Chapter 4. Galois Theory

Separable Extensions and Galois Extensions

4.1 Definition: Let F' be a field. A nonzero polynomial f € F|z] is called separable
when it has no repeated roots in its splitting field over F. Let F' be a subfield of K. An
element a € K is called separable over F' when a is algebraic over F' and the minimal
polynomial of a over F' is separable. The field K is separable over F' when K is algebraic
over F' and every element a € K is separable over F'

4.2 Example: When F is a field with char(F') = 0, every algebraic extension field K of
F is separable, because irreducible polynomials in F'[z] never have repeated roots in their
splitting field (by Corollary 3.35). When F' is a finite field, every algebraic extension field
K of F is separable. Indeed if a € K then a is algebraic over F, so [F'(a) : F] is finite, so
F(a) is also a finite field. If ‘F(a)| = p” then a is a root of f(z) = 2P" — x, which has
no repeated roots, so the minimal polynomial of a over F' divides f, and has no repeated
roots.

4.3 Theorem: (The Primitive Element Theorem) Let F' be a subfield of K. If [K : F| is
finite and K is separable over F' then there exists an element a € K such that K = F|a].

Proof: Suppose that [K : F] is finite and K is separable over F. If F'is finite then K is
also finite (since [K : F] is finiute), so the group of units K* is cyclic, and if we choose
a € K such that K* = (a) then clearly we have K = F'[a]. Suppose that F' is infinite. Let
{u1,ug, -, u,} be a basis for K over F. Then we have K = F[uy, us, -, u,]. Note that
it suffices for us to show that for all u,v € K we can find w € K such that Flu,v| = F|w]
because then we can find elements w; such that

Flui,ug)=ws, Flu,us, ug]|=Flws, us]=Flws] , Flui,us,us, us) =Flws, us) = Flwa]

and so on. Let u,v € K. Let f(x) € F[x] be the minimal polynomial of u over F' and
let g(x) € Fx] be the minimal polynomial of v over F'. Let L be the splitting field of fg
over F' and note that, since K is separable over F', f and g have no repeated roots in L.
Let a1, as,- -, ar be the roots of f(x) in L with a1 = u, and let by, bo, - -+, by be the roots
of g(z) in L with by = v. Choose any element t € F' such that t # —Z:g; for any indices
i,7 and let w = u + tv. Note that w = u + tv € F[u,v] so we have F|w] C Flu,v].
We claim that Flu,v] C Flw]. Let h(z) = f(w —tz) = f(u+t(v —z)) € Flw|[z] and
let d(z) = ged (g(z), h(z)) € Flw][z]. Note that v is a root of d(z) since g(v) = 0 and
h(v) = g(w — tv) = h(u) = 0. Our choice of ¢ ensures that v is the only common root of
g(x) and h(x) in L. Indeed, given z € L, if g(x) = 0 then we must have x = b; for some
index j, and if = b; and h(z) = 0 then we must have 0 = h(b;) = f(u+t(v—1b;)) so that
u+t(v—>b;) = a; for some index 4, but then ¢t = — =+, Since v is the only common root of
g(z) and h(x) in L it follows that d(z) = (z —v). Since d(z) = (z —v) and d(x) € Flw][z]
it follows that v € Flw]. Since v € F|w] and u = w — tv we also have v € F[w]. Since
u € Flw] and v € Flw] it follows that Flu,v] C F[w], as claimed.




4.4 Definition: Let F be a subfield of K. An automorphism of K is a bijective homo-
morphism ¢ : K — K. The set of all such automorphisms is a group (under composition)
which we denote by AutK. An automorphism ¢ € AutK is said to be F-fixing when
¢(a) = a for every a € F. The set of all F-fixing automorphisms of K is denoted by
Autp K, so

Autp K = {ngAutK } ¢(a) = a for every aEF}.

Note that AutpK is a subgroup of AutK. Recall that when ¢ € AutK, the fixed point

set Fix(¢) = {a € K | ¢(a) = a} is a subfield of K. More generally, for any nonempty set
S C AutK, the fixed point set of S is the set

Fix(S) = {a€ K | ¢(a) = a for every ¢€ S} = ) Fix(¢).
peS
Note that Fix(S) is a subfield of K.

4.5 Note: Let F' be asubfield of K and let ¢ € Autp K. If K = F(aq,---,ay), then every ¢
is determined by the values ¢(a;) € K. Indeed, in the case that each ay, is algebraic over F,

every element in u € K can be written in the form u = > Ckl,kz,---,knalklasz e ap ke
with each cg, ...r, € F, and we have k1Ko ko
ki, k kn) — k i
(b( Z ck17k2,"',kna’1 10/2 2 ‘.'af’n n) — Z Ck17’kn¢(a1) 1 -..(b(an) n
k17k27"’7kn kl,"';kn

4.6 Note: Let F' be a subfield of K and let ¢ € Autp K. If f € F[z] and a is a root of
fin K, ¢(a) must also be a root of f in K. Indeed, if f(z) = >"}_, cxz”® with f(a) =0,
then we have

0=6(0) = 6(f() = 6( > exa*) = > exd(a)t = f(¢(a)).

k=0 k=0
Since ¢ is bijective, it permutes the roots of f in K.

4.7 Theorem: Let F' be a subfield of K. Suppose that K is the splitting field, over F', of
a separable polynomial f € F[x]. Then

|AutpK| = [K : F].

Proof: If K=F then AutpK ={I} (where I is the identity map) and |AutpK|=[K:F]=1.
Suppose that K # F. Choose a root a of f in K with a ¢ F, and let g € F[x] be an
irreducible factor of f with g(a) = 0in K. Since f is separable, sois g. Leta = ay,as- -, an
be the roots of g in K. For each j =1,2,---,n, choose ¢; € Autp K with ¢;(a) = a; (we
can do this by Theorem 3.28: we first extend the identity map I : FF — F' to an isomorphism
¢j : F(a1) = F(a;) with ¢(a1) = a;, then we extend ¢; to an isomorphism ¢; : K — K).
We have [K : F| = [K: F(a)][F(a): F] with [F(a): F] = n. Say [K:F(a)] = m so that
[K : F] = nm. Since K is the splitting field of f over F, it is also the splitting field of f
over F'(a), so we may suppose, inductively, that |AutF(a)K| = [K:F(a)] =m.

Say Autp)K = {wl, e ,wm}. For each i € {1,---,n} and j € {1,---,m}, we have
¢:i; € AutpK. Note that the automorphisms ¢;1; are distinct because if ¢;9; = ¢r1y
then we have a; = ¢;(a) = ¢:0;(a) = ¢pYe(a) = ¢i(a) = ai so that i = k, and hence
VY = ¢i T dihidr ' dribe = by so that j = £. Also note that every § € AutpK is of the
form 6 = ¢;7;. Indeed, given 6 € Autp K, since § permutes the roots of g we have 6(a) = a;
for some 4, then (bz-_lﬁ(a) = a so that (]5;19 fixes F'(a), and hence we have QSZ._IH = 1), for
some j so that § = ¢;1;. Thus we have |AutFK| =nm = [K: F], as required.



4.8 Theorem: (Characterizations of Galois Extensions) Let F' be a subfield of K with
[K : F] finite. The following are equivalent.

(1) Fix(AutpK) = F.

(2) Every irreducible polynomial in F[z| with a root in K is separable and splits in K|[z].
(3) K is the splitting field, over F', of a separable polynomial f € F|[x].

Proof: To prove that (1) = (2), suppose that Fix(AutpK) = F, let f € Flz] be
irreducible, and let a € K with f(a) = 0. By dividing by the leading coefficient,
we may assume that f is monic, so f is the minimal polynomial of a over F. Let
S = {gb(a) ! o € AutFK}. Note that S is a subset of the set of roots of f in K, and
each ¢ € Autp K permutes the elements in S . Let n = |S|, and say S = {al,ag, e ,an}
with a = a;. Let g(z) = [[_,(z —ax) € K[z]. Write g(x) = Y ,_, cxx" with each ¢; € K.
For each ¢ € AutpK, using the associated ring isomorphism ¢ : K[zx] — K[x] we have
d(9)(x) = d(Xh_gcna®) = Y5 o d(ck)z®. Since ¢ permutes the elements in S we also
have ¢(g)(z) = ¢(ITji(@—ai)) = [Tioy (z—d(ar)) = [Ti_i(z—ar) = g(z) = 327 _ cuz™.
Comparing coefficients, we see that ¢y = ¢(ci) for 0 < k < n. Since this is true for every
¢ € AutpK, we have ¢, € Fix(AutpK) = F. Thus in fact g € F[z]. Since g € F[z] with
g(a) =0, and f is the minimal polynomial of a over F', we have f|g in F[x]. Since f‘g in
F[z], and g splits in K[z]| and has no repeated roots, it follows that f splits in K[x] and
has no repeated roots.

To prove that (2) = (3), suppose that (2) holds, that is every irreducible polynomial
in Fx] with a root in K is separable and splits in K. If K = F' then K is the splitting
field of the separable polynomial x — 1. If K # F' then we choose a; € K with a; ¢ F.
Let fi € Fz]| be the minimal polynomial of a; over F'. By (2), f1 is separable and splits
in K. Let F; be the splitting field of f; over F' in K. If F; = K we are done. If F} # K
then we choose as € K with as ¢ Fy. Let fy be the minimal polynomial of ay over F. By
(2), fo is separable and splits in K. Note that f; f5 is also separable (if f; and f; shared a
common root b they would both be the minimal polynomial of b, so they would be equal,
but fo has a root as which is not a root of fi). Let Fy be the splitting field of f; fo over
F. If 5, = K we are done, and otherwise we repeat the above procedure.

To prove that (3) = (1), suppose that K is the splitting field, over F', of a separable
polynomial f € F[x]. Let E = FiX(Aut rK ) By the definition of the fixed field, every
¢ € AutpK fixes the elements of F, so we have Autp K < AutgK. By the definition of
Autp K, every ¢ € Autp K fixes the elements in F', so we have F' C F. Since F' C E we have
Autp K < AutpK. Thus Autg K = Autp K. Since K is the splitting field of f over F', K is
also the splitting field of f over E. By the previous theorem, we have ‘Aut rK ‘ =[K : F]
and |[AutgK| = [K : E], and hence [K : E] = |[AutgK| = |AutpK| = [K : F]. Since
[K : E] = [K : F] we have [E : F] =1 so that F = FE, as required.

4.9 Definition: Let F be a subfield of K. The group Autg K is called the Galois group
of K over F. When [K : F] is finite, we say that K is Galois over F' when the equivalent
conditions of the above theorem are satisfied. Note that when [K : F] is finite and K
is Galois over F', the second characterization of Galois extensions (Part 2 of the above
theorem) implies that K is separable over F.



The Fundamental Theorem of Galois Theory

4.10 Theorem: (The Fundamental Theorem of Galois Theory) Let F' be a subfield of L
with [L: F] finite. Suppose that L is Galois over F'. There is a bijective, order-reversing
correspondence, between the set of all subfields K of L containing F', and the set of all
subgroups H of Autp K, which given by K — AutpK and H — Fix(H). Moreover, for
each subfield K of L containing F', we have

(1) [L: K] = |Autg L| and [K:F] = ‘AutFL/AutKL , and
(2) K is Galois over F' if and only if Autx L < AutpL and, in this case,
AutKF = AutFL/AutKL.

Proof: Let I be the set of subfields of L containing F', and let H be the set of subgroups
H < AutpL, and let ® : K — H and ¥ : H — K given by ®(K) = AutgL and
V(H) = Fix(H). It is clear that ® and ¥ are order-reversing. To show that ® and ¥ are
inverses of one another, we show that is V& = [ and ®¥ = I. Given K € K, since L is
Galois over F' it is also Galois over K (if K is the splitting field of the separable polynomial
f € Flx] over F, then K is also the splitting field of f over K) so, by Theorem 4.8, we
have U@(K) = ¥(Autg L) = Fix(Autx L) = K. Thus we have U@ = ].

We claim that ®¥ = I, that is Autpiyg)L = H for all H < Autg L. Let H < AutpL
and let £ = Fix(H). We need to show that AutgpL = H. It is clear that H < AutgL
because if ¢ € H then, by the definition of Fix(H ), ¢ fixes every element in £ = Fix(H) so
that ¢ € AutgL. Thus it suffices to show that |[H| > [AutgL|. Since L is Galois over F, it is
also Galois over E so, by Theorem 4.7, we have ‘Aut EL’ = [L : E]. Thus it suffices to show
that |H| > [L : E]. We already know that H < AutgL so that |H| < |[AutgL| = [L : E], so
it suffices to show that |H| > [L: E]. Let { = |H| and n = [L: E]. Say H = {¢1,---,¢¢}
with ¢1 = I. Since L is Galois over E, it is separable over E (by Part 2 of Theorem 4.8), so
by the Primitive Element Theorem, we can choose a € L such that L = E(a). Let f be the
minimal polynomial of a over E and note that deg f = n. Let g(z) = H£:1 (z — ¢r(a)) €
L[z], and note that g(a) = 0 since ¢1(a) = a. For each ¢ € H, since left multiplication by
¢ permutes the elements in H (so we have {¢¢1, ¢pda, -, 0ps} = {d1,--+, P¢}) it follows
that ¢(g)(z) = Hizl (2 — ¢or(a)) = ITj—1 €(z — dr(a)) = g(x), and hence ¢ fixes all
the coefficients of g. This shows that all the coefficients of ¢ lie in Fix(H) = E so that
g € E[z]. Since g € E[z| with g(a) = 0, and f is the minimal polynomial of a over E,
we have f’ g, and hence n < /, as required. This completes the proof that & and ¥ are
inverses, giving an order-reversing bijective correspondence between K and H.

Note that Part 1 of the theorem follows immediately from Theorem 4.7. Indeed when
K is any subfield of L containing F', since L is Galois over F', it is also Galois over K, so
we have [AutpL| = [L:F] and |[Autx L| = [L: K], and hence also

(K F] = [L:F]/[L: K] = [AutpL| /|Autyc L] = ’AutFL/AutKL‘.



To prove Part 2, let K be a subfield of L which contains F', and suppose first that
Autg L < Autg L. We wish to prove that K is Galois over F. Since L is Galois over F,
it is separable over F', and hence K is also separable over F. By the Primitive Element
Theorem, we can choose a € K such that K = Fla]. Let f € F[z] be the minimal
polynomial of a over F', and note that f is separable. We claim that K is the splitting
field of f. Since L is Galois over F', by Condition (2) of the Characterization of Galois
Extensions, f is separable and splits in L[z|, so all the roots of f lie in L. We need to
show that all the roots of f lie in K. Let b € L be any root of f. Choose ¢ € AutpK
with ¢(a) = b (by Theorem 3.28 we can extend the identity map [ : F' — F to an
isomorphism ¢ : F(a) — F(b) with ¢(a) = b, then we can extend ¢ to an automorphism
¢ : K — K). Since Autg L < AutpL, for every ¢ € Autx L we have ¢~ 1p¢ € Autg L so
that ¢~11)¢ fixes elements in K, so in particular (since a € K) we have ¢ 19¢(a) = a,
and hence Y¢(a) = ¢(a), that is ¥(b) = b. Since ¥ (b) = b for every ¢ € Autx L, we have
be FiX(Aut KL) = K. This proves that every root of f lies in K, as required.

Suppose, conversely, that K is Galois over F, say K is the splitting field, over F, of
the polynomial g € F[x]. Since K is generated, as a field over F, by the roots of g, and
since each ¢ € Autp K permutes these roots, it follows that each ¢ € Autp K restricts to an
automorphism of K, that is ¢‘ € Autp K. Thus the restriction map R : AutpL — Autp K
given by R(¢) = (M 5 i a well-defined group homomorphism. The map R is surjective by
Theorem 3.28 and Corollary 3,29 (every automorphism of K extends to an automorphism
of L since L is the splitting field of a polynomial over K), and KerR = Autx L. By the
First Isomorphism Theorem, Autx L << AutpL and AutpL / Autg L =2 Autp K.

4.11 Exercise: Let I be the splitting field of f(z) = 2* — 2 over Q. Find the lattice of
subgroups of AutgF and the lattice of subfields of F'.

4.12 Theorem: (The Fundamental Theorem of Algebra) C is algebraically closed.

Proof: Let f € Clz| be a non-constant polynomial. We must show that f has a root in C.
Say f(x) =Y p_,ckx” and let f(z) =Y }_,ea”. Let g(z) = f(z)f(x), and verify, as an
exercise, that g € R[z]. Note that for z € C, if g(z) = 0 then either f(z) =0 or f(z) =0,
and if f(z) = 0 then f(2) = 0, so it suffices to show that g has a root in C. Let h € R[z] be
an irreducible factor of ¢ in R[z| and note that, since char(R) = 0, h is separable. If +i is
a root of h, then of course h has a root in C. Suppose that +i are not roots of A and note
that (2 + 1)h(z) is separable. Let L be the splitting field, over R of (22 + 1)h(z). Note
that ¢ € L so C = R[i] C L. Say [L:R] = 2™¢ where {,m € Z" with ¢ odd (we remark
that m > 1 since R C C C L). By the Galois correspondence we have ’AutRL| =2"/{. By
the Sylow theorems, AutgL has a Sylow 2-subgroup with 2" elements, so by the Galois
correspondence, there is a subfield F' of L containing R with [L: F] = 2™. Then we have
[F':R] = ¢, which is odd. If we had ¢ > 1 we could choose a € F' with a ¢ R, but then
the degree of the minimal polynomial of a would be an odd number greater than 1, and
this is not possible since every polynomial in R[x] with odd degree has a root in R. Thus
we must have £ = 1 so that [L:R] = 2. Since R C C C L we have [L:C] = 2™~ and
hence ’AutcL| = 2™~1. Suppose, for a contradiction, that m > 1. By the Sylow theorems,
there is a subgroup of AutcL with 2™~2 elements. By the Galois correspondence, there is
a subfield K of L containing C with [L: K] = 272 and hence [K : C] = 2. This is not
possible since if this were the case we could choose a € K with a ¢ C, then the minimal
polynomial of a over C would have degree 2, but every quadratic polynomial in C[x] has
its roots in C (by the Quadratic Formula). Thus we must have m = 1 so that [L: C] = 1.
Thus C = L, which is the splitting field of (x% + 1)h(x), so the roots of h lie in C.
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Solvability of Polynomials

4.13 Note: Let f(z) = ax? +bx + ¢ = 0, where a, b, c € C with a # 0. Recall that we can
solve f(x) = 0, and obtain the Quadratic Formula, as follows. Divide by a then complete
the square by letting z =y — % to get

L@ =4 tat e = (y- )+ 2y g+ =i+ i — g + f =y (U,
Thus we have

f(z) =0 <= y:j:—‘/bz;w = x:y—%:—_bi‘/ﬁf—m.
4.14 Note: Let f(z) = az® + bx? + cx + d = 0, where a,b,c,d € C with a # 0. We
can solve f(z) = 0 as follows. First, divide by a so the equation is converted to the form
2% + bz? + cx + d = 0. Next, make the substitution = y — 2 and rewrite the equation in
the form y3 + py + ¢ = 0. Then make the substitution y = z — 7~ to convert the equation

to the form 23 + ¢ — g—iz_?’ = 0. Finally, multiply by 23 to obtain 2% + ¢z3 — g—i and solve
for 23 using the Quadratic Formula.

4.15 Exercise: Find the three real roots of f(z) = 23 — 3z + 1.

4.16 Note: Let f(z) = 2* +bx® + cx? + dx + e where b, ¢, d, e € C. We can solve f(x) =0
as follows. Note that if we can find s,t,u,v € C so that

f(z) = (2% 4+ sz +t)* — (uz + v)?

then we can solve f(x) = 0 using the Quadratic Formula. Comparing coefficients, we need

2s = b, 2+ 2t —u? = ¢, 2st — 2uwv = d, and t* — v? = e. The first equation gives s = 2
and the other equations become u? = % + 2t — ¢, 2uv = bt —d, and v?> = t? — e, so we

need (bt — d)? = 4u?v? = (b? + 8t — 4c¢)(t?> — ). Thus t must satisfy the cubic equation

0= (8t +b* —4c)(t* —e) — (bt — d)* = 8> — det? + (2bd — 8e)t + (4ce — b%e — d?).
Equivalently, t must be a root of the cubic polynomial

g(x) = 82 — 4ca® + (2bd — 8e)x + (4ce — b*e — d?).

g(x) is called a resolvent cubic for the quartic polynomial f(x). Thus to solve f(z) =0,
we choose s = g, we solve the cubic equation g(t) = 0 to find ¢, then we choose v and v so
that u? = % + 2t — ¢ and v? = t% — e, with the sign of v chosen so that 2uv = bt — d, and
then f(z) = (2% + sz +t)? — (ux + v)?, so we solve f(x) = 0 by the Quadratic Formula.
4.17 Exercise: Find the complex roots of f(x) = 2* + 223 + 522 + 62 + 6.

4.18 Note: A radical function of n variables xq,zs,---,x, is a multi-valued function
from C™ to C which can be obtained from the constant functions ¢, the k' coordinate
functions z, and the n*" root multi-functions {/z, using the operations of addition, sub-
traction, multiplication, division, and composition of functions. For example, the function

a2+ Jb—c*
1—3 ct+va
is a radical function of a, b and c¢. Note that when a complex root z € C of a polynomial

f € Clz] can be expressed as a radical function of the coefficients of a radical function of
the coefficients of f, the root z lies in the top field Fy in a tower of fields

C=FRCFhCkKhC ---CF,
such that for 1 < k < ¢ we have F}, = Fj_1[ax] for some aj, € C with ay™ € Fj_1.

g(a,b,c) =
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4.19 Definition: Let F be a field and let f € F[x]. We say that f is solvable by
radicals over F when f has a splitting field which is contained in the top field in a tower
of fields

F=FCFClC---Ck

where for 1<k </ we have F, = Fy_1[ax] with ax € F}, and a;™* € F_1 for some n; € Z™.

4.20 Definition: Let G be a group. We say that GG is solvable when there is a tower of
subgroups
{e}=Ho<H  <Hy<---<H =G

such that for 1 < k </ we have Hy_; < Hj with Hk/Hk_l abelian.

4.21 Theorem: Let G be a group and let N I G.
(1) If G is solvable then G /N is solvable.
(2) If N is solvable and G /N is solvable then G is solvable.

Proof: The proof is left as an exercise.

4.22 Definition: Let F be a field. An n'® root of unity in F is an element a € F such
that a™ = 1, that is a root of the polynomial f(x) = 2™ — 1. The set of n'" roots of unity
in F' is a finite subgroup of the group of units F'*, so it is a cyclic group (as in the proof of
Theorem 3.39, which shows that the group of units of a finite field is cyclic). A primitive
n'" root of unity in F is an element of order n in the group of n*" roots of unity. Note
that when w € F' is a primitive n'® root of unity, the polynomial 2™ — 1 has n distinct

roots in F, namely 1,w,w?,---,w" L

4.23 Theorem: Let F' be a field with char(F) =0, let b € F, let f(z) = 2™ — b, and let
L be the splitting field of f over F. Then L contains a primitive n*"" root of unity, and
AutgL is solvable.

Proof: Suppose, first, that F' contains a primitive n*" root of unity, say w. Let a € L
be a root of f. Then L = F[a] and the roots of f in L are aw® with 0 < k < n. Each
¢ € AutpL determines and is determined by ¢(a), and we have ¢(a) = aw” for some
k. Given ¢, € AutpL, say ¢(a) = aw® and (a) = aw’, we have ¢yp(a) = ¢(aw’) =
d(a)p(w) = awkfw® = awk*t* and similarly ¥¢(a) = aw*+*, and hence ¢p = 1p¢. Thus
AutgL is abelian.

Now suppose F does not contain a primitive n'" of unity. Let K be the splitting field
of g(x) = 2™ — 1 over F. Note that since char(F) = 0 so that gcd(g,¢’) = 1 and g has n
distinct roots in K, the group of n'® roots of unity in K is a cyclic group of order n, which
has a generator of order n, so K contains a primitive n*® root of unity, say w. The roots
of g in K are 1,w,w?,---,w" 1, and we have K = F|w]. Each ¢ € AutpK determines
and is determined by ¢(w), and we have ¢(w) = w* for some k. Given ¢, € AutpK
with say ¢(w) = w¥ and ¥(w) = w¥, we have ¢py(w) = P(w’) = (W)* = wW** and similarly
Yo(w) = w*, and hence ¢p = ¥¢. Thus AutpK is abelian.

Let M be a splitting field of f over K. By the first paragraph, Autx M is abelian.
Let @ € M be a root of f. The roots of f in M are a,aw,aw?,---,aw™ !, and we
have M = Fla,aw,--,aw" '] = Flw,a], so M is also a splitting field of f over F. By
the Galois correspondence, for the fields FF C K C M, we have Autg M < AutpM and
AutFM/AutKM >~ AutpK. The tower of groups {I} < AutxM < AutpM shows that
AutpM is solvable. Since L and M are both splitting fields for f over F', they are isomor-
phic, so L contains a primitive n*® root of unity and AutyL is also solvable.
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4.24 Theorem: (Galois) Let F' be a field with char(F') = 0, let f € F[z], and let K be
the splitting field of f over F. If f is solvable by radicals over F then AutpK is solvable.

Proof: Suppose f is solvable by radicals over F. Let K be the splitting field of f over F,
and say K C F(ay, a2, --,ap) where ay™ € F(aq,---,ak—1). Consider the case that ¢ = 1.
In this case we have FF C K C F(a;) with a1 € F. Let L be the splitting field over F’
of the polynomial g(z) = ™ — a;™. Then FF C K C F(a;) C L and AutpL is solvable
by the previous theorem. By the Galois correspondence, for the fields F C K C L, we
have Autxg L < AutrpL and AutFL/AutKL >~ Autp K. By Part 1 of Theorem 4.21 (which
states that if N <G and G is solvable then G/N is solvable) Autp K is solvable.

Now consider the case that £ > 1 and suppose, inductively, that the theorem holds
for splitting fields contained in towers of length less than ¢. Let L be the splitting field
of g(z) = 2™ — a;™ over F, and let M be the splitting field of g(x) over K. Note that
F C K C M with M being the splitting field of g(z)f(z) over F, and that F C L C M
with M being the splitting field of f(x) over L. Since a; € L we have F(a;) C L, and
since f splits in F'(ay,as,---,ayr), it follows that f splits in L(asg, - - -, as). By the induction
hypothesis, we may suppose that Aut; M is solvable. By the previous theorem, we also
know that AutrL and Autg M are solvable.

Using the Galois correspondence for the fields F' C L C M, we have Auty; M I Autp M
and AutFM/AutLM =~ AutgpL. By Part 2 of Theorem 4.21, it follows that AutpM
is solvable. Using the Galois correspondence for the fields ¥ € K C M, we have
Autg M < AutpM and Autp M /Autg M = Autp K. By Part 1 of Theorem 4.21, it follows
that Autg K is solvable, as required.

4.25 Exercise: Let f € Q[z] be an irreducible quintic polynomial with three distinct real
roots and two conjugate complex roots. Let K be the splitting field of f over Q. Show
that AutgK = S5, and hence show that f is not solvable by radicals over Q.



