
Chapter 4. Galois Theory

Separable Extensions and Galois Extensions

4.1 Definition: Let F be a field. A nonzero polynomial f ∈ F [x] is called separable
when it has no repeated roots in its splitting field over F . Let F be a subfield of K. An
element a ∈ K is called separable over F when a is algebraic over F and the minimal
polynomial of a over F is separable. The field K is separable over F when K is algebraic
over F and every element a ∈ K is separable over F .

4.2 Example: When F is a field with char(F ) = 0, every algebraic extension field K of
F is separable, because irreducible polynomials in F [x] never have repeated roots in their
splitting field (by Corollary 3.35). When F is a finite field, every algebraic extension field
K of F is separable. Indeed if a ∈ K then a is algebraic over F , so [F (a) : F ] is finite, so
F (a) is also a finite field. If

∣∣F (a)
∣∣ = pn then a is a root of f(x) = xp

n − x, which has
no repeated roots, so the minimal polynomial of a over F divides f , and has no repeated
roots.

4.3 Theorem: (The Primitive Element Theorem) Let F be a subfield of K. If [K : F ] is
finite and K is separable over F then there exists an element a ∈ K such that K = F [a].

Proof: Suppose that [K :F ] is finite and K is separable over F . If F is finite then K is
also finite (since [K : F ] is finiute), so the group of units K∗ is cyclic, and if we choose
a ∈ K such that K∗ = 〈a〉 then clearly we have K = F [a]. Suppose that F is infinite. Let
{u1, u2, · · · , un} be a basis for K over F . Then we have K = F [u1, u2, · · · , un]. Note that
it suffices for us to show that for all u, v ∈ K we can find w ∈ K such that F [u, v] = F [w]
because then we can find elements wi such that

F [u1, u2]=w2 , F [u1, u2, u3]=F [w2, u3]=F [w3] , F [u1, u2, u3, u4]=F [w3, u4]=F [w4]

and so on. Let u, v ∈ K. Let f(x) ∈ F [x] be the minimal polynomial of u over F and
let g(x) ∈ F [x] be the minimal polynomial of v over F . Let L be the splitting field of fg
over F and note that, since K is separable over F , f and g have no repeated roots in L.
Let a1, a2, · · · , ak be the roots of f(x) in L with a1 = u, and let b1, b2, · · · , b` be the roots
of g(x) in L with b1 = v. Choose any element t ∈ F such that t 6= −u−aiv−bj for any indices

i, j and let w = u + tv. Note that w = u + tv ∈ F [u, v] so we have F [w] ⊆ F [u, v].
We claim that F [u, v] ⊆ F [w]. Let h(x) = f(w − tx) = f(u + t(v − x)) ∈ F [w][x] and
let d(x) = gcd

(
g(x), h(x)

)
∈ F [w][x]. Note that v is a root of d(x) since g(v) = 0 and

h(v) = g(w − tv) = h(u) = 0. Our choice of t ensures that v is the only common root of
g(x) and h(x) in L. Indeed, given x ∈ L, if g(x) = 0 then we must have x = bj for some
index j, and if x = bj and h(x) = 0 then we must have 0 = h(bj) = f

(
u+ t(v− bj)

)
so that

u+t(v−bj) = ai for some index i, but then t = −u−aiv−bj . Since v is the only common root of

g(x) and h(x) in L it follows that d(x) = (x− v). Since d(x) = (x− v) and d(x) ∈ F [w][x]
it follows that v ∈ F [w]. Since v ∈ F [w] and u = w − tv we also have u ∈ F [w]. Since
u ∈ F [w] and v ∈ F [w] it follows that F [u, v] ⊆ F [w], as claimed.
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4.4 Definition: Let F be a subfield of K. An automorphism of K is a bijective homo-
morphism φ : K → K. The set of all such automorphisms is a group (under composition)
which we denote by AutK. An automorphism φ ∈ AutK is said to be F -fixing when
φ(a) = a for every a ∈ F . The set of all F -fixing automorphisms of K is denoted by
AutFK, so

AutFK =
{
φ∈AutK

∣∣φ(a) = a for every a∈F
}
.

Note that AutFK is a subgroup of AutK. Recall that when φ ∈ AutK, the fixed point
set Fix(φ) =

{
a∈K

∣∣φ(a) = a
}

is a subfield of K. More generally, for any nonempty set
S ⊆ AutK, the fixed point set of S is the set

Fix(S) =
{
a∈K

∣∣φ(a) = a for every φ∈S
}

=
⋂
φ∈S

Fix(φ).

Note that Fix(S) is a subfield of K.

4.5 Note: Let F be a subfield ofK and let φ ∈ AutFK. IfK = F (a1, · · · , an), then every φ
is determined by the values φ(ai) ∈ K. Indeed, in the case that each ak is algebraic over F ,
every element in u ∈ K can be written in the form u =

∑
k1,k2,···,kn

ck1,k2,···,kna1
k1a2

k2 · · · ankn
with each ck1,···,kn ∈ F , and we have

φ
( ∑
k1,k2,···,kn

ck1,k2,···,kna1
k1a2

k2 · · · ankn
)

=
∑

k1,···,kn
ck1,···,knφ(a1)k1 · · ·φ(an)kn .

4.6 Note: Let F be a subfield of K and let φ ∈ AutFK. If f ∈ F [x] and a is a root of
f in K, φ(a) must also be a root of f in K. Indeed, if f(x) =

∑n
k=0 ckx

k with f(a) = 0,
then we have

0 = φ(0) = φ
(
f(a)

)
= φ

( n∑
k=0

cka
k
)

=
n∑
k=0

ckφ(a)k = f
(
φ(a)

)
.

Since φ is bijective, it permutes the roots of f in K.

4.7 Theorem: Let F be a subfield of K. Suppose that K is the splitting field, over F , of
a separable polynomial f ∈ F [x]. Then∣∣AutFK

∣∣ = [K : F ].

Proof: If K=F then AutFK={I} (where I is the identity map) and
∣∣AutFK

∣∣=[K :F ]=1.
Suppose that K 6= F . Choose a root a of f in K with a /∈ F , and let g ∈ F [x] be an
irreducible factor of f with g(a) = 0 inK. Since f is separable, so is g. Let a = a1, a2 · · · , an
be the roots of g in K. For each j = 1, 2, · · · , n, choose φj ∈ AutFK with φj(a) = aj (we
can do this by Theorem 3.28: we first extend the identity map I : F → F to an isomorphism
φj : F (a1)→ F (aj) with φ(a1) = aj , then we extend φj to an isomorphism φj : K → K).
We have [K : F ] = [K : F (a)] [F (a) : F ] with [F (a) : F ] = n. Say [K : F (a)] = m so that
[K :F ] = nm. Since K is the splitting field of f over F , it is also the splitting field of f
over F (a), so we may suppose, inductively, that

∣∣AutF (a)K
∣∣ = [K :F (a)] = m.

Say AutF (a)K =
{
ψ1, · · · , ψm

}
. For each i ∈ {1, · · · , n} and j ∈ {1, · · · ,m}, we have

φiψj ∈ AutFK. Note that the automorphisms φiψj are distinct because if φiψj = φkψ`
then we have ai = φi(a) = φiψj(a) = φkψ`(a) = φk(a) = ak so that i = k, and hence
ψj = φi

−1φiψjφk
−1φkψ` = ψ` so that j = `. Also note that every θ ∈ AutFK is of the

form θ = φiψj . Indeed, given θ ∈ AutFK, since θ permutes the roots of g we have θ(a) = ai
for some i, then φ−1i θ(a) = a so that φ−1i θ fixes F (a), and hence we have φ−1i θ = ψj for
some j so that θ = φiψj . Thus we have

∣∣AutFK
∣∣ = nm = [K :F ], as required.
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4.8 Theorem: (Characterizations of Galois Extensions) Let F be a subfield of K with
[K :F ] finite. The following are equivalent.

(1) Fix
(
AutFK

)
= F .

(2) Every irreducible polynomial in F [x] with a root in K is separable and splits in K[x].
(3) K is the splitting field, over F , of a separable polynomial f ∈ F [x].

Proof: To prove that (1) =⇒ (2), suppose that Fix(AutFK) = F , let f ∈ F [x] be
irreducible, and let a ∈ K with f(a) = 0. By dividing by the leading coefficient,
we may assume that f is monic, so f is the minimal polynomial of a over F . Let
S =

{
φ(a)

∣∣φ ∈ AutFK
}

. Note that S is a subset of the set of roots of f in K, and

each φ ∈ AutFK permutes the elements in S . Let n = |S|, and say S =
{
a1, a2, · · · , an

}
with a = a1. Let g(x) =

∏n
k=1(x−ak) ∈ K[x]. Write g(x) =

∑n
k=0 ckx

k with each ck ∈ K.
For each φ ∈ AutFK, using the associated ring isomorphism φ : K[x] → K[x] we have
φ(g)(x) = φ(

∑n
k=0 ckx

k
)

=
∑n
k=0 φ(ck)xk. Since φ permutes the elements in S we also

have φ(g)(x) = φ
(∏n

k=1(x−ai)
)

=
∏n
k=1

(
x−φ(ak)

)
=
∏n
k=1(x−ak) = g(x) =

∑n
k=0 ckx

k.
Comparing coefficients, we see that ck = φ(ck) for 0 ≤ k ≤ n. Since this is true for every
φ ∈ AutFK, we have ck ∈ Fix

(
AutFK

)
= F . Thus in fact g ∈ F [x]. Since g ∈ F [x] with

g(a) = 0, and f is the minimal polynomial of a over F , we have f
∣∣g in F [x]. Since f

∣∣g in
F [x], and g splits in K[x] and has no repeated roots, it follows that f splits in K[x] and
has no repeated roots.

To prove that (2) =⇒ (3), suppose that (2) holds, that is every irreducible polynomial
in F [x] with a root in K is separable and splits in K. If K = F then K is the splitting
field of the separable polynomial x − 1. If K 6= F then we choose a1 ∈ K with a1 /∈ F .
Let f1 ∈ F [x] be the minimal polynomial of a1 over F . By (2), f1 is separable and splits
in K. Let F1 be the splitting field of f1 over F in K. If F1 = K we are done. If F1 6= K
then we choose a2 ∈ K with a2 /∈ F1. Let f2 be the minimal polynomial of a2 over F . By
(2), f2 is separable and splits in K. Note that f1f2 is also separable (if f1 and f2 shared a
common root b they would both be the minimal polynomial of b, so they would be equal,
but f2 has a root a2 which is not a root of f1). Let F2 be the splitting field of f1f2 over
F . If F2 = K we are done, and otherwise we repeat the above procedure.

To prove that (3) =⇒ (1), suppose that K is the splitting field, over F , of a separable
polynomial f ∈ F [x]. Let E = Fix

(
AutFK

)
. By the definition of the fixed field, every

φ ∈ AutFK fixes the elements of E, so we have AutFK ≤ AutEK. By the definition of
AutFK, every φ ∈ AutFK fixes the elements in F , so we have F ⊆ E. Since F ⊆ E we have
AutEK ≤ AutFK. Thus AutEK = AutFK. Since K is the splitting field of f over F , K is
also the splitting field of f over E. By the previous theorem, we have

∣∣AutFK
∣∣ = [K : F ]

and
∣∣AutEK

∣∣ = [K : E], and hence [K : E] =
∣∣AutEK

∣∣ =
∣∣AutFK

∣∣ = [K : F ]. Since
[K : E] = [K : F ] we have [E : F ] = 1 so that F = E, as required.

4.9 Definition: Let F be a subfield of K. The group AutFK is called the Galois group
of K over F . When [K :F ] is finite, we say that K is Galois over F when the equivalent
conditions of the above theorem are satisfied. Note that when [K : F ] is finite and K
is Galois over F , the second characterization of Galois extensions (Part 2 of the above
theorem) implies that K is separable over F .
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The Fundamental Theorem of Galois Theory

4.10 Theorem: (The Fundamental Theorem of Galois Theory) Let F be a subfield of L
with [L :F ] finite. Suppose that L is Galois over F . There is a bijective, order-reversing
correspondence, between the set of all subfields K of L containing F , and the set of all
subgroups H of AutFK, which given by K 7→ AutFK and H 7→ Fix(H). Moreover, for
each subfield K of L containing F , we have

(1) [L :K] =
∣∣AutKL

∣∣ and [K :F ] =
∣∣∣AutFL

/
AutKL

∣∣∣, and

(2) K is Galois over F if and only if AutKL≤ AutFL and, in this case,

AutKF ∼= AutFL
/

AutKL.

Proof: Let K be the set of subfields of L containing F , and let H be the set of subgroups
H ≤ AutFL, and let Φ : K → H and Ψ : H → K given by Φ(K) = AutKL and
Ψ(H) = Fix(H). It is clear that Φ and Ψ are order-reversing. To show that Φ and Ψ are
inverses of one another, we show that is ΨΦ = I and ΦΨ = I. Given K ∈ K, since L is
Galois over F it is also Galois over K (if K is the splitting field of the separable polynomial
f ∈ F [x] over F , then K is also the splitting field of f over K) so, by Theorem 4.8, we
have ΨΦ(K) = Ψ

(
AutKL

)
= Fix

(
AutKL

)
= K. Thus we have ΨΦ = I.

We claim that ΦΨ = I, that is AutFix(H)L = H for all H ≤ AutKL. Let H ≤ AutFL
and let E = Fix(H). We need to show that AutEL = H. It is clear that H ≤ AutEL
because if φ ∈ H then, by the definition of Fix(H), φ fixes every element in E = Fix(H) so
that φ ∈ AutEL. Thus it suffices to show that |H| ≥

∣∣AutEL
∣∣. Since L is Galois over F , it is

also Galois over E so, by Theorem 4.7, we have
∣∣AutEL

∣∣ = [L : E]. Thus it suffices to show

that |H| ≥ [L : E]. We already know that H ≤ AutEL so that |H| ≤
∣∣AutEL

∣∣ = [L : E], so

it suffices to show that |H| ≥ [L : E]. Let ` = |H| and n = [L : E]. Say H =
{
φ1, · · · , φ`

}
with φ1 = I. Since L is Galois over E, it is separable over E (by Part 2 of Theorem 4.8), so
by the Primitive Element Theorem, we can choose a ∈ L such that L = E(a). Let f be the

minimal polynomial of a over E and note that deg f = n. Let g(x) =
∏`
k=1

(
x− φk(a)

)
∈

L[x], and note that g(a) = 0 since φ1(a) = a. For each φ ∈ H, since left multiplication by
φ permutes the elements in H (so we have {φφ1, φφ2, · · · , φφ`} = {φ1, · · · , φ`}) it follows

that φ(g)(x) =
∏`
k=1

(
x − φφk(a)

)
=
∏
k=1 `

(
x − φk(a)

)
= g(x), and hence φ fixes all

the coefficients of g. This shows that all the coefficients of g lie in Fix(H) = E so that
g ∈ E[x]. Since g ∈ E[x] with g(a) = 0, and f is the minimal polynomial of a over E,
we have f

∣∣g, and hence n ≤ `, as required. This completes the proof that Φ and Ψ are
inverses, giving an order-reversing bijective correspondence between K and H.

Note that Part 1 of the theorem follows immediately from Theorem 4.7. Indeed when
K is any subfield of L containing F , since L is Galois over F , it is also Galois over K, so
we have

∣∣AutFL
∣∣ = [L :F ] and

∣∣AutKL
∣∣ = [L :K], and hence also

[K :F ] = [L :F ]
/

[L :K] =
∣∣AutFL

∣∣/∣∣AutKL
∣∣ =

∣∣∣AutFL
/

AutKL
∣∣∣.
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To prove Part 2, let K be a subfield of L which contains F , and suppose first that
AutKL≤ AutFL. We wish to prove that K is Galois over F . Since L is Galois over F ,
it is separable over F , and hence K is also separable over F . By the Primitive Element
Theorem, we can choose a ∈ K such that K = F [a]. Let f ∈ F [x] be the minimal
polynomial of a over F , and note that f is separable. We claim that K is the splitting
field of f . Since L is Galois over F , by Condition (2) of the Characterization of Galois
Extensions, f is separable and splits in L[x], so all the roots of f lie in L. We need to
show that all the roots of f lie in K. Let b ∈ L be any root of f . Choose φ ∈ AutFK
with φ(a) = b (by Theorem 3.28 we can extend the identity map I : F → F to an
isomorphism φ : F (a) → F (b) with φ(a) = b, then we can extend φ to an automorphism
φ : K → K). Since AutKL≤ AutFL, for every ψ ∈ AutKL we have φ−1ψφ ∈ AutKL so
that φ−1ψφ fixes elements in K, so in particular (since a ∈ K) we have φ−1ψφ(a) = a,
and hence ψφ(a) = φ(a), that is ψ(b) = b. Since ψ(b) = b for every ψ ∈ AutKL, we have
b ∈ Fix

(
AutKL

)
= K. This proves that every root of f lies in K, as required.

Suppose, conversely, that K is Galois over F , say K is the splitting field, over F , of
the polynomial g ∈ F [x]. Since K is generated, as a field over F , by the roots of g, and
since each φ ∈ AutFK permutes these roots, it follows that each φ ∈ AutFK restricts to an
automorphism ofK, that is φ

∣∣
K
∈ AutFK. Thus the restriction mapR : AutFL→ AutFK

given by R(φ) = φ
∣∣
K

, is a well-defined group homomorphism. The map R is surjective by
Theorem 3.28 and Corollary 3,29 (every automorphism of K extends to an automorphism
of L since L is the splitting field of a polynomial over K), and KerR = AutKL. By the
First Isomorphism Theorem, AutKL≤ AutFL and AutFL

/
AutKL ∼= AutFK.

4.11 Exercise: Let F be the splitting field of f(x) = x4 − 2 over Q. Find the lattice of
subgroups of AutQF and the lattice of subfields of F .

4.12 Theorem: (The Fundamental Theorem of Algebra) C is algebraically closed.

Proof: Let f ∈ C[x] be a non-constant polynomial. We must show that f has a root in C.
Say f(x) =

∑n
k=0 ckx

k and let f(x) =
∑n
k=0 ckx

k. Let g(x) = f(x)f(x), and verify, as an
exercise, that g ∈ R[x]. Note that for z ∈ C, if g(z) = 0 then either f(z) = 0 or f(z) = 0,
and if f(z) = 0 then f(z) = 0, so it suffices to show that g has a root in C. Let h ∈ R[x] be
an irreducible factor of g in R[x] and note that, since char(R) = 0, h is separable. If ±i is
a root of h, then of course h has a root in C. Suppose that ±i are not roots of h and note
that (x2 + 1)h(x) is separable. Let L be the splitting field, over R of (x2 + 1)h(x). Note
that i ∈ L so C = R[i] ⊆ L. Say [L :R] = 2m` where `,m ∈ Z+ with ` odd (we remark
that m ≥ 1 since R ⊆ C ⊆ L). By the Galois correspondence we have

∣∣AutRL
∣∣ = 2m`. By

the Sylow theorems, AutRL has a Sylow 2-subgroup with 2m elements, so by the Galois
correspondence, there is a subfield F of L containing R with [L :F ] = 2m. Then we have
[F :R] = `, which is odd. If we had ` > 1 we could choose a ∈ F with a /∈ R, but then
the degree of the minimal polynomial of a would be an odd number greater than 1, and
this is not possible since every polynomial in R[x] with odd degree has a root in R. Thus
we must have ` = 1 so that [L :R] = 2m. Since R ⊆ C ⊆ L we have [L :C] = 2m−1, and
hence

∣∣AutCL
∣∣ = 2m−1. Suppose, for a contradiction, that m > 1. By the Sylow theorems,

there is a subgroup of AutCL with 2m−2 elements. By the Galois correspondence, there is
a subfield K of L containing C with [L :K] = 2m−2, and hence [K :C] = 2. This is not
possible since if this were the case we could choose a ∈ K with a /∈ C, then the minimal
polynomial of a over C would have degree 2, but every quadratic polynomial in C[x] has
its roots in C (by the Quadratic Formula). Thus we must have m = 1 so that [L : C] = 1.
Thus C = L, which is the splitting field of (x2 + 1)h(x), so the roots of h lie in C.
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Solvability of Polynomials

4.13 Note: Let f(x) = ax2 + bx+ c = 0, where a, b, c ∈ C with a 6= 0. Recall that we can
solve f(x) = 0, and obtain the Quadratic Formula, as follows. Divide by a then complete
the square by letting x = y − b

2a to get

1
a f(x) = x2 + b

a x+ c
a =

(
y− b

2a

)2
+ b

a

(
y− b

2a

)
+ c

a = y2 + b2

4a2 −
b2

2a2 + c
a = y2 −

(
b2−4ac
4a2

)
.

Thus we have

f(x) = 0 ⇐⇒ y = ±
√
b2−4ac
2a ⇐⇒ x = y − b

2a = −b±
√
b2−4ac
2a .

4.14 Note: Let f(x) = ax3 + bx2 + cx + d = 0, where a, b, c, d ∈ C with a 6= 0. We
can solve f(x) = 0 as follows. First, divide by a so the equation is converted to the form
x3 + bx2 + cx+ d = 0. Next, make the substitution x = y − b

3 and rewrite the equation in
the form y3 + py + q = 0. Then make the substitution y = z − p

3z to convert the equation

to the form z3 + q − p3

27z
−3 = 0. Finally, multiply by z3 to obtain z6 + qz3 − p3

27 and solve
for z3 using the Quadratic Formula.

4.15 Exercise: Find the three real roots of f(x) = x3 − 3x+ 1.

4.16 Note: Let f(x) = x4 + bx3 + cx2 +dx+ e where b, c, d, e ∈ C. We can solve f(x) = 0
as follows. Note that if we can find s, t, u, v ∈ C so that

f(x) = (x2 + sx+ t)2 − (ux+ v)2

then we can solve f(x) = 0 using the Quadratic Formula. Comparing coefficients, we need
2s = b, s2 + 2t − u2 = c, 2st − 2uv = d, and t2 − v2 = e. The first equation gives s = b

2

and the other equations become u2 = b2

4 + 2t − c, 2uv = bt − d, and v2 = t2 − e, so we
need (bt− d)2 = 4u2v2 = (b2 + 8t− 4c)(t2 − e). Thus t must satisfy the cubic equation

0 = (8t+ b2 − 4c)(t2 − e)− (bt− d)2 = 8t3 − 4ct2 + (2bd− 8e)t+ (4ce− b2e− d2).

Equivalently, t must be a root of the cubic polynomial

g(x) = 8x3 − 4c x2 + (2bd− 8e)x+ (4ce− b2e− d2).

g(x) is called a resolvent cubic for the quartic polynomial f(x). Thus to solve f(x) = 0,
we choose s = b

2 , we solve the cubic equation g(t) = 0 to find t, then we choose u and v so

that u2 = b2

4 + 2t− c and v2 = t2 − e, with the sign of v chosen so that 2uv = bt− d, and
then f(x) = (x2 + sx+ t)2 − (ux+ v)2, so we solve f(x) = 0 by the Quadratic Formula.

4.17 Exercise: Find the complex roots of f(x) = x4 + 2x3 + 5x2 + 6x+ 6.

4.18 Note: A radical function of n variables x1, x2, · · · , xn is a multi-valued function
from Cn to C which can be obtained from the constant functions c, the kth coordinate
functions xk, and the nth root multi-functions n

√
x, using the operations of addition, sub-

traction, multiplication, division, and composition of functions. For example, the function

g(a, b, c) =

√
a2+ 3√b−c4

1− 5
√
c+
√
a

is a radical function of a, b and c. Note that when a complex root z ∈ C of a polynomial
f ∈ C[x] can be expressed as a radical function of the coefficients of a radical function of
the coefficients of f , the root z lies in the top field F` in a tower of fields

C = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F`
such that for 1 ≤ k ≤ ` we have Fk = Fk−1[ak] for some ak ∈ C with ak

nk ∈ Fk−1.
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4.19 Definition: Let F be a field and let f ∈ F [x]. We say that f is solvable by
radicals over F when f has a splitting field which is contained in the top field in a tower
of fields

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F`

where for 1≤k≤` we have Fk= Fk−1[ak] with ak∈Fk and ak
nk ∈Fk−1 for some nk∈Z+.

4.20 Definition: Let G be a group. We say that G is solvable when there is a tower of
subgroups

{e} = H0 ≤ H1 ≤ H2 ≤ · · · ≤ H` = G

such that for 1 ≤ k ≤ ` we have Hk−1≤ Hk with Hk

/
Hk−1 abelian.

4.21 Theorem: Let G be a group and let N ≤ G.
(1) If G is solvable then G/N is solvable.
(2) If N is solvable and G/N is solvable then G is solvable.

Proof: The proof is left as an exercise.

4.22 Definition: Let F be a field. An nth root of unity in F is an element a ∈ F such
that an = 1, that is a root of the polynomial f(x) = xn − 1. The set of nth roots of unity
in F is a finite subgroup of the group of units F ∗, so it is a cyclic group (as in the proof of
Theorem 3.39, which shows that the group of units of a finite field is cyclic). A primitive
nth root of unity in F is an element of order n in the group of nth roots of unity. Note
that when ω ∈ F is a primitive nth root of unity, the polynomial xn − 1 has n distinct
roots in F , namely 1, ω, ω2, · · · , ωn−1.

4.23 Theorem: Let F be a field with char(F ) = 0, let b ∈ F , let f(x) = xn − b, and let
L be the splitting field of f over F . Then L contains a primitive nth root of unity, and
AutFL is solvable.

Proof: Suppose, first, that F contains a primitive nth root of unity, say ω. Let a ∈ L
be a root of f . Then L = F [a] and the roots of f in L are aωk with 0 ≤ k < n. Each
φ ∈ AutFL determines and is determined by φ(a), and we have φ(a) = aωk for some
k. Given φ, ψ ∈ AutFL, say φ(a) = aωk and ψ(a) = aω`, we have φψ(a) = φ(aω`) =
φ(a)φ(ω)` = aωkω` = aωk+` and similarly ψφ(a) = aωk+`, and hence φψ = ψφ. Thus
AutFL is abelian.

Now suppose F does not contain a primitive nth of unity. Let K be the splitting field
of g(x) = xn − 1 over F . Note that since char(F ) = 0 so that gcd(g, g′) = 1 and g has n
distinct roots in K, the group of nth roots of unity in K is a cyclic group of order n, which
has a generator of order n, so K contains a primitive nth root of unity, say ω. The roots
of g in K are 1, ω, ω2, · · · , ωn−1, and we have K = F [ω]. Each φ ∈ AutFK determines
and is determined by φ(ω), and we have φ(ω) = ωk for some k. Given φ, ψ ∈ AutFK
with say φ(ω) = ωk and ψ(ω) = ω`, we have φψ(ω) = φ(ω`) = (ω`)k = ωk` and similarly
ψφ(ω) = ωk`, and hence φψ = ψφ. Thus AutFK is abelian.

Let M be a splitting field of f over K. By the first paragraph, AutKM is abelian.
Let a ∈ M be a root of f . The roots of f in M are a, aω, aω2, · · · , aωn−1, and we
have M = F [a, aω, · · · , aωn−1] = F [ω, a], so M is also a splitting field of f over F . By
the Galois correspondence, for the fields F ⊆ K ⊆ M , we have AutKM ≤ AutFM and
AutFM

/
AutKM ∼= AutFK. The tower of groups {I} ≤ AutKM ≤ AutFM shows that

AutFM is solvable. Since L and M are both splitting fields for f over F , they are isomor-
phic, so L contains a primitive nth root of unity and AutFL is also solvable.
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4.24 Theorem: (Galois) Let F be a field with char(F ) = 0, let f ∈ F [x], and let K be
the splitting field of f over F . If f is solvable by radicals over F then AutFK is solvable.

Proof: Suppose f is solvable by radicals over F . Let K be the splitting field of f over F ,
and say K ⊆ F (a1, a2, · · · , a`) where ak

nk ∈ F (a1, · · · , ak−1). Consider the case that ` = 1.
In this case we have F ⊆ K ⊆ F (a1) with a1

n1 ∈ F . Let L be the splitting field over F
of the polynomial g(x) = xn1 − a1n1 . Then F ⊆ K ⊆ F (a1) ⊆ L and AutFL is solvable
by the previous theorem. By the Galois correspondence, for the fields F ⊆ K ⊆ L, we
have AutKL≤ AutFL and AutFL

/
AutKL ∼= AutFK. By Part 1 of Theorem 4.21 (which

states that if N ≤ G and G is solvable then G/N is solvable) AutFK is solvable.
Now consider the case that ` > 1 and suppose, inductively, that the theorem holds

for splitting fields contained in towers of length less than `. Let L be the splitting field
of g(x) = xn1 − a1n1 over F , and let M be the splitting field of g(x) over K. Note that
F ⊆ K ⊆ M with M being the splitting field of g(x)f(x) over F , and that F ⊆ L ⊆ M
with M being the splitting field of f(x) over L. Since a1 ∈ L we have F (a1) ⊆ L, and
since f splits in F (a1, a2, · · · , a`), it follows that f splits in L(a2, · · · , a`). By the induction
hypothesis, we may suppose that AutLM is solvable. By the previous theorem, we also
know that AutFL and AutKM are solvable.

Using the Galois correspondence for the fields F ⊆ L ⊆M , we have AutLM ≤ AutFM
and AutFM

/
AutLM ∼= AutFL. By Part 2 of Theorem 4.21, it follows that AutFM

is solvable. Using the Galois correspondence for the fields F ⊆ K ⊆ M , we have
AutKM ≤ AutFM and AutFM

/
AutKM ∼= AutFK. By Part 1 of Theorem 4.21, it follows

that AutFK is solvable, as required.

4.25 Exercise: Let f ∈ Q[x] be an irreducible quintic polynomial with three distinct real
roots and two conjugate complex roots. Let K be the splitting field of f over Q. Show
that AutQK ∼= S5, and hence show that f is not solvable by radicals over Q.
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