

Chapter 3. Fields

Algebraic and Transcendental Extensions

3.1 Definition: When we say that F and K are fields with $F \subseteq K$, we shall assume, unless otherwise stated, that F is using the same operation used in K , so that F is a subfield of K (that is K is an extension field of F). In this case, the field K is a vector space over the field F , and we define the **index** of K over F to be $[K : F] = \dim_F K$.

3.2 Example: \mathbb{R} is a subfield of \mathbb{C} , and $[\mathbb{C} : \mathbb{R}] = 2$.

3.3 Exercise: Verify that

$$\begin{aligned}\mathbb{Q}[i] &= \{a+bi \mid a, b \in \mathbb{Q}\} \\ \mathbb{Q}[\sqrt{2}] &= \{a+b\sqrt{2} \mid a, b \in \mathbb{Q}\} \\ \mathbb{Q}[\sqrt{2}, i] &= \{a+b\sqrt{2}+ci+d\sqrt{2}i \mid a, b, c, d \in \mathbb{Q}\}\end{aligned}$$

are all fields with $[\mathbb{Q}[i] : \mathbb{Q}] = 2$, $[\mathbb{Q}[\sqrt{2}] : \mathbb{Q}] = 2$, and $[\mathbb{Q}[\sqrt{2}, i] : \mathbb{Q}] = 4$.

3.4 Theorem: Let F , K and L be fields with $F \subseteq K \subseteq L$. Then $[L : F] = [K : F][L : K]$. Indeed if U is a basis for K over F and V is a basis for L over K then

$$W = \{uv \mid u \in U, v \in V\}$$

is a basis for K over F .

Proof: Let U be a basis for K over F , and let V be a basis for L over K , and let $W = \{uv \mid u \in U, v \in V\}$. In the case that U or V is infinite, recall that $|X|$ denotes the cardinality of a set X , recall that for two sets X and Y , we write $|X| = |Y|$ when there is a bijection $F : X \rightarrow Y$, and recall that $|X||Y| = |X \times Y|$ (by definition). With this in mind, note that $|W| = |U||V| = |U \times V|$ because the map $F : U \times V \rightarrow W$ given by $F(u, v) = uv$ is bijective: indeed it is clearly surjective, and it is injective because for $u_1, u_2 \in U$ and $v_1, v_2 \in V$, if $u_1v_1 = u_2v_2$ then since V is linearly independent we have $u_1 = u_2$, and since U is linearly independent so that $u_1 \neq 0$, $u_1v_1 = u_1v_2$ implies that $v_1 = v_2$.

Note that W spans L because given $w \in L$, since V spans L over K , we can choose $s_1, \dots, s_n \in K$ such that $w = \sum_{j=1}^n s_j v_j$, then since U spans K over F , for each index j , we can choose $t_{j,1}, \dots, t_{j,\ell_j}$, such that $s_j = \sum_{i=1}^{\ell_j} t_{j,i} u_i$, and then we have

$$w = \sum_{j=1}^n s_j v_j = \sum_{j=1}^n \left(\sum_{i=1}^{\ell_j} t_{j,i} u_i \right) v_j = \sum_{j=1}^n \sum_{i=1}^{\ell_j} t_{j,i} u_i v_j.$$

It remains to show that W is linearly independent. Suppose $\sum_{k=1}^m s_k w_k = 0$ where w_1, \dots, w_m are distinct elements in W and each $s_k \in F$. By the bijective correspondence $F : U \times V \rightarrow W$, the distinct elements w_1, \dots, w_m can be written as $u_{i,j} v_j$ with $1 \leq j \leq n$ and $1 \leq i \leq \ell_j$, such that $v_1, \dots, v_n \in V$ are distinct and, for each index j , $u_{1,j}, \dots, u_{\ell_j,j} \in U$ are distinct, and when $w_k = u_{i,j} v_j$, we write the corresponding coefficient as $s_k = t_{i,j}$. Then we have $0 = \sum_{k=1}^m s_k w_k = \sum_{j=1}^n \sum_{i=1}^{\ell_j} t_{i,j} u_{i,j} v_j$. Since V is linearly independent, we must have $\sum_{i=1}^{\ell_j} t_{i,j} u_{i,j} = 0$ for all j , and since U is linearly independent, we have $t_{i,j} = 0$ for all i, j , and hence $s_k = 0$ for all k .

3.5 Definition: When R and S are commutative rings with 1, where $R \subseteq S$ and U is a subset of S , the **subring of S generated by U over R** , denoted by $R[U]$, is the smallest subring of S which contains $R \cup U$. When $U = \{u_1, u_2, \dots, u_n\}$ we write $R[U]$ as $R[u_1, u_2, \dots, u_n]$, and we have

$$R[u_1, u_2, \dots, u_n] = \{f(u_1, u_2, \dots, u_n) \mid f \in R[x_1, x_2, \dots, x_n]\}.$$

When $S = R[u_1, u_2, \dots, u_n]$ for some $u_1, u_2, \dots, u_n \in S$, we say that S is **finitely generated** as a ring over R .

When F and K are fields with $F \subseteq K$ and $U \subseteq K$, the **subfield of K generated by U over F** , denoted by $F(U)$, is the smallest subfield of K which contains $F \cup U$. When $U = \{u_1, u_2, \dots, u_n\}$ we write $F(U)$ as $F(u_1, u_2, \dots, u_n)$, and we have

$$F(u_1, \dots, u_n) = \left\{ \frac{f(u_1, \dots, u_n)}{g(u_1, \dots, u_n)} \mid f, g \in F[x_1, \dots, x_n] \text{ and } g(u_1, \dots, u_n) \neq 0 \right\}.$$

When $K = F(u_1, \dots, u_n)$ for some $u_1, \dots, u_n \in K$, we say that K is **finitely generated** as a field over F .

3.6 Definition: Let F and K be fields with $F \subseteq K$. For $a \in K$, we say that a is **algebraic** over F when there exists a polynomial $f(x) \in F[x]$ such that $f(a) = 0$ in K , otherwise we say that a is **transcendental** over F . We say that K is **algebraic** over F when every element $a \in K$ is algebraic over F , otherwise we say that K is **transcendental** over F .

3.7 Theorem: Let F and K be fields with $F \subseteq K$ and let $a \in K$.

(1) If a is transcendental over F then we have

$$F[a] \cong F[x] \text{ and } F(a) \cong F(x).$$

In this case $[F(a) : F] = \infty$ and the set $\{1, a, a^2, \dots\}$ is linearly independent over F .

(2) If a is algebraic over F then there is a unique monic irreducible polynomial $f(x) \in F[x]$ with $f(a) = 0$, the ideal generated by this polynomial in $F[x]$ is $\langle f \rangle = \{g \in F[x] \mid g(a) = 0\}$ and we have

$$F(a) = F[a] \cong F[x]/\langle f \rangle.$$

For $n = \deg(f)$ the set $\{1, a, a^2, \dots, a^{n-1}\}$ is a basis for $F(a)$ over F , and $[F(a) : F] = n$.

Proof: To prove Part 1, suppose a is transcendental over F . The evaluation homomorphism $\phi : F[x] \rightarrow F[a]$, given by $\phi(f) = f(a)$, is clearly surjective (since $F[a] = \{f(a) \mid f \in F[x]\}$), and it is injective because a is transcendental (so if $f(a) = 0$ then $f = 0$). Thus $F[a] \cong F[x]$.

The evaluation homomorphism $\phi : F(x) \rightarrow F(a)$, given by $\phi(f/g) = f(a)/g(a)$ where $f, g \in F[x]$ with $g \neq 0$, is well-defined because a is transcendental (so when $g \neq 0$, we have $g(a) \neq 0$). Also ϕ is clearly surjective (since $F(a) = \{ \frac{f(a)}{g(a)} \mid f, g \in F[x], g(a) \neq 0 \}$), and ϕ is injective, indeed every nonzero homomorphism from a field to a ring is injective because its kernel is an ideal, and the only ideals in a field are the trivial ideal and the entire field).

Finally, note that $\{1, a, a^2, \dots\}$ is linearly independent (hence $[F(a) : F] = \infty$) since if we have $\sum_{i=0}^n c_i a^i = 0$ with $c_i \in F$, and we let $g(x) = \sum_{i=0}^n c_i x^i \in F[x]$, then we have $g(a) = 0$, hence $g = 0$ (since a is transcendental), and hence $c_i = 0$ for all i .

To prove Part 2, suppose that a is algebraic over F . The evaluation homomorphism $\phi : F[x] \rightarrow F[a]$, given by $\phi(f) = f(a)$, is clearly surjective (since $F[a] = \{f(a) \mid f \in F[x]\}$), and we have $\text{Ker } \phi = \{g \in F[x] \mid g(a) = 0\}$. Note that $\text{Ker } \phi \neq \{0\}$ because a is algebraic (so there exists $0 \neq g \in F[x]$ such that $g(a) = 0$). Since $F[x]$ is a Euclidean domain, with Euclidean norm $E(g) = \deg(g)$, we know that $F[x]$ is a principal ideal domain, and that $\text{Ker } \phi = \langle g \rangle$ where g is a nonzero polynomial of smallest degree in $\text{Ker } \phi$, that is a nonzero polynomial of smallest degree with $g(a) = 0$. Note that $\deg g \geq 1$ because $g \neq 0$ and if g was a nonzero constant polynomial, say $g(x) = c$ with $0 \neq 0 \in F$, then $g(a) = c \neq 0$. Also note that there is a unique monic polynomial f with $\langle f \rangle = \langle g \rangle$, namely $f = \frac{1}{c}g$ where c is the leading coefficient of g . Thus we have

$$\text{Ker } \phi = \{g \in F[x] \mid g(a) = 0\} = \langle f \rangle$$

where f is the unique monic polynomial of minimal degree with $f(a) = 0$. By the First Isomorphism Theorem, since ϕ is surjective with $\text{Ker } \phi = \langle f \rangle$, we have

$$F[a] \cong F[x]/\langle f \rangle.$$

Since $F[a]$ is a subring of a field, it is an integral domain, so the ideal $\langle f \rangle$ must be a prime ideal in $F[x]$, and hence f is a prime element in $F[x]$. Since $F[x]$ is a principal ideal domain, it follows that f is irreducible in $F[x]$, and the ideal $\langle f \rangle$ is maximal, and hence $F[x]/\langle f \rangle$ is a field. Thus the ring $F[a] \cong F[x]/\langle f \rangle$ is actually a field, and so we have

$$F(a) = F[a].$$

Note that f is the unique monic irreducible polynomial with $f(a) = 0$, since if g is another monic irreducible polynomial with $g(a) = 0$ then, since $g(a) = 0$ we have $g \in \text{Ker } \phi = \langle f \rangle$ so that $f \mid g$, hence f and g are associates (since f and g are irreducible), and hence $f = g$ (since f and g are monic).

Let $n = \deg f$. We claim that $\{1, a, a^2, \dots, a^{n-1}\}$ spans $F(a) = F[a]$. Let $u \in F[a]$, say $u = g(a)$ where $g \in F[x]$. By the Division Algorithm, we can choose $q, r \in F[x]$ with $\deg r < n$ such that $g = qf + r$, say $r(x) = c_0 + c_1x + \dots + c_{n-1}x^{n-1}$ with $c_i \in F$. Since $f(a) = 0$ we have $u = g(a) = q(a)f(a) + r(a) = r(a) = \sum_{i=0}^{n-1} c_i a^i \in \text{Span}\{1, a, \dots, a^{n-1}\}$. Thus $\{1, a, \dots, a^{n-1}\}$ spans $F(a) = F[a]$ as claimed. We claim that $\{1, a, \dots, a^{n-1}\}$ is linearly independent. Let $c_0, c_1, \dots, c_{n-1} \in F$ and suppose that $\sum_{i=0}^{n-1} c_i a^i = 0$. Let $g(x) = \sum_{i=0}^{n-1} c_i x^i \in F[x]$. Since f is a nonzero polynomial of minimal degree with $f(a) = 0$, and g is a polynomial with $\deg g < \deg f$ and $g(a) = 0$, it follows that $g = 0$, and hence $c_i = 0$ for all i . Thus $\{1, a, \dots, a^{n-1}\}$ is linearly independent, as claimed.

3.8 Definition: When F and K are fields with $F \subseteq K$, and $a \in K$ is algebraic over F , the unique monic irreducible polynomial $f(x) \in K[x]$ with $f(a) = 0$ in K is called the **minimal polynomial** of a over F .

3.9 Exercise: Find the minimal polynomial of $\sqrt{1 + \sqrt{3}}$, and of $\sqrt{3 + 2\sqrt{5}}$, over \mathbb{Q} .

3.10 Exercise: Let $\theta = 2 \cos \frac{\pi}{9}$. Find $[\mathbb{Q}(\theta) : \mathbb{Q}]$.

3.11 Exercise: Let F and K be fields. Let $u \in K$ be transcendental over F . Note that $F(u^2) \subseteq F(u)$. Find the minimal polynomial of $u + 1$ over $F(u^2)$.

3.12 Exercise: Let $f(x) = x^3 - 2$. Note that the roots of f in \mathbb{C} are $\sqrt[3]{2}$, $\sqrt[3]{2}\omega$ and $\sqrt[3]{2}\omega^2$, where $\omega = e^{i2\pi/3}$. Let $K = \mathbb{Q}[\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2]$ and $L = \mathbb{Q}[\sqrt[3]{2}, \omega]$. Show that $K = L$ and find $[K : \mathbb{Q}]$.

3.13 Corollary: Let F, K and L be fields with $F \subseteq K \subseteq L$ and let $a \in L$. Let $f(x) \in F[x]$ be the minimal polynomial for a over F and let $g(x) \in K[x]$ be the minimal polynomial for a over K . Then $g(x) \mid f(x)$ in $K[x]$.

Proof: Since $f \in F[x]$ we also have $f \in K[x]$. Since $f \in K[x]$ with $f(a) = 0$, and g is the minimal polynomial of a over K , we have $f \in \langle g \rangle \subseteq K[x]$, and hence $g \mid f \in K[x]$.

3.14 Theorem: Let F and K be fields with $F \subseteq K$. Then the following are equivalent:

- (1) $[K:F]$ is finite.
- (2) K is algebraic and finitely generated as a field over F .
- (3) There exist $a_1, \dots, a_n \in K$, with each a_k algebraic over F , such that $K = F[a_1, \dots, a_n]$.

Proof: Suppose that $[K : F]$ is finite. Note that K is algebraic over F since if we had an element $u \in K$ which was transcendental over F , then the set $\{1, u, u^2, \dots\}$ would be linearly independent so that $[K : F] = \infty$. Also note that K is finitely generated because if $\{a_1, a_2, \dots, a_n\}$ is a basis for K over F then we have $K = F[a_1, \dots, a_n]$. Indeed given $u \in K$, we can write $u = \sum_{k=1}^n c_k a_k$ with each $c_k \in F$, and then for the polynomial $g(x_1, \dots, x_n) = \sum_{i=1}^n c_i x_i \in F[x_1, \dots, x_n]$, we have $u = g(a_1, \dots, a_n) \in F[a_1, a_2, \dots, a_n]$.

Suppose that K is algebraic and finitely generated over F . Since K is finitely generated over F we can choose $a_1, \dots, a_n \in K$ such that $K = F(a_1, \dots, a_n)$. Since K is algebraic over F , each a_k is algebraic over F , so we have $K = F(a_1, \dots, a_n) = F[a_1, \dots, a_n]$.

Suppose that $K = F[a_1, a_2, \dots, a_n]$ with each $a_k \in K$ algebraic over F . Let $F_0 = F$ and $F_k = F[a_1, \dots, a_k]$ for $1 \leq k \leq n$. Note that $F_n = K$ and $F_k = F_{k-1}[a_k]$ for $1 \leq k \leq n$. Since a_k is algebraic over F , it is also algebraic over F_{k-1} , so we have $[F_k : F_{k-1}] = d_k$ where d_k is the degree of the minimal polynomial of a_k over F_{k-1} . Since $F = F_0 \subseteq F_1 \subseteq \dots \subseteq F_n = K$, by Theorem 3.4 we have

$$[K : F] = [F_n : F_0] = [F_n : F_{n-1}][F_{n-1} : F_{n-2}] \cdots [F_2 : F_1][F_1 : F_0] = d_n d_{n-1} \cdots d_2 d_1,$$

which is finite.

3.15 Corollary: Let F, K and L be fields with $F \subseteq K \subseteq L$. If L is algebraic over K and K is algebraic over F then L is algebraic over F .

Proof: Suppose that L is algebraic over K and K is algebraic over F . Let $u \in L$. Since u is algebraic over K we can choose $0 \neq g \in K[x]$ such that $g(u) = 0$, say $g(x) = \sum_{k=0}^n c_k x^k$ with each $c_k \in K$. Let $E = F[c_0, c_1, \dots, c_n]$, and note that since each $c_i \in E$ we have $g \in E[x]$. Since $g \in E[x]$ and $g(u) = 0$, u is algebraic over E , and hence $[E(u) : E]$ is finite. Since $E = F[c_0, \dots, c_n]$ with each c_k algebraic over F , the above theorem implies that $[E : F]$ finite, and hence so is $[E(u) : F] = [E(u) : E][E : F]$. Since $[E(u) : F]$ is finite, $E(u)$ is algebraic over F , so every element in $E(u)$ is algebraic over F , so in particular u is algebraic over F . Since $u \in L$ was arbitrary, L is algebraic over F , as required.

3.16 Corollary: Let F be a subfield of K . Let $E = \{a \in K \mid a \text{ is algebraic over } F\}$. Then E is a field with $F \subseteq E \subseteq K$.

Proof: Note that $F \subseteq E$ because every $a \in F$ is algebraic over F with minimal polynomial $x - a \in F[x]$. We claim that E is a subfield of K . Let $a, b \in E$. Then we have $a, b \in F[a, b]$, which is a field, and so $a + b, a - b, ab$ and (if $b \neq 0$) $\frac{a}{b}$ all lie in $F[a, b]$. Since $F[a, b]$ is algebraic over F , each of the elements $a + b, a - b, ab$ and (if $b \neq 0$) $\frac{a}{b}$ is algebraic over F , so they all lie in E . Thus E is a subfield of K , as claimed.

Geometric Constructions

3.17 Definition: Let S be a set in \mathbb{R}^2 which contains at least two points. A **line on S** is a line through any two distinct points in S , and a **circle on S** is a circle centred at one point in S which passes through another.

A point $p \in \mathbb{R}^2$ is **constructible in one step from S** when $p \in A \cap B$ for some $A \neq B$ where each of the sets A and B is either a line on S or a circle on S . We say that a point $p \in \mathbb{R}^2$ is **constructible from S** when there is a finite sequence of points p_1, p_2, \dots, p_n with $p_n = p$ such that each p_k is constructible in one step from $S \cup \{p_1, \dots, p_{k-1}\}$. We say that a line L (or a circle C) is **constructible from S** when there is a finite set P of points, constructible from S , such that L is a line on $S \cup P$ (or C is a circle on $S \cup P$).

When a point (or line or circle) in \mathbb{R}^2 is constructible from the set $S_0 = \{(0, 0), (1, 0)\}$, we simply say that the point (or line or circle) is **constructible** (in \mathbb{R}^2). For $a \in \mathbb{R}$, we say that a is **constructible** (in \mathbb{R}) when $p = (a, 0)$ is constructible in \mathbb{R}^2 .

3.18 Note: Given two distinct points $a, b \in \mathbb{R}^2$, the perpendicular bisector of a and b is constructible from $\{a, b\}$ because it is the line through the two points of intersection of the circle C centred at a through b with the circle D centred at b through a .

Given two distinct points $a, b \in \mathbb{R}^2$ and a point $p \in \mathbb{R}^2$, let L be the line through a and b . Note that we can construct the line M through p perpendicular to L : indeed, if q is the point on L nearest to p then at least one of the two points a, b is not equal to q , say $a \neq q$, then the circle centred at p through a meets L at another point c , and the desired line M is the perpendicular bisector of a and c . It follows that we can also construct the line N through p parallel to L , which is the line through p perpendicular to M .

3.19 Note: From the set $S_0 = \{(0, 0), (1, 0)\}$ we can (of course) construct the x -axis, and we can construct the y -axis (since it is the line through $(0, 0)$ perpendicular to the x -axis).

Note that for $a \in \mathbb{R}$, the point $(a, 0)$ is constructible if and only if the point $(0, a)$ is constructible. Indeed when $a = 0$ we have $(a, 0) = (0, 0) = (0, a)$ and when $a \neq 0$, the circle centred at $(0, 0)$ through $(a, 0)$ intersects the y -axis at $(0, a)$ (and also at $(0, -a)$), and the circle centred at $(0, 0)$ through $(0, a)$ intersects the x -axis at $(a, 0)$.

Note that for $a, b \in \mathbb{R}$ and $p = (a, b) \in \mathbb{R}^2$, the point p is constructible in \mathbb{R}^2 if and only if a and b are both constructible in \mathbb{R} . Indeed, if $p = (a, b)$ is constructible in \mathbb{R}^2 , then $(a, 0)$ is constructible (since it is the point of intersection of the x -axis with the line through (a, b) perpendicular to the x -axis) and $(0, b)$ is constructible (since it is the point of intersection of the y -axis with the line through (a, b) perpendicular to the y -axis). And conversely, if $(a, 0)$ and $(0, b)$, hence also $(0, b)$, are constructible, then so is (a, b) (since it is the point of intersection of the line through $(a, 0)$ perpendicular to the x -axis with the line through $(0, b)$ perpendicular to the y -axis).

3.20 Theorem: (Constructible Points) Let F be the set of all constructible real numbers.

- (1) F a field with $\mathbb{Q} \subseteq F \subseteq \mathbb{R}$.
- (2) For $a \in \mathbb{R}$ we have $a \in F$ if and only if there is a tower of fields

$$\mathbb{Q} = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n$$

with $a \in F_n$ such that for $1 \leq k \leq n$ we have $F_k = F_{k-1}[\sqrt{u_k}]$ for some $0 \leq u_k \in F_{k-1}$.

- (3) For $a \in \mathbb{R}$, if $a \in F$ then $[\mathbb{Q}(a):\mathbb{Q}]$ is a power of 2.

Proof: To prove Part 1, let $a, b \in F$, and note that the points $(a, 0)$, $(0, a)$, $(b, 0)$, $(0, b)$ and (a, b) are constructible. If $b = 0$ then we have $a \pm b = a \in F$. If $b \neq 0$ then the circle centred at $(a, 0)$ through (a, b) meets the x -axis at $(a \pm b, 0)$ so we have $a \pm b \in F$. We can construct the line L through $(0, a)$ and $(1, 0)$ (L has equation $y = a - ax$), and we can construct the line M through $(b, 0)$ parallel to L (M has equation $y = ab - ax$) and then the line M intersects the y -axis at $(0, ab)$, so we have $ab \in F$. Suppose $b \neq 0$. We can construct the line J through $(0, a)$ and $(b, 0)$ (J has equation $y = a - \frac{a}{b}x$), and we can construct the line K through $(1, 0)$ parallel to J (K has equation $y = \frac{a}{b} - \frac{a}{b}x$) and then the line K intersects the y -axis at $(0, \frac{a}{b})$ so we have $\frac{a}{b} \in F$. Thus F is a field with $F \subseteq \mathbb{R}$, and note that every subfield of \mathbb{R} contains \mathbb{Q} so we have $\mathbb{Q} \subseteq F \subseteq \mathbb{R}$.

To prove Part 2, let $a \in \mathbb{R}$. Suppose that $a \in F$, so $p = (a, 0)$ is constructible. Choose points $p_1, \dots, p_n \in \mathbb{R}^2$ with $p_n = p$ such that each p_k is constructible in one step from the set $S_0 \cup \{p_1, p_2, \dots, p_{k-1}\}$, where $S_0 = \{(0, 0), (1, 0)\}$. Say $p_k = (a_k, b_k)$, let $F_0 = \mathbb{Q}$, and let $F_k = \mathbb{Q}[a_1, b_1, a_2, b_2, \dots, a_k, b_k]$ for $1 \leq k \leq n$. Note that $F_k = F_{k-1}[a_k, b_k]$ and $a = a_n \in F_n$.

Fix k with $1 \leq k \leq n$. We claim that $F_k = F_{k-1}[\sqrt{u_k}]$ for some $0 \leq u_k \in F_{k-1}$. Since p_k is constructible in one step from $S_0 \cup \{p_1, \dots, p_{k-1}\}$, we have $p \in A \cap B$ for some $A \neq B$ where each of the sets A and B is either a line or a circle on $S_0 \cup \{p_1, \dots, p_{k-1}\}$. Note that each of the points in $S_0 \cup \{p_1, \dots, p_{k-1}\}$ has coordinates which lie in F_{k-1} .

Any line through two distinct points in F_{k-1} has an equation of the form $Ax + By + C = 0$ with $A, B, C \in F_{k-1}$. When two such lines are distinct and have a point of intersection, the point of intersection is unique, and its coordinates lie in F_{k-1} , so when p_k is the point of intersection of two such lines, we have $F_k = F_{k-1}[a_k, b_k] = F_{k-1}$, so we can take $u_k = 0$.

Any circle centred at one point in F_{k-1} through another point in F_{k-1} has an equation of the form $x^2 + y^2 + ax + by + c = 0$ with $a, b, c \in F_{k-1}$. A line $Ax + By + C = 0$ (1) and a circle $x^2 + y^2 + ax + by + c = 0$ (2) can have 0, 1 or 2 points of intersection, and we can find the points of intersection by solving the two equations. In the case $B \neq 0$, we can write (1) in the form $y = dx + e$ with $d, e \in F_{k-1}$, and we can put this into (2) to obtain a quadratic in x with coefficients in F_{k-1} . Let u_k be the discriminant of this quadratic. When the quadratic has a unique solution x , we have $u_k = 0$, and $x \in F_{k-1} = F_{k-1}[0]$ so that $p_k = (a_k, b_k)$ with $a_k = x \in F_{k-1}$ and $b_k = da_k + e \in F_{k-1}$. When the quadratic has two distinct real solutions x_1, x_2 , we have $u_k > 0$, and the two solutions both lie in $F_{k-1}[\sqrt{u_k}]$, so that $p_k = (a_k, b_k)$ with $a_k = x_1$ or x_2 so $a_k \in F_{k-1}[\sqrt{u_k}]$ and $b_k = da_k + e \in F_{k-1}[\sqrt{u_k}]$.

Note that for two circles C and D with C given by $x^2 + y^2 + ax + by + c = 0$ (1) and D given by $x^2 + y^2 + dx + ey + f = 0$ (2) with $a, b, c, d, e, f \in F_{k-1}$, subtracting (2) from (1) gives $(a-d)x + (b-e)y + (c-f) = 0$ so that the points of intersection of C and D are equal to the points of intersection of C and L where L is the line $(a-d)x + (b-e)y + (c-f) = 0$ (noting that if $a = d$ and $b = e$ then C and D have the same centre so they are either equal or have no points of intersection).

We have proven that if $a \in F$ then there is a tower of fields $\mathbb{Q} = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n$ with $a \in F_n$ such that $F_k = F_{k-1}[\sqrt{u_k}]$ for some $0 \leq u_k \in F_{k-1}$. Suppose, conversely, that we have such a tower of fields. By Part 1, we have $F_0 = \mathbb{Q} \subseteq F$. Fix $k \geq 1$ and suppose, inductively, that $F_{k-1} \subseteq F$. We have $0 \leq u_k \in F_{k-1}$ so we can construct the point $(u_k, 0)$, and hence we can construct the points $(u_k \pm 1, 0)$. The circle C centred at $(0, 0)$ through $(u_k + 1, 0)$ meets the line through $(u_k - 1, 0)$ perpendicular to the x -axis at the point $(u_k - 1, 2\sqrt{u_k})$. Thus $2\sqrt{u_k} \in F$, and hence $\sqrt{u_k} \in F$. Since $F_{k-1} \subseteq F$ and $\sqrt{u_k} \in F$ we have $F_k = F_{k-1}[\sqrt{u_k}] \subseteq F$. By induction, $F_k \subseteq F$ for all k . In particular, we have $a \in F_n$ and $F_n \subseteq F$ so that $a \in F$. This completes the proof of Part 2.

Let $a \in F$. By Part 2, we can choose a tower of fields $\mathbb{Q} = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n$ with $a \in F_n$ where $F_k = F_{k-1}[\sqrt{u_k}]$ with $0 \leq u_k \in F_{k-1}$. Since $\sqrt{u_k}$ is a root of $f(x) = x^2 - u_k \in F_{k-1}[x]$, the minimal polynomial of $\sqrt{u_k}$ over F_{k-1} is of degree 1 or 2, so that we have $[F_k : F_{k-1}] \in \{1, 2\}$. Since $[F_n : \mathbb{Q}] = [F_n, F_0] = \prod_{k=1}^n [F_k : F_{k-1}]$ with each $[F_k : F_{k-1}] \in \{1, 2\}$, we see that $[F_n : \mathbb{Q}]$ is a power of 2, say $[F_n : \mathbb{Q}] = 2^\ell$. Since $a \in F_n$ we have $2^\ell = [F_n : \mathbb{Q}] = [F_n : \mathbb{Q}(a)][\mathbb{Q}(a) : \mathbb{Q}]$, and hence $[\mathbb{Q}(a) : \mathbb{Q}]$ divides 2^ℓ , and so $[\mathbb{Q}(a) : \mathbb{Q}]$ is a power of 2.

3.21 Example: The real number $\sqrt[3]{2}$ is not constructible (so we cannot construct the vertices of a square of area 2).

3.22 Exercise: Show that, for a real number θ , we can construct $\cos \theta$ if and only if we can construct $\sin \theta$ if and only if we can construct $\cos 2\theta$ and/or $\sin 2\theta$.

3.23 Exercise: Show that we can construct the real number $\cos \frac{\pi}{5}$ (so we can construct the vertices of a regular pentagon or decagon), but we cannot construct the real number $\cos \frac{\pi}{9}$ (so we cannot construct the vertices of a regular 9-gon or 18-gon).

3.24 Example: It has been shown that the real numbers e and π are transcendental, so we cannot construct them (and hence we cannot construct a circle of area 1).

Splitting Fields

3.25 Definition: Let F be a subfield of K and let $f \in F[x]$ be a polynomial with $n = \deg f \in \mathbb{Z}^+$. We say that f **splits** over K (or that f splits in $K[x]$) when f factors as a product of linear factors in $K[x]$, that is when $f(x) = c(x-a_1)(x-a_2) \cdots (x-a_n) \in K[x]$ for some $0 \neq c \in F$ and some $a_1, a_2, \dots, a_n \in K$ (not necessarily distinct). In this case the field $F[a_1, a_2, \dots, a_n] \subseteq K$ is called the **splitting field** of f over F in K .

3.26 Theorem: (Kronecker's Theorem) Let F be a field and let $f \in F[x]$ be a nonconstant polynomial. Then there exists an extension field K of F which contains a root of f .

Proof: Let $g \in F[x]$ be an irreducible factor of f . Note that it suffices to construct an extension field K of F which contains a root of g (since if $f = gh$ and $g(a) = 0$ then $f(a) = g(a)h(a) = 0$ so that a is a root of f). Let $L = F[x]/\langle g \rangle$. Since g is irreducible, the ideal $\langle g \rangle$ is maximal, so L is a field. Note that the homomorphism $\phi : F \rightarrow L$ given by $\phi(c) = c + \langle g \rangle$ is injective: indeed if $c, d \in F$ and $c + \langle g \rangle = d + \langle g \rangle$ then we have $d - c \in \langle g \rangle$ and hence $d - c = 0$ (because 0 is the only constant polynomial in $\langle g \rangle$). Let $E = \phi(F)$ and note that $\phi : F \rightarrow E$ is an isomorphism. Extend ϕ to the isomorphism $\phi : F[x] \rightarrow E[y]$ given by $\phi(\sum_{k=0}^n c_k x^k)(y) = \sum_{k=0}^n (c_k + \langle g \rangle)y^k$. Note that the element $x + \langle g \rangle \in L$ is a root of $\phi(g)$ because if $g(x) = \sum a_k x^k$ then we have

$$\phi(g)(x + \langle g \rangle) = \sum_{k=0}^n (a_k + \langle g \rangle)(x + \langle g \rangle)^k = \left(\sum_{k=0}^n a_k x^k \right) + \langle g \rangle = g + \langle g \rangle = 0 + \langle g \rangle,$$

which is the zero element in L .

If we are willing to identify F with E (by identifying $c \in F$ with $\phi(c) = c + \langle g \rangle \in E$) and to identify $f \in F[x]$ with $\phi(f) \in E[y]$, then we can take $K = L$ and we have obtained a field extension of F which contains a root of f . If we insist on constructing a field K which actually contains F as a subfield, we can do so as follows. Choose any set A which is disjoint from F and has the same cardinality as $L \setminus E$, let $\theta : A \rightarrow L \setminus E$ be any bijection, and let $K = F \cup A$. Let $\psi : K \rightarrow L$ be the bijection given by $\psi(u) = \phi(u)$ when $u \in F$ and $\psi(u) = \theta(u)$ when $u \in A$. Use ψ to pull the field operations from L back to K by defining $u + v = \psi^{-1}(\psi(u) + \psi(v))$ and $u \cdot v = \psi^{-1}(\psi(u) \cdot \psi(v))$ for $u, v \in K$. Using these operations on K , K is an extension field of F , and $\psi : K \rightarrow L$ is an isomorphism with $\psi(u) = \phi(u)$ for all $u \in F$, and the element $a = \psi^{-1}(x + \langle g \rangle) \in K$ is a root of f .

3.27 Corollary: Let F be a field and let $f \in F[x]$ be a nonconstant polynomial. Then there exists a splitting field for f over F .

Proof: We apply Kronecker's Theorem repeatedly: Let g_1 be an irreducible factor of f in $F[x]$. Let K_1 be an extension field of F which contains a root a_1 of g_1 . Let $F_1 = F[a_1] \subseteq K_1$. Note that $f(a_1) = 0$ in F_1 so that $(x - a_1) \mid f(x)$ in $F_1[x]$, say $f(x) = (x - a_1)f_2(x)$. If $\deg f = 1$ so that $f_2(x)$ is a constant polynomial, we are done. Otherwise repeat the argument. Let g_2 be an irreducible factor of f_2 in $F_1[x]$. Let K_2 be an extension field of F_1 which contains a root a_2 of g_2 and let $F_2 = F_1[a_2] = F[a_1, a_2]$. Note that $f_2(a_2) = 0$, say $f_2(x) = (x - a_2)f_3(x)$ and note that we have $f(x) = (x - a_1)(x - a_2)f_3(x) \in F_2[x]$. If $\deg f = 2$ we are done and, if not, we repeat.

3.28 Theorem: Let F be a subfield of K , let E be a subfield of L , let $\phi : F \rightarrow E$ be an isomorphism of fields, and extend ϕ to obtain an isomorphism of rings $\phi : F[x] \rightarrow E[x]$ given by $\phi(\sum_{k=0}^n c_k x^k) = \sum_{k=0}^n \phi(c_k) x^k$. Let $f \in F[x]$ be an irreducible polynomial, and let $g = \phi(f) \in E[x]$. Let $a \in K$ be a root of f in K and let $b \in L$ be a root of g in L . Then the isomorphism $\phi : F \rightarrow E$ extends uniquely to an isomorphism $\phi : F[a] \rightarrow E[b]$ such that $\phi(a) = b$.

Proof: Let $n = \deg f$. Note that $g = \phi(f)$ is irreducible with $\deg g = n$. By Theorem 3.7, the set $A = \{1, a, a^2, \dots, a^{n-1}\}$ is a basis for $F[a]$ over F , and the set $B = \{1, b, b^2, \dots, b^{n-1}\}$ is a basis for $E[b]$ over E . The desired extension $\phi : F[a] \rightarrow E[b]$ must be given by $\phi(\sum_{k=0}^{n-1} c_k a^k) = \sum_{k=0}^{n-1} \phi(c_k) b^k$. This map is bijective since A and B are bases for $F[a]$ over F and $E[b]$ over E , and it is easy to see that this map is a ring homomorphism, so it is an isomorphism.

3.29 Corollary: Let F be a field and let $f \in F[x]$ be a nonconstant polynomial. Let K and L be splitting fields of f over F . Then there is an isomorphism of fields $\phi : K \rightarrow L$ with $\phi(x) = x$ for every $x \in F$.

Proof: Let K and L be splitting fields for f over F , with $K = F[a_1, \dots, a_\ell]$ where a_1, \dots, a_ℓ are the distinct roots of f in K , and $L = F[b_1, \dots, b_m]$ where b_1, \dots, b_m are the distinct roots of f in L . If f splits over F , then $K = L = F$ and we are done. Suppose f does not split over F . Let g_1 be an irreducible factor of f in $F[x]$ with $g_1(a_1) = 0$ in K . Let $h_1 = g_1$ and reorder the roots b_1, \dots, b_m , if necessary, so that b_1 is a root of h_1 in L . By Theorem 3.28, we can extend the identity map $I : F \rightarrow F$ to a field isomorphism $\phi : F[a_1] \rightarrow F[b_1]$ with $\phi(a_1) = b_1$. We also write $\phi : F[a_1][x] \rightarrow F[b_1][x]$ to denote the associated ring isomorphism. Note that f splits over $F[a_1]$ if and only if f splits over $F[b_1]$ and, in this case, we have $K = F[a_1]$ and $L = F[b_1]$ we are done. Suppose that f does not split over $F[a_1]$ or over $F[b_1]$. Let g_2 be an irreducible factor of f in $F[a_1][x]$ with $g_2(a_2) = 0$. Let $h_2 = \phi(g_2)$ and note that h_2 is an irreducible factor of f in $F[b_1][x]$. Also note that h_2 has a root in L which is distinct from b_1 (if b_1 was the only root of h_2 in L then h_2 would split over $F[b_1]$, hence g_1 would split over $F[a_1]$ with a_1 as its only root). Reorder the roots b_2, \dots, b_m , if necessary, so that b_2 is a root of h_2 in L . By Theorem 3.28, we can extend the isomorphism $\phi : F[a_1] \rightarrow F[b_1]$ to an isomorphism $\phi : F[a_1, a_2] \rightarrow F[b_1, b_2]$ with $\phi(a_1) = b_1$ and $\phi(a_2) = b_2$. We also write $\phi : F[a_1, a_2][x] \rightarrow F[b_1, b_2][x]$ to denote the associated ring isomorphism. Note that f splits over $F[a_1, a_2]$ if and only if f splits over $F[b_1, b_2]$ and, in this case, we have $K = F[a_1, a_2]$ and $L = F[b_1, b_2]$ and we are done. Otherwise, we repeat the above procedure until f splits.

3.30 Exercise: For each of the following polynomials $f \in \mathbb{Q}[x]$, find the splitting field K of f over \mathbb{Q} in \mathbb{C} , and find $[K : \mathbb{Q}]$.

$$(a) f(x) = x^4 - 4. \quad (b) f(x) = x^4 - 2. \quad (c) f(x) = x^5 - 1.$$

3.31 Exercise: Let $f(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$ and note that f is irreducible (because it has no roots in \mathbb{Z}_2). Let K be a splitting field for f over \mathbb{Z}_2 , and let $a \in K$ be a root of f in K . Note that $[K : \mathbb{Z}_2] = 2$ and $\{1, a\}$ is a basis for K over \mathbb{Z}_2 , and so we have $K = \{s \cdot 1 + t \cdot a \mid s, t \in \mathbb{Z}_2\} = \{0, 1, a, a+1\}$. Determine the addition and multiplication tables in K .

Multiple Roots

3.32 Definition: Let F be a field. For $f(x) = \sum_{k=0}^n a_k x^k \in F[x]$, we define the (formal) derivative of f to be

$$\frac{d}{dx} f(x) = f'(x) = \sum_{k=0}^n k a_k x^{k-1}.$$

3.33 Theorem: Let F be a field. For all $f, g \in F[x]$ and $c \in F$, we have

$$(cf)' = cf' , (f + g)' = f' + g' , (fg)' = f'g + fg' \text{ and } (f \circ g)' = (f' \circ g)g'.$$

Proof: We leave the proof that $(cf)' = cf'$ and $(f + g)' = f' + g'$ as an exercise. Let $f(x) = \sum_{k=0}^n a_k x^k$ and $g(x) = \sum_{\ell=0}^m b_\ell x^\ell$. We have

$$\begin{aligned} (fg)'(x) &= \frac{d}{dx} \left(\sum_{k=0}^n \sum_{\ell=0}^m a_k b_\ell x^{k+\ell} \right) = \sum_{k=0}^n \sum_{\ell=0}^m (k+\ell) a_k b_\ell x^{k+\ell-1}, \text{ and} \\ (f'g + fg')(x) &= \left(\sum_{k=0}^n k a_k x^{k-1} \right) \left(\sum_{\ell=0}^m b_\ell x^\ell \right) + \left(\sum_{k=0}^n a_k x^k \right) \left(\sum_{\ell=0}^m \ell b_\ell x^{\ell-1} \right) \\ &= \sum_{k=0}^n \sum_{\ell=0}^m k a_k b_\ell x^{k+\ell-1} + \sum_{k=0}^n \sum_{\ell=0}^m \ell a_k b_\ell x^{k+\ell-1} \\ &= \sum_{k=0}^n \sum_{\ell=0}^m (k+\ell) a_k b_\ell x^{k+\ell-1} = (fg)'(x). \end{aligned}$$

This proves the Product Rule. To prove the Chain Rule, we first claim that

$$\frac{d}{dx} g(x)^k = k g(x)^{k-1} g'(x)$$

for all $k \geq 0$. This clearly holds when $k = 0$. Suppose, inductively, it holds for some $k \geq 0$. Then, by the Product Rule, we have

$$\begin{aligned} \frac{d}{dx} g(x)^{k+1} &= \frac{d}{dx} (g(x)^k g(x)) = \frac{d}{dx} g(x)^k \cdot g(x) + g(x)^k g'(x) \\ &= k g(x)^{k-1} g'(x) \cdot g(x) + g(x)^k g'(x) = (k+1)g(x)^k g'(x). \end{aligned}$$

By induction, we have $\frac{d}{dx} g(x)^k = k g(x)^{k-1} g'(x)$ for all $k \geq 0$, as claimed. Thus

$$\begin{aligned} (f \circ g)'(x) &= \frac{d}{dx} \sum_{k=0}^n a_k g(x)^k = \sum_{k=0}^n a_k \frac{d}{dx} g(x)^k = \sum_{k=0}^n a_k \cdot k g(x)^{k-1} g'(x) \\ &= \left(\sum_{k=0}^n k a_k g(x)^{k-1} \right) g'(x) = (f' \circ g)(x) \cdot g'(x). \end{aligned}$$

3.34 Theorem: Let F be a field and let $f \in F[x]$ be a non-constant polynomial. Then f has no repeated roots in its splitting field if and only if $\gcd(f, f') = 1$.

Proof: Let K be a splitting field for f over F . Note that we can consider f to lie in $F[x]$ or in $K[x]$. When we calculate $f'(x)$, the coefficients of f' lie in F , so the derivative of f in $F[x]$ is equal to the derivative of f in $K[x]$. The same holds for $\gcd(f, f')$: when we calculate $\gcd(f, f')$ using the Euclidean Algorithm, at each step in our calculation the coefficients of all the polynomials lie in F , and in particular, all of the coefficients of $\gcd(f, f')$ lie in F , so the greatest common divisor of f and f' in $K[x]$ is equal to the greatest common divisor of f and f' in $F[x]$.

Suppose f has a repeated root in K , say $f(x) = (x - a)^2 g(x) \in K[x]$. Then we have $f'(x) = 2(x - a)g(x) + (x - a)^2 g'(x) \in K[x]$. Thus $(x - a)$ divides both $f(x)$ and $f'(x)$ so that $(x - a)$ divides $\gcd(f, f')$ in $K[x]$. Thus the degree of $\gcd(f, f')$ is at least 2 (in $K[x]$ and in $F[x]$), and so $\gcd(f, f') \neq 1$.

Suppose that f has no repeated roots in K , say $f(x) = c(x - a_1)(x - a_2) \cdots (x - a_n) \in K[x]$ with the elements $a_k \in K$ all distinct. Then we have $f'(x) = c \sum_{k=1}^n \prod_{i \neq k} (x - a_i)$.

For each k we have $f'(a_k) = c \prod_{i \neq k} (a_k - a_i) \neq 0$, so none of the linear polynomials $(x - a_i)$ divides f' in $K[x]$. Thus we have $\gcd(f, f') = 1$ in $K[x]$, hence also in $F[x]$.

3.35 Corollary: Let F and let $f \in F[x]$ be irreducible. Then f has a repeated root in its splitting field if and only if $f' = 0$. So when $\text{char}(F) = 0$, f has no repeated roots, and when $\text{char}(F) = p$ with p prime, f has a repeated root if and only if f is of the form $g(x^p)$ for some $g \in F[x]$.

Solution: If $f' = 0$ then $\gcd(f, f') = f' \neq 1$, so f has a repeated root in its splitting field. Suppose that $f' \neq 0$. Let g be a common factor of f and f' in $F[x]$. Since $g|f'$ and $f' \neq 0$ we have $\deg(g) \leq \deg(f') < \deg(f)$. Since $g|f$ and f is irreducible, either g is a unit or g is an associate of f , so either $\deg(g) = 0$ or $\deg(g) = \deg(f)$. Thus we must have $\deg(g) = 0$. So the common divisors of f and f' in $F[x]$ are the non-zero constant polynomials, so we have $\gcd(f, f') = 1$, hence f has no repeated roots.

Finally, note that when $\text{char}(F) = 0$ we have $f' \neq 0$ (indeed $\deg(f') = \deg(f) - 1$) and when $\text{char}(F) = p$ we have $f' = 0$ if and only if f is of the form $f(x) = \sum_{k=0}^n a_k x^{kp}$ for some $a_k \in F$, if and only if f is of the form $f(x) = g(x^p)$ for some $g \in F[x]$.

3.36 Example: Consider the polynomial $f(x) = x^2 + u \in \mathbb{Z}_2(u)[x]$ where u is a variable symbol, so that $\mathbb{Z}_2(u) = \left\{ \frac{f(u)}{g(u)} \mid f(u), g(u) \in \mathbb{Z}_2[u], g(u) \neq 0 \right\}$, where $\mathbb{Z}_2[u]$ is the ring of polynomials over \mathbb{Z}_2 in the variable u . Note that f has no roots in $\mathbb{Z}_2(u)$ because if we had $\left(\frac{f(u)}{g(u)}\right)^2 + u = 0 \in \mathbb{Z}_2(u)$ then we would have $f(u)^2 = -u g(u)^2$ in $\mathbb{Z}_2[u]$, but this is not possible since the polynomial $f(u)^2$ has even degree but the polynomial $u g(u)^2$ has odd degree. Since $f(x)$ has degree 2 and has no roots in $\mathbb{Z}_2(u)$, it is irreducible in $\mathbb{Z}_2(u)[x]$. But since $f'(x) = 2x = 0 \in \mathbb{Z}_2(u)[x]$, it follows (from the above corollary) that f has a repeated root in its splitting field. Indeed we do not need to rely on the above corollary as it is easy to check that if K is a splitting field of f , and $a \in K$ is a root of f in K , then we have $a^2 = u \in K$ and we have $(x - a)^2 = x^2 - 2ax + a^2 = x^2 + a^2 = x^2 + u = f(x) \in K[x]$.

Finite Fields

3.37 Definition: When X is a subset of Y , and $\phi : X \rightarrow Y$ is any function, the **fixed point set** of ϕ is the set

$$\text{Fix}(\phi) = \{x \in X \mid \phi(x) = x\}.$$

When R is a subring of S and $\phi : R \rightarrow S$ is a ring homomorphism, note that $\text{Fix}(\phi)$ is a subring of R : indeed if $a, b \in \text{Fix}(\phi)$ so that $\phi(a) = a$ and $\phi(b) = b$, then we have $\phi(a + b) = \phi(a) + \phi(b) = a + b$ and $\phi(ab) = \phi(a)\phi(b) = ab$ so that $a + b \in \text{Fix}(\phi)$ and $ab \in \text{Fix}(\phi)$. When F is a subfield of K and $\phi : F \rightarrow K$ is a non-zero homomorphism, the fixed point set $\text{Fix}(\phi)$ is a subfield of F : indeed recall (or verify) that $\phi(1) = 1$, so when $0 \neq a \in \text{Fix}(\phi)$ so that $\phi(a) = a$, then we have $\phi(a) \cdot \phi(\frac{1}{a}) = \phi(a \cdot \frac{1}{a}) = \phi(1) = 1$ and hence $\phi(\frac{1}{a}) = \frac{1}{\phi(a)} = \frac{1}{a}$ so that $\frac{1}{a} \in \text{Fix}(\phi)$.

3.38 Definition: When R is a commutative ring with 1 with prime characteristic p , the **Frobenius map** is the map $\phi : F \rightarrow F$ given by $\phi(x) = x^p$. Note that ϕ is a ring homomorphism because $\phi(xy) = (xy)^p = x^p y^p$ and $\phi(x+y)^p = \sum \binom{p}{k} x^k y^{p-k} = x^p + y^p$. When R is an integral domain, this map ϕ is injective since $x^p = 0 \implies x = 0$. When F is a finite field, every injective map from F to F is bijective so, in particular, the Frobenius map ϕ is bijective. Also note that ϕ fixes every element in the prime subfield E because $E \cong \mathbb{Z}_p$ and for every $x \in \mathbb{Z}_p$ we have $x^p = x$ (by Fermat's Little Theorem), so $E \subseteq \text{Fix}(\phi)$.

3.39 Theorem: If F is a finite field then the multiplicative group of units F^* is cyclic.

Proof: Let F be a finite field. We claim that the multiplicative group of units F^* is cyclic. By the Classification of Finite Abelian groups, we have $F^* \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_\ell}$ where C_n is the standard multiplicative cyclic group of order n (the group of n^{th} roots of unity in \mathbb{C}^*) and $n_k | n_{k+1}$. Note that every $a \in F^*$ satisfies $a^{n_\ell} = 1$, so every $a \in F^*$ is a root of $f(x) = x^{n_\ell} - 1 \in F[x]$. Since F is a field, f has at most n_ℓ roots, so we must have $\ell = 1$ and $n_\ell = |F^*|$ so that F^* is cyclic, as claimed.

3.40 Theorem: (The Classification of Finite Fields)

- (1) If F is a finite field then $|F| = p^n$ for some prime number $p \in \mathbb{Z}^+$ and some $n \in \mathbb{Z}^+$.
- (2) For every prime $p \in \mathbb{Z}^+$ and every $n \in \mathbb{Z}^+$ there is, up to isomorphism, a unique field F with $|F| = p^n$. This field F is the splitting field of $f(x) = x^{p^n} - x$ over the prime subfield E . Indeed, f has p^n distinct roots in F , and F is equal to the set of roots of f .

Proof: Recall that every finite field has prime characteristic, and in a field of prime characteristic p , the prime subfield is isomorphic to \mathbb{Z}_p (the prime subfield is the field $E = \{0 \cdot 1, 1 \cdot 1, 2 \cdot 1, \dots, (p-1) \cdot 1\} \cong \mathbb{Z}_p$). To prove Part 1, let F be a finite field. Let $p = \text{char}F$, and let E be the prime subfield of F . Let $n = [F:E] = \dim_E F$. Note that n is finite (since any basis for F is a subset of F , which must be finite). Let $\{u_1, u_2, \dots, u_n\}$ be a basis for F over E . Since each element in F can be expressed uniquely as a linear combination $\sum_{k=1}^n t_k u_k$, and we have p choices for each of the n elements $t_k \in E$, it follows that $|F| = p^n$.

To prove Part 2, let $p \in \mathbb{Z}^+$ be prime and let $n \in \mathbb{Z}^+$. First let us prove that there exists a field F with $|F| = p^n$. Let F be the splitting field of $f(x) = x^{p^n} - x$ over \mathbb{Z}_p . Note that since $f'(x) = p^n x^{p^n-1} - 1 = -1$ we have $\gcd(f, f') = 1$ so that f has p^n distinct roots in F (so F has at least p^n elements). Note that since the Frobenius map $\phi(x) = x^p$ is an automorphism of F which fixes elements in E , so is the map $\psi = \phi^n$ given by $\psi(x) = x^{p^n}$. For $a \in F$, note that a is a root of f if and only if $a^{p^n} = a$ if and only if $\psi(a) = a$, so the set of roots of f in F is equal to $\text{Fix}(\psi) = \{a \in F \mid \psi(a) = a\}$, which is a subfield of F . Since F is the splitting field of f over E , which is the smallest subfield of F which contains all the roots of f , and since the set of all roots of f is a field, it follows that F is equal to the set of all the roots of f , and so F has exactly p^n elements.

Now let us prove uniqueness. Suppose that F is any field with $|F| = p^n$. Let E be the prime subfield and note that $E \cong \mathbb{Z}_p$. Since F^* is cyclic of order $p^n - 1$, every $a \in F^*$ satisfies $a^{p^n-1} = 1$, and hence every $a \in F$ (including $a = 0$) satisfies $a^{p^n} = a$. Thus every element in F is a root of $f(x) = x^{p^n} - x \in E[x]$. Since f has at most p^n roots in F , it follows that the roots of f are distinct in F , and the elements in F are equal to the roots of f , hence F is the splitting field of f over E .

3.41 Corollary: If F is a finite field and $n \in \mathbb{Z}^+$ then there exists an extension field K of F with $[K : F] = n$. This extension field K is unique up to isomorphism and it is of the form $K = F(a)$ for some $a \in K$.

3.42 Corollary: If F is a finite field and $n \in \mathbb{Z}^+$ then there exists an irreducible polynomial $f \in F[x]$ of degree n .

3.43 Corollary: Let K be a finite field with $|K| = p^n$ where $p \in \mathbb{Z}^+$ is prime and $n \in \mathbb{Z}^+$. If F is a subfield of K then $|F| = p^d$ for some divisor d of n . Conversely, for every divisor d of n , there is exactly one subfield F of K with $|F| = p^d$. This subfield F is the splitting field of (and the set of roots of) $f(x) = x^{p^d} - x$ over the prime subfield E in K .

3.44 Corollary: Let $p \in \mathbb{Z}^+$ be prime and let $n \in \mathbb{Z}^+$. In the ring $\mathbb{Z}_p[x]$, the polynomial $f(x) = x^{p^n} - x$ is equal to the product of all the distinct monic irreducible polynomials in $\mathbb{Z}_p[x]$ whose degree divides n .

3.45 Example: In $\mathbb{Z}_2[x]$, the irreducible polynomials of degree 1 are x and $x + 1$, and the irreducible polynomials of degree 3 are $x^3 + x + 1$ and $x^3 + x^2 + 1$, and we have

$$x^{2^3} - x = x^8 + x = x(x + 1)(x^3 + x + 1)(x^3 + x^2 + 1).$$