
Chapter 5. Cyclotomic Extensions

5.1 Definition: For n ∈ Z+, the nth cyclotomic polynomial is the polynomial

Φn(x) =
∏
k∈Un

(x− wk)

where w = ei 2π/n and Un =
{
k ∈ Zn

∣∣ gcd(k, n) = 1
}

.

5.2 Theorem: The cyclotomic polynomials have the following properties.

(1) xn − 1 =
∏
d|n

Φd(x),

(2) Φn(x) ∈ Z[x],
(3) Φ1(0) = −1 and Φn(0) = 1 for n ≥ 2,

(4) When p is prime and k ∈ Z+, Φp(x) = xp−1+xp−2+· · ·+x+1 and Φpk(x) = Φp
(
xp

k−1)
and hence Φpk(1) = p.

Proof: The roots of xn − 1 are the elements in the cyclic group Cn =
{
wk
∣∣k ∈ Zn

}
. The

subgroups of Cn are the cyclic groups (wk) =
{

1, wk, w2k, · · · , wn−k
}

where k
∣∣n. Each

element of Cn (that is each root of xn− 1) is a generators of one of these cyclic subgroups.
The roots of Φd(x) are the generators of the subgroup (wn/d). This proves Part (1).

We prove Part (2) by induction on n. We have Φ1(x) = x − 1 ∈ Z[x]. Suppose,
inductively, that Φk(x) ∈ Z[x] for all k < n. By Part (1), xn − 1 =

∏
d|n

Φd(x) = Φn(x)g(x)

where g(x) =
∏

d|n,d6=n
Φd(x). By our induction hypothesis, g(x) ∈ Z[x]. Since xn− 1 ∈ Z[x]

and g(x) ∈ Z[x] and g is monic, it follows that when we perform long division of xn − 1
by g(x), the quotient Φn(x) lies in Z[x]. This proves Part (2).

A similar induction argument may be used to prove Part (3). We have Φ1(x) = x− 1
and Φ2(x) = x + 1 so that Φ1(0) = −1 and Φ2(0) = 1. Suppose, inductively, that
Φk(0) = 1 for 1 < k < n. From Part (1) we have xn − 1 = Φn(x)Φ−1(x)h(x) where
h(x) =

∏
d|n,d 6=1,d6=n

Φd(x). Put in x = 0 to get −1 = Φn(0)(−1)(1) and so Φn(0) = 1.

Let us prove Part (4). From Part (1) we know that xp−1 = Φp(x)Φ1(x) = Φp(x)(x−1)
and so

Φp(x) =
xp − 1

x− 1
= xp−1 + · · ·+ x+ 1.

Similarly, xp
k − 1 = Φpk

∏
d|pk−1

Φd(x) = Φpk(x)
(
xp

k−1 − 1
)

and so

Φpk(x) =
xp

k − 1

xpk−1 − 1
= xp

k−1(p−1) + · · ·+ xp
k−1

+ 1 = Φp
(
xp

k−1)
.
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5.3 Theorem: Let p be prime in Z+ and let g ∈ Zp[x]. Then g(x)p = g(xp).

Proof: Let g(x) =
m∑
i=0

cix
i ∈ Zp[x]. When m = 0, since c0

p = c0 (by Fermat’s Little

Theorem), we have g(x)p = c0
p = c0 = g(xp). Let m ≥ 1 and suppose, inductively, that

for h(x) =
m−1∑
i=0

cix
i we have h(x)p = h(xp). Then

g(x)p =
(
c0 + c1x+ · · ·+ cmc

m
)p

=
(
c0 + c1x+ · · ·+ cm−1x

m−1)p + (cmx
m)p

=
(
c0 + c1x

p + c2x
2p + · · ·+ cm−1x

(m−1)p)+ cm
pxmp

= c0 + c1x
p + c2x

2p + · · ·+ cm−1x
(m−1)p + cm

mp = g(xp)

where on the first line we used the Binomial Theorem, noting that all terms are 0 mod p
except the first and last, and on the second line we used the inductive hypothesis, and on
the third line we used the fact that cm

p = cm which follows from Fermat’s Little Theorem.

5.4 Theorem: (Gauss) Let n ∈ Z+. Then Φn(x) is irreducible in Q[x].

Proof: Let w be a root of Φn(x). Let f ∈ Q[x] be the minimal polynomial of w. Note that
f
∣∣Φn. We shall show that Φn

∣∣f by showing that every root of Φn is also a root of f . Note
that w is integral over Z ,since it is a root of the monic polynomial Φn ∈ Z[x], and so we
have f ∈ Z[x]. Also since w is a root of xn−1 we have f

∣∣xn−1 in Q[x], say xn−1 = f(x)g(x)
where g ∈ Q[x]. Since xn − 1 ∈ Z[x] and f ∈ Z[x] and f is monic, when we perform long
division of xn − 1 by f(x), the quotient g(x) lies in Z[x]. Let u be a root of f . Since
f
∣∣xn − 1, u is also a root of xn − 1, and so u is an nth root of 1. Let p be a prime in Z+

with gcd(p, n) = 1. Then up is also an nth root of 1. Since up is a root of xn−1 = f(x)g(x),
we know that either f(up) = 0 or g(up) = 0. Suppose, for a contradiction, that f(up) 6= 0.
Then we must have g(up) = 0, so u is a root of the polynomial h(x) = g(xp). Since f is
the minimal polynomial of u we have f

∣∣h, say h = fk ∈ Q[x]. As above, since h, f ∈ Z[x]
with f monic, we have k ∈ Z[x]. Reduce the coefficients of h, f and k modulo p to get
h = f k ∈ Zp[x]. Note that h(x) = g(xp) = g(x)p from the above Lemma. Let ` be an
irreducible factor of f in Zp[x]. Since `

∣∣f and f k = h = gp, it follows that `
∣∣gp and hence

`
∣∣g. Since xn − 1 = fg ∈ Z[x], reducing modulo p gives xn − 1 = f g ∈ Zp[x]. Since `

∣∣f
and `

∣∣g we have `
2∣∣xn − 1 and hence ` is a common divisor of xn − 1 and d

dx (xn − 1) in

Zp[x]. But d
dx (xn − 1) = nxn−1 and gcd(p, n) = 1 so that n is invertible in Zp, and so

we have gcd
(
xn − 1, ddx (xn − 1)

)
= gcd

(
xn − 1 , nxn−1

)
= gcd(−1, nxn−1

)
= 1. Thus we

have obtained the desired contradiction and so f(up) = 0.
We have shown that if u is a root of of f and if p is a prime with gcd(p, n) = 1 then

up is also a root of f . Now let k ∈ Z+ with gcd(k, n) = 1. Write k = p1p2 · · · pj where
each pi is prime and note that since gcd(k, n) = 1 we have gcd(pi, n) = 1 for all indices i.
Since w is a root of f , we see that each of w , wp1 , wp1p2 , · · · , wp1p2···pj = wk is also a
root of f . Since wk is a root of f for all k ∈ Z+ with gcd(k, n) = 1 it follows that every
root of Φn is also a root of f and so Φn(x)

∣∣f(x). Since Φn
∣∣f and f

∣∣Φn and f and Φn are
monic, we have Φn = f . Thus Φn is equal to the minimal polynomial of w and so Φn is
irreducible.

2



5.5 Corollary: Let w be a primitive nth root of 1. Then Q(w) is Galois over Q with
[Q(w) : Q] = ϕ(n), and we have AutQQ(w) ∼= Un.

Proof: Since the roots of Φn(x) are the elements wk with k ∈ Un, we see that all the roots
of Φn lie in Q(w) so that Q(w) is the splitting field of Φn(x) over Q (it is also the splitting
field of f(x) = xn − 1 over Q). Thus Q(w) is Galois over Q. Since Φn is the minimal
polynomial of w and deg(Φn) = ϕ(n), we have

[
Q(w) : Q

]
= ϕ(n). Again since the roots

of Φn are the elements wk with k ∈ Un, we see that HomQ
(
Q(w),C

)
=
{
σk
∣∣k ∈ Un} where

σk is the homomorphism with σk(w) = wk. Since Q(w) is Galois over Q, we know that
AutQQ(w) = HomQ

(
Q(w),C

)
and so we can define a bijective map ψ : Un → AutQQ(w)

by ψ(k) = σk. Finally, note that ψ is a homomorphism because for k, l ∈ Un we have
σkσl(w) = σk(wl) = (wl)k = wkl = σkl(w) so that ψ(k)ψ(l) = σkσl = σkl = ψ(kl).

5.6 Corollary: Let n ∈ Z+. Then the regular n-gon is constructible (in the ancient Greek
sense) if and only if n is of the form n = 2kp1p2 · · · pl where l ≥ 0 and each pi is a Fermat
prime (that is a prime p of the form p = 2m + 1 for some m ∈ Z+).

Proof: I may include a proof later.
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