
Chapter 3. Fields

Algebraic and Transcendental Extensions

3.1 Definition: When we say that F and K are fields with F ⊆ K, we shall assume,
unless otherwise stated, that F is using the same operation used in K, so that F is a
subfield of K (that is K is an extension field of F ). In this case, the field K is a vector
space over the field F , and we define the index of K over F to be [K : F ] = dim

F
K.

3.2 Example: R is a subfield of C, and [C : R] = 2.

3.3 Exercise: Verify that

Q[i] =
{
a+b i

∣∣ a, b∈Q}
Q[
√

2 ] =
{
a+b
√

2
∣∣ a, b∈Q}

Q[
√

2, i] =
{
a+b
√

2+c i+d
√

2 i
∣∣ a, b, c, d∈Q}

are all fields with
[
Q[i] : Q

]
= 2,

[
Q[
√

2 ] : Q
]

= 2, and
[
Q[
√

2, i
]

: Q
]

= 4.

3.4 Theorem: Let F , K and L be fields with F ⊆ K ⊆ L. Then [L : F ] = [K : F ][L : K].
Indeed if U is a basis for K over F and V is a basis for L over K then

W =
{
uv
∣∣u ∈ U, v ∈ V }

is a basis for K over F .

Proof: Let U be a basis for K over F , and let V be a basis for L over K, and let
W =

{
uv
∣∣u∈U, v ∈ V }. In the case that U or V is infinite, recall that |X| denotes the

cardinality of a set X, recall that for two sets X and Y , we write |X| = |Y | when there is a
bijection F : X → Y , and recall that |X| |Y | = |X×Y | (by definition). With this in mind,
note that |W | = |U | |V | = |U ×V | because the map F : U ×V →W given by F (u, v) = uv
is bijective: indeed it is clearly surjective, and it is injective because for u1, u2 ∈ U and
v1, v2 ∈ V , if u1v1 = u2v2 then since V is linearly independent we have u1 = u2, and since
U is linearly independent so that u1 6= 0, u1v1 = u1v2 implies that v1 = v2.

Note that W spans L because given w ∈ L, since V spans L over K, we can choose
s1, · · · , sn ∈ K such that w =

∑n
j=1 sjvj , then since U spans K over F , for each index j,

we can choose tj,1, · · · , tj,`j , such that sj =
∑`j
i=1 tj,iui, and then we have

w =
n∑
j=1

sjvj =
n∑
j=1

( `j∑
i=1

tj,iui
)
vj =

n∑
j=1

`j∑
i=1

tj,iuivj .

It remains to show that W is linearly independent. Suppose
∑m
k=1 skwk = 0 where

w1, · · · , wm are distinct elements in W and each sk ∈ F . By the bijective correspondence
F : U × V → W , the distinct elements w1, · · · , wm can be written as ui,jvj with 1≤ j≤n
and 1≤ i≤`j , such that v1, · · · , vn ∈ V are distinct and, for each index j, u1,j , · · · , u`j ,j ∈ U
are distinct, and when wk = ui,jvj , we write the corresponding coefficient as sk = ti,j .

Then we have 0 =
∑m
k=1 skwk =

∑n
j=1

∑`j
i=1 ti,jui,jvj . Since V is linearly independent, we

must have
∑`j
i=1 ti,jui,j = 0 for all j, and since U is linearly independent, we have ti,j = 0

for all i, j, and hence sk = 0 for all k.
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3.5 Definition: When R and S are commutative rings with 1, where R ⊆ S and U
is a subset of S, the subring of S generated by U over R, denoted by R[U ], is the
smallest subring of S which contains R ∪U . When U = {u1, u2, · · · , un} we write R[U ] as
R[u1, u2, · · · , un], and we have

R[u1, u2, · · · , un] =
{
f(u1, u2, · · · , un)

∣∣ f ∈ R[x1, x2, · · · , xn]
}
.

When S = R[u1, u2, · · · , un] for some u1, u2, · · · , un ∈ S, we say that S is finitely gener-
ated as a ring over R.

When F and K are fields with F ⊆ K and U ⊆ K, the subfield of K generated by
U over F , denoted by F (U), is the smallest subfield of K which contains F ∪ U . When
U = {u1, u2, · · · , un} we write F (U) as F (u1, u2, · · · , un), and we have

F (u1, · · · , un) =

{
f(u1, · · · , un)

g(u1, · · · , un)

∣∣∣∣ f, g ∈ F [x1, · · · , xn] and g(u1, · · · , un) 6= 0

}
.

When K = F (u1, · · · , un) for some u1, · · · , un ∈ K, we say that K is finitely generated
as a field over F .

3.6 Definition: Let F and K be fields with F ⊆ K. For a ∈ K, we say that a is algebraic
over F when there exists a polynomial f(x) ∈ F [x] such that f(a) = 0 in K, otherwise
we say that a is transcendental over F . We say that K is algebraic over F when every
element a ∈ K is algebraic over F , otherwise we say that K is transcendental over F .

3.7 Theorem: Let F and K be fields with F ⊆ K and let a ∈ K.

(1) If a is transcendental over F then we have

F [a] ∼= F [x] and F (a) ∼= F (x).

In this case [F (a) : F ] =∞ and the set {1, a, a2, · · ·} is linearly independent over F .

(2) If a is algebraic over F then there is a unique monic irreducible polynomial f(x) ∈ F [x]
with f(a) = 0, the ideal generated by this polynomial in F [x] is 〈f〉 =

{
g ∈ F [x]

∣∣ g(a) = 0
}

and we have
F (a) = F [a] ∼= F [x]/〈f〉 .

For n=deg(f) the set {1, a, a2, · · · , an−1} is a basis for F (a) over F , and [F (a) : F ] = n.

Proof: To prove Part 1, suppose a is transcendental over F . The evaluation homomorphism
φ : F [x]→ F [a], given by φ(f) = f(a), is clearly surjective

(
since F [a] =

{
f(a)

∣∣ f ∈F [x]
})

,
and it is injective because a is transcendental (so if f(a) = 0 then f = 0). Thus F [a] ∼= F [x].

The evaluation homomorphism φ : F (x)→ F (a), given by φ(f/g) = f(a)/g(a) where
f, g ∈ F [x] with g 6= 0, is well-defined because a is transcendental (so when g 6= 0, we have

g(a) 6= 0). Also φ is clearly surjective
(
since F (a) =

{ f(a)
g(a)

∣∣ f, g ∈ F [x], g(a) 6= 0
})

, and φ

is injective, indeed every nonzero homomorphism from a field to a ring is injective because
its kernel is an ideal, and the only ideals in a field are the trivial ideal and the entire field).

Finally, note that
{

1, a, a2, · · ·
}

is linearly independent (hence [F (a) : F ] =∞) since
if we have

∑n
i=0 cia

i = 0 with ci ∈ F , and we let g(x) =
∑n
i=0 cix

i ∈ F [x], then we have
g(a) = 0, hence g = 0 (since a is transcendental), and hence ci = 0 for all i.
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To prove Part 2, suppose that a is algebraic over F . The evaluation homomorphism
φ : F [x]→ F [a], given by φ(f) = f(a), is clearly surjective

(
since F [a] =

{
f(a)

∣∣ f ∈F [x]
})

,

and we have Kerφ =
{
g∈F [x]

∣∣ g(a) = 0
}

. Note that Kerφ 6= {0} because a is algebraic
(so there exists 0 6= g∈F [x] such that g(a) = 0). Since F [x] is a Euclidean domain, with
Euclidean norm E(g) = deg(g), we know that F [x] is a principal ideal domain, and that
Kerφ = 〈g〉 where g is a nonzero polynomial of smallest degree in Kerφ, that is a nonzero
polynomial of smallest degree with g(a) = 0. Note that deg g ≥ 1 because g 6= 0 and if g
was a nonzero constant polynomial, say g(x) = c with 0 6= 0∈F , then g(a) = c 6= 0. Also
note that there is a unique monic polynomial f with 〈f〉 = 〈g〉, namely f = 1

c g where c is
the leading coefficient of g. Thus we have

Kerφ =
{
g∈F [x]

∣∣ g(a)=0
}

= 〈f〉
where f is the unique monic polynomial of minimal degree with f(a) = 0. By the First
Isomorphism Theorem, since φ is surjective with Kerφ = 〈f〉, we have

F [a] ∼= F [x]
/
〈f〉.

Since F [a] is a subring of a field, it is an integral domain, so the ideal 〈f〉 must be a
prime ideal in F [x], and hence f is a prime element in F [x]. Since F [x] is a principal ideal
domain, it follows that f is irreducible in F [x], and the ideal 〈f〉 is maximal, and hence
F [x]

/
〈f〉 is a field. Thus the ring F [a] ∼= F [x]

/
〈f〉 is actually a field, and so we have

F (a) = F [a].

Note that f is the unique monic irreducible polynomial with f(a) = 0, since if g is another
monic irreducible polynomial with g(a) = 0 then, since g(a) = 0 we have g ∈ Kerφ = 〈f〉
so that f

∣∣g, hence f and g are associates (since f and g are irreducible), and hence f = g
(since f and g are monic).

Let n = deg f . We claim that {1, a, a2, · · · , an−1} spans F (a) = F [a]. Let u ∈ F [a],
say u = g(a) where g ∈ F [x]. By the Division Algorithm, we can choose q, r ∈ F [x] with
deg r < n such that g = qf + r, say r(x) = c0 + c1x + · · · + cn−1x

n−1 with ci ∈ F . Since

f(a) = 0 we have u = g(a) = q(a)f(a) + r(a) = r(a) =
∑n−1
i=0 cia

i ∈ Span{1, a, · · · , an−1
}

.

Thus
{

1, a, · · · , an−1
}

spans F (a) = F [a] as claimed. We claim that
{

1, a, · · · , an−1
}

is linearly independent. Let c0, c1, · · · , cn−1 ∈ F and suppose that
∑n−1
i=0 cia

i = 0. Let

g(x) =
∑n−1
i=0 cix

i ∈ F [x]. Since f is a nonzero polynomial of minimal degree with f(a) = 0,
and g is a polynomial with deg g < deg f and g(a) = 0, it follows that g = 0, and hence
ci = 0 for all i. Thus {1, a, · · · , an−1

}
is linearly independent, as claimed.

3.8 Definition: When F and K are fields with F ⊆ K, and a ∈ K is algebraic over F ,
the unique monic irreducible polynomial f(x) ∈ K[x] with f(a) = 0 in K is called the
minimal polynomial of a over F .

3.9 Exercise: Find the minimal polynomial of
√

1 +
√

3, and of
√

3 + 2
√

5, over Q.

3.10 Exercise: Let θ = 2 cos π9 . Find [Q(θ) : Q].

3.11 Exercise: Let F and K be fields. Let u ∈ K be transcendental over F . Note that
F (u2) ⊆ F (u). Find the minimal polynomial of u+ 1 over F (u2).

3.12 Exercise: Let f(x) = x3−2. Note that the roots of f in C are 3
√

2, 3
√

2ω and 3
√

2ω2,
where ω = ei 2π/3. Let K = Q

[
3
√

2, 3
√

2ω, 3
√

2ω2
]

and L = Q
[

3
√

2, ω
]
. Show that K = L

and find [K :Q].
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3.13 Corollary: Let F , K and L be fields with F ⊆ K ⊆ L and let a ∈ L. Let f(x) ∈ F [x]
be the minimal polynomial for a over F and let g(x) ∈ K[x] be the minimal polynomial
for a over K. Then g(x)

∣∣f(x) in K[x].

Proof: Since f ∈ F [x] we also have f ∈ K[x]. Since f ∈ K[x] with f(a) = 0, and g is the
minimal polynomial of a over K, we have f ∈ 〈g〉 ⊆ K[x], and hence g

∣∣f ∈ K[x].

3.14 Theorem: Let F and K be fields with F ⊆ K. Then the following are equivalent:

(1) [K :F ] is finite.
(2) K is algebraic and finitely generated as a field over F .
(3) There exist a1, · · · , an ∈ K, with each ak algebraic over F , such that K = F [a1, · · · , an].

Proof: Suppose that [K : F ] is finite. Note that K is algebraic over F since if we had
an element u ∈ K which was transcendental over F , then the set {1, u, u2, · · ·} would be
linearly independent so that [K :F ] = ∞. Also note that K is finitely generated because
if {a1, a2, · · · , an} is a basis for K over F then we have K = F [a1, · · · , an]. Indeed given
u ∈ K, we can write u =

∑n
k=1 ckak with each ck ∈ F , and then for the polynomial

g(x1, · · · , xn) =
∑n
i=1 cixi ∈ F [x1, · · · , xn], we have u = g(a1, · · · , an) ∈ F [a1, a2, · · · , an].

Suppose thatK is algebraic and finitely generated over F . SinceK is finitely generated
over F we can choose a1, · · · , an ∈ K such that K = F (a1, · · · , an). Since K is algebraic
over F , each ak is algebraic over F , so we have K = F (a1, · · · , an) = F [a1, · · · , an].

Suppose thatK = F [a1, a2, · · · , an] with each ak∈K algebraic over F . Let F0 = F and
Fk = F [a1, · · · , ak] for 1≤k≤n. Note that Fn = K and Fk = Fk−1[ak] for 1≤k≤n. Since
ak is algebraic over F , it is also algebraic over Fk−1, so we have

[
Fk :Fk−1

]
= dk where dk is

the degree of the minimal polynomial of ak over Fk−1. Since F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K,
by Theorem 3.4 we have

[K :F ] = [Fn :F0] = [Fn :Fn−1][Fn−1 :Fn−2] · · · [F2 :F1][F1 :F0] = dndn−1 · · · d2d1,
which is finite.

3.15 Corollary: Let F , K and L be fields with F ⊆ K ⊆ L. If L is algebraic over K and
K is algebraic over F then L is algebraic over F .

Proof: Suppose that L is algebraic over K and K is algebraic over F . Let u ∈ L. Since u
is algebraic over K we can choose 0 6= g ∈ K[x] such that g(u) = 0, say g(x) =

∑n
k=0 ckx

k

with each ck ∈ K. Let E = F [c0, c1, · · · , cn], and note that since each ci ∈ E we have
g ∈ E[x]. Since g ∈ E[x] and g(u) = 0, u is algebraic over E, and hence [E(u) : E] is
finite. Since E = F [c0, · · · , cn] with each ck algebraic over F , the above theorrem implies
that [E :F ] finite, and hence so is [E(u) :F ] = [E(u) :E][E :F ]. Since [E(u) :F ] is finite,
E(u) is algebraic over F , so every element in E(u) is algebraic over F , so in particular u
is algebraic over F . Since u ∈ L was arbitrary, L is algebraic over F , as required.

3.16 Corollary: Let F be a subfield of K. Let E =
{
a∈K

∣∣ a is algebraic over F
}

. Then
E is a field with F ⊆ E ⊆ K.

Proof: Note that F ⊆ E because every a ∈ F is algebraic over F with minimal polynomial
x−a ∈ F [x]. We claim that E is a subfield of K. Let a, b ∈ E. Then we have a, b ∈ F [a, b],
which is a field, and so a + b, a − b, ab and (if b 6= 0) a

b all lie in F [a, b]. Since F [a, b] is
algebraic over F , each of the elements a+ b, a− b, ab and (if b 6= 0) a

b is algebraic over F ,
so they all lie in E. Thus E is a subfield of K, as claimed.
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Geometric Constructions

3.17 Definition: Let S be a set in R2 which contains at least two points. A line on S
is a line through any two distinct points in S, and a circle on S is a circle centred at one
point in S which passes through another.

A point p ∈ R2 is constructible in one step from S when p ∈ A∩B for some A 6= B
where each of the sets A and B is either a line on S or a circle on S. We say that a point
p ∈ R2 is constructible from S when there is a finite sequence of points p1, p2, · · · , pn
with pn = p such that each pk is constructible in one step from S ∪ {p1, · · · , pk−1

}
. We

say that a line L (or a circle C) is constructible from S when there is a finite set P of
points, constructible from S, such that L is a line on S ∪ P (or C is a circle on S ∪ P ).

When a point (or line or circle) in R2 is constructible from the set S0 =
{

(0, 0), (1, 0)
}

,
we simply say that the point (or line or circle) is constructible (in R2). For a ∈ R, we
say that a is constructible (in R) when p = (a, 0) is constructible in R2.

3.18 Note: Given two distinct points a, b ∈ R2, the perpendicular bisector of a and b is
constructible from {a, b} because it is the line through the two points of intersection of the
circle C centred at a through b with the circle D centred at b through a.

Given two distinct points a, b ∈ R2 and a point p ∈ R2, let L be the line through a
and b. Note that we can construct the line M through p perpendicular to L: indeed, if q
is the point on L nearest to p then at least one of the two points a, b is not equal to q, say
a 6= q, then the circle centred at p through a meets L at another point c, and the desired
line M is the perpendicular bisector of a and c. It follows that we can also construct the
line N through p parallel to L, which is the line through p perpendicular to M .

3.19 Note: From the set S0 =
{

(0, 0), (1, 0)
}

we can (of course) construct the x-axis, and
we can construct the y-axis (since it is the line through (0, 0) perpendicular to the x-axis).

Note that for a ∈ R, the point (a, 0) is constructible if and only if the point (0, a) is
constructible. Indeed when a = 0 we have (a, 0) = (0, 0) = (0, a) and when a 6= 0, the
circle centred at (0, 0) through (a, 0) intersects the y-axis at (0, a) (and also at (0,−a)),
and the circle centred at (0, 0) through (0, a) intersects the x-axis at (a, 0).

Note that for a, b ∈ R and p = (a, b) ∈ R2, the point p is constructible in R2 if and
only if a and b are both constructible in R. Indeed, if p = (a, b) is constructible in R2,
then (a, 0) is constructible (since it is the point of intersection of the x-axis with the line
through (a, b) perpendicular to the x-axis) and (0, b) is constructible (since it is the point
of intersection of the y-axis with the line through (a, b) perpendicularr to the y-axis). And
conversely, if (a, 0) and (b, 0), hence also (0, b), are constructible, then so is (a, b) (since it
is the point of intersection of the line through (a, 0) perpendicular to the x-axis with the
line through (0, b) perpendicular to the y-axis).
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3.20 Theorem: (Constructible Points) Let F be the set of all constructible real numbers.

(1) F a field with Q ⊆ F ⊆ R.
(2) For a ∈ R we have a ∈ F if and only if there is a tower of fields

Q = F0 ⊆ F1 ⊆ · · · ⊆ Fn
with a ∈ Fn such that for 1 ≤ k ≤ n we have Fk = Fk−1

[√
uk
]

for some 0≤uk∈Fk−1.

(3) For a ∈ R, if a ∈ F then
[
Q(a) :Q

]
is a power of 2.

Proof: To prove Part 1, let a, b ∈ F , and note that the points (a, 0), (0, a), (b, 0), (0, b)
and (a, b) are constructible. If b = 0 then we have a± b = a ∈ F . If b 6= 0 then the circle
centred at (a, 0) through (a, b) meets the x-axis at (a ± b, 0) so we have a ± b ∈ F . We
can construct the line L through (0, a) and (1, 0) (L has equation y = a − ax), and we
can construct the line M through (b, 0) parallel to L (M has equation y = ab − ax) and
then the line M intersects the y-axis at (0, ab), so we have ab ∈ F . Suppose b 6= 0. We
can construct the line J through (0, a) and (b, 0) (J has equation y = a− a

bx), and we can
construct the line K through (1, 0) parallel to J (K has equation y = a

b −
a
bx) and then

the line K intersects the y-axis at
(
0, ab

)
so we have a

b ∈ F . Thus F is a field with F ⊆ R,
and note that every subfield of R contains Q so we have Q ⊆ F ⊆ R. .

To prove Part 2, let a ∈ R. Suppose that a ∈ F , so p = (a, 0) is constructible. Choose
points p1, · · · , pn ∈ R2 with pn = p such that each pk is constructible in one step from the
set S0 ∪ {p1, p2, · · · , pk}, where S0 =

{
(0, 0), (1, 0)

}
. Say pk = (ak, bk), let F0 = Q, and let

Fk=Q
[
a1, b1, a2, b2, · · · , ak, bk

]
for 1≤k≤n. Note that Fk=Fk−1[ak, bk] and a=an∈Fn.

Fix k with 1 ≤ k ≤ n. We claim that Fk = Fk−1
[√
uk
]

for some 0 ≤ uk ∈ Fk−1.

Since pk is constructible in one step from S0 ∪{p1, · · · , pk−1
}

, we have p ∈ A∩B for some
A 6= B where each of the sets A and B is either a line or a circle on S0 ∪ {p1, · · · , pk−1}.
Note that each of the points in S0 ∪ {p1, · · · , pk−1} has coordinates which lie in Fk−1.

Any line through two distinct points in Fk−1 has an equation of the form Ax+By+C=0
with A,B,C ∈ Fk−1. When two such lines are distinct and have a point of intersection,
the point of intersection is unique, and its coordinates lie in Fk−1, so when pk is the point
of intersection of two such lines, we have Fk = Fk−1[ak, bk] = Fk−1, so we can take uk = 0.

Any circle centred at one point in Fk−1 through another point in Fk−1 has an equation
of the form x2 +y2 +ax+by+c = 0 with a, b, c ∈ Fk−1. A line Ax+By+C = 0 (1) and a
circle x2 +y2 +ax+by+c = 0 (2) can have 0, 1 or 2 points of intersection, and we can find
the points of intersection by solving the two equations. In the case B 6= 0, we can write (1)
in the form y = dx+ e with d, e ∈ Fk−1, and we can put this into (2) to obtain a quadratic
in x with coefficients in Fk−1. Let uk be the discriminant of this quadratic. When the
quadratic has a unique solution x, we have uk = 0, and x ∈ Fk−1 = Fk−1[0] so that
pk = (ak, bk) with ak = x ∈ Fk−1 and bk = dak + e ∈ Fk−1. When the quadratic has two
distinct real solutions x1, x2, we have uk > 0, and the two solutions both lie in Fk−1[

√
uk],

so that pk = (ak, bk) with ak = x1 or x2 so ak ∈ Fk−1[
√
uk] and bk = dak +e ∈ Fk−1[

√
uk].

Note that for two circles C and D with C given by x2 +y2 +ax+by+c = 0 (1) and D
given by x2 + y2 + dx+ ey+ f = 0 (2) with a, b, c, d, e, f ∈ Fk−1, subtracting (2) from (1)
gives (a−d)x+(b−e)y+(c−f) = 0 so that the points of intersection of C and D are equal
to the points of intersection of C and L where L is the line (a−d)x+ (c−e)y+ (c−f) = 0
(noting that if a = d and c = e then C and D have the same centre so they are either
equal or have no points of intersection).
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We have proven that if a ∈ F then there is a tower of fields Q = F0 ⊆ F1 ⊆ · · · ⊆ Fn
with a ∈ Fn such that Fk = Fk−1[

√
uk] for some 0 ≤ uk ∈ Fk−1. Suppose, conversely,

that we have such a tower of fields. By Part 1, we have F0 = Q ⊆ F . Fix k ≥ 1 and
suppose, inductively, that Fk−1 ⊆ F . We have 0 ≤ uk ∈ Fk−1 so we can construct the
point (uk, 0), and hence we can construct the points (uk ± 1, 0). The circle C centred at
(0, 0) through (uk + 1, 0) meets the line through (uk − 1, 0) perpendicular to the x-axis at
the point

(
uk − 1, 2

√
uk
)
. Thus 2

√
uk ∈ F , and hence

√
uk ∈ F . Since Fk−1 ⊆ F and√

uk ∈ F we have Fk = Fk−1[
√
uk] ⊆ F . By induction, Fk ⊆ F for all k. In particular, we

have a ∈ Fn and Fn ⊆ F so that a ∈ F . This completes the proof of Part 2.

Let a ∈ F . By Part 2, we can choose a tower of fields Q = F0 ⊆ F1 ⊆ · · · ⊆ Fn
with a ∈ Fn where Fk = Fk−1[

√
uk] with 0 ≤ uk ∈ Fk−1. Since

√
uk is a root of

f(x) = x2 − uk ∈ Fk−1[x], the minimal polynomial of
√
uk over Fk−1 is of degree 1 or 2,

so that we have [Fk :Fk−1] ∈ {1, 2}. Since [Fn :Q] = [Fn, F0] =
∏k
k=1[Fk :Fk−1] with each

[Fk :Fk−1] ∈ {1, 2}, we see that [Fn :Q] is a power of 2, say [Fn :Q] = 2`. Since a ∈ Fn we
have 2` = [Fn :Q] = [Fn :Q(a)][Q(a) :Q], and hence [Q(a) :Q] divides 2`, and so [Q(a) :Q]
is a power of 2.

3.21 Example: The real number 3
√

2 is not constructible (so we cannot construct the
vertices of a square of area 2).

3.22 Exercise: Show that, for a real number θ, we can construct cos θ if and only if we
can construct sin θ if and only if we can construct cos 2θ and/or sin 2θ.

3.23 Exercise: Show that we can construct the real number cos π5 (so we can construct
the vertices of a regular pentagon or decagon), but we cannot construct the real number
cos π9 (so we cannot construct the vertices of a regular 9-gon or 18-gon).

3.24 Example: It has been shown that the real numbers e and π are transcendental, so
we cannot construct them (and hence we cannot construct a circle of area 1).
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Splitting Fields

3.25 Definition: Let F be a subfield of K and let f ∈ F [x] be a polynomial with
n = deg f ∈ Z+. We say that f splits over K (or that f splits in K[x]) when f factors as
a product of linear factors in K[x], that is when f(x) = c (x−a1)(x−a2) · · · (x−an) ∈ K[x]
for some 0 6= c ∈ F and some a1, a2, · · · , an ∈ K (not necessarily distinct). In this case the
field F [a1, a2, · · · , an] ⊆ K is called the splitting field of f over F in K.

3.26 Theorem: (Kronecker’s Theorem) Let F be a field and let f ∈ F [x] be a nonconstant
polynomial. Then there exists an extension field K of F which contains a root of f .

Proof: Let g ∈ F [x] be an irreducible factor of f . Note that it suffices to construct an
extension field K of F which contains a root of g (since if f = gh and g(a) = 0 then
f(a) = g(a)h(a) = 0 so that a is a root of f). Let L = F [x]

/
〈g〉. Since g is irreducible,

the ideal 〈g〉 is maximal, so L is a field. Note that the homomorphism φ : F → L given by
φ(c) = c+ 〈g〉 is injective: indeed if c, d ∈ F and c+ 〈g〉 = d+ 〈g〉 then we have d− c ∈ 〈g〉
and hence d− c = 0 (because 0 is the only constant polynomial in 〈g〉). Let E = φ(F ) and
note that φ : F → E is an isomorphism. Extend φ to the isomorphism φ : F [x] → E[y]
given by φ

(∑n
k=0 ckx

k
)
(y) =

∑n
k=0(ck + 〈g〉

)
yk. Note that the element x + 〈g〉 ∈ L is a

root of φ(g) because if g(x) =
∑
akx

k then we have

φ(g)(x+ 〈g〉) =
n∑
k=0

(ak + 〈g〉
)(
x+ 〈g〉

)k
=
( n∑
k=0

akx
k
)

+ 〈g〉 = g + 〈g〉 = 0 + 〈g〉,

which is the zero element in L.
If we are willing to identify F with E (by identifying c ∈ F with φ(c) = c+〈g〉 ∈ E)

and to identify f ∈ F [x] with φ(f) ∈ E[y], then we can take K = L and we have obtained
a field extension of F which contains a root of f . If we insist on constructing a field K
which actually contains F as a subfield, we can do so as follows. Choose any set A which
is disjoint from F and has the same cardinality as L\E, let θ : A→ L\E be any bijection,
and let K = F ∪ A. Let ψ : K → L be the bijection given by ψ(u) = φ(u) when u ∈ F
and ψ(u) = θ(u) when u ∈ A. Use ψ to pull the field operations from L back to K by
defining u+ v = ψ−1

(
ψ(u) +ψ(v)

)
and u · v = ψ−1

(
ψ(u) ·ψ(v)

)
for u, v ∈ K. Using these

operations on K, K is an extension field of F , and ψ : K → L is an isomorphism with
ψ(u) = φ(u) for all u ∈ F , and the element a = ψ−1

(
x+ 〈g〉

)
∈ K is a root of f .

3.27 Corollary: Let F be a field and let f ∈ F [x] be a nonconstant polynomial. Then
there exists a splitting field for f over F .

Proof: We apply Kronecker’s Theorem repeatedly: Let g1 be an irreducible factor of f in
F [x]. Let K1 be an extension field of F which contains a root a1 of g1. Let F1 = F [a1] ⊆
K1. Note that f(a1) = 0 in F1 so that (x − a1)

∣∣f(x) in F1[x], say f(x) = (x − a1)f2(x).
If deg f = 1 so that f2(x) is a constant polynomial, we are done. Otherwise repeat the
argument. Let g2 be an irreducible factor of f2 in F1[x]. Let K2 be an extension field of
F1 which contains a root a2 of g2 and let F2 = F1[a2] = F [a1, a2]. Note that f2(a2) = 0,
say f2(x) = (x− a2)f3(x) and note that we have f(x) = (x− a1)(x− a2)f3(x) ∈ F2[x]. If
deg f = 2 we are done and, if not, we repeat.
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3.28 Theorem: Let F be a subfield of K, let E be a subfield of L, let φ : F → E be an
isomorphism of fields, and extend φ to obtain an isomorphism of rings φ : F [x] → E[x]
given by φ

(∑n
k=0 ckx

k
)

=
∑n
k=0 φ(ck)xk. Let f ∈ F [x] be an irreducible polynomial, and

let g = φ(f) ∈ E[x]. Let a ∈ K be a root of f in K and let b ∈ L be a root of g in L.
Then the isomorphism φ : F → E extends uniquely to an isomorphism φ : F [a] → E[b]
such that φ(a) = b.

Proof: Let n = deg f . Note that g = φ(f) is irreducible with deg g = n. By Theorem 3.7,
the set A=

{
1, a, a2, · · · , an−1

}
is a basis for F [a] over F , and the set B=

{
1, b, b2, · · · , bn−1

}
is a basis for E[b] over E. The desired extension φ : F [a] → E[b] must be given by

φ
(∑n−1

k=0 cka
k
)

=
∑n−1
k=0 φ(ck)bk. This map is bijective since A and B are bases for F [a]

ov er F and E[b] over E, and it is easy to see that this map is a ring homomorphism, so
it is an isomorphism.

3.29 Corollary: Let F be a field and let f ∈ F [x] be a nonconstant polynomial. Let K
and L be splitting fields of f over F . Then there is an isomorphism of fields φ : K → L
with φ(x) = x for every x ∈ F .

Proof: Let K and L be splitting fields for f over F , with K = F [a1, · · · , a`] where a1, · · · , a`
are the distinct roots of f in K, and L = F [b1, · · · , bm] where b1, · · · , bm are the distinct
roots of f in L. If f splits over F , then K = L = F and we are done. Suppose f does not
split over F . Let g1 be an irreducible factor of f in F [x] with g1(a1) = 0 in K. Let h1 = g1
and reorder the roots b1, · · · , bm, if necessary, so that b1 is a root of h1 in L. By Theorem
3.28, we can extend the identity map I : F → F to a field isomorphism φ : F [a1]→ F [b1]
with φ(a1) = b1. We also write φ : F [a1][x] → F [b1][x] to denote the associated ring
isomorphism. Note that f splits over F [a1] if and only if f splits over F [b1] and, in this
case, we have K = f [a1] and L = F [b1] we are done. Suppose that f does not split over
F [a1] or over F [b1]. Let g2 be an irreducible factor of f in F [a1][x] with g2(a2) = 0. Let
h2 = φ(g2) and note that h2 is an irreducible factor of f in F [b1][x]. Also note that h2
has a root in L which is distinct from b1 (if b1 was the only root of h2 in L then h2 would
split over F [b1], hence g1 would split over F [a1] with a1 as its only root). Reorder the
roots b2, · · · , bm, if necessary, so that b2 is a root of h2 in L. By Theorem 3.28, we can
extend the isomorphism φ : F [a1] → F [b1] to an isomorphism φ : F [a1, a2] → F [b1, b2]
with φ(a1) = b1 and φ(a2) = b2. We also write φ : F [a1, a2][x] → F [b1, b2][x] to denote
the associated ring isomorphism. Note that f splits over F [a1, a2] if and only if f splits
over F [b1, b2] and, in this case, we have K = F [a1, a2] and L = F [b1, b2] and we are done.
Otherwise, we repeat the above procedure until f splits.

3.30 Exercise: For each of the following polynomials f ∈ Q[x], find the splitting field K
of f over Q in C, and find [K : Q].

(a) f(x) = x4 − 4. (b) f(x) = x4 − 2. (c) f(x) = x5 − 1.

3.31 Exercise: Let f(x) = x2 + x + 1 ∈ Z2[x] and note that f is irreducible (because
it has no roots in Z2). Let K be a splitting field for f over Z2, and let a ∈ K be a root
of f in K. Note that [K : Z2] = 2 and {1, a} is a basis for K over Z2, and so we have
K =

{
s ·1 + t ·a

∣∣ s, t ∈ Z2

}
=
{

0 , 1 , a , a+ 1
}

. Determine the addition and multiplication
tables in K.
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Multiple Roots

3.32 Definition: Let F be a field. For f(x) =
n∑
k=0

akx
k ∈ F [x], we define the (formal)

derivative of f to be

d
dxf(x) = f ′(x) =

n∑
k=0

k akx
k−1.

3.33 Theorem: Let F be a field. For all f, g ∈ F [x] and c ∈ F , we have

(cf)′ = cf ′ , (f + g)′ = f ′ + g′ , (fg)′ = f ′g + fg′ and (f ◦ g)′ = (f ′ ◦ g) g′.

Proof: We leave the proof that (cf)′ = cf ′ and (f + g)′ = f ′ + g′ as an exercise. Let

f(x) =
n∑
k=0

akx
k and g(x) =

m∑̀
=0

b`x
`. We have

(fg)′(x) = d
dx

( n∑
k=0

m∑̀
=0

akb`x
k+`
)

=
n∑
k=0

m∑̀
=0

(k+`)akb`x
k+`−1, and

(f ′g + fg′)(x) =
( n∑
k=0

k akx
k−1
)( m∑̀

=0

b`x
`
)

+
( n∑
k=0

akx
k
)( m∑̀

=0

` b`x
`−1
)

=
n∑
k=0

m∑̀
=0

k akb`x
k+`−1 +

n∑
k=0

m∑̀
=0

` akb`x
k+`−1

=
n∑
k=0

m∑̀
=0

(k+`)akb`x
k+`−1 = (fg)′(x).

This proves the Product Rule. To prove the Chain Rule, we first claim that

d
dxg(x)k = k g(x)k−1g′(x)

for all k ≥ 0. This clearly holds when k = 0. Suppose, inductively, it holds for some k ≥ 0.
Then, by the Product Rule, we have

d
dxg(x)k+1 = d

dx

(
g(x)kg(x)

)
= d

dxg(x)k · g(x) + g(x)kg′(x)

= k g(x)k−1g′(x) · g(x) + g(x)kg′(x) = (k + 1)g(x)kg′(x).

By induction, we have d
dxg(x)k = k g(x)k−1g′(x) for all k ≥ 0, as claimed. Thus

(f ◦ g)′(x) = d
dx

n∑
k=0

akg(x)k =
n∑
k=0

ak
d
dxg(x)k =

n∑
k=0

ak · k g(x)k−1g′(x)

=
( n∑
k=0

k ak g(x)k−1
)
g′(x) = (f ′ ◦ g)(x) · g′(x).
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3.34 Theorem: Let F be a field and let f ∈ F [x] be a non-constant polynomial. Then f
has no repeated roots in its splitting field if and only if gcd(f, f ′) = 1.

Proof: Let K be a splitting field for f over F . Note that we can consider f to lie in F [x]
or in K[x]. When we calculate f ′(x), the coefficients of f ′ lie in F , so the derivative of
f in F [x] is equal to the derivative of f in K[x]. The same holds for gcd(f, f ′): when
we calculate gcd(f, f ′) using the Euclidean Algorithm, at each step in our calculation
the coefficients of all the polynomials lie in F , and in particular, all of the coefficients of
gcd(f, f ′) lie in F , so the greatest common divisor of f and f ′ in K[x] is equal to the
greatest common divisor of f and f ′ in F [x].

Suppose f has a repeated root in K, say f(x) = (x− a)2g(x) ∈ K[x]. Then we have
f ′(x) = 2(x− a)g(x) + (x− a)2g′(x) ∈ K[x]. Thus (x− a) divides both f(x) and f ′(x) so
that (x− a) divides gcd(f, f ′) in K[x]. Thus the degree of gcd(f, f ′) is at least 2 (in K[x]
and in F [x]), and so gcd(f, f ′) 6= 1. .

Suppose that f has no repeated roots in K, say f(x) = c(x−a1)(x−a2) · · · (x−an) ∈
K[x] with the elements ak ∈ K all distinct. Then we have f ′(x) = c

∑n
k=1

∏
i 6=k

(x − ai).

For each k we have f ′(ak) = c
∏
i 6=k

(ak − ai) 6= 0, so none of the linear polynomials (x− ai)

divides f ′ in K[x]. Thus we have gcd(f, f ′) = 1 in K[x], hence also in F [x].

3.35 Corollary: Let F and let f ∈ F [x] be irreducible. Then f has a repeated root in
its splitting field if and only if f ′ = 0. So when char(F ) = 0, f has no repeated roots, and
when char(F ) = p with p prime, f has a repeated root if and only if f is of the form g(xp)
for some g ∈ F [x].

Solution: If f ′ = 0 then gcd(f, f ′) = f ′ 6= 1, so f has a repeated root in its splitting field.
Suppose that f ′ 6= 0. Let g be a common factor f and f ′ in F [x]. Since g

∣∣f ′ and f ′ 6= 0 we

have deg(g) ≤ deg(f ′) < deg(f). Since g
∣∣f and f is irreducible, either g is a unit or g is

an associate of f , so either deg(g) = 0 or deg(g) = deg(f). Thus we must have deg(g) = 0.
So the common divisors of f and f ′ in F [x] are the non-zero constant polynomials, so we
have gcd(f, f ′) = 1, hence f has no repeated roots.

Finally, note that when char(F ) = 0 we have f ′ 6= 0 (indeed deg(f ′) = deg(f) − 1)
and when char(F ) = p we have f ′ = 0 if and only if f is of the form f(x) =

∑n
k=0 akx

kp

for some ak ∈ F , if and only if f is of the form f(x) = g(xp) for some g ∈ F [x].

3.36 Example: Consider the polynomial f(x) = x2 + u ∈ Z2(u)[x] where u is a variable

symbol, so that Z2(u) =
{
f(u)
g(u)

∣∣∣ f(u), g(u) ∈ Z2[u], g(u) 6= 0
}

, where Z2[u] is the ring of

polynomials over Z2 in the variable u. Note that f has no roots in Z2(u) because if we

had
( f(u)
g(u)

)2
+u = 0 ∈ Z2(u) then we would have f(u)2 = −u g(u)2 in Z2[u], but this is not

possible since the polynomial f(u)2 has even degree but the polynomial u g(u)2 has odd
degree. Since f(x) has degree 2 and has no roots in Z2(u), it is irreducible in Z2(u)[x].
But since f ′(x) = 2x = 0 ∈ Z2(u)[x], it follows (from the above corollary) that f has a
repeated root in its splitting field. Indeed we do not need to rely on the above corollary as
it is easy to check that if K is a splitting field of f , and a ∈ K is a root of f in K, then we
have a2 = u ∈ K and we have (x−a)2 = x2− 2a x+a2 = x2 +a2 = x2 +u = f(x) ∈ K[x].
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Finite Fields

3.37 Definition: When X is a subset of Y , and φ : X → Y is any function, the fixed
point set of φ is the set

Fix(φ) =
{
x∈X

∣∣φ(x)=x
}
.

When R is a subring of S and φ : R → S is a ring homomorphism, note that Fix(φ)
is a subring of R: indeed if a, b ∈ Fix(φ) so that φ(a) = a and φ(b) = b, then we have
φ(a + b) = φ(a) + φ(b) = a + b and φ(ab) = φ(a)φ(b) = ab so that a + b ∈ Fix(φ) and
ab ∈ Fix(φ). When F is a subfield of K and φ : F → K is a non-zero homomorphism, the
fixed point set Fix(φ) is a subfield of F : indeed recall (or verify) that φ(1) = 1, so when
0 6= a ∈ Fix(φ) so that φ(a) = a, then we have φ(a) · φ

(
1
a

)
= φ

(
a · 1a

)
= φ(1) = 1 and

hence φ
(
1
a

)
= 1

φ(a) = 1
a so that 1

a ∈ Fix(φ).

3.38 Definition: When R is a commutative ring with 1 with prime characteristic p,
the Frobenius map is the map φ : F → F given by φ(x) = xp. Note that φ is a ring
homomorphism because φ(xy) = (xy)p = xpyp and φ(x + y)p =

∑(
p
k

)
xkyp−k = xp + yp.

When R is an integral domain, this map φ is injective since xp = 0 =⇒ x = 0. When F is
a finite field, every injective map from F to F is bijective so, in particular, the Frobenius
map φ is bijective. Also note that φ fixes every element in the prime subfield E because
E ∼= Zp and for every x ∈ Zp we have xp = x (by Fermat’s Little Theorem), so E ⊆ Fix(φ).

3.39 Theorem: If F is a finite field then the multiplicative group of units F ∗ is cyclic.

Proof: Let F be a finite field. We claim that the multiplicative group of units F ∗ is cyclic.
By the Classification of Finite Abelian groups, we have F ∗ ∼= Cn1

×Cn2
× · · · ×Cn`

where
Cn is the standard multiplicative cyclic group of order n (the group of nth roots of unity
in C∗) and nk

∣∣nk+1. Note that every a ∈ F ∗ satisfies an` = 1, so every a ∈ F ∗ is a root of
f(x) = xn` − 1 ∈ F [x]. Since F is a field, f has at most n` roots, so we must have ` = 1
and n` = |F ∗| so that F ∗ is cyclic, as claimed.

3.40 Theorem: (The Classification of Finite Fields)

(1) If F is a finite field then |F | = pn for some prime number p ∈ Z+ and some n ∈ Z+.
(2) For every prime p ∈ Z+ and every n ∈ Z+ there is, up to isomorphism, a unique field F
with |F | = pn. This field F is the splitting field of f(x) = xp

n − x over the prime subfield
E. Indeed, f has pn distinct roots in F , and F is equal to the set of roots of f .

Proof: Recall that every finite field has prime characteristic, and in a field of prime
characteristic p, the prime subfield is isomorphic to Zp

(
the prime subfield is the field

E =
{

0 · 1, 1 · 1, 2 · 1, · · · , (p − 1) · 1
} ∼= Zp

)
. To prove Part 1, let F be a finite field. Let

p = charF , and let E be the prime subfield of F . Let n = [F :E] = dim
E
F . Note that n

is finite (since any basis for F is a subset of F , which must be finite). Let {u1, u2, · · · , un}
be a basis for F over E. Since each element in F can be expressed uniquely as a linear
combination

∑n
k=1 tkuk, and we have p choices for each of the n elements tk∈E, it follows

that |F | = pn.
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To prove Part 2, let p ∈ Z+ be prime and let n ∈ Z+. First let us prove that there
exists a field F with |F | = pn. Let F be the splitting field of f(x) = xp

n −x over Zp. Note
that since f ′(x) = pnxp

n−1−1 = −1 we have gcd(f, f ′) = 1 so that f has pn distinct roots
in F (so F has at least pn elements). Note that since the Frobenius map φ(x) = xp is an
automorphism of F which fixes elements in E, so is the map ψ = φn given by ψ(x) = xp

n

.
For a ∈ F , note that a is a root of f if and only if ap

n

= a if and only if ψ(a) = a, so
the set of roots of f in F is equal to Fix(ψ) =

{
a∈F

∣∣ψ(a)=a
}

, which is a subfield of F .
Since F is the splitting field of f over E, which is the smallest subfield of F which contains
all the roots of f , and since the set of all roots of f is a field, it follows that F is equal to
the set of all the roots of f , and so F has exactly pn elements.

Now let us prove uniqueness. Suppose that F is any field with |F | = pn. Let E be
the prime subfield and note that E ∼= Zp. Since F ∗ is cyclic of order pn − 1, every a ∈ F ∗
satisfies ap

n−1 = 1, and hence every a ∈ F (including a = 0) satisfies ap
n

= a. Thus every
element in F is a root of f(x) = xp

n − x ∈ E[x]. Since f has at most pn roots in F , it
follows that the the roots of f are distinct in F , and the elements in F are equal to the
roots of f , hence F is the splitting field of f over E.

3.41 Corollary: If F is a finite field and n ∈ Z+ then there exists an extension field K
of F with [K : F ] = n. This extension field K is unique up to isomorphism and it is of the
form K = F (a) for some a ∈ K.

3.42 Corollary: If F is a finite field and n ∈ Z+ then there exists an irreducible polyno-
mial f ∈ F [x] of degree n.

3.43 Corollary: Let K be a finite field with |K| = pn where p ∈ Z+ is prime and n ∈ Z+.
If F is a subfield of K then |F | = pd for some divisor d of n. Conversely, for every divisor
d of n, there is exactly one subfield F of K with |K| = pd. This subfield F is the splitting

field of (and the set of roots of) f(x) = xp
d − x over the prime subfield E in K.

3.44 Corollary: Let p ∈ Z+ be prime and let n ∈ Z+. In the ring Zp[x], the polynomial
f(x) = xp

n − x is equal to the product of all the distinct monic irreducible polynomials in
Zp[x] whose degree divides n.

3.45 Example: In Z2[x], the irreducible polynomials of degree 1 are x and x+ 1, and the
irreducible polynomials of degree 3 are x3 + x+ 1 and x3 + x2 + 1, and we have

x2
3

− x = x8 + x = x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1).
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