where eα is the identity inGα, is also a group under the same operation (fg)(x) = f(x)g(x).

1.15 Definition: For a finite group G, we can specify its operation ∗ by making a table
showing the value of the product a ∗ b for each pair (a, b) ∈ G2. Such a table is called an
operation table (or an addition, multiplication or composition table) for G.

1.16 Example: The multiplication table for the group U12 = {1, 5, 7, 11} is shown below.

a\b 1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

1.17 Definition: Let G be a group and let a ∈ G. The order of G is its cardinality |G|.
The order of a in G, denoted by |a| or by ordG(a), is the smallest positive integer n such
that an = e (or in additive notation, the smallest positive integer n such that na = 0),
provided that such an integer exists. If no such positive integer n exists, then the order of
a is infinite.

1.18 Example: The order of Zn is
∣∣Zn∣∣ = n. The order of a ∈ Zn is |a| = n

gcd(a,n) .

Indeed if we let d = gcd(a, n) and write a = sd and n = td, then gcd(s, t) = 1 and we have
ka = 0 ∈ Zn ⇐⇒ n|ka ⇐⇒ td|ksd ⇐⇒ t|ks ⇐⇒ t|k and so |a| = t = n

d .

1.19 Example: The order of Un is |Un| = φ(n) where φ is the Euler phi function. We
shall see later (in Corollary 4.22) that if n =

∏
pi
ki is the prime factorization of n then

φ(n) =
∏

(pi
ki − piki−1) = n ·

∏(
1− 1

pi

)
.
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1.20 Example: The order of the group C∗ is |C∗| =∞ (or more accurately |C∗| = 2ℵ0).
For a = rei θ ∈ C∗ where r, θ ∈ R with r > 0, when r 6= 1 or when θ is not a rational
multiple of 2π we have |a| =∞, and when r = 1 and θ = 2π k

n with k, n ∈ Z and n 6= 0 we
have |a| = n

gcd(k,n) .

1.21 Example: If S is a set and G is a group then
∣∣Func(S,G)

∣∣ = |G||S|.

1.22 Example: If S is a finite set then
∣∣Perm(S)

∣∣ = |S|!. In particular |Sn| = n!.

1.23 Example: When p is prime (so that Zp is a field, as defined later), we have∣∣GLn(Zp)
∣∣ = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1) .

Indeed, for a matrix A ∈ Mn(Zp), in order for A to be invertible its columns must be
linearly independent. The first column u1 of A can be any non-zero vector in Zp

n so there
are pn − 1 choices for u1. Having chosen u1, the second column u2 can be any vector in
Zp

n which is not a multiple t1u1, t1 ∈ Zp. Since there are p such multiples, there are
pn− p choices for the u2. Having chosen u1 and u2, the third column u3 can be any vector
in Zp

n which is not a linear combination t1u1 + t2u2, t1, t2 ∈ Zp. There are p2 such linear
combinations, so there are pn − p2 choices for u3. And so on.

1.24 Example: If G and H are groups then
∣∣G×H∣∣ = |G| |H|. For a ∈ G and b ∈ H,∣∣(a, b)∣∣ = lcm
(
|a|, |b|

)
.

Indeed if |a| = n and |b| = m then for k ∈ Z we have

(a, b)k = e
G×H

⇐⇒ (ak, bk) = (eG, eH)

⇐⇒
(
ak = eG and bk = eH

)
⇐⇒ n

∣∣k and m
∣∣k)

⇐⇒ k is a common multiple of n and m.

1.25 Definition: Let G be a group. For a, b ∈ G, we say that a and b are conjugate
in G, and we write a ∼ b, when b = xax−1 for some x ∈ G. For a ∈ G, we define the
conjugacy class of a in G to be the set

Cl(a) = ClG(a) =
{
b ∈ G

∣∣b ∼ a} =
{
xax−1

∣∣x ∈ G} .
1.26 Note: The relation ∼ is an equivalence relation on G. This means that for all
a, b, c ∈ G we have

(1) a ∼ a,
(2) if a ∼ b then b ∼ a, and
(3) if a ∼ b and b ∼ c then a ∼ c.
Indeed, given a, b, c ∈ G we have a ∼ a since a = eae−1, and if a ∼ b, say b = xax−1,
then a = x−1b (x−1)−1 so b ∼ a, and finally if a ∼ b and b ∼ c with say b = xax−1 and
c = yby−1, then we have c = yxay−1x−1 = (yx)a(yx)−1 so a ∼ c. It follows that G is the
disjoint union of the distinct conjugacy classes.

1.27 Example: As an exercise, show that if a ∼ b in G, then |a| = |b|.
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1.28 Definition: A subgroup of a group G is a subset H ⊆ G which is also a group
using the same operation as in G. When H is a subgroup of G, we write H ≤ G.

1.29 Example: In any group G we have the subgroups {e} ≤ G and G ≤ G. The group
{e} is called the trivial group. A subgroup H ≤ G with H 6= G is called a proper
subgroup of G.

1.30 Example: We have Z ≤ Q ≤ R ≤ C ≤ H. and we have Z∗ ≤ Q∗ ≤ R∗ ≤ C∗ ≤ H∗.

1.31 Example: Note that Zn = {0, 1, · · · , n− 1} is not a subgroup of Z, indeed it is not
even a subset. Also, Un is not a subgroup of Zn since it uses a different operation.

1.32 Theorem: (The Subgroup Test I) Let G be a group and let H ⊆ G. Then H ≤ G
if and only if

(1) H contains the identity, that is e ∈ H,
(2) H is closed under the operation, that is ab ∈ H for all a, b ∈ H, and
(3) H is closed under inversion, that is a−1 ∈ H for all a ∈ H.

Proof: Note first that the operation on the group G restricts to a well defined operation
on H if and only if H is closed under the operation. In this case, the operation will be
associative on H since it is associative on G. Next note that if e = eG ∈ H then e is an
identity element for H, and conversely if eH is an identity for H then since eHeH = eH
(both in H and in G), cancellation in the group G gives eH = eG. Thus H has an identity
if and only if e = eG ∈ H. A similar argument shows that a given element a ∈ H has an
inverse in H if and only if a−1 ∈ H where a−1 denotes the inverse of a in G.

1.33 Theorem: (The Subgroup Test II) Let G be a group and let H ⊆ G. Then H ≤ G
if and only if

(1) H 6= ∅, and
(2) for all a, b ∈ H we have ab−1 ∈ H.

Proof: From the Subgroup Test I, it is clear that if H ≤ G then (1) and (2) hold. Suppose,
conversely, that (1) and (2) hold. By (1) we can choose an element a ∈ H, and then by (2)
we have e = aa−1 ∈ H, so H contains the identity. For a ∈ H, we have a−1 = ea−1 ∈ H
by (2), so H is closed under inversion. For a, b ∈ H, we have ab = a(b−1)−1 ∈ H, so H is
closed under the operation.

1.34 Theorem: (The Finite Subgroup Test) Let G be a group and let H be a finite subset
of H. Then H ≤ G if and only if

(1) H 6= ∅, and
(2) H is closed under the operation, that is ab ∈ H for all a, b ∈ H.

Proof: The proof is left as an exercise.

1.35 Example: The set
{

(x, y) ∈ R2
∣∣xy ≥ 0

}
is not a subgroup of R2 since it is not

closed under addition.

1.36 Example: For n ∈ Z+ we have Cn ≤ C∞ ≤ S1 ≤ C∗ where

Cn =
{
z ∈ C∗

∣∣zn = 1
}

C∞ =
{
z ∈ C∗

∣∣zn = 1 for some n ∈ Z+
}

S1 =
{
z ∈ C∗

∣∣||z|| = 1
}
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1.37 Example: When R is a commutative ring with 1, in the general linear group GLn(R)
we have the following subgroups, called the special linear group, the orthogonal group
and the special orthogonal group.

SLn(R) =
{
A ∈Mn(R)

∣∣det(A) = 1
}

On(R) =
{
A ∈Mn(R)

∣∣AtA = I
}

SOn(R) =
{
A ∈Mn(R)

∣∣AtA = I, det(A) = 1
}

1.38 Example: For θ ∈ R, the rotation in R2 about (0, 0) by the angle θ is given by
the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
and the reflection in R2 in the line through (0, 0) and the point

(
cos θ2 , sin

θ
2

)
is given by

the matrix

Fθ =

(
cos θ sin θ
sin θ − cos θ

)
.

We have
O2(R) =

{
Rθ, Fθ

∣∣θ ∈ R
}

SO2(R) =
{
Rθ
∣∣θ ∈ R

}
In O2(R), for α, β ∈ R we have

FβFα = Rβ−α , FβRα = Fβ−α , RβFα = Fα+β , RβRα = Rα+β .

1.39 Example: For n ∈ Z+, the dihedral group Dn is the group

Dn =
{
Rk, Fk

∣∣k ∈ Zn
}

=
{
R0, R1, · · · , Rn−1, F0, F1, · · ·Fn−1

}
where for k ∈ Zn we write Rk = Rθk and Fk = Fθk with θk = 2πk

n . We have

Dn ≤ O2(R) ≤ GL2(R) ≤ Perm(R2)

and for k, l ∈ Zn, the operation in Dn is given by

FlFk = Rl−k , FlRk = Fl−k , RlFk = Fk+l , RlRk = Rk+l .

1.40 Definition: Let G be a group and let a ∈ G. The centre of G is the set

Z(G) =
{
a ∈ G

∣∣ax = xa for all x ∈ G
}

and the centralizer of a in G is the set

C(a) = CG(a) =
{
x ∈ G

∣∣ax = xa
}
.

As an exercise, show that Z(G) and Ca(G) are both subgroups of G.

1.41 Example: Find the centre of D4 and find the centralizers of Rk and Fk in D4.

.
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Chapter 2. Cyclic Groups and Generators

2.1 Example: If H and K are subgroups of G then so is H ∩K. More generally, if A is
a set and Hα ≤ G for each α ∈ A, then

⋂
α∈A

Hα ≤ G by the Subgroup Test II. Indeed we

have eG ∈ Hα for all α ∈ A so that eG ∈
⋂
α∈AHα, and if a, b ∈

⋂
α∈A

Hα then for every

α ∈ A we have a, b ∈ Hα hence ab−1 ∈ Hα, and so ab−1 ∈
⋂
α∈A

Hα.

2.2 Definition: Let G be a group and let S ⊆ G. The subgroup of G generated by S,
denoted by 〈S〉, is the smallest subgroup ofG which contains S, that is the intersection of all
subgroups of G which contain S. The elements of S are called generators of the group 〈S〉.
When S is a finite set, we omit set brackets and write 〈a1, a2, · · · , an〉 =

〈
{a1, a2, · · · , an}

〉
.

We say that G is finitely generated when G = 〈S〉 for some finite set S ⊆ G. We say
that G is cyclic when G = 〈a〉 for some a ∈ G. When G is any group and a ∈ G, the
group 〈a〉 is called the cyclic subgroup of G generated by a.

2.3 Theorem: (Elements of a Cyclic Group) Let G be a group and let a ∈ G. Then

(1) we have 〈a〉 =
{
ak
∣∣k ∈ Z

}
.

(2) If |a| =∞ then the elements ak, k ∈ Z are all distinct so we have
∣∣〈a〉∣∣ =∞.

(3) If |a| = n then for k, l ∈ Z we have ak = al ⇐⇒ k = l mod n and so

〈a〉 =
{
ak
∣∣k ∈ Zn

}
=
{
e, a, a2, · · · , an−1

}
with the listed elements in the above set all distinct so that

∣∣〈a〉∣∣ = n. In particular, for

k ∈ Z we have ak = e ⇐⇒ n
∣∣k.

Proof: First we show that 〈a〉 =
{
ak
∣∣k ∈ Z

}
. By definition, 〈a〉 is the intersection of all

subgroups H ≤ G with a ∈ H. By closure under the operation and under inversion, if
H ≤ G with a ∈ H then ak ∈ H for all k ∈ Z, and so

{
ak
∣∣k ∈ Z

}
⊆ 〈a〉. On the other

hand, since e = a0 and ak(al)−1 = ak−l, we see that
{
ak
∣∣k ∈ Z

}
≤ G by the Subgroup

Test. Since
{
ak
∣∣k ∈ Z

}
≤ G and a = a1 ∈

{
ak
∣∣k ∈ Z

}
, it follows that 〈a〉 ⊆

{
ak
∣∣k ∈ Z

}
.

Now suppose that |a| =∞ and suppose, for a contradiction, that ak = al with k < l.
Then al−k = al(ak)−1 = al(al)−1 = e but this contradicts the fact that |a| =∞.

Next suppose that |a| = n. Suppose that ak = al. Then, as above, al−k = e. Write
l − k = qn + r with 0 ≤ r < n. Then e = al−k = aqn+r = (an)qar = ar. Since |a| = n
we must have r = 0. Thus l − k = qn, that is k = l mod n. Conversely, suppose that
k = l mod n, say k = l + qn. Then ak = al+qn = al(an)q = al.

2.4 Notation: When G is an abelian group under +, we have 〈a〉 = {ka|k ∈ Z}.

2.5 Example: The groups Z and Zn are cyclic with Z = 〈1〉 and Zn = 〈1〉. The group
Cn = {z ∈ C∗|zn = 1} is cyclic with Cn =

〈
ei 2π/n

〉
.

2.6 Example: In the group Z we have 〈2〉 = {· · · ,−2, 0, 2, 4, · · ·}, but in the group R∗

we have 〈2〉 =
{
· · · 14 ,

1
2 , 1, 2, 4, 8, · · ·

}
.
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2.7 Example: The group U18 = {1, 5, 7, 11, 13, 17} is cyclic with U18 = 〈5〉 because in
U18 we have

k 0 1 2 3 4 5
5k 1 5 7 17 13 11

2.8 Theorem: (The Classification of Subgroups of a Cyclic Group) Let G be group and
let a ∈ G. Then

(1) every subgroup of 〈a〉 is cyclic.

(2) If |a| =∞ then 〈ak〉 = 〈al〉 ⇐⇒ l = ±k so the distinct subgroups of 〈a〉 are the trivial
group 〈a0〉 = {e} and the groups 〈ad〉 =

{
akd
∣∣k ∈ Z

}
where d ∈ Z+.

(3) If |a| = n then we have 〈ak〉 = 〈al〉 ⇐⇒ gcd(k, n) = gcd(l, n) and so the distinct
subgroups of 〈a〉 are the groups 〈ad〉 =

{
akd
∣∣k ∈ Zn/d

}
=
{
a0, ad, a2d, · · · , an−d

}
where d

is a positive divisor of n.

Proof: First we show that every subgroup of 〈a〉 is cyclic. Let H ≤ 〈a〉. If H = {e} then
H = 〈e〉, which is cyclic. Suppose that H 6= {e}. Note that H contains some element of
the form ak with k ∈ Z+ since we can choose al ∈ H for some l 6= 0, and if l < 0 then we
also have a−l = (al)

−1 ∈ H. Let k be the smallest positive integer such that ak ∈ H. We
claim that H = 〈ak〉. Since ak ∈ H, by closure under the operation and under inversion we
have (ak)i ∈ H for all i ∈ Z and so 〈ak〉 ⊆ H. Let al ∈ H, where l ∈ Z. Write l = kq + r
with 0 ≤ r < k. Then al = akqar so we have ar = al(akq)−1 ∈ H. By our choice of k we
must have r = 0 , so l = qk and so al ∈ 〈ak〉. Thus H ⊆ 〈ak〉.

Suppose that |a| = ∞. If l = ±k then clearly 〈al〉 = 〈ak〉. Suppose that 〈al〉 = 〈ak〉.
Since ak ∈ 〈al〉 we have l = kt for some t ∈ Z, so k

∣∣l. Since ak ∈ 〈al〉 we have l
∣∣k. Since

k
∣∣l and l

∣∣k we have l = ±k.

Now suppose that |a| = n. Note first that for any divisor d
∣∣n we have

〈ad〉 =
{
adk
∣∣k ∈ Zn/d

}
=
{
a0, ad, a2d, · · · , an−d

}
with the listed elements distinct so that |ad| = n

d . We claim that 〈ak〉 = 〈ad〉 where
d = gcd(k, n). Since d

∣∣k we have ak ∈ 〈ad〉 so 〈ak〉 ⊆ 〈ad〉. Choose s, t ∈ Z so that
ks + nt = d. Then ad = aks+nt = (ak)s(an)t = (ak)s ∈ 〈ak〉 and so 〈ad〉 ⊆ 〈ak〉. Thus
〈ak〉 = 〈ad〉, as claimed. Now if 〈ak〉 = 〈al〉 and d = gcd(k, n) and c = gcd(l, n) then
〈ad〉 = 〈ak〉 = 〈al〉 = 〈ac〉 and so

∣∣〈ad〉∣∣ =
∣∣〈ac〉∣∣, that is n

d = n
c , and so d = c. Conversely,

if d = gcd(k, n) = gcd(l, n) = c then we have 〈ak〉 = 〈ad〉 = 〈al〉.

2.9 Corollary: (Orders of Elements in a Cyclic Group) Let G be a group and let a ∈ G.

(1) If |a| =∞ then |a0| = 1 and ak =∞ for all 0 6= k ∈ Z, and
(2) if |a| = n then |ak| = n

gcd(k,n) for all k ∈ Z.

2.10 Corollary: (Generators of a Cyclic Group) Let G be a group and let a ∈ G. Then

(1) if |a| =∞ then 〈ak〉 = 〈a〉 ⇐⇒ k = ±1, and
(2) if |a| = n then 〈ak〉 = 〈a〉 ⇐⇒ gcd(k, n) = 1 ⇐⇒ k ∈ Un.

2.11 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let G be
a group and let a ∈ G with |a| = n. Then for each k ∈ Z, the order of ak is a positive
divisor of n, and for each positive divisor d

∣∣n, the number of elements in 〈a〉 of order d is
equal to φ(d).
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2.12 Corollary: For n ∈ Z+ we have
∑
d|n

φ(d) = n.

2.13 Corollary: (The Number of Elements of Each Order in a Finite Group) Let G be
a finite group. For each d ∈ Z+, the number of elements in G of order d is equal to φ(d)
multiplied by the number of cyclic subgroups of G of order d.

2.14 Theorem: (Elements of 〈S〉) Let G be a group and let ∅ 6= S ⊆ G. Then

〈S〉 =
{
a1
k1a2

k2 · · · alkl
∣∣l ≥ 0, ai ∈ S, ki ∈ Z

}
=
{
a1
k1a2

k2 · · · alkl
∣∣l ≥ 0, ai ∈ S with ai 6= ai+1, 0 6= ki ∈ Z

}
where the empty product (when l = 0) is the identity element. If G is abelian then

〈S〉 =
{
a1
k1a2

k2 · · · alkl
∣∣l ≥ 0, ai ∈ S with ai 6= aj for i 6= j, 0 6= ki ∈ Z

}
.

Proof: The proof is left as an exercise.

2.15 Notation: If G is an additive abelian group then

〈S〉 = SpanZ

{
S} =

{
k1a1 + k2a2 + · · ·+ klal

∣∣l ≥ 0, ai ∈ S, ai 6= aj for i 6= j, 0 6= ki ∈ Z
}
.

2.16 Example: As an exercise, show that in Z we have 〈k, l〉 = 〈d〉 where d = gcd(k, l).

2.17 Example: In Z2, the elements of
〈
(1, 3), (2, 1)

〉
are the vertices of parallelograms

which cover R2.

2.18 Example: We have Dn =
〈
R1, F0〉 ≤ O2(R) because Rk = R1

k and Fk = RkF0.

2.19 Definition: Let S be a set. The free group on S is the set whose elements are

F (S) =
{
a1
k1a2

k2 · · · alkl
∣∣l ≥ 0, ai ∈ S, 0 6= ki ∈ Z

}
with the operation given by concatenation

(a1
j1 · · · aljl)(b1k1 · · · bmkm) = a1

j1 · · · aljlb1k1 · · · bmkm

followed by grouping and cancellation in the sense that if al = b1 then we replace al
jlb1

k1

by al
jl+k1 and if, in addition, jl + k1 = 0 then we omit the term al

0 and perform further
grouping if al−1 = b2. For example, in F (a, b) we have

(a b2a−3b)(b−1a3b a−2) = a b2a−3b b−1a3b a−2 = a b2a−3a3b a−2 = a b2b a−2 = a b3a−2 .

Note that in the free group F (S) we have F (S) = 〈S〉.

2.20 Definition: Let S be a set. The free abelian group on S is the set

A(S) =
{
k1a1 + · · ·+ klal

∣∣l ≥ 0, ai ∈ S with ai 6= aj , 0 6= ki ∈ Z
}
.

If we identify the element k1a1 + k2a2 + · · · + klal with the function f : S → Z given by
f(ai) = ki and f(a) = 0 for a 6= ai for any i, then we can identify A(S) with the set

A(S) =
∑
a∈S

Z =
{
f : S → Z

∣∣f(a) = 0 for all but finitely many a ∈ S
}
.

Under this identification, we use the operation given by (f + g)(a) = f(a) + g(a).

.
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Chapter 3. The Symmetric Group

3.1 Definition: An element α ∈ Sn can be specified by giving its table of values in the
form

α =

(
1 2 · · · n

α(1) α(2) · · · α(n)

)
This is called array notation for α.

3.2 Example: In array notation, we have

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}
.

Note that S3 is not abelian because for example(
1 2 3
2 1 3

)(
1 2 3
3 1 2

)
=

(
1 2 3
3 2 1

)
,

(
1 2 3
3 1 2

)(
1 2 3
2 1 3

)
=

(
1 2 3
1 3 2

)
(since the operation is composition, in the product αβ, the permutation β is performed
before the permutation α).

3.3 Example: For n ≥ 3, we can think of Dn as a subgroup of Sn because an element
of Dn permutes the elements of Cn =

{
ei 2πk/n

∣∣k = 1, 2, · · · , n
}

and this determines a
permutation of {1, 2, · · · , n}. For example, in D6 we have

R1 =

(
1 2 3 4 5 6
2 3 4 5 6 1

)
, R2 =

(
1 2 3 4 5 6
3 4 5 6 1 2

)
F0 =

(
1 2 3 4 5 6
5 4 3 2 1 6

)
, F1 =

(
1 2 3 4 5 6
6 5 4 3 2 1

)
.

3.4 Definition: When a1, a2, · · · , a` are distinct elements in {1, 2, · · · , n} we write

α = (a1, a2, · · · , a`)

for the permutation α ∈ Sn given by

α(a1) = a2 , α(a2) = a3 , · · · , α(a`−1) = a` , α(a`) = a1

α(k) = k for all k /∈ {a1, a2, · · · , a`} .

Such a permutation is called a cycle of length ` or an `-cycle.

3.5 Note: We make several remarks.

(1) We have e = (1) = (2) = · · · = (n).
(2) We have (a1, a2, · · · , a`) = (a2, a3, · · · , a`, a1) = (a3, a4, · · · , a`, a1, a2) = · · ·.
(3) An `-cycle with ` ≥ 2 can be expressed uniquely in the form α = (a1, a2, · · · , a`)
with a1 = min{a1, a2, · · · , a`}.
(4) For an `-cycle α = (a1, a2, · · · , a`) we have |α| = `.
(5) If n ≥ 3 then we have (12)(23) = (123) and (23)(12) = (132) so Sn is not abelian.

3.6 Definition: Two cycles α = (a1, a2, · · · , a`) and β = (b1, b2, · · · , bm) are said to be
disjoint when {a1, · · · , a`} ∩ {b1, · · · , bm} = ∅, that is when the ai and bj are all distinct.
More generally the cycles α1 = (a1,1, · · · , a1,`1), · · · , αm = (am,1, · · · , am,`m) are disjoint
when all of the ai,j are distinct.

10



3.7 Note: Disjoint cycles commute. Indeed if α = (a1, · · · , a`) and β = (b1, · · · , bm) are
disjoint, then

α
(
β(ai)

)
= α(ai) = ai+1 = β(ai+1) = β

(
α(ai)

)
, with subscripts in Z`

α
(
β(bj)

)
= α(bj+1) = bj+1 = β(bj) = β

(
α(bj)

)
, with subscripts in Zm

α
(
β(k)

)
= α(k) = k = β(k) = β

(
α(k)

)
for k 6= ai, bj .

3.8 Theorem: (Cycle Notation) Every α ∈ Sn can be written as a product of disjoint
cycles. Indeed every α 6= e can be written uniquely in the form

α = (a1,1, · · · , a1,`1)(a2,1, · · · , a2,`2) · · · (am,1, · · · , am,`m)

with m ≥ 1, each `i ≥ 2, each ai,1 = min{ai,1, ai,2, · · · , ai,`i} and a1,1 < a2,1 < · · · < am,1.

Proof: Let e 6= α ∈ Sn where n ≥ 2. To write α in the given form, we must take
a1,1 to be the smallest element k ∈ {1, 2, · · · , n} with α(k) 6= k. Then we must have
a1,2 = α(a1,1), a1,3 = α(a1,2) = α2(a1,1), and so on. Eventually we must reach `1 such that
a1,1 = α`1(a1,1), indeed since {1, 2, · · · , n} is finite, eventually we find αi(a1,1) = αj(a1,1)
for some 1 ≤ i < j and then a1,1 = α−iαi(a1,1) = α−iαj(a1,1) = αj−i(a1,1). For the
smallest such `1 the elements a1,1, · · · , a1,`1 will be disjoint since if we had a1,i = a1,j for
some 1 ≤ i < j ≤ `1 then, as above, we would have αj−i(a11) = a11 with 1 ≤ j − i < `1.
This gives us the first cycle α1 = (a1,1, a1,2, · · · , a1,`1).

If we have α = α1 we are done. Otherwise there must be some k ∈ {1, 2, · · · , n} with
k /∈ {a1,1, a1,2, · · · , a1,`1} such that α(k) 6= k, and we must choose a2,1 to be the smallest
such k. As above we obtain the second cycle α2 = (a2,1, a2,2, · · · , a2,`2). Note that α2 must
be disjoint from α1 because if we had αi(a2,1) = αj(a1,1) for some i, j then we would have
a2,1 = α−iαi(a2,1) = α−iαj(a1,1) = αj−i(a1,1) ∈ {a1,1, · · · , a1,`1}.

At this stage, if α = α1α2 we are done, and otherwise we continue the procedure.

3.9 Definition: When a permutation e 6= α ∈ Sn is written in the unique form of the
above theorem, we say that α is written in cycle notation. We usually write e as e = (1).

3.10 Example: In cycle notation we have

S3 = D3 =
{

(1), (12), (13), (23), (123), (132)
}

S4 =
{

(1), (12), (13), (14), (23), (24), (34), (12)(34) , (13)(24) , (14)(23) ,

(123), (132), (124), (142), (134), (143), (234), (243),

(1234), (1243), (1324), (1342), (1423), (1432)
}

D4 =
{
I,R1, R2, R3.R4, R5, F0, F1, F2, F3, F4, F5

}
=
{

(1), (1234) , (13)(24) , (1432) , (13) , (14)(23) , (24) , (12)(34)
}

3.11 Example: For α = (1352)(46), β = (145)(263) ∈ S6, express αβ in cycle notation.

3.12 Example: Find the number of elements in S15 which can be written as a product
of 3 disjoint 4-cycles.

Solution: When we write α = (a1a2a3a4)(a5a6a7a8)(a9a10a11a12), there are
(
15
12

)
ways to

choose the set {a1, · · · , a12} from {1, 2, · · · , 15}, then there is one choice for a1 (it must
be the smallest of the ai), then there are 11 choices for a2, then 10 choices for a3, then
9 choices for a4, and then there is only one choice for a5 (it must be the smallest of the
remaining ai, and so on. Thus there are

(
15
12

)
· 12!
12·8·4 such elements in S15.
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3.13 Example: Find the number of elements in S20 which can be written as a product
of 7 disjoint cycles, with 4 of length 2, 2 of length 3, and 1 of length 4.

Solution: When we write α = (a1a2)(a3a4)(a5a6)(a7a8) (b1b2b3)(b4b5b6) (c1c2c3c4), there
are

(
20
8

)
ways to choose {a1, a2, · · · , a8} from {1, 2, · · · , 20}, then

(
12
6

)
ways to choose

{b1, · · · , b6} from {1, · · · , 20} \ {a1, · · · , a8}, and then there are
(
4
4

)
= 1 way to choose

{c1, · · · , c4)}. From the set {a1, · · · , a8}, there is 1 way to choose a1, then 7 ways to choose
a2, then 1 way to choose a3, then 5 ways to choose a4, then 1 way to choose a5, then 3
ways to choose a6, then 1 way to choose a7 and then 1 way to choose a8. From the set
{b1, · · · , b6}, there is 1 way to choose b1, then 5 ways to choose b2, then 4 ways to choose
b3, then 1 way to choose b4, then 2 ways to choose b5 and then 1 way to choose b6. From
the set {c1, · · · , c4}, there is 1 way to choose c1, then 3 ways to choose c2, then 2 ways to
choose c3 and then 1 way to choose c4. Thus the number of such elements in S20 is(

20
8

) (
12
6

) (
4
4

)
· 8!
8·6·4·2 ·

6!
6·3 ·

4!
4 .

3.14 Theorem: (The Order of a Permutation) Let α = α1α2 · · ·αm where the αi are
disjoint cycles with each αi of length `i. Then |α| = lcm{`1, · · · , `m}.

Proof: Since the αi are disjoint, if we write αk = (ak,1, · · · , ak,`k) then we have

α(ak,1) = ak,2 , α
2(ak,1) = ak,3 , · · · , α`m−1(ak,1) = ak,`m , α`m(ak,1) = ak,1 .

If p is a common multiple of all the `i, say p = `iqi, then

αi
p = αi

`iqi = (αi
`i)qi = eqi = e for all i .

Since the αi commute, we have αp = (α1α2 · · ·αm)p = α1
pα2

p · · ·αmp = e.
If, on the other hand, p is not a common multiple of the `i, then we can choose k so

that p is not a multiple of `k. Write p = `kq + r with 0 < r < `k. Then

αk
p = αk

`kq+r = (αk
`k)qkαk

r = αk
r

and we have αp(ak,1) = αk
p(ak,1) = αk

r(ak,1) 6= ak,1 since 0 < r < `k, and so αp 6= e.

3.15 Theorem: (The Conjugacy Class of a Permutation) Let α, β ∈ Sn. Then α and β
are conjugate in Sn if and only if, when written in cycle notation, α and β have the same
number of cycles of each length.

Proof: Write α in cycle notation as α = (a11, a12, · · · , a1,`1) · · · (am1, am2, · · · , am,`m). Note
that for all σ ∈ Sn we have

σασ−1 =
(
σ(a11), σ(a12), · · · , σ(a1,`1)

)
· · ·
(
σ(am1), σ(am2), · · · , σ(am,`m)

)
.

Indeed, for the permutation on the right, σ(ai,j) is sent to σ(ai,j+1), and on the left, σ(ai,j)
is sent by σ to ai,j , which is then sent to ai,j+1 by α, which is then sent by σ to σ(ai,j+1).

3.16 Example: Let α = (1693)(275)(15873) ∈ S10. Find |α|.

Solution: First we write α in as a product of disjoint cycles. We have α = (127)(369)(58)
and so |α| = lcm(3, 3, 2) = 6.

3.17 Example: As an exercise, find the number of elements of each order in S6.
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3.18 Theorem: (Even and Odd Permutations) In Sn, with n ≥ 2,

(1) every α ∈ Sn is a product of 2-cycles,
(2) if e = (a1, b1)(a2, b2) · · · (a`, b`) then ` is even, that is ` = 0 mod 2, and
(3) if α = (a1, b1)(a2, b2) · · · (a`, b`) = (c1, d1)(c2, d2) · · · (cm, dm) then ` = m mod 2.

Solution: To prove part (1), note that given α ∈ Sn we can write α as a product of cycles,
and we have

(a1, a2, · · · , a`) = (a1, a`)(a1, a`−1) · · · (a1, a2) .

We shall prove part (2) by induction. First note that we cannot write e as a single
2-cycle, but we can write e as a product of two 2-cycles, for example e = (1, 2)(1, 2). Fix
` ≥ 3 and suppose, inductively, that for all k < `, if we can write e as a product of k
2-cycles the k must be even. Suppose that e can be written as a product of ` 2-cycles,
say e = (a1, b1)(a2, b2) · · · (a`, b`). Let a = a1. Of all the ways we can write e as a product
of ` 2-cycles, in the form e = (x1, y1)(x2, y2) · · · (x`, y`), with xi = a for some i, choose
one way, say e = (r1, s1)(r2, s2) · · · (r`, s`) with rm = a and ri, si 6= a for all i < m,
with m being as large as possible. Note that m 6= ` since for α = (r1, s1) · · · (r`, s`) with
r` = a and ri, si 6= a for i < ` we have α(s`) = a 6= s` and so α 6= e. Consider the
product (rm, sm)(rm+1, sm+1). This product must be (after possibly interchanging rm+1

and sm+1) of one of the forms

(a, b)(a, b) , (a, b)(a, c) , (a, b)(b, c) , (a, b)(c, d)

where a, b, c, d are distinct. Note that

(a, b)(a, c) = (a, c, b) = (b, c)(a, b),

(a, b)(b, c) = (a, b, c) = (b, c)(a, c), and

(a, b)(c, d) = (c, d)(a, b) ,

and so in each of these three cases we could rewrite e as a product of ` 2-cycles with the
first occurrence of a being farther to the right, contradicting the fact that we chose m to
be as large as possible. Thus the product (rm, sm)(rm+1, sm+1) is of the form (a, b)(a, b).
By cancelling these two terms, we can write e as a product of (` − 2) 2-cycles. By the
induction hypothesis, (`− 2) is even, and so ` is even.

Finally, to prove part (3), suppose that α = (a1, b1) · · · (a`, b`) = (c1, d1) · · · (cm, dm).
Then we have

e = αα−1 = (a1, b1) · · · (a`, b`)(cm, dm) · · · (c1, d1).

By part (2), `+m is even, and so ` = m mod 2.

3.19 Example: Show that

Sn = 〈(12), (13), (14), · · · , (1n)〉 = 〈(12), (23), (34), · · · , (n− 1, n)〉 = 〈(12), (123 · · ·n)〉 .

Solution: By Part (1) of the above theorem, Sn is generated by the set of all 2-cycles (kl).
Any 2-cycle (kl) can be written as (kl) = (1k)(1l)(1k) so Sn = 〈(12), (13), (14), · · · , (1n)〉.
Any 2-cycle of the form (1k) can be written as (1k) = (12)(23) · · · (k − 1, k) · · · (23)(12)
and so Sn = 〈(12), (23), · · · , (n− 1, n)〉. Any 2-cycle of the form (k, k + 1) can be written
as (k, k + 1) = (123 · · ·n)k−1(12)(123 · · ·n)−(k−1) and so Sn = 〈(12)(123 · · ·n)〉.
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3.20 Definition: For n ≥ 2, a permutation α ∈ Sn is called even if it can be written as
a product of an even number of 2-cycles. Otherwise α can be written as a product of an
odd number of 2-cycles, and then it is called odd. We define the parity of α ∈ Sn to be

(−1)α =

{
1 if α is even,

−1 if α is odd.

3.21 Theorem: (Properties of Parity) Let n ≥ 2 and let α, β ∈ Sn. Then

(1) (−1)e = 1,
(2) if α is an `-cycle then (−1)α = (−1)`−1,
(3) (−1)αβ = (−1)α(−1)β , and

(4) (−1)α
−1

= (−1)α.

Proof: Part (1) holds because, for example, e = (1, 2)(1, 2). Part (2) holds because we have
(a1, a2, · · · , a`) = (a1, a`)(a1, a`−1) · · · (a1, a2). Part (3) holds because if α is a product of `
2-cycles and β is a product of m 2-cycles then αβ is a product of (`+m) 2-cycles. Part
(4) holds because if α = (a1, b1)(a2, b2) · · · (a`, b`) then α−1 = (a`, b`) · · · (a2, b2)(a1, b1).

3.22 Example: Let α = (1793)(245)(164385) ∈ S10. Find (−1)α and |α|.

Solution: By the above theorem, we have (−1)α = (−1)3(−1)2(−1)5 = 1. To find |α|, we
first write α as a product of disjoint cycles. We find that α = (165793824) and so |α| = 9.

3.23 Definition: For n ≥ 2 we define the alternating group An to be

An =
{
α ∈ Sn

∣∣(−1)α = 1
}
.

Note that An ≤ Sn by the Properties of Parity Theorem. Note that

|An| = 1
2 |Sn| =

n!
2

because we have a bijective correspondence

F :
{
α ∈ Sn

∣∣(−1)α = 1
}
→
{
α ∈ Sn

∣∣(−1)α = −1
}

given by F (α) = (12)α.

3.24 Remark: The rotation group of the regular tetrahedron can be identified with A4

by labelling the vertices of the tetrahedron by 1, 2, 3 and 4 and identifying each rotation
with a permutation of {1, 2, 3, 4}.

3.25 Example: Show that An is generated by the set of all 3-cycles, then show that for
any a 6= b ∈ {1, 2, · · · , n}, An is generated by the 3-cycles of the form (abk) with k 6= a, b.

Solution: We already know that every permutation in An is equal to a product of an even
number of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab),
(ab)(ac) or (ab)(cd), where a, b, c, d are distinct, and we have

(ab)(ab) = (abc)(acb) , (ab)(ac) = (acb) , (ab)(cd) = (adc)(abc) ,

and so An is generated by the set of all 3-cycles. Now fix a, b ∈ {1, 2, · · · , n} with a 6= b.
Note that every 3-cycle is of one of the forms (abk), (akb), (akl), (bkl) or (klm), where
a, b, k, l,m are all distinct, and we have

(akb)=(abk)2 , (akl)=(abl)(abk)2 , (bkl)=(abl)2(abk) , (klm)=(abk)2(abm)(abl)2(abk) .

.
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Chapter 4. Homomorphisms and Isomorphisms of Groups

4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that
f is a function or a map from X to Y , written f : X → Y , we mean that for every
x ∈ X there exists a unique corresponding element y = f(x) ∈ Y . The set X is called the
domain of f and the range or image of f is the set Image(f) = f(X) =

{
f(x)

∣∣x ∈ X}.

For a set A ⊆ X, the image of A under f is the set f(A) =
{
f(a)

∣∣a ∈ A} and for a set

B ⊆ Y , the inverse image of B under f is the set f−1(B) =
{
x ∈ X

∣∣f(x) ∈ B
}

.
For a function f : X → Y , we say f is one-to-one (written 1 : 1) or injective when

for every y ∈ Y there exists at most one x ∈ X such that y = f(x), we say f is onto or
surjective when for every y ∈ Y there exists at least one x ∈ X such that y = f(x), and
we say f is invertible or bijective when f is 1:1 and onto, that is for every y ∈ Y there
exists a unique x ∈ X such that y = f(x). When f is invertible, the inverse of f is the
function f−1 : Y → X defined by f−1(y) = x ⇐⇒ y = f(x).

For f : X → Y and g : Y → Z, the composite g ◦ f : X → Z is given by
(g ◦ f)(x) = g(f(x)). Note that it f and g are both injective then so is the composite
g ◦ f , and if f and g are both surjective then so is g ◦ f .

4.2 Definition: Let G and H be groups. A group homomorphism from G to H is a
function φ : G→ H such that

φ(ab) = φ(a)φ(b)

for all a, b ∈ G, or to be more precise, such that φ(a ∗ b) = φ(a) × φ(b) for all a, b ∈ G,
where ∗ is the operation on G and × is the operation on H. The kernel of φ is the set

Ker(φ) = φ−1(e) =
{
a ∈ G

∣∣φ(a) = e
}

where e = eH is the identity in H, and the image (or range) of φ is

Image(φ) = φ(G) =
{
φ(a)

∣∣a ∈ G} .
A group isomorphism from G to H is a bijective group homomorphism φ : G → H.
For two groups G and H, we say that G and H are isomorphic and we write G ∼= H
when there exists an isomorphism φ : G → H. An endomorphism of a group G is a
homomorphism from G to itself. An automorphism of a group G is an isomorphism from
G to itself. The set of all homomorphisms from G to H, the set of all isomorphisms from
G to H, the set of all endomorphisms of G, and the set of all automorphisms of G will be
denoted by

Hom(G,H) , Iso(G,H) , End(G) , Aut(G) .

4.3 Remark: In algebra, we consider isomorphic groups to be (essentially) equivalent.
The classification problem for finite groups is to determine, given any n ∈ Z+, the
complete list of all groups, up to isomorphism, of order n.
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4.4 Example: The groups U12 and Z2
2 are isomorphic. One way to see this is to compare

their operation tables.

1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

We see that all the entries in these tables correspond under the map φ : U12 → Z2
2 given

by φ(1) = (0, 0), φ(5) = (0, 1), φ(7) = (1, 0) and φ(1, 1) = (1, 1), so φ is an isomorphism.

4.5 Example: Let G be a group and let a ∈ G. Then the map φa : Z → G given by
φa(k) = ak is a group homomorphism since φa(k + `) = ak+` = aka` = φa(k)φa(`). The
image of φa is

Image(φa) =
{
ak
∣∣k ∈ Z

}
= 〈a〉

and the kernel of φa is

Ker(φa) =
{
k ∈ Z

∣∣ak = e
}

=

{
〈n〉 = nZ , if |a| = n,

〈0〉 = {0} , if |a| =∞.

4.6 Example: Let G be a group and let a ∈ G. If |a| = ∞ then the map φa : Z → 〈a〉
given by φ(k) = ak is an isomorphism, and if |a| = n then the map φa : Zn → 〈a〉 given by
φa(k) = ak is an isomorphism (note that φa is well-defined because if k = ` mod n then
ak = a` by Theorem 2.3). In each case, φ is a homomorphism since ak+` = aka` and φ is
bijective by Theorem 2.3.

4.7 Example: When R is a commutative ring with 1, the map φ : GLn(R) → R∗ given
by φ(A) = det(A) is a group homomorphism since det(AB) = det(A) det(B). The kernel
is

Ker(φ) =
{
A ∈ GLn(R)

∣∣ det(A) = 1
}

= SLn(R)

and the image is
Image(φ) =

{
det(A)

∣∣A ∈ GLn(R)
}

= R∗

since for a ∈ R∗ we have det
(
diag(a, 1, 1, · · · , 1)

)
= a.

4.8 Example: The map φ : R→ R+ given by φ(x) = ex is a group isomorphism since it
is bijective and φ(x+ y) = ex+y = exey = φ(x)φ(y).

4.9 Example: The map φ : SO2(R)→ S1 given by φ(Rθ) = ei θ is a group isomorphism.
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4.10 Theorem: Let G and H be groups and let φ : G→ H be a group homomorphism.
Then

(1) φ(eG) = eH,
(2) φ(a−1) = φ(a)−1 for all a ∈ G,
(3) φ(ak) = φ(a)k for all a ∈ G and all k ∈ Z, and
(4) for a ∈ G, if |a| is finite then |φ(a)| divides |a|.

Proof: To prove (1), note that φ(eG) = φ(eG eG) = φ(eG)φ(eG) so φ(eG) = eH by cancel-
lation. To prove (2) note that φ(a)φ(a−1) = φ(aa−1) = φ(eG) = eH, so φ(a)−1 = φ(a−1)
by cancellation. For part (3), note first that φ(a0) = φ(a)0 by part (1), and then note
that when k ∈ Z+ we have φ(ak) = φ(aa · · · a) = φ(a)φ(a) · · ·φ(a) = φ(a)k and hence also

φ(a−k) = φ
(
(a−1)k

)
= φ(a−1)k =

(
φ(a)−1

)k
= φ(a)−k. For part (4) note that if |a| = n

then we have φ(a)n = φ(an) = φ(eG) = eH and so |φ(a)| divides n by Theorem 2.3.

4.11 Theorem: Let G, H and K be groups. Let φ : G → H and ψ : H → K be group
homomorphisms. Then

(1) the identity I : G→ G given by I(x) = x for all x ∈ G, is an isomorphism,
(2) the composite ψ ◦ φ : G→ K is a group homomorphism, and
(3) if φ : G→ H is an isomorphism then so is its inverse φ−1 : H → G.

Proof: We prove part (3) and leave the proofs of (1) and (2) as an exercise. Suppose that
φ : G→ H is an isomorphism. Let ψ = φ−1 : H → G. We know that ψ is bijective, so we
just need to show that ψ is a homomorphism. Let c, d ∈ H. Let a = φ(c) and b = ψ(d).
Since φ is a homomorphism we have φ(ab) = φ(a)φ(b), and so

ψ(cd) = ψ
(
φ(a)φ(b)

)
= ψ

(
φ(ab)

)
= ab = ψ(c)ψ(d) .

4.12 Corollary: Isomorphism is an equivalence relation on the class of groups. This
means that for all groups G, H and K we have

(1) G ∼= G,
(2) if G ∼= H and H ∼= K then G ∼= K, and
(3) if G ∼= H then H ∼= G.

4.13 Corollary: For a group G, Aut(G) is a group under composition.

4.14 Theorem: Let φ : G→ H be a homomorphism of groups. Then

(1) if K ≤ G then φ(K) ≤ H, in particular Image(φ) ≤ H,
(2) if L ≤ H then φ−1(L) ≤ G, in particular Ker(φ) ≤ G.

Proof: The proof is left as an exercise.

4.15 Theorem: Let φ : G→ H be a homomorphism of groups. Then

(1) φ is injective if and only if Ker(φ) = {e}, and
(2) φ is surjective if and only if Image(φ) = H.

Proof: The proof is left as an exercise.
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4.16 Theorem: Let φ : G→ H be an isomorphism of groups. Then

(1) G is abelian if and only if H is abelian,
(2) for a ∈ G we have

∣∣φ(a)
∣∣ = |a|,

(3) G is cyclic with G = 〈a〉 if and only if H is cyclic with H = 〈φ(a)〉,
(4) for n ∈ Z+ we have

∣∣∣{a ∈ G∣∣|a| = n
}∣∣∣ =

∣∣∣{b ∈ H∣∣|b| = n
}∣∣∣,

(5) for K ≤ G the restriction φ : K → φ(K) is an isomorphism of groups, and

(6) for any group C we have
∣∣∣{K ≤ G∣∣K ∼= C

}∣∣∣ =
∣∣∣{L ≤ H∣∣L ∼= C

}∣∣∣.
Proof: The proof is left as an exercise.

4.17 Example: Note that Q∗ 6∼= R∗ since |Q∗| 6= |R∗|. Similarly, GL3(Z2) 6∼= S5 because∣∣GL3(Z2)
∣∣ = 168 but |S5| = 120.

4.18 Example: C∗ 6∼= GL2(R) since C∗ is abelian but GLn(R) is not. Similarly, S4 6∼= U35

because U35 is abelian but S4 is not.

4.19 Example: R∗ 6∼= C∗ since C∗ has elements of order n ≥ 3, for example |i| = 4 in
C∗, but R∗ has no elements of order n ≥ 3, indeed in R∗, |1| = 1 and | − 1| = 2 and for
x 6= ±1 we have |x| =∞.

4.20 Example: Determine whether U35
∼= Z24.

Solution: In U35 we have

k 0 1 2 3 4 5 6 7 8 9 10 11 12
2k 1 2 4 8 16 32 29 23 11 22 9 18 1

We notice that U35 has at least two elements of order 2, namely 29 and 34, but Z24 has
only one element of order 2, namely 12. Thus U35 6∼= Z24.

4.21 Theorem: Let a, b ∈ Z+ with gcd(a, b) = 1. Then

(1) Zab ∼= Za × Zb and
(2) Uab ∼= Ua × Ub.

Proof: We prove part (2) (the proof of part (1) is similar). Define φ : Uab → Ua × Ub by
φ(k) = (k, k). This map φ is well-defined because if k = ` mod ab then k = ` mod a and
k = ` mod b and because if gcd(k, ab) = 1 so that k ∈ Uab then gcd(k, a) = gcd(k, b) = 1.
Also, φ is a group homomorphism since φ(k`) = (k`, k`) = (k, k)(`, `) = φ(k)φ(`). Finally
note that φ is bijective by the Chinese Remainder Theorem, indeed φ is onto because given
k ∈ Ua and ` ∈ Ub there exists x ∈ Z with x = k mod a and x = ` mod b and we then
have gcd(x, a) = gcd(k, a) = 1 and gcd(x, b) = gcd(`, b) = 1 so that gcd(x, ab) = 1, that is
x ∈ Uab, and φ is 1:1 because this solution x is unique modulo ab.

4.22 Corollary: If n =
∏̀
i=1

pi
ki where the pi are distinct primes and each ki ∈ Z+ then

φ(n) =
∏̀
i=1

(
pi
ki − piki−1

)
= n ·

∏̀
i=1

(
1− 1

pi

)
.

18



4.23 Definition: Let G be a group. For a ∈ G, we define left multiplication by a to
be the map La : G→ G given by

La(x) = ax for x ∈ G .

Note that Le = I (since Le(x) = ex = x = I(x) for all x ∈ G) and LaLb = Lab
since La

(
Lb(x)

)
= La(bx) = abx = Lab(x) for all x ∈ G. Similarly, we define right-

multiplication by a to be the map Ra : G→ G given by Ra(x) = ax for x ∈ G. Also, we
define conjugation by a to be the map Ca : G→ G by

Ca(x) = a x a−1 for x ∈ G .

The map La : G→ G is not necessarily a group homomorphism since La(xy) = axy while
La(x)La(y) = axay. On the other hand, the map Ca : G → G is a group homomorphism
because Ca(xy) = axya−1 = axa−1aya−1 = Ca(x)Ca(y). Indeed Ca is an automorphism
of G because it is invertible with Ca

−1 = Ca−1 . An automorphism of G of the form Ca is
called an inner automorphism of G. The set of all inner automorphisms of G is denoted
by Inn(G), so we have

Inn(G) =
{
Ca
∣∣a ∈ G} .

Note that Inn(G) ≤ Aut(G) because I = Ce, CaCb = Cab and Ca
−1 = Ca−1 . Note that

when H ≤ G, the restriction of the conjugation map Ca gives an isomorphism from H to
the group

Ca(H) = aHa−1 =
{
aha−1

∣∣h ∈ H} ∼= H .

The isomorphic groups H and Ca(H) = aHa−1 are called conjugate subgroups of G.

4.24 Example: As an exercise, find Inn(D4) and show that Inn(D4) 6= Aut(D4).

4.25 Example: Let G be a finite set with |G| = n. Let S = {1, 2, · · · , n} and let
f : G → S be a bijection. The map Cf : Perm(G) → Sn given by Cf (g) = f g f−1

is a group isomorphism. Indeed, Cf is well-defined since when g ∈ Perm(G) the map
f g f−1 is invertible with (f g f−1)−1 = f g−1f−1, and Cf is a group homomorphism
since Cf (gh) = fghf−1 = fgf−1fhf−1 = Cf (g)Cf (h), and Cf is bijective with inverse
Cf
−1 = Cf−1 .

4.26 Theorem: (Cayley’s Theorem) Let G be a group.

(1) G is isomorphic to a subgroup of Perm(G).
(2) If |G| = n then G is isomorphic to a subgroup of Sn.

Proof: Define φ : G → Perm(G) by φ(a) = La. Note that La ∈ Perm(G) because
La is invertible with inverse La

−1 = La−1 . Also, φ is a group homomorphism because
φ(ab) = Lab = LaLb and φ is injective because La = I =⇒ a = e (indeed if La = I then
a = ae = La(e) = I(e) = e). Thus φ is an isomorphism from G to φ(G), which is a
subgroup of Perm(G).

Now suppose that |G| = n, say f : G → {1, 2, · · · , n} is a bijection. Then the map
Cf ◦φ is an injective group homomorphism (where Cf (g) = fgf−1, as above), and so G is
isomorphic to Cf

(
φ(G)

)
which is a subgroup of Sn.
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4.27 Example: Show that Hom(Z, G) =
{
φa
∣∣a ∈ G}, where φa(k) = ak.

Solution: Let φ ∈ Hom(Z, G). Let a = φ(1). Then for all k ∈ Z we have φ(k) = φ(k · 1) =
φ(1)k = ak, and so φ = φa. On the other hand, note that for a ∈ G the map φa given by
φa(k) = ak is a group homomorphism because φa(k + l) = ak+l = akal = φa(k)φa(l).

4.28 Example: Show that Hom(Zn, G) =
{
φa
∣∣a ∈ G, an = e

}
, where φa(k) = ak.

Solution: Let φ ∈ Hom(Zn, G). Let a = φ(1). Then for all k ∈ Z we have φ(k) = φ(k ·1) =
φ(1)k = ak so that φ = φa, and we have an = φ(n) = φ(0) = e. On the other hand, note
that for a ∈ G with an = e, the map φa is well-defined because if k = l mod n the ak = al

and it is a homomorphism because ak+l = akal.

4.29 Example: As an exercise, describe Hom
(
Zn × Zm, G

)
.

4.30 Example: As an exercise, describe Hom(Dn, G).

.
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Chapter 5. Cosets, Normal Subgroups, and Quotient Groups

5.1 Definition: Let G be a group with operation ∗, let H ≤ G and let a ∈ G. The left
coset of H in G containing a is the set

a ∗H =
{
ax
∣∣x ∈ H} .

Similarly the right coset of H in G containing a is the set H ∗ a =
{
xa
∣∣x ∈ H}. Usually,

unless the operation is addition, we write a ∗ H as aH and we write H ∗ a as Ha. We
denote the set of left cosets of H in G by G/H so we have

G/H =
{
aH
∣∣a ∈ G} .

The index of H in G, denoted by [G : H] is the cardinality of the set of cosets, that is

[G : H] =
∣∣G/H∣∣ .

When G is abelian there is no difference between left and right cosets so we simply call
them cosets.

5.2 Example: In the group Z12, the cosets of H = 〈4〉 = {0, 4, 8} are

0 +H = 4 +H = 8 +H = {0, 4, 8} = H

1 +H = 5 +H = 9 +H = {1, 5, 9}
2 +H = 6 +H = 10 +H = {2, 6, 10}
3 +H = 7 +H = 11 +H = {3, 7, 11}

5.3 Example: In the group Z, for n ∈ Z+, the cosets of 〈n〉 = nZ are

k + nZ =
{
· · · , k − 2n, k − n, k, k + n, k + 2n, · · ·

}
where k ∈ Z .

These are exactly the elements of Zn, so we have Z/〈n〉 = Zn.

5.4 Theorem: Let G be a group, let H ≤ G, and let a, b ∈ G. Then

(1) b ∈ aH ⇐⇒ a−1b ∈ H ⇐⇒ aH = bH,
(2) either aH = bH or aH ∩ bH = ∅, and
(3) |aH| = |H|.
Analogous results hold for right cosets.

Proof: If b ∈ aH, say b = ah with h ∈ H, then a−1b = h ∈ H. Conversely if a−1b ∈ H
then b = ah ∈ aH. Thus we have b ∈ aH ⇐⇒ a−1b ∈ H. Now suppose that b ∈ aH, say
b = ah with h ∈ H. Let x ∈ aH, say x = ak with k ∈ H. Then x = ak = bh−1k ∈ bH.
Thus aH ⊆ bH. Let y ∈ bH, say y = bl with l ∈ H. Then y = bl = ahl ∈ aH. Thus
bH ⊆ aH. Conversely, suppose that aH = bH. Then b = be ∈ bH = aH. This completes
the proof of (1).

To prove (2), suppose that aH ∩ bH 6= ∅. Choose x ∈ aH ∩ bH, say x = ah = bl with
h, l ∈ H. Then a−1b = hl−1 ∈ H so aH = bH by (1).

To prove (3), define φ : H → aH by φ(h) = ah. Then φ is clearly surjective, and φ is
injective since if φ(h) = φ(k) then ah = ak and so h = k by cancellation.
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5.5 Corollary: (Lagrange’s Theorem) Let G be a group and let H ≤ G. Then

|G| = |G/H| |H| .

Proof: The above theorem shows that the group G is partitioned into left cosets and that
these cosets all have the same cardinality.

5.6 Corollary: Let G be a finite group, let H ≤ G and let a ∈ G. Then |H| divides |G|
and |a| divides |G|.

5.7 Corollary: (The Euler-Fermat Theorem) For a ∈ Un we have aφ(n) = 1.

5.8 Corollary: (The Classification of Groups of Order p) Let p be prime. Let G be a
group with |G| = p. Then G ∼= Zp.

Proof: Let a ∈ Zp with a 6= e. Since |a| divides |G| = p we have |a| = 1 or |a| = p. Since
a 6= e, |a| 6= 1 so |a| = p. Since 〈a〉 = |a| = p = |G| and 〈a〉 ⊆ G we have 〈a〉 = G and so
G = 〈a〉 ∼= Zp.

5.9 Theorem: Let G be a group and let H ≤ G. The following are equivalent.

(1) we can define a binary operation ∗ on G/H by (aH) ∗ (bH) = (ab)H,
(2) aha−1 ∈ H for all a ∈ G, h ∈ H, and
(3) aH = Ha for all a ∈ G.
(4) aHa−1 = H for all a ∈ G.

In this case, G/H is a group under the above operation ∗ with identity eH = H.

Proof: Suppose that we can define an operation ∗ on G/H by (aH) ∗ (bH) = (ab)H. The
fact that this operation is well-defined means that for all a1, a2, b1, b2 ∈ G, if a1H = a2H
and b1H = b2H then (a1b1)H = (a2b2)H, or equivalently if a−11 a2 ∈ H and b1

−1b2 ∈ H
then (a1b1)−1(a2b2) ∈ H, that is b1

−1a1
−1a2b2 ∈ H. For a1

−1a2 = h ∈ H and b1
−1b2 =

k ∈ H, we have b1
−1a1

−1a2b2 = b1
−1h b2 = b1

−1b2b2
−1k b2 = kb2

−1h b2, and this lies in H
if and only if b2

−1h b2 ∈ H. This proves that (1) ⇐⇒ (2).
Suppose that (2) holds and let a ∈ G. Let x ∈ aH, say x = ah with h ∈ H. Then

x = ah = aha−1a ∈ Ha since aha−1 ∈ H. Thus aH ⊆ Ha. Now let y ∈ Ha, say y = ka
with k ∈ H. Then y = ka = aa−1ka ∈ aH since a−1ka ∈ H by (2). Thus Ha ⊆ Ha. This
proves that (2) =⇒ (3).

Conversely, suppose that (3) holds. Let a ∈ G and h ∈ H. Then ah ∈ aH = Ha so
we can choose k ∈ H so that ah = ka. Then we have aha−1 = kaa−1 = k ∈ H. This
proves that (3) =⇒ (2).

The proof that (3) ⇐⇒ (4) is left as an exercise.
Now suppose that (1) holds and let ∗ be the above operation. We claim that G/H is

a group. Indeed, the operation ∗ is associative since(
(aH)∗(bH)

)
∗(cH) =

(
(ab)H

)
∗(cH) = (abc)H = (aH)∗

(
(bc)H)

)
= (aH)∗

(
(bH)∗(cH)

)
,

the coset eH = H is the identity for G/H since for a ∈ G we have

(aH) ∗ (eH) = (ae)H = aH and (eH) ∗ (aH) = (ea)H = aH ,

and for a ∈ G, the inverse of the coset aH is the coset a−1H since

(aH) ∗ (a−1H) = (a a−1)H = eH and (a−1H) ∗ (aH) = (a−1a)H = eH .
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5.10 Definition: Let G be a group and let H ≤ G. If H satisfies the equivalent conditions
of the above theorem, then we say that H is a normal subgroup of G and we write H ≤ G.
When H ≤ G, the group G/H is called the quotient group of G by H.

5.11 Theorem: (The First Isomorphism Theorem)

(1) if φ : G→ H is a group homomorphism and K = Ker(φ) then K ≤ G and G/K ∼= φ(G),
indeed the map Φ : G/K → φ(G) given by Φ(aK) = φ(a) is a group isomorphism.
(2) if K ≤ G then the map φ : G → G/K given by φ(a) = aK is a group homomorphism
with Ker(φ) = K.

Proof: To prove (1), let φ : G → H be a group homomorphism and let K = Ker(φ).
Let a ∈ G let k ∈ K so φ(k) = e. Then φ(aka−1) = φ(a)φ(k)φ(a−1) = φ(a)φ(a)−1 = e
and so aka−1 ∈ Ker(φ) = K. This shows that K ≤ G. Define Φ : G/H → φ(G) by
Φ(aK) = φ(a). Note that Φ is well-defined since if aK = bK then a−1b ∈ K so we have
φ(a)−1φ(b) = φ(a−1b) = e and hence φ(a) = φ(b). Note that Φ is a group homomorphism
since Φ

(
(aK)(bK)

)
= Φ

(
(ab)K

)
= φ(ab)φ(a)φ(b) = Φ(aK)Φ(bK). Finally note that Φ is

clearly onto, and Φ is 1:1 since if Φ(aK) = e then φ(a) = e so a ∈ K and hence aK = K,
which is the identity element of G/K.

To prove (2) let K ≤ G. Define φ : G → G/K by φ(a) = aK. Then φ is a group
homomorphism since φ(ab) = (ab)K = (aK)(bK) = φ(a)φ(b), and Ker(φ) = K since for
a ∈ G we have a ∈ Ker(φ) ⇐⇒ φ(a) = eK ⇐⇒ aK = eK ⇐⇒ a ∈ eK = K.

5.12 Theorem: (The Second Isomorphism Theorem) Let G be a group, let H ≤ G and
let K ≤ G. Then K ∩H ≤ H, KH = 〈K ∪H〉, and H

/
(K ∩H) ∼= KH

/
K.

Proof: The proof is left as an exercise.

5.13 Theorem: (The Third Isomorphism Theorem) Let G be a group and let H,K ≤ G
with K ≤ H. Then H/K ≤ G/K and (G/K)

/
(H/K) ∼= G/H.

Proof: The proof is left as an exercise.

5.14 Example: The map φ : Z→ Zn given by φ(k) = k is a group homomorphism with
Image(φ) = 〈n〉 and Ker(φ) = 〈n〉, so we have Z

/
〈n〉 ∼= Zn (in fact Z

/
〈n〉 = Zn).

5.15 Example: The map φ : R → S1 given by φ(t) = ei 2πt is a group homomorphism,
since ei 2π(s+t) = ei 2πsei 2πt, with Image(φ) = S1 and Ker(φ) = Z so we have R

/
Z ∼= S1.

5.16 Example: The map φ : C∗ → R+ given by φ(z) = ||z|| is a group homomoprphism,
since ||zw|| = ||z|| ||w||, with Image(φ) = R+ and Ker(φ) = S1 so we have C∗

/
S1 ∼= R+.

5.17 Example: The map φ : C∗ → S1 given by φ(z) = z
||z|| , is a group homomorphism,

since zw
||zw|| = z

||z||
w
||w|| , with Image(φ) = S1 and Ker(φ) = R+ and so C∗

/
R+ ∼= S1.

5.18 Example: When R is a commutative ring with 1, the map φ : GLn(R)→ R∗ given
by φ(A) = det(A) is a group homomorphism, since det(AB) = det(A) det(B), and it is
surjective since for a ∈ R∗ we have A = diag(a, 1, · · · , 1) ∈ GLn(R) and det(A) = a, and
we have Ker(φ) =

{
A ∈ GLn(R)

∣∣det(A) = 1
}

= SLn(R), and so SLn(R)≤ GLn(R) with

GLn(R)
/
SLn(R) ∼= R∗.

5.19 Example: For n ≥ 2, the map φ : Sn → Z∗ = {±1} given by φ(α) = (−1)α is a
group homomorphism since (−1)αβ = (−1)α(−1)β , and it is surjective since (−1)e = 1
and (−1)(12) = −1, and we have Ker(φ) =

{
α ∈ Sn

∣∣(−1)α = 1
}

= An, and so An≤ Sn
with Sn

/
An ∼= Z∗ = {±1}.
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5.20 Example: Let H =
〈
(6, 2), (3, 6)

〉
≤ Z2. As an exercise, show that

∣∣Z2/H
∣∣ = 30

and that Z2/H is cyclic, then find a surjective group homomorphism φ : Z2 → Z30 with
Ker(φ) = H.

5.21 Example: The map φ : G→ Aut(G) given by φ(a) = Ca (where Ca is conjugation
by a, given by Ca(x) = axa−1) is a group homomorphism since Cab = CaCb, and we have
Image(φ) =

{
Ca
∣∣a ∈ G} = Inn(G) and

Ker(φ) =
{
a ∈ G

∣∣Ca = I
}

=
{
a ∈ G

∣∣axa−1 = x for all x ∈ G
}

=
{
a ∈ G

∣∣ax = xa for all x ∈ G
}

= Z(G)

and so Z(G)≤ G with G
/
Z(G) ∼= Inn(G).

5.22 Definition: Let H ≤ G. The centralizer of H in G is the set

C(H) = CG(H) =
{
a ∈ G

∣∣ax = xa for all x ∈ H
}

and the normalizer of H in G is the set

N(H) = NG(H) =
{
a ∈ G

∣∣aH = Ha
}
.

5.23 Theorem: (The Normalizer/Centralizer Theorem) Let H ≤ G. Then C(H)≤ N(H)
and N(H)

/
C(H) is isomorphic to a subgroup of Aut(H).

Proof: The proof is left as an exercise.

5.24 Theorem: (The Characterization of Internal Direct Products) Let G be a group. Let
H ≤ G and K ≤ G. Suppose that H ∩K = {e} and that G = HK =

{
hk
∣∣h ∈ H, k ∈ K}.

Then G ∼= H ×K.

Proof: Define φ : H × K → G by φ(h, k) = hk. The map φ is a group homomorphism
since for h1, h2 ∈ H and k1, k2 ∈ K we have

φ
(
(h1, k1)(h2, k2)

)
= φ(h1h2, k1k2) = h1h2k1k2 = h1k1k1

−1h2k1h2
−1h2k2

= h1k1eh2k2 = φ(h1, k1)φ(h2, k2),

where we used the fact that the element k1
−1h2k1h2

−1 lies in both H and K (it lies in H
since H ≤ G so that k1

−1h2k1 ∈ H, and it lies in K since K ≤ G so that h2k1h2
−1 ∈ K),

and we have H ∩K = {e}. The map φ is surjective since G = HK so that every element
in G is of the form hk = φ(h, k) for some h ∈ H, k ∈ K, and the map φ is injective since
for h ∈ H and k ∈ K we have φ(h, k) = e =⇒ hk = e =⇒ h = k−1 =⇒ h, k ∈ H ∩K =⇒
h = k = e, since H ∩K = {e}.
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5.25 Theorem: (The Classification of Groups of Order 2p) Let p be prime. Then (up to
isomorphism) the distinct groups of order 2p are Z2p and Dp.

Proof: Let G be a group with |G| = 2p. Suppose that G 6∼= Z2p, so G is not cyclic. By
Lagrange’s Theorem, each element a ∈ G has order |a| = 1, 2, p or 2p. Since G is not
cyclic, no element has order 2p so every non-identity element in G has order 2 or p.

Suppose first that every non-identity element has order 2. Note that G must be abelian
since for all a, b ∈ G we have a2 = b2 = (ba)2 = e and so ab = b2aba2 = b(ba)2a = ba. Fix
two distinct non-identity elements a, b ∈ G and consider the set H = {e, a, b, ab}. Note
that H is closed under the operation and under inversion (since a2 = b2 = e and ab = ba)
and so H = 〈a, b〉 ≤ G. By Lagrange’s Theorem, we have |H|

∣∣|G|, that is 4
∣∣2p, and so we

must have p = 2 and so |G| = 4 = |H|, and so G = H ∼= Z2
2 ∼= D2.

Now suppose that some non-identity element has order p with p 6= 2. Choose a ∈ G
with |a| = p. Choose b /∈ 〈a〉. Note that since 〈a〉 = p and |G| = 2p, there are exactly
two cosets of 〈a〉 in G, namely 〈a〉 and b〈a〉, and G is the disjoint union G = 〈a〉 ∪ b〈a〉.
Note that b2〈a〉 6= b〈a〉 since b = b−1b2 /∈ 〈a〉, and so we must have b2〈a〉 = 〈a〉 and hence
b2 ∈ 〈a〉. Note that |b| 6= p, since if we had bp = e then (since p + 1 is even) we would
have b = bp+1 ∈ 〈b2〉 ⊆ 〈a〉, and so |b| = 2. Similarly, we have |x| = 2 for every x /∈ 〈a〉.
Consider the element ab. Note that ab /∈ 〈a〉 = a〈a〉 since b = a−1ab /∈ 〈a〉, and so we have
|ab| = 2. Thus abab = e and so ab = (ab)−1 = b−1a−1 = bap−1

We have shown that G is the disjoint union G = 〈a〉 ∪ b〈a〉, so we have

G =
{
e, a, a2, · · · , ap−1, b, ba, ba2, · · · , bap−1

}
with the listed elements distinct. Since ab = ba−1, we have a2b = aba−1 = ba−2 and
a3b = aba−2 = ba−3 and so on so that akb = ba−k. This determines the operation on G
completely. Indeed we have

ak · al = ak+l , ak · bal = bal−k , bak · al = bak+l , bak · bal = al−k .

Compare this to the operation in Dp =
{
I,R1, · · · , Rp−1, F0, F1, · · · , Fp−1

}
given by

Rk ·Rl = Rk+l , Rk · F−l = F−(l−k) , F−kRl = F−(k+l) , F−kF−l = F−(l−k) .

We see that the map φ : G→ Dp given by φ(ak) = Rk and φ(bal) = F−l is an isomorphism.
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5.26 Theorem: (The Classification of Groups of Order p2) Let p be prime. Then (up to
isomorphism) the distinct groups of order p2 are Zp2 and Zp × Zp.

Proof: Let G be a group with |G| = p2. Suppose that G 6∼= Zp2 so that G is not cyclic.
Each a ∈ G has order |a| = 1, p or p2. Since G is not cyclic, every non-identity element
has order p.

Let a be a non-identity element in G. We claim that 〈a〉≤ G. Suppose, for a contra-
diction, that 〈a〉

/
≤ G. Choose x ∈ G and ak ∈ 〈a〉 so that x akx−1 /∈ 〈a〉. This implies that

xax−1 /∈ 〈a〉 since x akx−1 = (xax−1)k. Since xax−1 6= e we have
∣∣xax−1∣∣ = p. Note that

〈a〉 ∩ 〈xax−1〉 = {e} because 〈a〉 ∩ 〈xax−1〉 is a proper subgroup of 〈a〉 ∼= Zp. It follows
that the cosets

e〈xax−1〉, a〈xax−1〉, a2〈xax−1〉, · · · , ap−1〈xax−1〉

are distinct since if ak〈xax−1〉 = al〈xax−1〉 then al−k ∈ 〈xax−1〉 so al−k ∈ 〈a〉 ∩ 〈xax−1〉
and hence al−k = e. Thus G is the disjoint union of these p cosets. In particular, the
element x−1 lies in some coset. But this is not possible since if x−1 ∈ ak〈xax−1〉 with say
x−1 = akx alx−1, then we would have akx al = e and hence x = a−k−l ∈ 〈a〉. This proves
the claim.

Fix a non-identity element a ∈ G and choose an element b ∈ G with b /∈ 〈a〉. Then we
have 〈a〉≤ G and 〈b〉≤ G. As above, we have 〈a〉 ∩ 〈b〉 = {e} (since 〈a〉 ∩ 〈b〉 is a proper
subgroup of 〈a〉 ∼= Zp), and as above this implies that the cosets

e〈b〉 , a〈b〉 , a2〈b〉 , · · · , ap−1〈b〉

are distinct (since if ak〈b〉 = al〈b〉 then al−k ∈ 〈b〉 hence al−k ∈ 〈a〉 ∩ 〈b〉 = {e}). Thus
every element of G is of the form aibj , that is G = 〈a〉〈b〉. By the Characterization of
Internal Direct Products, we have G ∼= 〈a〉 × 〈b〉 ∼= Zp × Zp.

5.27 Definition: A group G is simple when its only normal subgroups are {e} and G.

5.28 Theorem: For n ≥ 5, the alternating group An is simple.

Proof: Let H ≤ An. We shall show that H = An. We consider 5 cases. Case 1: sup-
pose first that H contains a 3-cycle, say (abc) ∈ H. Then for any k 6= a, b, c we have
(abk) = (ab)(ck) (abc)2(ck)(ab) ∈ H It follows that An = H because An is generated by
the 3-cycles of the form (abk) with k 6= a, b (as shown in Example 3.25). Case 2: suppose
that H contains an element α which, when written in cycle notation, has a cycle of length
r ≥ 4, say α = (a1a2a3 · · · ar)β ∈ H. Then (a1a3ar) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H
and so H = An by Case 1. Case 3: suppose that H contains an element α which, when
written in cycle notation, has at least two 3-cycles, say α = (a1a2a3)(a4a5a6)β ∈ H.
Then we have (a1a4a2a6a3) = α−1(a1a2a4)α(a1a2a4)−1 ∈ H and so H = An by Case 2.
Case 4: suppose that H contains an element α which, when written in cycle nota-
tion, is a product of one 3-cycle and some 2-cycles, say α = (a1a2a3)β ∈ H where
β is a product of disjoint 2-cycles so that β2 = e. Then (a1a3a2) = α2 ∈ H and
so H = An by Case 1. Case 5: suppose that H contains an element α which, when
written in cycle notation, is a product of 2-cycles, say α = (a1a2)(a3a4)β ∈ H. Then
(a1a3)(a2a4) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H. Let γ = (a1a3)(a2a4) and choose b distinct
from a1, a2, a3, a4. Then (a1a3b) = γ(a1a2b)γ(a1a3b)

−1 ∈ H and so H = An by Case 1.

.
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Chapter 6. Group Actions on Sets

6.1 Definition: Let G be a group. A representation of G is a group homomorphism
ρ : G → Perm(S) for some set S. A representation ρ : G → Perm(S) is called faithful
when it is injective.

6.2 Remark: Given a faithful representation ρ : G → Perm(S), we sometimes identify
the group G with its isomorphic image ρ(G), which is a group of permutations of S.

6.3 Definition: Let G be a group and let S be a set. A group action of G on S is a
map ∗ : G× S → S, where for a ∈ G and x ∈ S we write ∗(a, x) as a ∗ x or simply as ax,
such that

(1) ex = x for all x ∈ S, and
(2) (ab)x = a(bx) for all a, b ∈ G and all x ∈ S.

6.4 Note: Given a group G and a set S, here is a natural bijective correspondence between
representations ρ : G→ Perm(S) and group actions ∗ : G× S → S. The representation ρ
and its corresponding group action ∗ determine one another by the formula

a ∗ x = ρ(a)(x) for all a ∈ G, x ∈ S .

As an exercise, verify that given a representation ρ, this formula defines a group action ∗,
and conversely that given a group action ∗, the formula defines a representation ρ.

6.5 Definition: Suppose that a group G acts on a set S. The group action is called
faithful when the corresponding representation is faithful.

6.6 Example: When a group G acts on itself by its own operation, so a∗x = ax = La(x),
the corresponding representation ρ : G→ Perm(G) is given by ρ(a) = La. This is the map
that was used in the proof of Cayley’s Theorem. The representation is faithful, so it gives
an isomorphism from G to its image ρ(G) ≤ Perm(G).

6.7 Example: When a group G acts on itself by conjugation, so a ∗ x = axa−1 = Ca(x),
the corresponding representation ρ : G → Perm(G) is given by ρ(a) = Ca. This is the
homomorphism considered in Example 5.21 with Ker(φ) = Z(G) and Image(φ) = Inn(G)
giving the isomorphism G

/
Z(G) ∼= Inn(G).

6.8 Example: When R is a commutative ring with 1 and the group GLn(R) acts on Rn

by matrix multiplication, so that A ∗ x = Ax = LA(x), the corresponding representation
ρ : GLn(R) → Perm(Rn) is given by ρ(A) = LA (so ρ sends the matrix A to the linear
map LA given by LA(x) = Ax). The representation is faithful, so its gives an isomorphism
from GLn(R) (which is a set of invertible matrices) to its image (which is a set of invertible
linear maps).

6.9 Definition: Let G be a group which acts on a set S. For a ∈ G we define the fixed
set of a in S to be the set

Fix(a) =
{
x ∈ S

∣∣ax = x
}
⊆ S .

For x ∈ S we define the orbit of x in S to be the set

Orb(x) =
{
ax
∣∣a ∈ G} ⊆ S .
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Verify that for x, y ∈ S we have y ∈ Orb(x) ⇐⇒ Orb(x) = Orb(y) so, for the equivalence
relation on S given by x ∼ y ⇐⇒ Orb(x) = Orb(y), the equivalence class of x is equal to
the orbit of x. The set of distinct orbits is denoted by S/G so we have

S/G =
{

Orb(x)
∣∣x ∈ S} .

For x ∈ S we define the stabilizer of x in G to be the subgroup

Stab(x) =
{
a ∈ G

∣∣ax = x
}
≤ G .

Note that Stab(x) ≤ G because ex = x, if ax = x and bx = x then (ab)x = a(bx) = ax = x,
and if ax = x then x = ex = (a−1a)x = a−1(ax) = a−1x.

6.10 Theorem: (The Orbit-Stabilizer Theorem) Let G be a group which acts on a set S.
Then for all x ∈ S we have

|G| =
∣∣Orb(x)

∣∣∣∣Stab(x)
∣∣ .

Proof: Let x ∈ S. We shall show that
∣∣∣Orb(x)

∣∣∣ =
∣∣∣G/Stab(x)

∣∣∣. Write H = Stab(x).

Define a map Φ : G/H → Orb(x) by Φ(aH) = ax. Then Φ is well-defined because for
a, b ∈ G we have aH = bH =⇒ b−1a ∈ H =⇒ b−1a x = x =⇒ ax = bx, Φ is injective
because for a, b ∈ G we have ax = bx =⇒ b−1a x = x =⇒ b−1a ∈ H =⇒ aH = bH, and
the map Φ is clearly surjective.

6.11 Example: Consider D6 as a subgroup of S6. Find Orb(1) and Stab(1).

6.12 Example: Let G be the rotation group of a cube Q. Label the vertices of the cube
by elements of S = {1, 2, · · · , 6}, think of the elements of G as permutations of S and hence
identify G with a subgroup of S6. Find

∣∣Orb(1)
∣∣ and

∣∣Stab(1)
∣∣ and hence find |G|.

6.13 Example: (The Class Equation) When G acts on itself by conjugation, so that
a ∗ x = axa−1, for a, x ∈ G, we have Orb(x) =

{
axa−1

∣∣a ∈ G} = Cl(x), so the orbit of x

is the conjugacy class of x in G, and we have Stab(x) =
{
a ∈ G

∣∣axa−1 = x
}

= C(x), so
the stabilizer of x is the centralizer of x in G. Suppose that G is a finite group. Say G has
n distinct conjugacy classes, and choose one element xi ∈ G from each class so that we

have G =
n⋃
i=1

Orb(xi). By the Orbit-Stabilizer Theorem,
∣∣Orb(xi)

∣∣ = |G|
|C(xi)| =

∣∣G/C(xi)
∣∣

and so

|G| =
n∑
i=1

∣∣G/C(xi)
∣∣ .

This equation is called the class equation for G.

6.14 Example: Let S be the set of all subgroups of a group G. Let G act on S by
conjugation, so a ∗H = Ca(H) = aHa−1, where a ∈ G and H ≤ G. For H ∈ S, that is
H ≤ G, we have

Stab(H) =
{
a ∈ G

∣∣aHa−1 = H
}

=
{
a ∈ G

∣∣aH = Ha
}

= NG(H),

Orb(H) =
{
aHa−1

∣∣a ∈ G} = Cl(H),

where NG(H) is the normalizer of H in G and Cl(H) is the conjugacy class of H in G,
that is the set of all subgroups conjugate to H in G.
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6.15 Theorem: (Cauchy’s Theorem) Let G be a finite group. Let p be a prime divisor
of |G|. Then G contains an element of order p. Indeed∣∣∣{a ∈ G∣∣|a| = p

}∣∣∣ = p− 1 mod p(p− 1) .

Proof: Let n be the number of elements of order p in G, that is n =
∣∣{a ∈ G∣∣|a| = p

}∣∣.
Recall that n = 0 mod (p − 1) (indeed n is equal to (p − 1) times the number of cyclic
subgroups of order p in G because each of these subgroups has φ(p) = p − 1 generators).
Let S =

{
(x1, x2, · · · , xp) ∈ Gp

∣∣x1x2 · · ·xp = e
}

. Note that |S| = |G|p−1 since to get
(x1, x2, · · · , xp) ∈ S we can choose x1, x2, · · · , xp−1 arbitrarily and then xp must be given
by xp = (11x2 · · ·xp−1)−1. Note that Zp acts on S by cyclic permutation, that is by

k ∗ (x1, x2, · · · , xp) = (x1+k, x2+k, · · · , xp, x1, · · · , xk)

since if x1x2 · · ·xp = e then x1x2 · · ·xk = (xk+1 · · ·xp)−1 so x1+kx2+k · · ·xpx1 · · ·xk = e.
For x = (x1, x2, · · · , xp) ∈ S, by the Orbit/Stabilizer Theorem

∣∣Orb(x)
∣∣ divides |Zp| = p

so that
∣∣Orb(x)

∣∣ ∈ {1, p}, so we have∣∣∣Orb(x)
∣∣∣ =

{
1 , if x = (a, a, · · · , a) for some a ∈ G, and

p , otherwise.

Since S is the disjoint union of the orbits, we have |S| = k + pl where k is the number
of orbits of size 1 and l is the number of orbits of size p. Note that k is equal to the
number of elements a ∈ G with ap = 1, and so k = 1 + n. Since |S| = |G|p−1 = 0 mod p
we have n = k − 1 = |S| − pl − 1 = −1 mod p . Since n = −1 = p − 1 mod p and
n = 0 = p − 1 mod (p − 1), we have n = p − 1 mod p(p − 1) by the Chinese Remainder
Theorem.

6.16 Theorem: Let G be a finite group and let H ≤ G. Suppose that |G/H| = p, where
p is the smallest prime divisor of |G|. Then H ≤ G.

Proof: Let S = G/H =
{
aH
∣∣a ∈ G}. Since |S| = p we have Perm(S) ∼= Sp. Let G act on

S by left multiplication, so we have a ∗ (bH) = abH for a, b ∈ G. Let ρ : G→ Perm(S) be
the associated representation, so ρ(a)(bH) = abH. Let

K = Ker(ρ) =
{
a ∈ G

∣∣abH = bH for all b ∈ G
}
≤ G .

Note that K ≤ H because a ∈ K =⇒ aeH = eH =⇒ a ∈ H. Since K ≤ G (it is the
kernel of a homomorphism) and K ≤ H, we also have K ≤ H. By the First Isomorphism
Theorem, we have G/K ∼= ρ(G) ≤ Perm(S) ∼= Sp. By Lagrange’s Theorem |G/K| divides
|Sp| = p!. By another application of Lagrange’s Theorem, |G/K| also divides |G|. Since
|G/K|

∣∣ |G| and p is the smallest prime factor of |G|, |G/K| has no prime factors less than

p. Since |G/K|
∣∣ p!, we must have |G/K| = 1 or p. Since |G/K| = |G/H| |H/K| = p|H/K|

we have |G/K| = p and |H/K| = 1. Thus in fact H = K ≤ G.
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6.17 Theorem: (The Burnside or Cauchy-Frobenius Lemma) Let G be a finite group
which acts on a set S. Then

|G|
∣∣S/G∣∣ =

∑
a∈G

∣∣Fix(a)
∣∣ .

Proof: Let T =
{

(a, x)
∣∣a ∈ G, x ∈ S, ax = x

}
. Then we have

|T | =
∑
a∈G

∣∣{x ∈ S|ax = x}
∣∣ =

∑
a∈G

∣∣Fix(a)
∣∣

and we have

|T | =
∑
x∈S

∣∣{a ∈ G∣∣ax = x}
∣∣ =

∑
x∈S

∣∣Stab(x)
∣∣ =

∑
x∈S

|G|
|Orb(x)|

= |G|
∑
x∈S

1

|Orb(x)|
= |G|

∑
A∈S/G

∑
x∈A

1

|A|
= |G|

∑
A∈S/G

1 = |G|
∣∣S/G∣∣ .

6.18 Example: In how many ways (up to symmetry under the action of D6) can we
colour the vertices of the regular hexagon C6 using 3 colours?

Solution: Let S be the set of possible colourings without considering symmetry under D6,
and note that |S| = 36. The natural action of D6 on C6 induces an action of D6 on S. We
make a table showing

∣∣Fix(A)
∣∣ for each A ∈ D6.

A # of such A
∣∣Fix(A)

∣∣
I 1 36

R3 1 33

R2, R4 2 32

R1, R5 2 31

F0, F2, F4 3 34

F1, F3, F5 3 33

The number of colourings up to D6 symmetry is equal to the number of orbits, which is∣∣S/D6

∣∣ =
1

|D6|
∑
A∈D6

∣∣Fix(A)
∣∣ = 1

12

(
36 + 33 + 2 · 32 + 2 · 31 + 3 · 34 + 3 · 32

)
= 92 .

6.19 Example: Let G be the rotation group of a cube Q. In how many ways (up to
symmetry under the action of G) can we colour the 8 vertices of Q using 2 colours?

Solution: The solution is left as an exercise.

.
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Chapter 7. The Classification of Finite Abelian Groups

7.1 Note: In this chapter we will use additive notation for all abelian groups.

7.2 Definition: A free abelian group of rank n is an abelian group isomorphic to Zn.

7.3 Theorem: The rank of a free abelian group G is unique, that is if G ∼= Zn and
G ∼= Zm then n = m.

Proof: Suppose that G ∼= Zn and G ∼= Zm so that Zn ∼= Zm. Let φ : Zn → Zm be
an isomorphism. Note that φ sends 2Zn bijectively to 2Zm, so it induces an isomorphism
ψ : Zn

/
2Zn → Zm

/
2Zm given by ψ(k+2Zn) = φ(k)+2Zm. Also note that Zn

/
2Zn ∼= Z2

n

and Zm
/

2Zm ∼= Z2m, so we have Z2
n ∼= Z2

m. Thus 2n =
∣∣Z2

n
∣∣ =

∣∣Z2
m
∣∣ = 2m so n = m.

7.4 Definition: Let G be an additive abelian group. Let u1, u2, · · · , u` ∈ G be distinct
and let U = {u1, u2, · · · , u`}. A linear combination of elements in U (over Z) is an
element of G of the form

a = t1u1 + t2u2 + · · · t`u` for some ti ∈ Z .

The span of U (over Z) is the set of all linear combinations, that is

SpanZ(U) = 〈U〉 =
{
t1u1 + t2u2 + · · ·+ t`u`

∣∣ each ti ∈ Z
}

We say that U is linearly independent (over Z) when for all ti ∈ Z,

if t1u1 + t+ 2u2 + · · ·+ t`u` = 0 then every ti = 0.

We say that U is a basis for G (over Z) when U is linearly independent and SpanZ(U) = G.
An ordered basis for G (over Z) is an ordered n-tuple (u1, u2, · · · , un) of distinct elements
ui ∈ G such that U = {u1, u2, · · · , un} is a basis for G (over Z). Note that if U is a basis
for G over Z, every element in G can be written uniquely (up to the order of the terms)
as a linear combination of elements in U over Z.

7.5 Example: Let ek = (0, · · · , 0, 1, 0, · · · , 0) ∈ Zn where the 1 is in the kth position.
Then {e1, e2, · · · , en} is a basis, which we call the standard basis for Zn over Z.

7.6 Theorem: Let G be an abelian group. Then G is a free abelian group of rank n if
and only if G has a basis over Z with n-elements.

Proof: Suppose that G ∼= Zn and let φ : Zn → G is a group isomorphism. Verify that
the set U =

{
φ(e1), φ(e2), · · · , φ(en)

}
is a basis for G over Z. Conversely, suppose that

U = {u1, u2, · · · , un} is a basis for G over Z. Verify that the map φ : Zn → G given by

φ(t1, t2, · · · , tn) =
(
t1u1 + t2u2 + · · ·+ tnun

)
is a group isomorphism.

7.7 Theorem: Let U = (u1, u2, · · · , un) be an ordered basis over Z for the free abelian
group G. Then we can perform any of the following operations to the elements in the basis
to obtain a new ordered basis for G over Z.

(1) ui ↔ uj : interchange two elements,
(2) ui 7→ ±ui : multiply an element by ±1,
(3) ui 7→ ui + kuj : add an integer multiple of one element to another.

Proof: The proof is left as an exercise.
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7.8 Theorem: (Subgroups and Quotient Groups of Zn) Let G be a free abelian group of
rank n. Let H ≤ G. Then H is a free abelian group of rank r for some 0 ≤ r ≤ n and

G/H ∼= Zd1 × Zd2 × · · · × Zdr × Zn−r

for some di ∈ Z+ with d1
∣∣d2, d2∣∣d3, · · · , dr−1∣∣dr.

Proof: We claim that there exists a basis {u1, u2, · · · , un} for G and there exist r and
d1, d2, · · · , dr with 0 ≤ r ≤ n and d1

∣∣d2, d2∣∣d3, · · · , dr−1∣∣dr such that {d1u1, d2u2, · · · , drur}
is a basis for H. Once we have proven this claim, it is not hard to check that the map
φ : G → Zd1 × Zd2 × · · · × Zdr × Zn−r given by φ(t1u1 + · · · + tnun) = (t1, · · · , tn) is a
surjective group homomorphism with Ker(φ) = H, so that

G/H ∼= Zd1 × Zd2 × · · · × Zdr × Zn−r

by the First Isomorphism Theorem.
When n = 1 so G ∼= Z, we have G = 〈a〉 = SpanZ{a} for some a ∈ G with |a| = ∞,

and H = 〈ka〉 for some k ≥ 0. If k = 0 so H = {0} (so the empty set is a basis for H), the
claim holds with u1 = a and r = 0. If k > 0, the claim holds with u1 = a, r = 1, d1 = k.

Let n ≥ 2 and suppose, inductively, that the claim holds for free abelian groups of
rank n− 1. Let G ∼= Zn with H ≤ G. If H = {0} (so the empty set is a basis for H), the
claim holds with r = 0. Suppose that H 6= {0}. Let T be the set of all coefficients ti in all
linear combinations a = t1v1 + t2v2 + · · · + tnvn over all elements a ∈ H and all possible
choices of basis {v1, v2, · · · , vn} for G. Let d1 ∈ Z+ be the smallest positive integer in T .
Choose a basis {v1, v2, · · · , vn} for G and an element a = d1v1+t2v2+t3v3+· · ·+tnvn ∈ H.
Note that d1

∣∣ti for all i ≥ 2 because if we write ti = qid1 + ri with 0 ≤ ri < di then

a = d1v1 + (q2d1 + r2)v2 + (q3d1 + r3)v2 + · · ·+ (qnd1 + rn)vn

= d1(v1 + q2v2 + q3v3 + · · ·+ qnvn) + r2v2 + r3v3 + · · ·+ rnvn

and so each ri = 0 by the choice of d1 since {v1+
∑
qivi , v2, v3, · · · , vn} is a basis for G.

Let u1 = v1+
∑
qivi so that {u1, v2, v3, · · · , vn} is a basis for G and a = d1u1 ∈ H.

Let G0 = Span{v2, v3, · · · , vn} and let H0 = H∩G0. Let a ∈ H. Since {u1, v2, · · · , vn}
is a basis forG, we know that a can be written uniquely in the form a = t1u1+t2v2+· · · tnvn.
Note that we must have d1

∣∣t1 because if we write t1 = q1d1+r1 with 0 ≤ r1 < d1 then since
a = (q1d1+r1)u1+t2v2+ · · ·+tnvn ∈ H, we have r1u1+t2v2+ · · ·+tnvn = a−q1d1u1 ∈ H,
and so r1 = 0 by the choice of d1. Also note that for b = a− t1u1 = t2v2 + · · ·+ tnvn we
have b ∈ Span{v2, · · · , vn} = G0 and since d1

∣∣t1 and d1u1 ∈ H we have t1u1 ∈ H, and so

b ∈ H ∩ G0 = H0. Thus every a ∈ H can be written uniquely as a = t1u1 + b with d1
∣∣t1

and b ∈ H0.
By the induction hypothesis, we can find a basis {u2, u3, · · · , un} forG0 and we can find

r and d2, d3, · · · , dn with 1 ≤ r ≤ n and d2
∣∣d3, d3∣∣d4, · · · dr−1∣∣dr such that {d2u2, · · · , drur}

is a basis for H0. Since each a ∈ H can be written uniquely as a = t1u1 + b with d1
∣∣t1

and b ∈ H0 = Span{d2u2, · · · , dnun}, it follows that {d1u1, d2u2, · · · , dnun} is a basis
for H. Finally, note that we must have d1

∣∣d2 because if we write d2 = q2d1 + r2 with
0 ≤ r2 < d1 then we have d1u1 + d2u2 ∈ H, so that d1u1 + (q2d1 + r2)u2 ∈ H, hence
d1(u1 + q2u2) + r2u2 ∈ H and so r2 = 0 by the choice of d1, since {u1 + q2u2, u2, · · · , un}
is another basis for G.
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7.9 Theorem: (The Classification of Finite Abelian Groups) Every finite abelian group
is isomorphic to a unique group of the form

Zn1
× Zn2

× · · · × Znl

for some integer l ≥ 0 and some integers ni with 2 ≤ n1, n1
∣∣n2, n2∣∣n3, · · · , nl−1∣∣nl.

Alternatively, every finite abelian group is isomorphic to a unique group of the form

Zp1k1 × Zp2k2 × · · · × Zpmkm

for some integer m ≥ 0 and some primes pi with p1 ≤ p2 ≤ · · · ≤ pm and some positive
integers ki with ki ≤ ki+1 whenever pi = pi+1.

Proof: First we prove that every finite abelian group is isomorphic to a group of the first
form. Let G be a finite additive abelian group, say |G| = n and G = {a1, a2, · · · .an}. Define
φ : Zn → G by φ(t1, t2, · · · , tn) = t1a1 + · · · + tnan. Then φ is a group homomorphism
since G is abelian, and φ is clearly onto. By the First Isomorphism Theorem we have
G ∼= Zn

/
Ker(φ). By the previous theorem,

G ∼= Zd1 × Zd2 × · · · × Zdr × Zn−r

for some integers r and d1, d2, · · · , dr with 0 ≤ r ≤ n and d1
∣∣d2, d2∣∣d3, · · · , dr−1∣∣dr. Since

G is finite we must have r = n. Say d1 = d2 = · · · dk = 1 and dk+1 > 1. Then we have

G = Zn1 × Zn2 × · · · × Znl

as required, by taking ni = dk+i.

Next we describe a bijective correspondence between groups of the first form and
groups of the second form. Given a group G = Zn1 × · · · × Znl

of the first form, we
can obtain an isomorphic group H of the second form as follows. For each j = 1, 2, · · · l,
decompose nj into its prime factorization nj =

∏
pji
kji , replace the group Znj

by the
isomorphic group

∏
Zpjikji , and then let H be the product of all the groups pji

kji arranged

in the required order. For example, for G = Z2 × Z4 × Z12 × Z24 × Z720, we have

G = Z2 × Z4 × Z12 × Z24 × Z720

∼= Z2 × Z4 × (Z4 × Z3)× (Z8 × Z3)× (Z16 × Z9 × Z5)
∼= Z2 × Z4 × Z4 × Z8 × Z16 × Z3 × Z3 × Z9 × Z5 = H .

Conversely, given the group H = Zp1k1 × · · · × Zpmkm of the second form, we can re-
cover the group G of the first form as follows. First rewrite the list of (not neces-
sarily distinct) primes p1, p2, · · · , pm as q1, q1, · · · , q1, q2, q2, · · · , q2, · · · , qr, qr, · · · , qr where
the qi are distinct primes, where say qi occurs si times in the list, and rewrite the list
p1
k1 , · · · , pmkm in the form q1

k11 , · · · , q1k1,s1 , q2k21 , · · · , q2k2,s2 , · · · , qrkr1 , · · · , qrkr,sr . Then
let s = max{s1, s2, · · · , sr}, and replace each of the products Zqiki1 × · · · × Z

qi
ki,si

by

the isomorphic product Zqili1 × · · · × Zqili,s where li,1 = li,2 = · · · = li,s−si = 0 and
li,s−si+j = ki,j for j = 1, 2, · · · , si. We then have

H =
r∏
i=1

s∏
j=1

Zqilij
∼=

s∏
j=1

r∏
i=1

Zqilij
∼=

s∏
j=1

Znj
= G , where nj =

r∏
i=1

q
lij
i .
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For example, for H = Z2 × Z2 × Z8 × Z3 × Z9 × Z9 × Z81 × Z5 × Z25 × Z7 we have

H = Z2 × Z2 × Z8 × Z3 × Z9 × Z9 × Z81 × Z5 × Z25 × Z7

∼= (Z1 × Z2 × Z2 × Z8)× (Z3 × Z9 × Z9 × Z81)

× (Z1 × Z1 × Z5 × Z25)× (Z1 × Z1 × Z1 × Z7)
∼= (Z1 × Z3 × Z1 × Z1)× (Z2 × Z9 × Z1 × Z1)

× (Z2 × Z9 × Z5 × Z1)× (Z8 × Z81 × Z25 × Z7)
∼= Z3 × Z18 × Z90 × Z113400 = G .

You should convince yourself that the above two procedures give a bijective correspondence
between groups of the two forms described in the statement of the theorem.

Finally, we show uniqueness for groups G of the second form. To do this, we shall
show that the primes pi and the exponents ki are uniquely determined by the isomorphism
class of the group G. Suppose that

G ∼= Zp1k1 × Zp2k2 × · · · × Zpmkm

where the pi are prime and each ki ∈ Z+. Let p be a prime number. Let nk be the
number of elements in G whose order divides pk. Let ak be the number of indices i
such that pi = p and ki = k. Let bk be the number of indices i such that pi = p
and ki ≥ k. Note that ak = bk − bk+1. Using the fact that for xi ∈ Zpiki we have∣∣(x1, x2, · · · , xm)

∣∣ = lcm
(
|x1|, |x2|, · · · , |xm|

)
, verify that

n1 = pb1

n2 = pa1p2b2

n3 = pa1p2a2p3b3

...

nk = pa1p2a2p3a3 · · · p(k−1)ak−1pkbk

so we have

nk
nk−1

=
p(k−1)ak−1pkbk

p(k−1)bk−1
=
p(k−1)ak−1pkbk

p(k−1)(ak−1+bk)
= pb

k

, and so

pak = pbk−bk+1 = pbk
/
pbk+1 =

nk
nk−1

/
nk+1

nk
=

nk
2

nk−1nk+1
.

This formula shows that the number of elements of each order in G determines the values
of each prime pi and each exponent ki.

7.10 Corollary: Let G and H be finite abelian groups. If G and H have the same number
of elements of each order then G ∼= H.

7.11 Corollary: Let n =
∏
pi
ki where the pi are distinct primes and each ki ∈ Z+. Then

the number of distinct abelian groups of order n (up to isomorphism) is equal to
∏
P (ki)

where P (ki) is the number of partitions of ki.

Proof: The abelian groups of order pk are the groups
∏

Zpji where the ji partition k.

.
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Chapter 8. Definition and Examples of Rings and Subrings

8.1 Definition: A ring is a set R with two binary operations, addition denoted by + and
multiplication denoted by ×, by · or by concatenation, and an element 0 ∈ R such that

(1) + is associative: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,
(2) + is commutative: a+ b = b+ a for all a, b, c ∈ R,
(3) 0 is an additive identity: a+ 0 = 0 + a = a for all a ∈ R,
(4) every a ∈ R has an additive inverse: there exists b ∈ R such that a+ b = b+ a = 0,
(5) × is associative: (ab)c = a(bc) for all a, b, c ∈ R, and
(6) × is distributive over +: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

We say that R is commutative when × is commutative, that is ab = ba for all a, b ∈ R.
We say that R has an identity (or that R has a 1) when it has a multiplicative identity,
that is when there is a non-zero element 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R.
When R has a 1, for a ∈ R we say that a is invertible (or that a is a unit) when there is
an element b ∈ R with ab = 1 = ba. A division ring is a ring R with identity such that
every non-zero element of R is invertible. A field is a commutative division ring.

8.2 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

(1) the additive identity 0 is unique in the sense that if e ∈ R has the property that
a+ e = a = e+ a for all a ∈ R then e = 0,
(2) the additive inverse of a ∈ G is unique in the sense that for all a, b, c ∈ G if we have
a+ b = 0 = b+ a and a+ c = 0 = c+ a then b = c,
(3) if R has a 1, then it is unique in the sense that for all u ∈ R, if u has the property that
au = a = ua for all a ∈ G then u = 1, and
(4) if R has a 1 and a ∈ R has an inverse, then it is unique in the sense that for all a ∈ G
if there exist b, c ∈ G such that ab = ba = 1 and ac = ca = 1 then b = c.

8.3 Notation: Let R be a ring. For a ∈ R we denote the unique additive inverse of
a ∈ R by −a, and for a, b ∈ R we write b − a for b + (−a). If R has a 1 and a ∈ R has a
multiplicative inverse, we say that a is a unit in R, and we denote its inverse by a−1.

8.4 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all a, b, c ∈ R,

(1) if a+ c = b+ c then a = c,
(2) if a+ b = a then b = 0, and
(3) if a+ b = 0 then b = −a.

8.5 Note: We do not, in general, have similar rules for cancellation under multiplication.
In general, for a, b, c in a ring R, ac = bc does not imply that a = b, ac = a does not imply
that c = 1, ac = 1 does not imply that ca = 1, and ac = 0 does not imply that a = 0 or
b = 0. When ac = 1 we say that a is a left inverse for c and that c is a right inverse
for a. When ac = 0 but a 6= 0 and b 6= 0, we say that a and b are zero divisors. A
commutative ring with 1 which has no zero divisors is called an integral domain.

8.6 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all a, b, c ∈ R,
if ac = bc, or if ca = cb, then either a = b or c = 0 or c is a zero divisor.

Proof: Suppose ac = bc. Then ac− bc = 0 so (a− b)c = 0. Either (a− b) = 0 so a = b, or
c = 0 or (a− b) and c are zero divisors. The case that ca = cb is similar.
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8.7 Theorem: (Basic Properties of Rings) Let R be a ring. Then

(1) 0 · a = a · 0 = 0 for all a ∈ R,
(2) (−a)b = −(ab) = a(−b) for all a, b ∈ R,
(3) (−a)(−b) = ab for all a, b ∈ R,
(4) if R has a 1 then (−1)a = −a for all a ∈ R.

Proof: Let a ∈ R. Then 0 · a = (0 + 0) · a = 0 · a + 0 · a. Thus 0 · a = 0 by additive
cancellation. The proof that a ·0 = 0 is similar, and the other proofs are left as an exercise.

8.8 Notation: Let R be a ring. For k ∈ Z+ we write ka = a + a + · · · + a with k
terms in the sum, and we write (−k)a = k(−a), and we write ak = a · a · . . . · a with k
terms in the product. For 0 ∈ Z we write 0a = 0 and if R has a 1 we write a0 = 1. If
R has a 1 and a ∈ R is a unit, we write a−k = (a−1)k. For all k, l ∈ Z and all a ∈ R
we have (k + l)a = ka + la, (−k)a = −(ka) = k(−a), −(−a) = a, −(a + b) = −a − b,
(ka)(lb) = (kl)(ab). For a ∈ R and k, l ∈ Z+ we have ak+l = akal. When R has a 1 and
a and b are units, then for k, l ∈ Z we have ak+l = akal, a−k = (ak)−1, (a−1)−1 = a and
(ab)−1 = b−1a−1 .

8.9 Example: Z, Q, R, C and Zn are all commutative rings with 1. Of these, Q, R and
C, and also Zp when p is prime, are fields.

8.10 Example: The ring of real quaternions is the set H = R4 in which we write
1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1) and for t ∈ R we write
t = (t, 0, 0, 0), ti = it = (0, t, 0, 0), tj = jt = (0, 0, t, 0) and tk = kt = (0, 0, 0, t). We
define addition as usual in H = R4. and we define multiplication by requiring that
i2 = j2 = k2 = −1, that ij = −ji = k, jk = −kj = i and ki = −ik = j, and that every
real number commutes with i, j and k. It can be verified that H is a division ring with

(a+ ib+ jc+ kd)−1 =
a− ib− jc− kd
a2 + b2 + c2 + d2

for all 0 6= a+ ib+ jc+ kd ∈ H.

8.11 Example: For a set A and a ring R, the set

Func(A,R) = RA =
{

fuctions f : A→ R
}

is a ring under the operations given by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x)
for all x ∈ A. If R is commutative then so is Func(A,R). If R has identity 1 then the
identity of Func(A,R) is the constant function 1 : A→ R given by 1(x) = 1 for all x ∈ A.

8.12 Example: For a group G, an endomorphism of G is a group homomorphism
φ : G→ G. If G is an additive abelian group then the set

End(G) =
{

endomorphisms φ : G→ G
}

is a ring under the operations given by (φ+ ψ)(x) = φ(x) + ψ(x) and (φψ)(x) = φ
(
ψ(x)

)
for all x ∈ G. The ring End(G) has an identity, namely the identity function I : G → G
given by I(x) = x for all x ∈ G.

8.13 Example: Let R be a ring with 1. Then the set

R∗ =
{
a ∈ R

∣∣ a is a unit
}

is a group under multiplication, called the group of units of R.
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8.14 Example: For a ring R and a variable symbol x, a formal power series in x over
R is a sequence (a0, a1, a2, · · ·) with each ai ∈ R, and we write this sequence as

f(x) =

∞∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · · .

The elements ai are called the coefficients of f and a0 is called the constant coefficient.
A power series of the form f(x) = a with a ∈ R is called a constant series. The set

R[[x]] =
{

formal power series in x over R
}

is a ring, which we call the ring of formal power series in x over R, with the following

operations: for f(x) =
∞∑
i=0

aix
i and g(x) =

∞∑
j=0

bjx
j we have

(f + g)(x) =
∞∑
k=0

(ak + bk)xi , and (fg)(x) =
∞∑
k=0

ckx
k where ck =

k∑
i=0

aibk−i .

If R is commutative then so is R[[x]], and if R has identity 1 then the identity of R[[x]] is
the constant polynomial 1, that is the sequence 1 = (1, 0, 0, · · ·). A polynomial in x over
R is a formal power series with only finitely non-zero coefficients. When we have ai = 0

for all i > n we also write f(x) =
n∑
i=0

aix
i. When an 6= 0 and ai = 0 for all i > n we say

that an is the leading coefficient of f and that the degree of f is deg(f) = n. The set

R[x] =
{

polynomials in x over R
}

is a ring, which we call the ring of polynomials in x over R, using the same operations
as in R[[x]].

8.15 Example: For a ring R and variable symbols x1, · · · , xn, a formal power series
in x1, · · · , xn over R is a function a : Nn → R, and we write this function as

f(x1, · · · , xn) =
∑

(i1,···,in)∈Nn

ai1,···,inx1
i1 · · ·xnin where ai1,···,in = a(i1, · · · , in) .

The elements ai1,···,in ∈ R are called the coefficients of the power series. The set

R[[x1, · · · , xn]] =
{

formal power series in x1, · · · , xn over R
}

is a ring, called the ring of formal power series in x1, · · · , xn over R, under the following
operations: for f(x) =

∑
ai1,···,inx1

i1 · · ·xnin and g(x) =
∑
bj1,···,jnx1

j1 · · ·xnjn we define

(f + g)(x) =
∑

(ak1,···,kn + bk1,···,kn)x1
k1 · · ·xnkn

(fg)(x) =
∑

ck1,···,knx1
k1 · · ·xnkn

where ck1,···,kn is the sum of all terms ai1,···,inbj1,···,jn for which iα + jα = kα for all
α = 1, · · · , n. A polynomial in x1, · · · , xn over R is a formal power series with only
finitely many non-zero coefficients, and the set

R[x1, x2, · · · , xn] =
{

polynomials in x1, · · · , xn over R
}

is a ring using the same operations as in R[[x1, · · · , xn]].
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8.16 Example: For a ring R, the set

Mn(R) =
{
n× n matrices with entries in R

}
is a ring under matrix addition and matrix multiplication, which we call the ring of n×n
matrices over R. If R has identity 1 then the identity of Mn(R) is the n × n identity
matrix I.

8.17 Example: If R and S are rings then the cartesian product

R× S =
{

(a, b)
∣∣a ∈ R, b ∈ S}

is a ring, called the product ring of R and S, with operations

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d) = (ac, bd) .

More generally, if R1, · · · , Rn are rings then so is the product

n∏
i=1

Ri = R1 × · · · ×Rn =
{

(a1, · · · , an)
∣∣each ai ∈ Ri

}
,

which we call the product ring of R1, · · · , Rn, under the operations

(a1, · · · , an) + (b1, · · · , bn) =
(
a1 + b1, · · · , an + bn

)
, and

(a1, · · · , an)(b1, · · · , bn) =
(
a1, b1, · · · , anbn

)
.

More generally still, if A is any set and Rα is a ring for each α ∈ A, then the product∏
α∈A

Rα =
{
f : A→

⋃
α∈A

Rα
∣∣f(α) ∈ Rα for all α ∈ A

}
is a ring, called the product ring of the rings Rα, α ∈ A, under the operations

(f + g)(α) = f(α) + g(α) and (fg)(α) = f(α)g(α).

8.18 Theorem: Let R be a finite ring. Then R is a field if and only if R is an integral
domain.

Proof: Suppose that R is a field. Let a, b ∈ R. Suppose that ab = 0 and a 6= 0. Then
b = 1 · b = (a−1a)b = a−1(ab) = a−1 · 0 = 0. Thus R has no zero divisors.

Conversely, suppose that R is an integral domain. We must show that every non-zero
element in R is a unit. Let 0 6= a ∈ R. Consider the left multiplication map La : R → R
given by La(x) = ax. For x, y ∈ R we have La(x) = La(y) =⇒ ax = ay =⇒ x = y by
cancellation, since a 6= 0 and a is not a zero divisor. Thus La is injective. Since R is finite,
this implies that La is bijective. In particular, we can choose b ∈ R so that La(b) = 1,
that is ab = 1. Similarly, right multiplication Ra is bijective, and so we can choose c ∈ R
so that ca = 1. Then we have c = c · 1 = c(ab) = (ca)b = 1 · b = b, and so a is a unit with
a−1 = b = c.

8.19 Definition: Let R be a ring with 1. We define the characteristic of R, written as
char(R), to be the smallest n ∈ Z+ such that n · 1 = 0 if such an n exists, and if no such
n exists then the characteristic of R is 0. Note that when n · 1 = 0 we have n · a = 0 for
all a ∈ R because na = a+ a+ · · ·+ a = (1 + 1 + · · · 1)a = (n · 1) a.
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8.20 Theorem: Let R be a ring with 1 with no zero divisors. Then either char(R) = 0
or char(R) is prime.

Proof: Suppose char(R) = n ∈ Z+. Suppose, for a contradiction, that n is composite, say
n = kl with 1 < k, l < n. Then 0 = n · 1 = (kl) · 1 = (k · 1)(l · 1). Since R has no zero
divisors, either k · 1 = 0 or l · 1 = 0. This contradicts the definition of n = char(R).

8.21 Definition: A subring of a ring R is a subset S ⊆ R which is a ring using the same
operations used in R. Similarly, a subfield of a field F is a subset K ⊆ F which is also a
field using the same operations used in F .

8.22 Theorem: If S be a subset of a ring R, then S is a subring of R if and only if

(1) 0 ∈ S,
(2) S is closed under addition, that is a+ b ∈ S for all a, b ∈ S,
(3) S is closed under multiplication, that is ab ∈ S for all a, b ∈ S, and
(4) S is closed under additive inverse, that is −a ∈ S for all a ∈ S.

Similarly, if K is a subset of a field F then K is a subfield of F if and only if

(1) 0 ∈ K and 1 ∈ K,
(2) K is closed under addition, that is a+ b ∈ K for all a, b ∈ K,
(3) K is closed under multiplication, that is ab ∈ K for all a, b ∈ K,
(4) K is closed under additive inverse, that is −a ∈ S for all a ∈ K, and
(5) K s closed under multiplicative inverse, that is a−1 ∈ K for all 0 6= a ∈ F .

8.23 Example: Z is a subring of Q, Q is a subring of R, R is a subring of C, and C is
a subring of H. Also, Q is a subfield of R which is a subfield of C.

8.24 Example: In Z, the subgroups are of the form 〈n〉 =
{
kn
∣∣k ∈ Z

}
where 0 ≤ n ∈ Z.

Each of these subgroups is also a subring of Z. In Zn, the subgroups are of the form
〈d〉 = {kd|k ∈ Zn/d} where d|n, and each of these subgroups is also a subring.

8.25 Example: In Z12 we have the subring 〈3〉 = {0, 3, 6, 9}. Notice that 9 · 0 = 0,
9 · 3 = 3, 9 · 6 = 6 and 9 · 9 = 9, so 9 is the identity element in the group 〈3〉. This example
shows that the identity element in a subring of R does not need to be equal to the identity
element of R.

8.26 Example: Define

Z[
√

2] =
{
a+ b

√
2
∣∣a, b ∈ Z

}
, and

Q[
√

2] =
{
a+ b

√
2
∣∣a, b ∈ Q

}
.

Then Z[
√

2] is a subring of R and Q[
√

2] is a subring of R because

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2 .

In fact Q[
√

2] is a subfield of R because for a, b ∈ Q, if a+ b
√

2 6= 0 then a2 6= 2b2 and

(a+ b
√

2)

(
a

a2 − 2b2
− b

a2 − 2b2

√
2

)
= 1 .
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8.27 Example: More generally, if R is a subring of S and A ⊆ S, then we write R[A] for
the smallest subring of S which contains R and A, or equivalently the intersection of all
subrings of S which contain R ∪A. Some particular cases of this include the subrings

Z[i] =
{
a+ bi

∣∣ a, b ∈ Z
}
⊆ C

Q[α] =
{
a+ bα+ cα2

∣∣ a, b, c ∈ Q
}
⊆ C , where α = ei 2π/3

Q[
√

2,
√

3] =
{
a+ b

√
2 + c

√
3 + d

√
6
∣∣ a, b, c, d ∈ Q

}
⊆ R.

As an exercise, check that these are all rings and that Q[α] and Q[
√

2,
√

3] are fields.

8.28 Example: We sometimes use notation, similar to the notation used in the above
example, for some other rings. For example, we write

Zn[i] =
{
a+ bi

∣∣ a, b ∈ Zn
}
.

This is a ring under the operations given by (a + bi) + (c + di) = (a + c) + (b + d)i and
(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

8.29 Example: For an interval A ⊆ R, let C0(A,R) denote the set of continuous functions
f : A → R, for k ∈ Z+ let Ck(A,R) denote the set of functions f : A → R such that
the kth derivative f (k) exists and is continuous in A, and let C∞(A,R) denote the set of
infinitely differentiable functions f : A → R. Then C∞(A,R) is a subring of Ck(A,R)
which is a subring of C0(A,R) which, in turn, is a subring of Func(A,R).

8.30 Example: For a ring R, the polynomial ring R[x] is a subring of the formal power
series ring R[[x]]. More generally, R[x1, · · · , xn] is a subring of R[[x1, · · · , xn]]. If S is a
subring of R then S[x] is a subring of R[x] and S[[x]] is a subring of R[[x]], and more
generally, S[x1, · · · , xn] is a subring of R[x1, · · · , xn] and S[[x1, · · · , xn]] is a subring of
R[[x1, · · · , xn]]. We can regard R as a subring of R[x] by identifying an element a ∈ R
with the corresponding constant polynomial in R[x]. Similarly, we can regard R[x1, · · · , xn]
as a subring of R[x1, · · · , xn, xn+1] and R[[x1, · · · , xn]] as a subring of R[[x1, · · · , xn, xn+1]].

8.31 Example: Although we can regard the polynomial ring R[x] as a subring of the
ring of functions Func(R,R) (since we can regard a polynomial as a kind of function), in
general given a ring R we cannot regard R[x] as a subring of Func(R,R). For example, if
R is finite, say with |R| = n, then

∣∣Func(R,R)
∣∣ = nn but

∣∣R[x]
∣∣ = ∞ (or more precisely∣∣R[x]

∣∣ = ℵ0).

8.32 Example: For a ring R, the set Tn(R) of upper-triangular matrices with entries in
R is a subring of Mn(R). If S is a subring of R then Mn(S) is a subring of Mn(R).

8.33 Definition: For a ring R, we define the centre of R to be the ring

Z(R) =
{
a ∈ R

∣∣ax = xa for all x ∈ R
}
.

As an exercise, verify that Z(R) is in fact a subring of R.

.
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Chapter 9. Ring Homomorphisms, Ideals and Quotient Rings

9.1 Definition: Let R and S be rings. A ring homomorphism from R to S is a map
φ : R→ S such that

φ(a+ b) = φ(a) + φ(b) and

φ(ab) = φ(a)φ(b)

for all a, b ∈ R. The kernel of φ is the set

Ker(φ) = φ−1(0) =
{
a ∈ R

∣∣φ(a) = 0
}

and the image (or range) of φ is the set

Image(φ) = φ(R) =
{
φ(a)

∣∣a ∈ R} .
A ring isomorphism from R to S is a bijective ring homomorphism from R to S. For two
rings R and S, we say that R and S are isomorphic, and we write R ∼= S, when there
exists an isomorphism φ : R→ S.

9.2 Theorem: Let φ : R→ S be a ring homomorphism. Then

(1) φ(0) = 0,
(2) for a ∈ R we have φ(ka) = kφ(a) for all k ∈ Z,
(3) if R has a 1 and φ is surjective, then S has a 1 and φ(1) = 1,
(4) for a ∈ R we have φ(ak) = φ(a)k for all k ∈ Z+, and
(5) if R has a 1, φ is surjective, and a ∈ R is a unit, then φ(ak) = φ(a)k for all k ∈ Z.

9.3 Theorem: Let φ : R→ S and ψ : S → T be ring homomorphisms. Then

(1) the identity map I : R→ R is a ring homomorphism,
(2) the composite ψ ◦ φ : R→ T is a homomorphism, and
(3) if φ is bijective then the inverse φ−1 : S → R is a homomorphism.

9.4 Corollary: Isomorphism is an equivalence relation on the class of rings.

9.5 Theorem: Let φ : R→ S be a ring homomorphism. Then

(1) If K is a subgroup of R then φ(K) is a subgroup of S. In particular, Image(φ) is a
subgroup of S.
(2) if L is a subgroup of S then φ−1(L) is a subgroup of R. In particular, Ker(φ) is a
subgroup of R.

9.6 Theorem: Let φ : R→ S be a ring homomorphism. Then

(1) φ is injective if and only if Ker(φ) = {0}, and
(2) φ is surjective if and only if Image(φ) = S.

9.7 Example: For rings R and S, the zero function 0 : R → S, given by 0(x) = 0 for
all x ∈ R, is a ring homomorphism. For a ring R, the identity function I : R→ R, given
by I(x) = x for all x ∈ R, is a ring homomorphism.
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9.8 Example: Let R be a ring. For a ∈ R, define φa : Z→ R by φa(k) = ka. Show that
the ring homomorphisms φ : Z→ R are the maps φ = φa with a ∈ R such that a2 = a.

Solution: For a ∈ R, let φa : Z → R be the map given by φa(k) = ka. Note that
for any ring homomorphism φ : Z → R, if we let a = φ(1) then for all k ∈ Z we have
φ(k) = φ(k ·1) = k ·φ(1) = ka = φa(k). Thus every ring homomorphism φ : Z→ R is of the
form φ = φa for some a ∈ R. Also note that in order for φa to be a ring homomorphism,
we must have a2 = φ(1)2 = φ(12) = φ(1) = a. Finally, note that given a ∈ R with a2 = a,
the map φa is a ring homomorphism because φa(k+ l) = (k+ l)a = ka+ la = φa(k)+φl(a)
and φa(kl) = (kl)a = (kl)a2 = (ka)(la) = φa(k)φl(a). Thus the ring homomorphisms from
Z to R are precisely the maps φa where a ∈ R with a2 = a.

9.9 Example: Let R be a ring. For a, b ∈ R, define the map φa,b : Z × Z → R by
φa,b(k, l) = (ka)(lb). As an exercise, show that the ring homomorphisms φ : Z × Z → R
are the maps φ = φa,b with a, b ∈ R such that a2 = a, b2 = b and ab = ba = 0.

9.10 Definition: An element a in a ring R is called idempotent when a2 = a.

9.11 Example: The complex conjugation map φ : C → C given by φ(z) = z is a ring
homomorphism since z + w = z + w and zw = z w, but the norm map ψ(z) = ||z|| is not
a ring homomorphism because, in general, we do not have ||z + w|| = ||z||+ ||w||.

9.12 Definition: Let R be a ring. For a ∈ R, the map φa : R[x] → R given by
φa
(
f(x)

)
= f(a), that is by

φa

( n∑
i=0

cix
i
)

=
n∑
i=0

cia
i,

is called the evaluation map at a. If a ∈ Z(R) then φa is a homomorphism because for
f =

∑
bix

i and g =
∑
cix

i we have

φa(f + g) = φa
(∑
i

(bi + ci)x
i
)

=
∑
i

(bi + ci)a
i =

∑
i

bia
i +
∑
i

cix
i = φa(f) + φa(g)

φa(fg) = φa
(∑
i,j

bicjx
i+j
)

=
∑
i,j

bicja
i+j =

∑
i,j

bia
icja

j =
∑
i

bix
i
∑
j

cja
j = φa(f)φa(g).

The evaluation map φ : R[x] → Func(R,R) is then given by φ(f)(a) = φa(f) = f(a),
in other words φ sends the polynomial f(x) =

∑
cix

i to the function f(x) =
∑
cix

i. If
R is commutative, then the above calculation shows that this map φ is a homomorphism.
If R is not commutative, then the multiplication operations in R[x] and in Func(R,R)
are different and the evaluation map is not a homomorphism (in fact we are usually only
interested in the polynomial ring R[x] in the case that R is commutative).

9.13 Example: Show that R 6∼= C (as rings).

Solution: If φ : R → C was a ring isomorphism, then the restriction of φ to R∗ would
be a group isomorphism φ : R∗ → C∗. But we know that the groups R∗ and C∗ are not
isomorphic.

9.14 Example: Show that 2Z 6∼= 3Z (as rings).

Solution: In 2Z we have 2 · 2 = 4 = 2 + 2, but there is no element 0 6= a ∈ 3Z with
a · a = a+ a.
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9.15 Theorem: (Ideals and Quotient Rings) Let S be a subring of a ring R. Note that S
is a subgroup of R under addition. Let R/S be the quotient group R/S =

{
a+ S

∣∣a ∈ R
}

with addition operation given by (a + S) + (b + S) = (a + b) + S. We can define a
multiplication operation on R/S by

(a+ S)(b+ S) = ab+ S

if and only if S has the property that for all r ∈ R and s ∈ S we have

rs ∈ S and sr ∈ S.

In this case R/S is a ring under the above addition and multiplication operations. If R
has identity 1, then R/S has identity 1 + S.

Proof: Suppose the formula (a+S)(b+S) = ab+S gives a well-defined operation on R/S.
Then for all a1, a2, b1, b2 ∈ R, if a1+S = a2+S and b1+S = b2+S then a1b1+S = a2b2+S.
Equivalently, for all a1, b1, a2, b2 ∈ R, if a1 − a2 ∈ S and b1 − b2 ∈ S then a1a2 − b1b2 ∈ S.
Let r ∈ R and s ∈ S. Taking a1 = a2 = r, b1 = s and b2 = 0, we have a1 − a2 = 0 ∈ S
and b1 − b2 = s ∈ S and so rs = a1b1 − a2b2 ∈ S. Similarly, taking a1 = s, a2 = 0 and
b1 = b2 = r we see that sr ∈ S.

Conversely, suppose that for all r ∈ R and s ∈ S we have rs ∈ S and sr ∈ S. Let
a1, a2, b1, b2 ∈ R with a1−a2 ∈ S and b1−b2 ∈ S. Say a1−a2 = s ∈ S and b1−b2 = t ∈ S.
Then a1b1−a2b2 = a1b1−(a1−s)(b1−t) = a1b1−(a1b1−a1t−s b1+st) = a1t+s b1+st ∈ S.
Thus the formula (a+ S)(b+ S) = ab+ S gives a well-defined operation on R/S.

Now we suppose that S has the required property so that (a+S)(b+S) = ab+S does
give a well-defined multiplication operation. This multiplication is associative because(

(a+ S)(b+ S)
)
(c+ S) = (ab+ S)(c+ S) = (ab)c+ S = a(bc) + S

= (ab+ S)(c+ S) = (a+ S)
(
(b+ S)(c+ S)

)
and it is distributive over the addition operation on R/S because

(a+ S)
(
(b+ S) + (c+ S)

)
= (a+ S)

(
(b+ c) + S

)
= a(b+ c) + S = ab+ ac+ S

= (ab+ S) + (ac+ S) = (a+ S)(b+ S) + (a+ S)(c+ S)

and similarly
(
(a+ S) + (b+ S)

)
(c+ S) = (a+ S)(c+ S) + (b+ S)(c+ S). Thus R/S is a

ring under these two operations.

9.16 Definition: Let R be a ring. An ideal in R is a subring A ⊆ R with the property
that for all r ∈ R and a ∈ A we have ra ∈ A and ar ∈ A. When A is an ideal in R, the
ring R/A, equipped with the operations of the above theorem, is called the quotient ring
of R by A. It is easy to check that the zero element in R/A is 0 +A, the additive inverse
of a+ A in R/A is −(a+ A) = −a+ A, if R has identity 1 then R/A has identity 1 + A,
and if a ∈ R is a unit then a+A is a unit in R/A with (a+A)−1 = a−1 +A.

9.17 Example: In the cyclic group Z, the subgroups are the groups 〈n〉 = nZ with n ≥ 0.
Each of these subgroups is also an ideal in the ring Z. For n ∈ Z+, the ring Zn is the
quotient ring Zn = Z/〈n〉 = Z/nZ.

9.18 Example: In the group Zn the subgroups are the groups 〈d〉 where d
∣∣n. Each of

the subgroups is also an ideal in the ring Zn.
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9.19 Example: In the group Q, we have the subgroup 〈2〉 = {· · · ,−2, 0, 2, 4, · · ·} = 2Z.
This subgroup is also a subring of Q because it is closed under multiplication. But it is not
an ideal in Q because it is not closed under multiplication by elements in Q, for example
2 ∈ 〈2〉 and 1

2 ∈ Q, but 1 = 2 · 12 /∈ 〈2〉.
9.20 Definition: Let R be a ring and let U ⊆ R. The ideal in R generated by
U , denoted by 〈U〉, is the smallest ideal in R which contains U , or equivalently, the
intersection of all ideals in R which contain U . The elements in U are called generators
of 〈U〉. When U is finite we often omit the set brackets, so for U = {u1, u2, · · · , un} we
write 〈U〉 = 〈u1, u2, · · · , un〉. An ideal of the form 〈u1, u2, · · · , un〉 for some ui ∈ R is said
to be finitely generated. An ideal of the form 〈u〉 for some u ∈ R is called a principal
ideal.

9.21 Theorem: Let R be a ring and let U be a non-empty subset of R.

(1) If R has a 1 then 〈U〉 =
{ n∑
i=1

riuisi

∣∣∣n ∈ Z+, ui ∈ U, ri, si ∈ R
}
.

(2) If R is commutative with 1 then 〈U〉 =
{ n∑
i=1

uiri

∣∣∣n ∈ Z+, ui ∈ U, ri ∈ R
}
. In particular,

for a ∈ R we have 〈a〉 =
{
ar
∣∣ r ∈ R}.

9.22 Note: In a field F , the only ideals are {0} and F . Indeed let A be an ideal in F
with A 6= {0}. Choose 0 6= a ∈ A. Since a ∈ A and a−1 ∈ F , we must have 1 = a a−1 ∈ A.
Given any element x ∈ F , since 1 ∈ A and x ∈ F we must have x = x · 1 ∈ A. Thus
A = F .

9.23 Definition: Let A and B be ideals in a ring R. The intersection, sum and the
product of A and B are the sets

A ∩B =
{
a ∈ R

∣∣ a ∈ A and a ∈ B
}
,

A+B =
{
a+ b

∣∣ a ∈ A, b ∈ B} , and

AB =
{ n∑
i=1

aibi

∣∣∣n ∈ Z+, ai ∈ A, bi ∈ B
}
.

As an exercise, show that A ∩B, A+B and AB are all ideals in R.

9.24 Example: In Z, for k, l ∈ Z+ verify that

〈k〉 ∩ 〈l〉 = 〈m〉 where m = lcm(k, l)

〈k〉+ 〈l〉 = 〈d〉 where d = gcd(k, l), and

〈k〉〈l〉 = 〈kl〉.

9.25 Theorem: (The First Isomorphism Theorem) Let φ : R → S be a homomorphism
of rings. Let K = Ker((φ). Then K is an ideal in R and we have R/K ∼= φ(R). Indeed
the map Φ : R/K → φ(R) given by Φ(a+K) = φ(a) is a ring isomorphism.

9.26 Theorem: (The Second Isomorphism Theorem) Let A and B be ideals in a ring R.
Then A is an ideal in A+B, A ∩B is an ideal in B, and

(A+B)/A ∼= B/(A ∩B).

9.27 Theorem: (The Third Isomorphism Theorem) Let A and B be ideals in a ring R
with A ⊆ B ⊆ R. Then B/A is an ideal in R/A and

(R/A)
/

(B/A) ∼= R/B.
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9.28 Example: Let d, n ∈ Z+ with d
∣∣n. Then the map φ : Zn → Zd given by φ(k) = k

is a ring homomorphism with Ker(φ) = 〈d〉. By the First Isomorphism Theorem, we have
Zn
/
〈d〉 ∼= Zd.

9.29 Example: Define a map φ : Q[x] → Q[
√

2] by φ(f) = f(
√

2). Then φ is a ho-
momorphism because φ(f + g) = (f + g)(

√
2) = f(

√
2) + g(

√
2) = φ(f) + φ(g) and

φ(fg) = (fg)(
√

2) = f(
√

2)g(
√

2) = φ(f)φ(g). Also note that φ is surjective because
φ(a+ bx) = a+ b

√
2 for a, b ∈ Q. Finally note that for f ∈ Q[x] we have

f(x) ∈ Ker(φ) ⇐⇒ f(
√

2) = 0 ∈ R ⇐⇒ f(
√

2) = f(−
√

2) = 0 ∈ R

⇐⇒ (x2 − 2)
∣∣f(x) ⇐⇒ f(x) ∈ 〈x2 − 2〉,

where we used the fact that for f(x) =
∑
cix

i ∈ Q[x] we have

f(±
√

2) =
(∑

c2k2k
)
±
(∑

c2k+12k
)√

2

so that f(
√

2) = 0 ⇐⇒ f(−
√

2) = 0 ⇐⇒
∑
c2k2k = 0 =

∑
c2k+12k. By the First

Isomorphism Theorem, we have Q[x]
/
〈x2 − 2〉 ∼= Q[

√
2].

9.30 Example: Define φ : R[x] → C by φ(f) = f(i). Then φ is a homomorphism since
φ(f+g) = (f+g)(i) = f(i)+g(i) = φ(f)+φ(g) and φ(fg) = (fg)(i) = f(i)g(i) = φ(f)φ(g).
The map φ is surjective because φ(a+ bx) = a+ bi for a, b ∈ R. Also, for f(x) ∈ R[x],

f(x) ∈ Ker(φ) ⇐⇒ f(i) = 0 ∈ C ⇐⇒ (x2+1)
∣∣f(x) ∈ R[x] ⇐⇒ f(x) ∈ 〈x2+1〉 ⊆ R[x].

Thus by the First Isomorphism Theorem, we have R[x]
/
〈x2 + 1〉 ∼= C.

9.31 Example: Define φ : Z[i] → Z5 by φ(a + bi) = a + 2b. The map φ is a ring
homomorphism because

φ
(
(a+ bi) + (c+ di)

)
= φ

(
(a+ c) + (b+ d)i

)
= (a+ c) + 2(b+ d)

= (a+ 2b) + (c+ 2d) = φ(a+ bi) + φ(c+ di) , and

φ
(
(a+ bi)(c+ di)

)
= φ

(
(ac− bd) + (ad+ bc)i

)
= (ac− bd) + 2(ad+ bc)

= ac+ 2ad+ 2bc+ 4bd = (a+ 2b)(c+ 2d) = φ(a+ bi)φ(c+ di).

Also note that φ is surjective because φ(a+ 0i) = a. Finally, note that

a+ bi ∈ Ker(φ) ⇐⇒ a+ 2b = 0 ∈ Z5 ⇐⇒ b = 2a ∈ Z5 ⇐⇒ a+ ib ∈ 〈2− i〉,

indeed if b = 2a then we have a + bi = a + 2a i = (2 − i)(ai) ∈ 〈2 − i〉 and conversely, if
a+ bi ∈ 〈2− i〉, say a+ bi = (2− i)(x+ yi) = (2x+ y) + (2y−x)i, then we have a = 2x+ y
and b = 2y − x so that 2a = 2(2x + y) = 4x + 2y = 2y − x = b ∈ Z5. By the First
Isomorphism Theorem, we have Z[i]

/
〈2− i〉 ∼= Z5.
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9.32 Definition: Let R be a commutative ring. Consider the evaluation homomorphism
φ : R[x] → Func(R,R) given by φ(f) = f , that is the map which sends the polynomial
f(x) to the function f(x). A polynomial f ∈ R[x] is equal to zero when all of its coefficients
are equal to zero. A function f ∈ Func(R,R) is equal to zero when we have f(a) = 0 for
all a ∈ R. The kernel of the evaluation homomorphism is

Ker(φ) =
{
f ∈ R[x]

∣∣ f(a) = 0 for all a ∈ R
}
.

The image φ
(
R[x]

)
⊆ Func(R,R) is called the ring of polynomial functions on R. By

the First Isomorphism Theorem, it is isomorphic to the quotient ring R[x]
/

Ker(φ).

9.33 Example: If R is an infinite field, then Ker(φ) = 0 since for f(x) ∈ R[x], if f(a) = 0
for all a ∈ R then f(x) has infinitely many roots, and so f(x) = 0 as a polynomial (a
non-zero polynomial of degree n ≥ 0 over a field has at most n roots). In this case, φ
is injective so the polynomial ring R[x] is isomorphic to the ring of polynomial functions
φ
(
R[x]

)
⊆ Func(R,R), and we often identify R[x] with φ

(
R[x]

)
.

If R is a finite field, the situation is quite different. In this case R[x] is infinite but
Func(R,R) is finite, so R[x] is certainly not isomorphic to a subring of Func(R,R). Let
us consider the case that R = Zp where p is prime. By Fermat’s Little Theorem, we know
that ap = a for all a ∈ Zp, and so every a ∈ Zp is a root of the polynomial p(x) = xp − x.
Since there are exactly p elements in Zp, it follows that p(x) factors as

p(x) = xp − x = (x− 0)(x− 1)(x− 2) · · · (x− (p− 1)).

For a polynomial f(x) ∈ Zp[x] we have

f(x) ∈ Ker(φ) ⇐⇒ f(a) = 0 for all a ∈ Zp ⇐⇒ (x− a)
∣∣f(x) for all a ∈ Zp

⇐⇒ p(x)
∣∣f(x) ⇐⇒ f(x) ∈

〈
p(x)

〉
= 〈xp − x〉.

Furthermore, we claim that φ is surjective. For a ∈ Zp, let ga(x) ∈ Zp[x] be the polynomial

ga(x) =

∏
i∈Zp,i6=a

(x− i)∏
i∈Zp,i6=a

(a− i)
.

Notice that for all k ∈ Zp we have

ga(k) = δa,k =

{
1 if k = a,

0 if k 6= a.

Given any function f(x) ∈ Func(Zp,Zp), for all k ∈ Zp we have∑
a∈Zp

f(a)ga(k) =
∑
a∈Zp

f(a)δa,k = f(k).

It follows that f(x) =
∑
a∈Zp

f(a)ga(x) ∈ Func(Zp,Zp). Notice that
∑
a∈Zp

f(a)ga(x) ∈ Zp[x]

and we have f(x) = φ
( ∑
a∈Zp

f(a)ga(x)
)

. Thus φ is surjective, as claimed. Thus the ring

of polynomial functions φ
(
Zp[x]

)
is equal to the ring of all functions Func(Zp,Zp), and by

the First Isomorphism Theorem, we have Zp[x]
/
〈xp − x〉 ∼= φ

(
Zp[x]

)
= Func(Zp,Zp) .

.
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Chapter 10. Factorization in Commutative Rings

10.1 Definition: Let R be a ring. An ideal P in R is called prime when P 6= R and for
all ideals A and B in R, if AB ⊆ P then either A ⊆ P or B ⊆ P . An ideal M in R is
called maximal when M 6= R and there is no ideal A in R with M ⊂6=A⊂6=R.

10.2 Example: As an exercise, use the above definition to show that the maximal ideals
in Z are the ideals of the form 〈p〉 with p prime, and the prime ideals in Z are the ideals
of the form 〈p〉 with p = 0 or p prime.

10.3 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R with P 6= R.
Then P is prime if and only if P has the property that for all a, b ∈ R, if ab ∈ P then
either a ∈ P or b ∈ P .

Proof: Since R is commutative with 1, we have 〈a〉 =
{
ar
∣∣r ∈ R} and 〈b〉 =

{
bs
∣∣s ∈ R}

and so

〈a〉〈b〉 =
{ n∑
i=1

aibi

∣∣∣ai ∈ 〈a〉, bi ∈ 〈b〉} =
{ n∑
i=1

(ari)(bsi)
∣∣∣ri, si ∈ R}

=
{ n∑
i=1

(ab)ti

∣∣∣ti ∈ R} = 〈ab〉.

Suppose that P is prime. Let a, b ∈ R with ab ∈ P . Then 〈a〉〈b〉 = 〈ab〉 ⊆ P and so, since
P is prime, either 〈a〉 ⊆ P or 〈b〉 ⊆ P , and hence either a ∈ P or b ∈ P .

Conversely, suppose that P has the property that for all a, b ∈ R, if ab ∈ P then either
a ∈ P or b ∈ P . Let A and B be ideals in R with AB ⊆ P . Suppose that A 6⊆ P . Choose
a ∈ A with a /∈ P . Let b ∈ B be arbitrary. Then ab ∈ AB ⊆ P and so, because of the
property held by P , either a ∈ P or b ∈ P . Since a /∈ P we must have b ∈ P . Thus B ⊆ P .

10.4 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R. Then P is
prime if and only if R/P is an integral domain.

Proof: Suppose that P is prime. Since P 6= R we have 1 /∈ P (since 〈1〉 = R) and so
1 +P 6= 0 +P ∈ P/R. Since R is commutative, so is R/P . Finally, note that R/P has no
zero divisors because for a, b ∈ R we have

(a+ P )(b+ P ) = (0 + P ) =⇒ ab+ P = 0 + P =⇒ ab ∈ P =⇒ a ∈ P or b ∈ P
=⇒ a+ P = 0 + P or b+ P = 0 + P.

Conversely, suppose that R/P is an integral domain. Since 1 + P 6= 0 + P ∈ R/P , it
follows that 1 /∈ P and so P 6= R. Let a, b ∈ R with ab ∈ P . Then we have ab+P = 0+P ,
and so (a + P )(b + P ) = 0 + P . Since R/P has no zero divisors, this implies that either
a+ P = 0 + P or b+ P = 0 + P , and so either a ∈ P or b ∈ P .

10.5 Example: Let R be a commutative ring with 1. Show that every maximal ideal in
R is also prime.

Solution: Let M be a maximal ideal in R. Let a, b ∈ R with ab ∈M . Suppose that a /∈M .
Then we have M ⊂6=M + 〈a〉 and so, since M is maximal, we must have M + 〈a〉 = R. In

particular 1 ∈M + 〈a〉, so we have 1 = m+ ar for some r ∈ R. Thus

b = b · 1 = b(m+ ar) = bm+ ab r ∈M .

We remark that this result also follows from the following theorem.
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10.6 Theorem: Let R be a commutative ring with 1. Let M be an ideal in R. Then M
is maximal if and only if R/M is a field.

Proof: Suppose M is maximal. Since M 6= R we have 1 /∈M and so 1+M 6= 0+M ∈ R/M .
Since R is commutative, so is R/M . Let a+M be a nonzero element in R/M . We must
show that a + M is a unit. Since a + M 6= 0 + M we have a /∈ M . Since a /∈ M we have
M ⊂6=M+〈a〉. Since M is maximal, we must have M+〈a〉 = R. In particular, 1 ∈M+〈a〉,
say 1 = m + ar with r ∈ R. Then 1 + M = ar + M = (a + M)(r + M) and so r + M is
the inverse of a+M .

Conversely, suppose that R/M is a field. Since 1 + M 6= 0 + M in R/M , we have
1 /∈ M so M 6= R. Let A be an ideal with M ⊆ A ⊆ R. Suppose A 6= M . Choose a ∈ A
with a /∈M . Since a /∈M we have a+M 6= 0 +M in R/M . Since R/M is a field, a+M
has an inverse, say (a+M)(b+M) = 1+M . Then ab+M = 1+M so we have 1−ab ∈M .
Since M ⊆ A we have 1−ab ∈ A. Since a ∈ A we have ab ∈ A, so 1 ∈ A and hence A = R.

10.7 Example: Find all prime and maximal ideals in Z (that is redo example 10.2) using
Theorems 10.4 and 10.6.

10.8 Example: Since Q[x]
/
〈x2 − 2〉 ∼= Q[

√
2], which is a field, it follows that 〈x2 − 2〉

is maximal (and prime). In R[x], however, we have (x2 − 2) = (x−
√

2)(x+
√

2), and so
the ideal 〈x2 − 2〉 is not maximal because 〈x2 − 2〉⊂6= 〈x −

√
2〉⊂6= R[x] and it is not prime

because (x−
√

2)(x+
√

2) ∈ 〈x2 − 2〉 but (x−
√

2) /∈ 〈x2 − 2〉 and (x+
√

2) /∈ 〈x2 − 2〉.

10.9 Example: In Z[x], we have 〈x〉 =
{
f ∈ Z[x]

∣∣f(0) = 0
}

. The ideal 〈x〉 is prime
because for f, g ∈ Z[x], if fg ∈ 〈x〉 then f(0)g(0) = 0 and so either f(0) = 0 or g(0) = 0.
But the ideal 〈x〉 is not maximal since 〈x〉⊂6= 〈2, x〉 =

{
f ∈ Z[x]

∣∣f(0) is even
}⊂6= Z[x].

10.10 Definition: Let R be a commutative ring with 1. Let a, b ∈ R. We say that a
divides b (or that a is a divisor or factor of b, or that b is a multiple of a), and we
write a

∣∣b, when b = ar for some r ∈ R. We say that a and b are associates, and we write

a ∼ b, when a
∣∣b and b

∣∣a. Note that association is an equivalence relation on R.

10.11 Theorem: Let R be a commutative ring with 1. Let a, b ∈ R. Then

(1) a
∣∣b if and only if b ∈ 〈a〉 if and only if 〈b〉 ⊆ 〈a〉,

(2) a ∼ b if and only if 〈a〉 = 〈b〉 if and only if a and b have the same multiples and divisors,
(3) a ∼ 0 if and only if a = 0 if and only if 〈a〉 = {0},
(4) a ∼ 1 if and only if a is a unit if and only if 〈a〉 = R.
(5) if R is an integral domain then a ∼ b if and only if b = au for some unit u ∈ R.

Proof: We prove Part (5) and leave the other proofs as an exercise. Suppose that b = au
where u ∈ R is a unit. Since b = au we have a|b and since a = bu−1 we have b|a. Since
a|b and b|a we have a ∼ b (we did not need to assume that R is an integral domain for
this direction). Now suppose that R is an integral domain and that a ∼ b, say a = br and
b = as with r, s ∈ R. Then we have b = as = brs so that b(1 − rs) = 0. Since R is an
integral domain, either b = 0 or 1− rs = 0. If b = 0 then a = br = 0, so we have b = a · u
for any unit u (for example u = 1). If 1− rs = 0 then rs = 1 so that r and s are units, so
we have b = au where u = s (which is a unit).

10.12 Example: In the ring Z, we have k ∼ ` ⇐⇒ k = ±`. Verify that in Z12 the
association classes are {0}, {1, 5, 7, 11}, {2, 10}, {3, 9}, {4, 8}, {6}.
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10.13 Definition: Let R be a commutative ring with 1. Let a ∈ R be a non-zero non-
unit. We say that a is reducible when a = bc for some non-units b, c ∈ R, and otherwise
we say that a is irreducible. We say that a is prime when for all b, c ∈ R, if a

∣∣bc then

either a
∣∣b or a

∣∣c.
10.14 Theorem: Let R be a commutative ring with 1. Let a, b ∈ R with a ∼ b. Then

(1) a = 0 if and only if b = 0,
(2) a is a unit if and only if b is a unit,
(3) a is reducible if and only if b is reducible,
(4) a is irreducible if and only if b is irreducible,
(5) a is prime if and only if b is prime.

Proof: The proof is left as an exercise.

10.15 Example: In the ring Z, for k ∈ Z, k is irreducible if and only if k is prime if and
only if k = ±p for some (positive) prime number p.

10.16 Example: As an exercise, verify that in the ring Z12, the irreducible elements are
2 and 10 and the prime elements are 2, 3, 9 and 10.

10.17 Example: Use the method of the Sieve of Eratosthenes to find several irreducible
elements in Z[

√
3 i] and also some irreducible elements which are not prime.

10.18 Theorem: Let R be a commutative ring with 1. Let a ∈ R. Then

(1) If a is irreducible then the divisors of a are the units in R and the associates of a in R.
(2) a is prime if and only if 〈a〉 is a non-zero prime ideal.

Proof: The proof is left as an exercise.

10.19 Theorem: Let R be an integral domain and let a ∈ R. Then

(1) if a is prime then a is irreducible,
(2) a is irreducible if and only if 〈a〉 is maximal amongst non-zero proper principal ideals,
(3) if R is a PID and a is irreducible, then a is prime.

Proof: To Prove Part (1), suppose that a is prime. Suppose that a = bc with b, c ∈ R.
Since a = bc we have a

∣∣bc and hence, since a is prime, either a|b or a|c. Suppose that a|b,
say b = ar. Then a = bc = arc so that a(1 − rc) = 0. Since R is an integral domain and
a 6= 0 it follows that rc = 1 so that c is a unit. A similar argument shows that if a|c then
b is a unit, and so a is irreducible, as required.

To prove Part (2), suppose that a is irreducible. Since a 6= 0 we have 〈a〉 6= 0 and
since a is not a unit we have 〈a〉 6= R. Let b ∈ R and suppose that 〈a〉 ⊆ 〈b〉 ⊆ R. Since
〈a〉 ⊆ 〈b〉 we have a ∈ 〈b〉, say a = bc with c ∈ R. Since a is irreducible, either b is a unit,
in which case 〈b〉 = R, or c is a unit in which case b ∼ a so that 〈b〉 = 〈a〉.

Suppose, conversely, that 〈a〉 is maximal amongst nonzero proper principal ideals in
R. Since 〈a〉 6= {0} we have a 6= 0 and since 〈a〉 6= R it follows that a is not a unit.
Suppose that a = bc where b, c ∈ R. Since a = bc we have a ∈ 〈b〉 so that 〈a〉 ⊆ 〈b〉. By
the maximality of 〈a〉, either 〈b〉 = 〈a〉 or 〈b〉 = R. If 〈b〉 = R then b is a unit. Suppose
that 〈b〉 = 〈a〉, say b = ar with r ∈ R. Then a = bc = arc so that a(1 − rc) = 0. Since
a(1− rc) = 0 and a 6= 0 and R is an integral domain, it follows that rc = 1 so that c is a
unit. This completes the proof of Part (2).

Finally note that if a is irreducible and R is a PID then, by Part (2), 〈a〉 is a maximal
ideal, hence 〈a〉 is a prime ideal, hence a is prime. This proves Part (3).
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10.20 Definition: A Euclidean domain (or ED) is an integral domain R together with
a function N : R \ {0} → N, called a norm, with the property that for all a, b ∈ R with
a 6= 0 there exist q, r ∈ R such that b = qa+ r and either r = 0 or N(r) < N(a).

10.21 Definition: A principal ideal domain (or PID) is an integral domain R such
that every ideal in R is principal.

10.22 Definition: A unique factorization domain (or UFD) is an integral domain R
with the property that for every nonzero non-unit a ∈ R we have

(1) a = a1a2 · · · al for some l ∈ Z+ and some irreducible elements ai ∈ R, and
(2) if a = a1a2 · · · al = b1b2 · · · bm where l,m ∈ Z+ and each ai and bj is irreducible, then
m = l and for some permutation σ ∈ Sm we have ai ∼ bσ(i) for all i.

10.23 Example: The ring Z is a Euclidean domain with norm given by N(k) = |k|.

10.24 Example: Every field F is a Euclidean domain, using any function N : F \{0} → N
as a norm. Indeed, given a, b ∈ F with a 6= 0 we can choose q = b

a and r = 0 to get
b = aq + r.

10.25 Example: If F is a field then F [x] is a Euclidean domain with norm N(f) = deg(f).

10.26 Example: Show that in the ring Z[
√

3 i], the elements 2 and 1±
√

3 i are irreducible
and 2 6∼ 1 ±

√
3 i. It follows that Z[

√
3 i] not a unique factorization domain because

4 = 2 · 2 = (1 +
√

3 i)(1−
√

3 i).

10.27 Theorem: Every Euclidean domain is a principal ideal domain.

Proof: Let R be a Euclidean domain with norm N . Let A be an ideal in R. If A = {0} then
A is principal with A = 〈0〉. Suppose that A 6= {0}. Choose a nonzero element 0 6= a ∈ A
of smallest possible norm. We claim that A = 〈a〉. Since a ∈ A we have 〈a〉 ⊆ A. Let
b ∈ A be arbitrary. Choose q, r ∈ R such that b = qa+ r and either r = 0 or N(r) < N(a).
Note that r = b− qa ∈ A so we must have r = 0 by the choice of a. Thus b = qa ∈ 〈a〉.

10.28 Definition: A ring R is called Noetherian when it satisfies the following condition,
which is called the ascending chain condition: for every ascending chain of ideals
A1 ⊆ A2,⊆ A3 ⊆ · · · in R, there exists n ∈ Z+ such that Ak = An for all k ≥ n.

10.29 Theorem: Every principal ideal domain is Noetherian.

Proof: Let R be a principal ideal domain. Let a1, a2, a3, · · · ∈ R with

〈a1〉 ⊆ 〈a2〉 ⊆ 〈a3〉 ⊆ · · · .

Let A =
∞⋃
k=1

〈ak〉. Verify that A is an ideal. Choose a ∈ R so that A = 〈a〉. Since a ∈ A, we

can choose n ∈ Z+ so that a ∈ 〈an〉. For all k ≥ n, we have 〈ak〉 ⊆ A = 〈a〉 ⊆ 〈an〉 ⊆ 〈ak〉
and so 〈ak〉 = 〈an〉.
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10.30 Theorem: Every principal ideal domain is a unique factorization domain.

Proof: Let R be a principal ideal domain. Let a ∈ R be a non-zero non-unit. We claim
that a has an irreducible factor. If a is irreducible then we are done. Suppose that a
is reducible, say a = a1b1 where a1 and b1 are non-units. Note that 〈a〉⊂6= 〈a1〉. If a1 is

irreducible then we are done. Suppose that a1 is reducible, say a1 = a2b2 where a2 and
b2 are non-units. Then a = a1b1 = a2b2b1 and 〈a〉⊂6= 〈a1〉⊂6= 〈a2〉. If a2 is irreducible then

we are done, and otherwise we continue this procedure. Eventually, the procedure must
end giving us an irreducible factor an of a, otherwise we would obtain an infinite chain of
ideals 〈a〉⊂6= 〈a1〉⊂6= 〈a2〉⊂6= · · ·, contradicting the fact that R is Noetherian.

Next we claim that a = a1a2 · · · al for some l ∈ Z+ and some irreducible ai ∈ R. If
a is irreducible then we are done. Suppose that a is reducible. Let a1 be an irreducible
factor of a, and say a = a1b1. Note that b1 is not a unit since, if it was then we would have
a ∼ a1, but a is reducible and a1 is not. If b1 is irreducible then we are done. Suppose
b1 is reducible. Let a2 be an irreducible factor of b1 and say b1 = a2b2. As above, note
that b2 is not a unit. If b2 is irreducible then we are done, and otherwise we continue the
procedure. Eventually, the procedure must end giving us a = a1a2 · · · anbn with each ai
and nn irreducible, otherwise we would obtain an infinite chain 〈a〉⊂6= 〈b1〉⊂6= 〈b2〉⊂6= · · ·.

Finally, we claim that if a = a1a2 · · · al = b1b2 · · · bl with l,m ∈ Z+ and each ai
and bj irreducible, then m = l and for some permutation σ ∈ Sm we have ai ∼ bσ(i)
for all i. Suppose that a = a1a2 · · · al = b1b2 · · · bm where l,m ∈ Z+ and the ai and bj
are irreducible. Since a1

∣∣a1a2 · · · al, we have a1
∣∣b1b2 · · · bm. Since a1 is irreducible and

R is a principal ideal domain, it follows that a1 is prime by Part 3 of Theorem 10.19.
Since a1 is prime and a1

∣∣b1b2 · · · bm, it follows that a1
∣∣bk for some k. After permuting

the elements bi we can assume a1
∣∣b1. Since b1 is irreducible, its divisors are units and

associates and, since a1 is not a unit, we have a1 ∼ b1. Since a1 ∼ b1 we have b1 = a1u for
some unit u. Thus we have a1a2 · · · al = b1b2 · · · bm = a1ub2b3 · · · bm, and by cancellation,
a2a3 · · · al = ub2b3 · · · bm. A suitable induction argument gives l = m and ai ∼ bi for all i.

10.31 Example: Show that Z[i] is a ED.

10.32 Example: Since Z[
√

3 i] is not aUFD, it cannot be a PID. Find an ideal in Z[
√

3 i]
which is not principal.

10.33 Example: Show that Z
[
1+
√
19 i

2

]
is a PID, but not a ED (under any norm).

.
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Chapter 11. Polynomial Rings

11.1 Note: Here are a few remarks about polynomials. Recall that R[x] denotes the ring
of polynomials with coefficients in the ring R, and RR denotes the ring of all functions
f : R→ R.

(1) A polynomial f ∈ R[x] determines a function f ∈ RR. Given f(x) =
n∑
i=0

aix
i ∈ R[x]

we obtain the function f : R→ R given by f(x) =
n∑
i=0

aix
i.

(2) Although we do not usually distinguish notationally between the polynomial f ∈ R[x]
and its corresponding function f ∈ RR, they are not always identical. If the ring R is
not commutative then multiplication of polynomials does not agree with multiplication of
functions. For f, g ∈ R[x] given by f(x) = a + bx and g(x) = c + dx, in the ring R[x] we
have (fg)(x) = (a+ bx)(c+ dx) = (ac) + (ad+ bc)x+ (bd)x2, but in the ring RR we have
(fg)(x) = (a+ bx)(c+ dx) = ac+ adx+ bxc+ bxdx.

(3) Equality of polynomials may not agree with equality of functions. For f, g ∈ R[x] given

by f(x) =
n∑
i=0

aix
i and g(x) =

m∑
i=0

bix
i we have f = g ∈ R[x] if and only if ai = bi for all i

(and if say n < m then bi = ai = 0 for i > n), but f = g ∈ RR if and only if f(x) = g(x)
for all x ∈ R. These two notions of equality do not always agree. For example if R is
finite then the ring R[x] is infinite but the ring RR is finite. Indeed if |R| = n then R[x]
is countably infinite but

∣∣RR∣∣ = nn. For a more specific example, if f(x) = xp − x then

we have f 6= 0 ∈ Zp[x] (because its coefficients are not equal to zero) but f = 0 ∈ Zp
Zp

because, by Fermat’s Little Theorem, we have f(x) = 0 for all x ∈ Zp.

(4) Recall that for f(x) =
n∑
i=0

aix
i with each ai ∈ R and an 6= 0, the element an ∈ R is called

the leading coefficient of f , and the non-negative integer n is called the degree of f(x), and
we write deg(f) = n. For convenience, we also define deg(0) = −1. When R is an integral
domain, it is easy to see that for 0 6= f, g ∈ R[x] we have deg(fg) = deg(f)+deg(g). When
R is not an integral domain, however, we only have deg(fg) ≤ deg(f) + deg(g) because
the product of the two leading coefficients can be equal to zero.

(5) When R is an integral domain, because we have deg(fg) = deg(f) + deg(g) for all
0 6= f, g ∈ R[x], it is easy to see that the units in R[x] are the constant polynomials
f(x) = c where c is a unit in R. In particular, when F is a field, the units in F [x] are the
elements f ∈ F [x] with deg(f) = 0. In the ring Z4[x] (which is not an integral domain)
we have (1 + 2x)2 = 1 + 4x+ 4x2 = 1, so f(x) = (1 + 2x) is a unit in Z4[x].
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11.2 Theorem: (Division Algorithm) Let R be a ring. Let f, g ∈ R[x] and suppose that
the leading coefficient of g is a unit in R. Then there exist unique polynomials q, r ∈ R
such that f = qg + r and deg(r) < deg(g).

Proof: First we prove existence. If deg(f) < deg(g) then we can take q = 0 and r = f . Sup-

pose that deg(f ≥ deg(g), Say f(x) =
n∑
i=0

aix
i with ai ∈ R and an 6= 0 and g(x) =

m∑
i=0

bix
i

with bi ∈ R and bm is a unit. Note that the polynomial anbm
−1xn−mg(x) has degree n and

leading coefficient an. It follows that the polynomial f(x)− anbm−1xn−mg(x) has degree
smaller than n (because the leading coefficients cancel). We can suppose, inductively, that
there exist polynomials p, r ∈ R[x] such that f(x) − anbm−1xn−mg(x) = p(x)g(x) + r(x)
and deg(r) < deg(g). Then we have f = qg + r by taking q(x) = anbm

−1xn−m − p(x).
Next we prove uniqueness. Suppose that f = qg + r = pg + s where q, p, r, s ∈ R[x]

with deg(r) < deg(g) and deg(s) < deg(g). Then we have (q − p)g = s − r and so
deg

(
(q − p)g

)
= deg(s − r). Since the leading coefficient of g is a unit (hence not a zero

divisor), it follows that deg
(
(q − p)g

)
= deg(q − p) + deg(g). If we had q − p 6= 0 then we

would have deg
(
(q − p)g

)
≥ deg(g) but deg(s− r) < deg(g), giving a contradiction. Thus

we must have q− p = 0. Since q− p = 0 we have s− r = (q− p)g = 0. Since q− p = 0 and
s− r = 0 we have q = p and r = s, proving uniqueness.

11.3 Corollary: (The Remainder Theorem) Let R be a ring, let f ∈ R[x], and let a ∈ R.
When we divide f(x) by (x − a) to obtain the quotient q(x) and remainder r(x), the
remainder is the constant polynomial r(x) = f(a).

Proof: Use the division algorithm to obtain q, r ∈ R[x] such that f = q(x)(x − a) + r(x)
and deg(r) < deg(x − a). Since deg(x − a) = 1 we have deg(r) ∈ {−1, 0}, and so r is a
constant polynomial, say r(x) = c with c ∈ R. Then we have f(x) = q(x)(x− a) + c. Put
in x = a to get f(a) = q(a)(a− a) + c = q(a) · 0 + c = c.

11.4 Corollary: (The Factor Theorem) Let R be a commutative ring, let f ∈ R[x] and
let a ∈ R. Then f(a) = 0 if and only if (x− a)

∣∣f(x).

Proof: Suppose that f(a) = 0. Choose q, r ∈ R[x] such that f(x) = q(x)(x − a) + r(x)
and deg(r) < deg(x − a). Then r(x) is the constant polynomial r(x) = f(a) = 0 and so
we have f(x) = q(x)(x − a). Since f(x) = (x − a)q(x) we have (x − a)

∣∣f(x). Conversely,

suppose that (x − a)
∣∣f(a) and choose p ∈ R[x] so that f(x) = (x − a)p(x). Then f(a) =

(a− a)p(a) = 0 · p(a) = 0.

11.5 Definition: Let R be a commutative ring, let f ∈ R[x], and let a ∈ R. We say
that a is a root of f when f(a) = 0. When f 6= 0, we define the multiplicity of a as a
root of f to be the largest m = m(f, a) ∈ N such that (x − a)m

∣∣f(x) (where we use the
convention that (x− a)0 = 1). Note that a is a root of f if and only if m(f, a) ≥ 1.

11.6 Example: Let f(x) = x3 − 3x− 2 ∈ Q[x]. Since f(x) = (x+ 1)2(x− 2) ∈ Q[x], we
have m(f, 2) = 1 and m(f,−1) = 2.

11.7 Example: Let p be an odd prime and let f(x) = xp − a ∈ Zp[x]. Find m(f, a).
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11.8 Theorem: (The Roots Theorem) Let R be an integral domain, let 0 6= f ∈ R[x]
and let n = deg(f). Then

(1) f has at most n distinct roots in R, and
(2) if a1, a2, · · · , a` are all of the distinct roots of f in R and mi = m(f, ai) for 1 ≤ i ≤ `,

then (x− a1)m1(x− a2)m2 · · · (x− a`)m`
∣∣f(x) and so

∑̀
i=1

m(f, a) ≤ n.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. If deg(f) = 0,
then f(x) = c for some 0 6= c ∈ R, and so f(x) has no roots. Let f be a polynomial
with deg(f) = n ≥ 1 and suppose, inductively, that every polynomial g ∈ R[x] with
deg(g) = n − 1 has at most n − 1 distinct roots. Suppose that a is a root of f in R.
By the Factor Theorem, (x − a)

∣∣f(x) so we can choose a polynomial g ∈ R[x] so that
f(x) = (x − a)g(x). Note that deg(g) = n − 1 so, by the induction hypothesis, g has at
most n− 1 distinct roots. Let b ∈ R be any root of f with b 6= a. Since f(x) = (x− a)g(x)
and f(b) = 0 we have 0 = f(b) = (b− a)g(b). Since (b− a)g(b) = 0 and (b− a) 6= 0 and R
has no zero divisors, it follows that g(b) = 0. Thus b must be one of the roots of g. Since
every root b of f with b 6= a is equal to one of the roots of g, and since g has at most n− 1
distinct roots, it follows that f has at most n distinct roots, as required.

11.9 Example: When R is not an integral domain, a polynomial f ∈ R[x] of degree n
can have more than n roots. For example, in the ring Z6[x] the polynomial f(x) = x2 + x
has roots 0, 2, 3 and 5.

11.10 Theorem: (The Rational Roots Theorem) Let f(x)=
n∑
i=0

cix
i ∈ Z[x] where n∈Z+

and cn 6=0. Let r, s ∈ Z with s 6= 0 and gcd(r, s) = 1. Then if f
(
r
s

)
= 0 then r|c0 and s|cn.

Proof: Suppose that f
(
r
s

)
= 0, that is c0 + c1

r
s + c2

r2

s2 + · · ·+ cn
rn

sn = 0. Multiply by sn

to get
0 = c0s

n + c1s
n−1r1 + · · ·+ cn−1s

1rn−1 + cnr
n.

Thus we have

c0s
n = −r(c1sn−1 + · · ·+ cn−1s

1rn−2 + cnr
n−1) and

cnr
n = −s

(
c0s

n−1 + c1s
n−2r1 + · · ·+ cn−1r

n−1)
and it follows that r

∣∣c0sn and that s
∣∣cnrn. Since gcd(r, s) = 1 we also have gcd(r, sn) = 1,

and since r
∣∣c0sn it follows that r|c0. Since gcd(s, r) = 1 we also have gcd(s, rn) = 1, and

since s
∣∣cnrn it follows that s|cn.

11.11 Example: Show that
√

1 +
√

2 /∈ Q.
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11.12 Note: Here are a few remarks about irreducible polynomials.

(1) When F is a field, we know that F [x] is a unique factorization domain. For f ∈ F [x] we
know that f = 0 if and only if deg(f) = −1, and f is a unit if and only if deg(f) = 0, and
for 0 6= f, g ∈ F [x] we know that deg(fg) = deg(f) + deg(g). It follows that for f ∈ F [x],
if deg(f) = 1 then f is irreducible. It also follows that for f ∈ F [x], if deg(f) = 2 or 3
then f is reducible in F [x] if and only if f has a f has a root in F .

(2) For f ∈ C[x], we know (from the Fundamental Theorem of Algebra) that f is irreducible
if and only if deg(f) = 1. For f ∈ R[x], we know that f is irreducible polynomial if and
only if either deg(f) = 1 or f(x) = ax2 + bx + c for some a, b, c ∈ R with a 6= 0 and
b2 − 4ac < 0.

(3) When p is a fairly small prime number and n is a fairly small positive integer, it is easy
to list all reducible and irreducible polynomials f ∈ Zp[x] with deg(f) ≤ n. Note that it
suffices to list monic polynomials (since for f ∈ Zp[x] and 0 6= c ∈ Zp[x] we have f ∼ cf).
We start by listing all monic polynomials of degree 1, that is all polynomials of the form
f(x) = x+ a with a ∈ Zp, and noting that they are all irreducible. Having constructed all
reducible and irreducible monic polynomials of all degrees less than n, we can construct
all of the reducible monic polynomials of degree n by forming products of the reducible
monic polynomials of smaller degree in all possible ways, and then all the remaining monic
polynomials of degree n must be irreducible.

11.13 Example: Note that f(x) = x3 − 3x+ 1 is irreducible in Q[x] because it is cubic
and has no roots in Q by the Rational Roots Theorem. The same polynomial is reducible
in R[x] and in C[x] because it is cubic.

11.14 Example: List all monic reducible and irreducible polynomials in Z2[x] of degree
less than 4, then determine the number of irreducible polynomials in Z2[x] of degree 4.

11.15 Definition: Let R be an integral domain. Define a binary relation on the set
R× (R \ {0}) by stipulating that

(a, b) ∼ (b, d) ⇐⇒ ad = bc.

It is easy to check that this is an equivalence relation. Let

F = Q(R) =
(
R× (R \ {0})

)/
∼ =

{
[(a, b)]

∣∣∣a, b ∈ R, b 6= 0
}
.

Define addition an multiplication operations on F by[
(a, b)

]
+
[
(c, d)

]
=
[
(ad+ bc , bd)

]
,[

(a, b)
] [

(c, d)
]

=
[
(ac , bd)

]
.

It is not hard to verify that these operations are well-defined (noting that when b 6= 0 and
d 6= 0 we also have bd 6= 0 because R is an integral domain) and that they make F into a
field with zero element [(0, 1)] and identity element [(1, 1)]. This field F = Q(R) is called
the quotient field of the integral domain R. For a, b ∈ R with b 6= 0 we use the following
notation:

a
b = [(a, b)] , a = [(a, 1)] , 1

b = [(1, b)].

The use of the notation a = [(a, 1)], for a ∈ R, allows to consider R as a subring of its
quotient field F .
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11.16 Example: The quotient field of Z is equal to Q, and the quotient field of Z[
√

2] is
equal to Q[

√
2].

11.17 Example: When R is an integral domain, the quotient field of the polynomial ring
R[x] is the field of rational functions R(x) =

{
f
g

∣∣f, g ∈ R[x], g 6= 0
}

. More generally,

the quotient field of R[x1, · · · , xn] is the field of rational functions R(x1, · · · , xn).

11.18 Definition: Let R be a unique factorization domain. For a polynomial f ∈ R[x],
the content of f , written as c(f), is a greatest common divisor of the coefficients of f .
Note that the greatest common divisor is unique up to association and so c(f) is unique up
to association, that is up to multiplication by a unit. We often abuse notation by writing
c(f) = a when in fact c(f) ∼ a. We say that f is primitive when c(f) = 1 (that is when
c(f) is a unit). Note that f = 0 if and only if c(f) = 0. Note that when f ∈ R[x] and
a ∈ R we have c(af) = a c(f). In particular, we have f = c(f) g for a primitive polynomial
g ∈ R[x].

11.19 Example: For f(x) = 6x + 30 ∈ Z[x] we have c(f) = 6. Since deg(f) = 1, it
follows that f is irreducible in Q[x]. But since c(f) = 6, it follows that f is reducible in
Z[x], indeed in Z[x] we have f(x) = 2 · 3 · (x+ 5).

11.20 Theorem: (Gauss’ Lemma) Let R be a UFD with quotient field F .

(1) For all f, g ∈ R[x] we have c(fg) = c(f)c(g).
(2) Let 0 6= f ∈ R[x] and let g(x) = 1

c(f)f(x) ∈ R[x]. Then f is irreducible in F [x] if and

only if g is irreducible in R[x].
(3) Let 0 6= f ∈ R[x]. Then f is reducible in F [x] if and only if f can be factored as a
product of two nonconstant polynomials in R[x].

Proof: Let f, g ∈ R[x]. If f = 0 or g = 0 then we have c(fg) = 0 = c(f)c(g). Suppose that
f 6= 0 and g 6= 0. Let h(x) = 1

c(f)f(x) and k(x) = 1
c(g)g(x). Then we have h, k ∈ R[x] with

c(h) = c(k) = 1 and fg = c(f)c(g)hk so that c(fg) = c(f)c(g)c(hk). Thus to prove Part (1)

it suffices to show that c(hk) = 1. Let h(x) =
n∑
i=0

aix
i and k(x) =

m∑
i=0

bix
i with an 6= 0 and

bm 6= 0. Suppose, for a contradiction, that c(hk) 6= 1. Let p be a prime factor of c(hk).
Then p divides all of the coefficients of (hk)(x) = (a0b0)+(a1b0+a0b1)x+· · ·+(anbm)xn+m.
Since c(h) = 1, p does not divide all the coefficients of h(x), so we can choose an index
r ≥ 0 so that p|ai for all i < r and p6 |ar. Since c(k) = 1 we can choose an index s ≥ 0 so
that p|bi for all i < s and p6 |bs. Since p divides every coefficient of (hk)(x), it follows that
in particular p divides the coefficient

cr+s = a0br+s + a1br+s−1 + · · ·+ arbs + · · ·+ ar+s−1b1 + ar+s.

Since p|cr+s and p|ai for all i < r and p|bi for all i < s it follows that p|arbs. Since p is
prime and p|arbs it follows that p|ar or p|bs. But r and s were chosen so that p6 |ar and
p6 |bs so we have obtained the desired contradiction. This proves Part (1).

To prove Parts (2) and (3), let 0 6= f(x) ∈ R[x] and let g(x) = 1
c(f)f(x), and note that

g ∈ R[x] with c(g) = 1. Suppose that g is reducible in R[x], say g(x) = h(x)k(x) where
h(x) and k(x) are non-units in R[x]. Since c(h)c(k) = c(hk) = c(g) = 1 it follows that
c(h) = c(k) = 1. Note that h(x) cannot be a constant polynomial since if we had h(x) = r
with r ∈ R, then we would have c(h) = r and also c(h) = 1 so that r is a unit in R, but then
h would be a unit in R[x]. Similarly k(x) cannot be a constant polynomial. Since h(x) and
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k(x) are nonconstant polynomials in R[x], they are also nonconstant polynomials in F [x].
Since f(x) = c(f)g(x) = c(f)h(x)k(x) and since c(f)h(x) and k(x) are both nonconstant
polynomials (hence nonunits) in F [x], it follows that f(x) is reducible in F [x].

Conversely, suppose that f(x) is reducible in F [x], say f(x) = h(x)k(x) where h
and k are nonzero, nonunits in F [x]. Since h and k are nonzero nonunits in F [x], they
are nonconstant polynomials. Let a be a least common multiple of the denominators
of the coefficients of h(x) and let b be a least common multiple of denominators of the
coefficients of k(x), and note that ah(x) ∈ R[x] and bk(x) ∈ R[x]. Let p(x) = 1

c(ah)ah(x)

and let q(x) = 1
c(bk)bk(x) and note that p(x), q(x) ∈ R[x] with c(p) = c(q) = 1 and that

deg(p)=deg(h) and deg(q)=deg(k). Since f(x)=ah(x) bk(x)=c(ah)c(bk)p(x)q(x) we have
c(f) = c(ah)c(bk)c(pq) = c(ah)c(bk) so g(x) = 1

c(f)f(x) = 1
c(ah)c(bk)ah(x) bk(x) = p(x)q(x).

Since g(x) = p(x)q(x) where p(x) and q(x) are nonconstant polynomials in R[x], we see
that g(x) is reducible in R[x].

11.21 Theorem: (Modular Reduction) Let f(x)=
n∑
i=0

cix
i with n∈Z+, ci∈Z and cn 6=0.

Let p be a prime number with p 6
∣∣cn. Let f (x) =

n∑
i=0

ci x
i ∈ Zp[x] where ci = [ci] ∈ Zp.

If f is irreducible in Zp[x] then f is irreducible in Q[x].

Proof: Suppose that f(x) is reducible in Q[x]. By Gauss’ Lemma, we can choose two

nonconstant polynomials g, h ∈ Z[x] such that f = gh ∈ Z[x]. Write g(x) =
k∑
i=0

aix
k ∈ Z[x]

and h(x) =
∑̀
i=0

bix
i ∈ Z[x] with ak 6= 0, b` 6= 0 and k, ` ≥ 1. Let g =

k∑
i=0

aix
i ∈ Zp[x]

and h(x) =
∑̀
i=0

bix
i ∈ Zp[x], and note that f = g h ∈ Zp[x]. Since cn = akb` and p6 |cn it

follows that p6 |ak and p6 |b` in Z so ak 6= 0 and b` 6= 0 in Zp. Thus deg(g) = deg(g) = k
and deg(h) = deg(h) = ` so that g and h are nonconstant polynomials in Zp[x], and so
the polynomial f = gh is reducible in Zp[x].

11.22 Example: Prove that f(x) = x5 +2x+4 is irreducible in Q[x] by working in Z3[x].

11.23 Theorem: (Eisenstein’s Criterion) Let f(x) =
n∑
i=0

cix
i with n ∈ Z+, ci ∈ Z and

cn 6=0. Let p be a prime number such that pi|ci for 0 ≤ i < n and p6
∣∣cn and p26

∣∣c0. Then f
is irreducible in Q[x].

Proof: Suppose, for a contradiction, that f(x) is reducible in Q[x]. By Gauss’ Lemma,
we can choose two nonconstant polynomials g, h ∈ Z[x] such that f = gh ∈ Z[x]. Write

g(x) =
k∑
i=0

aix
k ∈ Z[x] and h(x) =

∑̀
i=0

bix
i ∈ Z[x] with k, ` ≥ 1 and ak 6= 0, b` 6= 0. Since

c0 = a0b0 and p|c0 but p26 |c0, it follows that p divides exactly one of the two numbers a0
and b0. Suppose that p divides a0 but not b0 (the case that p divides b0 but not a0 is
similar). Since p|c1, that is p

∣∣(a0b1 + a1b0), and p|a0 it follows that p|a1b0, and since p6 |b0
it follows that p|a1. Since p|c2, that is p

∣∣(a0b2 + a1b1 + a2b0) and p|a0 and p|a1, it follows
that p|a2b0, and since p 6 |b0 it then follows that p|a2. Repeating this argument we find,
inductively, that p|ai for all i ≥ 0, and in particular we have p|ak. Since cn = akb` and
p|ak it follows that p|cn, giving the desired contradiction.
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11.24 Example: Note that f(x) = 5x5 + 3x4 − 18x3 + 12x+ 6 is irreducible in Q[x] by
Eisenstein’s Criterion using p = 3.

11.25 Example: Let p be a prime number. Show that f(x) = 1 + x+ x2 + · · ·+ xp−1 is
irreducible in Q[x],

11.26 Theorem: If R is a UFD then so is R[x].

Proof: Suppose that R is a UFD and let F be the quotient field of R. Note that the units
in R[x] are the constant polynomials which are also units in R. Let f ∈ R[x] be a non-zero
non-unit. If f is a constant polynomial, then the factorization of f in R[x] is the same as
the factorization of f in R. Suppose that deg(f) ≥ 1. Let g = 1

c(f) f so that g ∈ R[x]

with c(g) = 1. The factorization of c(f) in R[x] is the same as the factorization in R, so
it suffices to show that the polynomial g factors uniquely into irreducibles in R[x]. Since
F [x] is a ED, hence a UFD, we know that g factors into irreducibles in F [x]. By Gauss’
Lemma, we can multiply each of the irreducible factors in F [x] by an element of F to write
g as a product of irreducible factors in R[x], say g = f1f2 · · · f` where each fj is irreducible
in R[x]. Since c(g) = 1 we must have c(fj) = 1 for each index j.

Suppose that g = f1f2 · · · f` = g1g2 · · · gm where fj and gk are irreducible in R[x]
with c(fj) = c(gk) = 1 for all j, k. Note that each fj must be non-constant since if we
had fj(x) = r ∈ R then we would have c(fj) = r and c(fj) = 1 so that r is a unit in R,
but then fj would be a unit in R[x]. Similarly each gk is non-constant. It follows that
the polynomials fj and gk are also irreducible in F [x]. By unique factorization in F [x],
we must have m = ` and, after possibly reordering the polynomials gk, we have fj ∼ gj
in F [x] for all indices j. Since fj ∼ gj in F [x], we have gj = ufj for some 0 6= u ∈ F .
Say u = a

b where a, b ∈ R with gcd(a, b) = 1. Then we have a fj = b gj in R[x]. Since
c(fj) = c(gj) = 1 we have c(afj) = a and c(bgj) = b and it follows that a ∼ b in R, hence
a = bv for some unit v ∈ R. Thus we have gj = ufj = a

b fj = vfj and so fj ∼ gj in R[x].

11.27 Corollary: If R is a UFD then so is the polynomial ring R[x1, x2, · · · , xn].
.
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