Chapter 5. Cyclotomic Extensions

5.1 Definition: For n € Z*, the n'" cyclotomic polynomial is the polynomial

D (2) = [ (@ - wb)

where w = ¢'2™/™ and U,, = {k € Zy| ged(k,n) = 1}.

5.2 Theorem: The cyclotomic polynomials have the following properties.
(1) 2" =1 =[] ®a(x),
d|n
(2) G () € Zlz],
(3) ©1(0) = —1 and ®,,(0) =1 for n > 2,
(4) When p is prime and k € ZT, ®,(z) = 2P~ '+ 2P 2+ -+ z+1 and D (z) = (I>p(:cpk71)
and hence @, (1) = p.

Proof: The roots of £™ — 1 are the elements in the cyclic group C,, = {w"C ’k € Zn}. The
subgroups of C,, are the cyclic groups (w¥) = {l,wk,w%, e ,w”_k} where k:‘n Each
element of C,, (that is each root of ™ — 1) is a generators of one of these cyclic subgroups.
The roots of ®4(x) are the generators of the subgroup (w™'®). This proves Part (1).

We prove Part (2) by induction on n. We have ®;(z) = x — 1 € Z[z]. Suppose,
inductively, that ®;(z) € Z[x] for all K < n. By Part (1), 2" — 1 = [ ®4(z) = ¢, (x)g(2)

d|n
where g(z) = [] ®a4(z). By our induction hypothesis, g(z) € Z[x]. Since 2" — 1 € Z[z]
d|n,d#n

and g(x) € Z[x] and g is monic, it follows that when we perform long division of 2™ — 1
by g(z), the quotient ®,,(x) lies in Z[x|. This proves Part (2).

A similar induction argument may be used to prove Part (3). We have ®;(z) =2 —1

and ®o(z) = = + 1 so that ®1(0) = —1 and ®2(0) = 1. Suppose, inductively, that

$,(0) = 1 for 1 < k < n. From Part (1) we have 2" — 1 = &, (2)®_1(z)h(x) where

h(z) = IT ®,y(x). Put in z =0 to get —1 = @,,(0)(—1)(1) and so ®,(0) = 1.
d|n,d#1,d#n

Let us prove Part (4). From Part (1) we know that 27 —1 = ®,(z)®;(z) = ®,(z)(z—1)

and so
Cpx) = ——F =27+ ta L

Similarly, 27" — 1 = Do [ Pa(z) =Dy (x)(a:pI%l —1) and so
dpk—1

k
L |

k—1
P —1

—1

By (1) = = T T 1= 8, ().



5.3 Theorem: Let p be prime in Z* and let g € Zy[z]|. Then g(x)? = g(aP).

m .

= Y ¢x' € Zplx]. When m = 0, since co? = ¢o (by Fermat’s Little
i=0

Theorem), we have g(z)P = co? = ¢o = g(zP). Let m > 1 and suppose, inductively, that

m—1
for h(z) = > c;z® we have h(z)P = h(xP). Then
=0

(3

Proof: Let g(x)

g(x)? = (Co +cix+ -+ cmcm)p = (Co +cx+--+ cm,lxmfl)p + (cx™)P
= (co+ c12? + coz® + -+ + cmfw(m*l)p) +epPa™?
= o+ 12P + 2% 4 - 12 ™TIP e P = g(2P)

where on the first line we used the Binomial Theorem, noting that all terms are 0 mod p
except the first and last, and on the second line we used the inductive hypothesis, and on
the third line we used the fact that ¢,,,’ = ¢,, which follows from Fermat’s Little Theorem.

5.4 Theorem: (Gauss) Let n € Z*. Then ®,,(x) is irreducible in Q[z].

Proof: Let w be a root of ®,,(z). Let f € Q[z] be the minimal polynomial of w. Note that
f ‘@n. We shall show that q)n‘ f by showing that every root of ®,, is also a root of f. Note
that w is integral over Z ,since it is a root of the monic polynomial ®,, € Z[z], and so we
have f € Z[x]. Also since w is a root of 2™ —1 we have f‘:r:”—l in Q[z], say 2" —1 = f(z)g(x)
where g € Q[z]. Since 2™ — 1 € Z[z] and f € Z[z] and f is monic, when we perform long
division of 2™ — 1 by f(x), the quotient g(z) lies in Z[x]. Let u be a root of f. Since
f‘x” — 1, u is also a root of ™ — 1, and so w is an n'" root of 1. Let p be a prime in Z*
with ged(p,n) = 1. Then u? is also an n'*® root of 1. Since u? is a root of " —1 = f(z)g(z),
we know that either f(u”) =0 or g(uP) = 0. Suppose, for a contradiction, that f(u?) # 0.
Then we must have g(u”) = 0, so u is a root of the polynomial h(z) = g(«P). Since f is
the minimal polynomial of u we have f|h, say h = fk € Q[z]. As above, since h, f € Z[z]
with f monic, we have k € Z[z]. Reduce the coefficients of h, f and k modulo p to get
h = fk € Zy[z]. Note that h(z) = g(zP) = g(z)P from the above Lemma. Let ¢ be an
irreducible factor of f in Z,[z]. Since ?‘7 and fk = h = gP, it follows that ?}gp and hence
?}g. Since ™ — 1 = fg € Z[z], reducing modulo p gives 2" — 1 = fg € Z,[z]. Since ?’f
and ?\ g we have EQ‘:U” — 1 and hence ¢ is a common divisor of " — 1 and %(w” —1)in
Zylx]. But d%(x" —1) = nz" ! and ged(p,n) = 1 so that n is invertible in Z,, and so
we have ged (x” -1, d%(:l:" — 1)) = ged (:c” -1, nx”_l) = gcd(—l,naz”_l) = 1. Thus we
have obtained the desired contradiction and so f(uP) = 0.

We have shown that if u is a root of of f and if p is a prime with ged(p,n) = 1 then
uP is also a root of f. Now let k € Z* with ged(k,n) = 1. Write k = pyps---p; where
each p; is prime and note that since ged(k,n) = 1 we have ged(p;,n) = 1 for all indices i.
Since w is a root of f, we see that each of w, wP', wPP2 ... wPP2Pi = w* is also a
root of f. Since w” is a root of f for all k € ZT with ged(k,n) = 1 it follows that every
root of ®,, is also a root of f and so q)n(x)‘f(a:) Since @n}f and f‘@n and f and ®,, are
monic, we have ®,, = f. Thus ®,, is equal to the minimal polynomial of w and so ®,, is
irreducible.



5.5 Corollary: Let w be a primitive n*® root of 1. Then Q(w) is Galois over Q with
[Q(w) : Q] = ¢(n), and we have AutgQ(w) = U,,.

Proof: Since the roots of ®,(x) are the elements w* with k € U,,, we see that all the roots
of @, lie in Q(w) so that Q(w) is the splitting field of ®,,(z) over Q (it is also the splitting
field of f(x) = 2™ — 1 over Q). Thus Q(w) is Galois over Q. Since ®,, is the minimal
polynomial of w and deg(®,,) = ¢(n), we have [Q(w) : Q] = ¢(n). Again since the roots
of ®,, are the elements w” with k € U,,, we see that Homg (Q(w), C) = {O'k’k‘ € Un} where
o is the homomorphism with o, (w) = w*. Since Q(w) is Galois over Q, we know that
AutgQ(w) = Homg(Q(w), C) and so we can define a bijective map ¢ : U,, — AutgQ(w)
by (k) = o. Finally, note that ¥ is a homomorphism because for k,l € U, we have
opo(w) = op(w') = (W) = W = og(w) so that P(k)Y (1) = opor = o = Y(kl).

5.6 Corollary: Letn € Z*. Then the regular n-gon is constructible (in the ancient Greek
sense) if and only if n is of the form n = 2¥ppy - - p; where [ > 0 and each p; is a Fermat
prime (that is a prime p of the form p = 2™ + 1 for some m € Z™).

Proof: T may include a proof later.



