
Chapter 2. Rings (Review)

Factorization in Commutative Rings

2.1 Definition: Let R be a ring. An ideal P in R is called prime when P 6= R and for
all ideals A and B in R, if AB ⊆ P then either A ⊆ P or B ⊆ P . An ideal M in R is
called maximal when M 6= R and there is no ideal A in R with M ⊂6=A⊂6=R.

2.2 Example: As an exercise, use the above definition to show that the maximal ideals
in Z are the ideals of the form 〈p〉 with p prime, and the prime ideals in Z are the ideals
of the form 〈p〉 with p = 0 or p prime.

2.3 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R with P 6= R.
Then P is prime if and only if P has the property that for all a, b ∈ R, if ab ∈ P then
either a ∈ P or b ∈ P .

Proof: Since R is commutative with 1, we have 〈a〉 =
{
ar
∣∣r ∈ R} and 〈b〉 =

{
bs
∣∣s ∈ R}

and so

〈a〉〈b〉 =
{ n∑
i=1

aibi

∣∣∣ai ∈ 〈a〉, bi ∈ 〈b〉} =
{ n∑
i=1

(ari)(bsi)
∣∣∣ri, si ∈ R}

=
{ n∑
i=1

(ab)ti

∣∣∣ti ∈ R} = 〈ab〉.

Suppose that P is prime. Let a, b ∈ R with ab ∈ P . Then 〈a〉〈b〉 = 〈ab〉 ⊆ P and so, since
P is prime, either 〈a〉 ⊆ P or 〈b〉 ⊆ P , and hence either a ∈ P or b ∈ P .

Conversely, suppose that P has the property that for all a, b ∈ R, if ab ∈ P then either
a ∈ P or b ∈ P . Let A and B be ideals in R with AB ⊆ P . Suppose that A 6⊆ P . Choose
a ∈ A with a /∈ P . Let b ∈ B be arbitrary. Then ab ∈ AB ⊆ P and so, because of the
property held by P , either a ∈ P or b ∈ P . Since a /∈ P we must have b ∈ P . Thus B ⊆ P .

2.4 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R. Then P is
prime if and only if R/P is an integral domain.

Proof: Suppose that P is prime. Since P 6= R we have 1 /∈ P (since 〈1〉 = R) and so
1 +P 6= 0 +P ∈ P/R. Since R is commutative, so is R/P . Finally, note that R/P has no
zero divisors because for a, b ∈ R we have

(a+ P )(b+ P ) = (0 + P ) =⇒ ab+ P = 0 + P =⇒ ab ∈ P =⇒ a ∈ P or b ∈ P
=⇒ a+ P = 0 + P or b+ P = 0 + P.

Conversely, suppose that R/P is an integral domain. Since 1 + P 6= 0 + P ∈ R/P , it
follows that 1 /∈ P and so P 6= R. Let a, b ∈ R with ab ∈ P . Then we have ab+P = 0+P ,
and so (a + P )(b + P ) = 0 + P . Since R/P has no zero divisors, this implies that either
a+ P = 0 + P or b+ P = 0 + P , and so either a ∈ P or b ∈ P .

2.5 Example: Let R be a commutative ring with 1. Show that every maximal ideal in R
is also prime.

Solution: Let M be a maximal ideal in R. Let a, b ∈ R with ab ∈M . Suppose that a /∈M .
Then we have M ⊂6=M + 〈a〉 and so, since M is maximal, we must have M + 〈a〉 = R. In

particular 1 ∈M + 〈a〉, so we have 1 = m+ ar for some r ∈ R. Thus

b = b · 1 = b(m+ ar) = bm+ ab r ∈M .

We remark that this result also follows from the following theorem.
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2.6 Theorem: Let R be a commutative ring with 1. Let M be an ideal in R. Then M
is maximal if and only if R/M is a field.

Proof: Suppose M is maximal. Since M 6= R we have 1 /∈M and so 1+M 6= 0+M ∈ R/M .
Since R is commutative, so is R/M . Let a+M be a nonzero element in R/M . We must
show that a + M is a unit. Since a + M 6= 0 + M we have a /∈ M . Since a /∈ M we have
M ⊂6=M+〈a〉. Since M is maximal, we must have M+〈a〉 = R. In particular, 1 ∈M+〈a〉,
say 1 = m + ar with r ∈ R. Then 1 + M = ar + M = (a + M)(r + M) and so r + M is
the inverse of a+M .

Conversely, suppose that R/M is a field. Since 1 + M 6= 0 + M in R/M , we have
1 /∈ M so M 6= R. Let A be an ideal with M ⊆ A ⊆ R. Suppose A 6= M . Choose a ∈ A
with a /∈M . Since a /∈M we have a+M 6= 0 +M in R/M . Since R/M is a field, a+M
has an inverse, say (a+M)(b+M) = 1+M . Then ab+M = 1+M so we have 1−ab ∈M .
Since M ⊆ A we have 1−ab ∈ A. Since a ∈ A we have ab ∈ A, so 1 ∈ A and hence A = R.

2.7 Example: Find all prime and maximal ideals in Z (that is redo example 2.2) using
Theorems 2.4 and 2.6.

2.8 Example: Since Q[x]
/
〈x2 − 2〉 ∼= Q[

√
2], which is a field, it follows that 〈x2 − 2〉 is

maximal (and prime). In R[x], however, we have (x2 − 2) = (x −
√

2)(x +
√

2), and so
the ideal 〈x2 − 2〉 is not maximal because 〈x2 − 2〉⊂6= 〈x −

√
2〉⊂6=R[x] and it is not prime

because (x−
√

2)(x+
√

2) ∈ 〈x2 − 2〉 but (x−
√

2) /∈ 〈x2 − 2〉 and (x+
√

2) /∈ 〈x2 − 2〉.

2.9 Example: In Z[x], we have 〈x〉 =
{
f ∈ Z[x]

∣∣f(0) = 0
}

. The ideal 〈x〉 is prime
because for f, g ∈ Z[x], if fg ∈ 〈x〉 then f(0)g(0) = 0 and so either f(0) = 0 or g(0) = 0.
But the ideal 〈x〉 is not maximal since 〈x〉⊂6= 〈2, x〉 =

{
f ∈ Z[x]

∣∣f(0) is even
}⊂6=Z[x].

2.10 Definition: Let R be a commutative ring with 1. Let a, b ∈ R. We say that a
divides b (or that a is a divisor or factor of b, or that b is a multiple of a), and we
write a

∣∣b, when b = ar for some r ∈ R. We say that a and b are associates, and we write

a ∼ b, when a
∣∣b and b

∣∣a. Note that association is an equivalence relation on R.

2.11 Theorem: Let R be a commutative ring with 1. Let a, b ∈ R. Then

(1) a
∣∣b if and only if b ∈ 〈a〉 if and only if 〈b〉 ⊆ 〈a〉,

(2) a ∼ b if and only if 〈a〉 = 〈b〉 if and only if a and b have the same multiples and divisors,

(3) a ∼ 0 if and only if a = 0 if and only if 〈a〉 = {0},
(4) a ∼ 1 if and only if a is a unit if and only if 〈a〉 = R.

(5) if R is an integral domain then a ∼ b if and only if b = au for some unit u ∈ R.

Proof: We prove Part (5) and leave the other proofs as an exercise. Suppose that b = au
where u ∈ R is a unit. Since b = au we have a|b and since a = bu−1 we have b|a. Since
a|b and b|a we have a ∼ b (we did not need to assume that R is an integral domain for
this direction). Now suppose that R is an integral domain and that a ∼ b, say a = br and
b = as with r, s ∈ R. Then we have b = as = brs so that b(1 − rs) = 0. Since R is an
integral domain, either b = 0 or 1− rs = 0. If b = 0 then a = br = 0, so we have b = a · u
for any unit u (for example u = 1). If 1− rs = 0 then rs = 1 so that r and s are units, so
we have b = au where u = s (which is a unit).

2.12 Example: In the ring Z, we have k ∼ ` ⇐⇒ k = ±`. Verify that in Z12 the
association classes are {0}, {1, 5, 7, 11}, {2, 10}, {3, 9}, {4, 8}, {6}.
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2.13 Definition: Let R be a commutative ring with 1. Let a ∈ R be a non-zero non-unit.
We say that a is reducible when a = bc for some non-units b, c ∈ R, and otherwise we
say that a is irreducible. We say that a is prime when for all b, c ∈ R, if a

∣∣bc then either

a
∣∣b or a

∣∣c.
2.14 Theorem: Let R be a commutative ring with 1. Let a, b ∈ R with a ∼ b. Then

(1) a = 0 if and only if b = 0,
(2) a is a unit if and only if b is a unit,
(3) a is reducible if and only if b is reducible,
(4) a is irreducible if and only if b is irreducible,
(5) a is prime if and only if b is prime.

Proof: The proof is left as an exercise.

2.15 Example: In the ring Z, for k ∈ Z, k is irreducible if and only if k is prime if and
only if k = ±p for some (positive) prime number p.

2.16 Example: As an exercise, verify that in the ring Z12, the irreducible elements are 2
and 10 and the prime elements are 2, 3, 9 and 10.

2.17 Example: Use the method of the Sieve of Eratosthenes to find several irreducible
elements in Z[

√
3 i] and also some irreducible elements which are not prime.

2.18 Theorem: Let R be a commutative ring with 1. Let a ∈ R. Then

(1) If a is irreducible then the divisors of a are the units in R and the associates of a in R.
(2) a is prime if and only if 〈a〉 is a non-zero prime ideal.

Proof: The proof is left as an exercise.

2.19 Theorem: Let R be an integral domain and let a ∈ R. Then

(1) if a is prime then a is irreducible,
(2) a is irreducible if and only if 〈a〉 is maximal amongst non-zero proper principal ideals,
(3) if R is a PID and a is irreducible, then a is prime.

Proof: To Prove Part (1), suppose that a is prime. Suppose that a = bc with b, c ∈ R.
Since a = bc we have a

∣∣bc and hence, since a is prime, either a|b or a|c. Suppose that a|b,
say b = ar. Then a = bc = arc so that a(1 − rc) = 0. Since R is an integral domain and
a 6= 0 it follows that rc = 1 so that c is a unit. A similar argument shows that if a|c then
b is a unit, and so a is irreducible, as required.

To prove Part (2), suppose that a is irreducible. Since a 6= 0 we have 〈a〉 6= 0 and
since a is not a unit we have 〈a〉 6= R. Let b ∈ R and suppose that 〈a〉 ⊆ 〈b〉 ⊆ R. Since
〈a〉 ⊆ 〈b〉 we have a ∈ 〈b〉, say a = bc with c ∈ R. Since a is irreducible, either b is a unit,
in which case 〈b〉 = R, or c is a unit in which case b ∼ a so that 〈b〉 = 〈a〉.

Suppose, conversely, that 〈a〉 is maximal amongst nonzero proper principal ideals in
R. Since 〈a〉 6= {0} we have a 6= 0 and since 〈a〉 6= R it follows that a is not a unit.
Suppose that a = bc where b, c ∈ R. Since a = bc we have a ∈ 〈b〉 so that 〈a〉 ⊆ 〈b〉. By
the maximality of 〈a〉, either 〈b〉 = 〈a〉 or 〈b〉 = R. If 〈b〉 = R then b is a unit. Suppose
that 〈b〉 = 〈a〉, say b = ar with r ∈ R. Then a = bc = arc so that a(1 − rc) = 0. Since
a(1− rc) = 0 and a 6= 0 and R is an integral domain, it follows that rc = 1 so that c is a
unit. This completes the proof of Part (2).

Finally note that if a is irreducible and R is a PID then, by Part (2), 〈a〉 is a maximal
ideal, hence 〈a〉 is a prime ideal, hence a is prime. This proves Part (3).
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2.20 Definition: A Euclidean domain (or ED) is an integral domain R together with
a function N : R \ {0} → N, called a norm, with the property that for all a, b ∈ R with
a 6= 0 there exist q, r ∈ R such that b = qa+ r and either r = 0 or N(r) < N(a).

2.21 Definition: A principal ideal domain (or PID) is an integral domain R such that
every ideal in R is principal.

2.22 Definition: A unique factorization domain (or UFD) is an integral domain R
with the property that for every nonzero non-unit a ∈ R we have

(1) a = a1a2 · · · al for some l ∈ Z+ and some irreducible elements ai ∈ R, and
(2) if a = a1a2 · · · al = b1b2 · · · bm where l,m ∈ Z+ and each ai and bj is irreducible, then
m = l and for some permutation σ ∈ Sm we have ai ∼ bσ(i) for all i.

2.23 Example: The ring Z is a Euclidean domain with norm given by N(k) = |k|.

2.24 Example: Every field F is a Euclidean domain, using any function N : F \{0} → N
as a norm. Indeed, given a, b ∈ F with a 6= 0 we can choose q = b

a and r = 0 to get
b = aq + r.

2.25 Example: If F is a field then F [x] is a Euclidean domain with norm N(f) = deg(f).

2.26 Example: Show that in the ring Z[
√

3 i], the elements 2 and 1±
√

3 i are irreducible
and 2 6∼ 1 ±

√
3 i. It follows that Z[

√
3 i] not a unique factorization domain because

4 = 2 · 2 = (1 +
√

3 i)(1−
√

3 i).

2.27 Theorem: Every Euclidean domain is a principal ideal domain.

Proof: Let R be a Euclidean domain with norm N . Let A be an ideal in R. If A = {0} then
A is principal with A = 〈0〉. Suppose that A 6= {0}. Choose a nonzero element 0 6= a ∈ A
of smallest possible norm. We claim that A = 〈a〉. Since a ∈ A we have 〈a〉 ⊆ A. Let
b ∈ A be arbitrary. Choose q, r ∈ R such that b = qa+ r and either r = 0 or N(r) < N(a).
Note that r = b− qa ∈ A so we must have r = 0 by the choice of a. Thus b = qa ∈ 〈a〉.

2.28 Definition: A ring R is called Noetherian when it satisfies the following condition,
which is called the ascending chain condition: for every ascending chain of ideals
A1 ⊆ A2,⊆ A3 ⊆ · · · in R, there exists n ∈ Z+ such that Ak = An for all k ≥ n.

2.29 Theorem: Every principal ideal domain is Noetherian.

Proof: Let R be a principal ideal domain. Let a1, a2, a3, · · · ∈ R with

〈a1〉 ⊆ 〈a2〉 ⊆ 〈a3〉 ⊆ · · · .

Let A =
∞⋃
k=1

〈ak〉. Verify that A is an ideal. Choose a ∈ R so that A = 〈a〉. Since a ∈ A, we

can choose n ∈ Z+ so that a ∈ 〈an〉. For all k ≥ n, we have 〈ak〉 ⊆ A = 〈a〉 ⊆ 〈an〉 ⊆ 〈ak〉
and so 〈ak〉 = 〈an〉.
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2.30 Theorem: Every principal ideal domain is a unique factorization domain.

Proof: Let R be a principal ideal domain. Let a ∈ R be a non-zero non-unit. We claim
that a has an irreducible factor. If a is irreducible then we are done. Suppose that a
is reducible, say a = a1b1 where a1 and b1 are non-units. Note that 〈a〉⊂6= 〈a1〉. If a1 is

irreducible then we are done. Suppose that a1 is reducible, say a1 = a2b2 where a2 and
b2 are non-units. Then a = a1b1 = a2b2b1 and 〈a〉⊂6= 〈a1〉⊂6= 〈a2〉. If a2 is irreducible then

we are done, and otherwise we continue this procedure. Eventually, the procedure must
end giving us an irreducible factor an of a, otherwise we would obtain an infinite chain of
ideals 〈a〉⊂6= 〈a1〉⊂6= 〈a2〉⊂6= · · ·, contradicting the fact that R is Noetherian.

Next we claim that a = a1a2 · · · al for some l ∈ Z+ and some irreducible ai ∈ R. If
a is irreducible then we are done. Suppose that a is reducible. Let a1 be an irreducible
factor of a, and say a = a1b1. Note that b1 is not a unit since, if it was then we would have
a ∼ a1, but a is reducible and a1 is not. If b1 is irreducible then we are done. Suppose
b1 is reducible. Let a2 be an irreducible factor of b1 and say b1 = a2b2. As above, note
that b2 is not a unit. If b2 is irreducible then we are done, and otherwise we continue the
procedure. Eventually, the procedure must end giving us a = a1a2 · · · anbn with each ai
and nn irreducible, otherwise we would obtain an infinite chain 〈a〉⊂6= 〈b1〉⊂6= 〈b2〉⊂6= · · ·.

Finally, we claim that if a = a1a2 · · · al = b1b2 · · · bl with l,m ∈ Z+ and each ai
and bj irreducible, then m = l and for some permutation σ ∈ Sm we have ai ∼ bσ(i)
for all i. Suppose that a = a1a2 · · · al = b1b2 · · · bm where l,m ∈ Z+ and the ai and bj
are irreducible. Since a1

∣∣a1a2 · · · al, we have a1
∣∣b1b2 · · · bm. Since a1 is irreducible and

R is a principal ideal domain, it follows that a1 is prime by Part 3 of Theorem 2.19.
Since a1 is prime and a1

∣∣b1b2 · · · bm, it follows that a1
∣∣bk for some k. After permuting

the elements bi we can assume a1
∣∣b1. Since b1 is irreducible, its divisors are units and

associates and, since a1 is not a unit, we have a1 ∼ b1. Since a1 ∼ b1 we have b1 = a1u for
some unit u. Thus we have a1a2 · · · al = b1b2 · · · bm = a1ub2b3 · · · bm, and by cancellation,
a2a3 · · · al = ub2b3 · · · bm. A suitable induction argument gives l = m and ai ∼ bi for all i.

2.31 Example: Show that Z[i] is a ED.

2.32 Example: Since Z[
√

3 i] is not aUFD, it cannot be a PID. Find an ideal in Z[
√

3 i]
which is not principal.

2.33 Example: Show that Z
[
1+
√
19 i

2

]
is a PID, but not a ED (under any norm).
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Polynomial Rings

2.34 Note: Here are a few remarks about polynomials. Recall that R[x] denotes the ring
of polynomials with coefficients in the ring R, and RR denotes the ring of all functions
f : R→ R.

(1) A polynomial f ∈ R[x] determines a function f ∈ RR. Given f(x) =
n∑
i=0

aix
i ∈ R[x]

we obtain the function f : R→ R given by f(x) =
n∑
i=0

aix
i.

(2) Although we do not usually distinguish notationally between the polynomial f ∈ R[x]
and its corresponding function f ∈ RR, they are not always identical. If the ring R is
not commutative then multiplication of polynomials does not agree with multiplication of
functions. For f, g ∈ R[x] given by f(x) = a + bx and g(x) = c + dx, in the ring R[x] we
have (fg)(x) = (a+ bx)(c+ dx) = (ac) + (ad+ bc)x+ (bd)x2, but in the ring RR we have
(fg)(x) = (a+ bx)(c+ dx) = ac+ adx+ bxc+ bxdx.

(3) Equality of polynomials may not agree with equality of functions. For f, g ∈ R[x] given

by f(x) =
n∑
i=0

aix
i and g(x) =

m∑
i=0

bix
i we have f = g ∈ R[x] if and only if ai = bi for all i

(and if say n < m then bi = ai = 0 for i > n), but f = g ∈ RR if and only if f(x) = g(x)
for all x ∈ R. These two notions of equality do not always agree. For example if R is
finite then the ring R[x] is infinite but the ring RR is finite. Indeed if |R| = n then R[x]
is countably infinite but

∣∣RR∣∣ = nn. For a more specific example, if f(x) = xp − x then

we have f 6= 0 ∈ Zp[x] (because its coefficients are not equal to zero) but f = 0 ∈ ZpZp

because, by Fermat’s Little Theorem, we have f(x) = 0 for all x ∈ Zp.

(4) Recall that for f(x) =
n∑
i=0

aix
i with each ai ∈ R and an 6= 0, the element an ∈ R is called

the leading coefficient of f , and the non-negative integer n is called the degree of f(x), and
we write deg(f) = n. For convenience, we also define deg(0) = −1. When R is an integral
domain, it is easy to see that for 0 6= f, g ∈ R[x] we have deg(fg) = deg(f)+deg(g). When
R is not an integral domain, however, we only have deg(fg) ≤ deg(f) + deg(g) because
the product of the two leading coefficients can be equal to zero.

(5) When R is an integral domain, because we have deg(fg) = deg(f) + deg(g) for all
0 6= f, g ∈ R[x], it is easy to see that the units in R[x] are the constant polynomials
f(x) = c where c is a unit in R. In particular, when F is a field, the units in F [x] are the
elements f ∈ F [x] with deg(f) = 0. In the ring Z4[x] (which is not an integral domain)
we have (1 + 2x)2 = 1 + 4x+ 4x2 = 1, so f(x) = (1 + 2x) is a unit in Z4[x].
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2.35 Theorem: (Division Algorithm) Let R be a ring with 1. Let f, g ∈ R[x] and suppose
that the leading coefficient of g is a unit in R. Then there exist unique polynomials q, r ∈ R
such that f = qg + r and deg(r) < deg(g).

Proof: First we prove existence. If deg(f) < deg(g) then we can take q = 0 and r = f . Sup-

pose that deg(f ≥ deg(g), Say f(x) =
n∑
i=0

aix
i with ai ∈ R and an 6= 0 and g(x) =

m∑
i=0

bix
i

with bi ∈ R and bm is a unit. Note that the polynomial anbm
−1xn−mg(x) has degree n and

leading coefficient an. It follows that the polynomial f(x)− anbm−1xn−mg(x) has degree
smaller than n (because the leading coefficients cancel). We can suppose, inductively, that
there exist polynomials p, r ∈ R[x] such that f(x) − anbm−1xn−mg(x) = p(x)g(x) + r(x)
and deg(r) < deg(g). Then we have f = qg + r by taking q(x) = anbm

−1xn−m − p(x).
Next we prove uniqueness. Suppose that f = qg + r = pg + s where q, p, r, s ∈ R[x]

with deg(r) < deg(g) and deg(s) < deg(g). Then we have (q − p)g = s − r and so
deg

(
(q − p)g

)
= deg(s − r). Since the leading coefficient of g is a unit (hence not a zero

divisor), it follows that deg
(
(q − p)g

)
= deg(q − p) + deg(g). If we had q − p 6= 0 then we

would have deg
(
(q − p)g

)
≥ deg(g) but deg(s− r) < deg(g), giving a contradiction. Thus

we must have q− p = 0. Since q− p = 0 we have s− r = (q− p)g = 0. Since q− p = 0 and
s− r = 0 we have q = p and r = s, proving uniqueness.

2.36 Corollary: (The Remainder Theorem) Let R be a ring with 1, let f ∈ R[x], and let
a ∈ R. When we divide f(x) by (x − a) to obtain the quotient q(x) and remainder r(x),
the remainder is the constant polynomial r(x) = f(a).

Proof: Use the division algorithm to obtain q, r ∈ R[x] such that f = q(x)(x − a) + r(x)
and deg(r) < deg(x − a). Since deg(x − a) = 1 we have deg(r) ∈ {−1, 0}, and so r is a
constant polynomial, say r(x) = c with c ∈ R. Then we have f(x) = q(x)(x− a) + c. Put
in x = a to get f(a) = q(a)(a− a) + c = q(a) · 0 + c = c.

2.37 Corollary: (The Factor Theorem) Let R be a commutative ring with 1, let f ∈ R[x]
and let a ∈ R. Then f(a) = 0 if and only if (x− a)

∣∣f(x).

Proof: Suppose that f(a) = 0. Choose q, r ∈ R[x] such that f(x) = q(x)(x − a) + r(x)
and deg(r) < deg(x − a). Then r(x) is the constant polynomial r(x) = f(a) = 0 and so
we have f(x) = q(x)(x − a). Since f(x) = (x − a)q(x) we have (x − a)

∣∣f(x). Conversely,

suppose that (x − a)
∣∣f(a) and choose p ∈ R[x] so that f(x) = (x − a)p(x). Then f(a) =

(a− a)p(a) = 0 · p(a) = 0.

2.38 Definition: Let R be a commutative ring with 1, let f ∈ R[x], and let a ∈ R. We
say that a is a root of f when f(a) = 0. When f 6= 0, we define the multiplicity of a as
a root of f to be the largest m = m(f, a) ∈ N such that (x− a)m

∣∣f(x) (where we use the
convention that (x− a)0 = 1). Note that a is a root of f if and only if m(f, a) ≥ 1.

2.39 Example: Let f(x) = x3 − 3x− 2 ∈ Q[x]. Since f(x) = (x+ 1)2(x− 2) ∈ Q[x], we
have m(f, 2) = 1 and m(f,−1) = 2.

2.40 Example: Let p be an odd prime and let f(x) = xp − a ∈ Zp[x]. Find m(f, a).

7



2.41 Theorem: (The Roots Theorem) Let R be an integral domain, let 0 6= f ∈ R[x]
and let n = deg(f). Then

(1) f has at most n distinct roots in R, and
(2) if a1, a2, · · · , a` are all of the distinct roots of f in R and mi = m(f, ai) for 1 ≤ i ≤ `,

then (x− a1)m1(x− a2)m2 · · · (x− a`)m`
∣∣f(x) and so

∑̀
i=1

m(f, a) ≤ n.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. If deg(f) = 0,
then f(x) = c for some 0 6= c ∈ R, and so f(x) has no roots. Let f be a polynomial
with deg(f) = n ≥ 1 and suppose, inductively, that every polynomial g ∈ R[x] with
deg(g) = n − 1 has at most n − 1 distinct roots. Suppose that a is a root of f in R.
By the Factor Theorem, (x − a)

∣∣f(x) so we can choose a polynomial g ∈ R[x] so that
f(x) = (x − a)g(x). Note that deg(g) = n − 1 so, by the induction hypothesis, g has at
most n− 1 distinct roots. Let b ∈ R be any root of f with b 6= a. Since f(x) = (x− a)g(x)
and f(b) = 0 we have 0 = f(b) = (b− a)g(b). Since (b− a)g(b) = 0 and (b− a) 6= 0 and R
has no zero divisors, it follows that g(b) = 0. Thus b must be one of the roots of g. Since
every root b of f with b 6= a is equal to one of the roots of g, and since g has at most n− 1
distinct roots, it follows that f has at most n distinct roots, as required.

2.42 Example: When R is not an integral domain, a polynomial f ∈ R[x] of degree n
can have more than n roots. For example, in the ring Z6[x] the polynomial f(x) = x2 + x
has roots 0, 2, 3 and 5.

2.43 Theorem: (The Rational Roots Theorem) Let f(x) =
n∑
i=0

cix
i ∈ Z[x] where n∈Z+

and cn 6=0. Let r, s ∈ Z with s 6= 0 and gcd(r, s) = 1. Then if f
(
r
s

)
= 0 then r|c0 and s|cn.

Proof: Suppose that f
(
r
s

)
= 0, that is c0 + c1

r
s + c2

r2

s2 + · · ·+ cn
rn

sn = 0. Multiply by sn

to get
0 = c0s

n + c1s
n−1r1 + · · ·+ cn−1s

1rn−1 + cnr
n.

Thus we have

c0s
n = −r(c1sn−1 + · · ·+ cn−1s

1rn−2 + cnr
n−1) and

cnr
n = −s

(
c0s

n−1 + c1s
n−2r1 + · · ·+ cn−1r

n−1)
and it follows that r

∣∣c0sn and that s
∣∣cnrn. Since gcd(r, s) = 1 we also have gcd(r, sn) = 1,

and since r
∣∣c0sn it follows that r|c0. Since gcd(s, r) = 1 we also have gcd(s, rn) = 1, and

since s
∣∣cnrn it follows that s|cn.

2.44 Example: Show that
√

1 +
√

2 /∈ Q.
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2.45 Note: Here are a few remarks about irreducible polynomials.

(1) When F is a field, we know that F [x] is a unique factorization domain. For f ∈ F [x] we
know that f = 0 if and only if deg(f) = −1, and f is a unit if and only if deg(f) = 0, and
for 0 6= f, g ∈ F [x] we know that deg(fg) = deg(f) + deg(g). It follows that for f ∈ F [x],
if deg(f) = 1 then f is irreducible. It also follows that for f ∈ F [x], if deg(f) = 2 or 3
then f is reducible in F [x] if and only if f has a f has a root in F .

(2) For f ∈ C[x], we know (from the Fundamental Theorem of Algebra) that f is irreducible
if and only if deg(f) = 1. For f ∈ R[x], we know that f is irreducible polynomial if and
only if either deg(f) = 1 or f(x) = ax2 + bx + c for some a, b, c ∈ R with a 6= 0 and
b2 − 4ac < 0.

(3) When p is a fairly small prime number and n is a fairly small positive integer, it is easy
to list all reducible and irreducible polynomials f ∈ Zp[x] with deg(f) ≤ n. Note that it
suffices to list monic polynomials (since for f ∈ Zp[x] and 0 6= c ∈ Zp[x] we have f ∼ cf).
We start by listing all monic polynomials of degree 1, that is all polynomials of the form
f(x) = x+ a with a ∈ Zp, and noting that they are all irreducible. Having constructed all
reducible and irreducible monic polynomials of all degrees less than n, we can construct
all of the reducible monic polynomials of degree n by forming products of the reducible
monic polynomials of smaller degree in all possible ways, and then all the remaining monic
polynomials of degree n must be irreducible.

2.46 Example: Note that f(x) = x3 − 3x + 1 is irreducible in Q[x] because it is cubic
and has no roots in Q by the Rational Roots Theorem. The same polynomial is reducible
in R[x] and in C[x] because it is cubic.

2.47 Example: List all monic reducible and irreducible polynomials in Z2[x] of degree
less than 4, then determine the number of irreducible polynomials in Z2[x] of degree 4.

2.48 Definition: Let R be an integral domain. Define a binary relation on the set
R× (R \ {0}) by stipulating that

(a, b) ∼ (b, d) ⇐⇒ ad = bc.

It is easy to check that this is an equivalence relation. Let

F = Q(R) =
(
R× (R \ {0})

)/
∼ =

{
[(a, b)]

∣∣∣a, b ∈ R, b 6= 0
}
.

Define addition an multiplication operations on F by[
(a, b)

]
+
[
(c, d)

]
=
[
(ad+ bc , bd)

]
,[

(a, b)
] [

(c, d)
]

=
[
(ac , bd)

]
.

It is not hard to verify that these operations are well-defined (noting that when b 6= 0 and
d 6= 0 we also have bd 6= 0 because R is an integral domain) and that they make F into a
field with zero element [(0, 1)] and identity element [(1, 1)]. This field F = Q(R) is called
the quotient field of the integral domain R. For a, b ∈ R with b 6= 0 we use the following
notation:

a
b = [(a, b)] , a = [(a, 1)] , 1

b = [(1, b)].

The use of the notation a = [(a, 1)], for a ∈ R, allows to consider R as a subring of its
quotient field F .

2.49 Example: The quotient field of Z is equal to Q, and the quotient field of Z[
√

2] is
equal to Q[

√
2].
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2.50 Example: When R is an integral domain, the quotient field of the polynomial ring
R[x] is the field of rational functions R(x) =

{
f
g

∣∣f, g ∈ R[x], g 6= 0
}

. More generally,

the quotient field of R[x1, · · · , xn] is the field of rational functions R(x1, · · · , xn).

2.51 Definition: Let R be a unique factorization domain. For a polynomial f ∈ R[x],
the content of f , written as c(f), is a greatest common divisor of the coefficients of f .
Note that the greatest common divisor is unique up to association and so c(f) is unique up
to association, that is up to multiplication by a unit. We often abuse notation by writing
c(f) = a when in fact c(f) ∼ a. We say that f is primitive when c(f) = 1 (that is when
c(f) is a unit). Note that f = 0 if and only if c(f) = 0. Note that when f ∈ R[x] and
a ∈ R we have c(af) = a c(f). In particular, we have f = c(f) g for a primitive polynomial
g ∈ R[x].

2.52 Example: For f(x) = 6x+ 30 ∈ Z[x] we have c(f) = 6. Since deg(f) = 1, it follows
that f is irreducible in Q[x]. But since c(f) = 6, it follows that f is reducible in Z[x],
indeed in Z[x] we have f(x) = 2 · 3 · (x+ 5).

2.53 Theorem: (Gauss’ Lemma) Let R be a UFD with quotient field F .

(1) For all f, g ∈ R[x] we have c(fg) = c(f)c(g).

(2) Let 0 6= f ∈ R[x] and let g(x) = 1
c(f)f(x) ∈ R[x]. Then f is irreducible in F [x] if and

only if g is irreducible in R[x].

(3) Let 0 6= f ∈ R[x]. Then f is reducible in F [x] if and only if f can be factored as a
product of two nonconstant polynomials in R[x].

Proof: Let f, g ∈ R[x]. If f = 0 or g = 0 then we have c(fg) = 0 = c(f)c(g). Suppose that
f 6= 0 and g 6= 0. Let h(x) = 1

c(f)f(x) and k(x) = 1
c(g)g(x). Then we have h, k ∈ R[x] with

c(h) = c(k) = 1 and fg = c(f)c(g)hk so that c(fg) = c(f)c(g)c(hk). Thus to prove Part (1)

it suffices to show that c(hk) = 1. Let h(x) =
n∑
i=0

aix
i and k(x) =

m∑
i=0

bix
i with an 6= 0 and

bm 6= 0. Suppose, for a contradiction, that c(hk) 6= 1. Let p be a prime factor of c(hk).
Then p divides all of the coefficients of (hk)(x) = (a0b0)+(a1b0+a0b1)x+· · ·+(anbm)xn+m.
Since c(h) = 1, p does not divide all the coefficients of h(x), so we can choose an index
r ≥ 0 so that p|ai for all i < r and p6 |ar. Since c(k) = 1 we can choose an index s ≥ 0 so
that p|bi for all i < s and p6 |bs. Since p divides every coefficient of (hk)(x), it follows that
in particular p divides the coefficient

cr+s = a0br+s + a1br+s−1 + · · ·+ arbs + · · ·+ ar+s−1b1 + ar+s.

Since p|cr+s and p|ai for all i < r and p|bi for all i < s it follows that p|arbs. Since p is
prime and p|arbs it follows that p|ar or p|bs. But r and s were chosen so that p6 |ar and
p6 |bs so we have obtained the desired contradiction. This proves Part (1).

To prove Parts (2) and (3), let 0 6= f(x) ∈ R[x] and let g(x) = 1
c(f)f(x), and note that

g ∈ R[x] with c(g) = 1. Suppose that g is reducible in R[x], say g(x) = h(x)k(x) where
h(x) and k(x) are non-units in R[x]. Since c(h)c(k) = c(hk) = c(g) = 1 it follows that
c(h) = c(k) = 1. Note that h(x) cannot be a constant polynomial since if we had h(x) = r
with r ∈ R, then we would have c(h) = r and also c(h) = 1 so that r is a unit in R, but then
h would be a unit in R[x]. Similarly k(x) cannot be a constant polynomial. Since h(x) and
k(x) are nonconstant polynomials in R[x], they are also nonconstant polynomials in F [x].
Since f(x) = c(f)g(x) = c(f)h(x)k(x) and since c(f)h(x) and k(x) are both nonconstant
polynomials (hence nonunits) in F [x], it follows that f(x) is reducible in F [x].
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Conversely, suppose that f(x) is reducible in F [x], say f(x) = h(x)k(x) where h
and k are nonzero, nonunits in F [x]. Since h and k are nonzero nonunits in F [x], they
are nonconstant polynomials. Let a be a least common multiple of the denominators
of the coefficients of h(x) and let b be a least common multiple of denominators of the
coefficients of k(x), and note that ah(x) ∈ R[x] and bk(x) ∈ R[x]. Let p(x) = 1

c(ah)ah(x)

and let q(x) = 1
c(bk)bk(x) and note that p(x), q(x) ∈ R[x] with c(p) = c(q) = 1 and that

deg(p)=deg(h) and deg(q)=deg(k). Since f(x)=ah(x) bk(x)=c(ah)c(bk)p(x)q(x) we have
c(f) = c(ah)c(bk)c(pq) = c(ah)c(bk) so g(x) = 1

c(f)f(x) = 1
c(ah)c(bk)ah(x) bk(x) = p(x)q(x).

Since g(x) = p(x)q(x) where p(x) and q(x) are nonconstant polynomials in R[x], we see
that g(x) is reducible in R[x].

2.54 Theorem: (Modular Reduction) Let f(x) =
n∑
i=0

cix
i with n∈Z+, ci∈Z and cn 6= 0.

Let p be a prime number with p 6
∣∣cn. Let f (x) =

n∑
i=0

ci x
i ∈ Zp[x] where ci = [ci] ∈ Zp.

If f is irreducible in Zp[x] then f is irreducible in Q[x].

Proof: Suppose that f(x) is reducible in Q[x]. By Gauss’ Lemma, we can choose two

nonconstant polynomials g, h ∈ Z[x] such that f = gh ∈ Z[x]. Write g(x) =
k∑
i=0

aix
k ∈ Z[x]

and h(x) =
∑̀
i=0

bix
i ∈ Z[x] with ak 6= 0, b` 6= 0 and k, ` ≥ 1. Let g =

k∑
i=0

aix
i ∈ Zp[x]

and h(x) =
∑̀
i=0

bix
i ∈ Zp[x], and note that f = g h ∈ Zp[x]. Since cn = akb` and p6 |cn it

follows that p6 |ak and p6 |b` in Z so ak 6= 0 and b` 6= 0 in Zp. Thus deg(g) = deg(g) = k
and deg(h) = deg(h) = ` so that g and h are nonconstant polynomials in Zp[x], and so the
polynomial f = gh is reducible in Zp[x].

2.55 Exercise: Prove that f(x) = x5 + 2x+ 4 is irreducible in Q[x] by working in Z3[x].

2.56 Exercise: Show that f(x) = x4 + 1 is irreducible in Q[x] but reducible in Zp[x] for
every prime number p ∈ Z+.

2.57 Theorem: (Eisenstein’s Criterion) Let f(x)=
n∑
i=0

cix
i with n∈Z+, ci∈Z and cn 6=0.

Let p be a prime number such that pi|ci for 0 ≤ i < n and p 6
∣∣cn and p2 6

∣∣c0. Then f is
irreducible in Q[x].

Proof: Suppose, for a contradiction, that f(x) is reducible in Q[x]. By Gauss’ Lemma,
we can choose two nonconstant polynomials g, h ∈ Z[x] such that f = gh ∈ Z[x]. Write

g(x) =
k∑
i=0

aix
k ∈ Z[x] and h(x) =

∑̀
i=0

bix
i ∈ Z[x] with k, ` ≥ 1 and ak 6= 0, b` 6= 0. Since

c0 = a0b0 and p|c0 but p26 |c0, it follows that p divides exactly one of the two numbers a0
and b0. Suppose that p divides a0 but not b0 (the case that p divides b0 but not a0 is
similar). Since p|c1, that is p

∣∣(a0b1 + a1b0), and p|a0 it follows that p|a1b0, and since p6 |b0
it follows that p|a1. Since p|c2, that is p

∣∣(a0b2 + a1b1 + a2b0) and p|a0 and p|a1, it follows
that p|a2b0, and since p 6 |b0 it then follows that p|a2. Repeating this argument we find,
inductively, that p|ai for all i ≥ 0, and in particular we have p|ak. Since cn = akb` and
p|ak it follows that p|cn, giving the desired contradiction.

2.58 Example: Note that f(x) = 5x5 + 3x4 − 18x3 + 12x + 6 is irreducible in Q[x] by
Eisenstein’s Criterion using p = 3.
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2.59 Exercise: Let p be a prime number. Show that f(x) = 1 + x + x2 + · · · + xp−1 is
irreducible in Q[x],

2.60 Theorem: If R is a UFD then so is R[x].

Proof: Suppose that R is a UFD and let F be the quotient field of R. Note that the units
in R[x] are the constant polynomials which are also units in R. Let f ∈ R[x] be a non-zero
non-unit. If f is a constant polynomial, then the factorization of f in R[x] is the same as
the factorization of f in R. Suppose that deg(f) ≥ 1. Let g = 1

c(f) f so that g ∈ R[x]

with c(g) = 1. The factorization of c(f) in R[x] is the same as the factorization in R, so
it suffices to show that the polynomial g factors uniquely into irreducibles in R[x]. Since
F [x] is a ED, hence a UFD, we know that g factors into irreducibles in F [x]. By Gauss’
Lemma, we can multiply each of the irreducible factors in F [x] by an element of F to write
g as a product of irreducible factors in R[x], say g = f1f2 · · · f` where each fj is irreducible
in R[x]. Since c(g) = 1 we must have c(fj) = 1 for each index j.

Suppose that g = f1f2 · · · f` = g1g2 · · · gm where fj and gk are irreducible in R[x]
with c(fj) = c(gk) = 1 for all j, k. Note that each fj must be non-constant since if we
had fj(x) = r ∈ R then we would have c(fj) = r and c(fj) = 1 so that r is a unit in R,
but then fj would be a unit in R[x]. Similarly each gk is non-constant. It follows that
the polynomials fj and gk are also irreducible in F [x]. By unique factorization in F [x],
we must have m = ` and, after possibly reordering the polynomials gk, we have fj ∼ gj
in F [x] for all indices j. Since fj ∼ gj in F [x], we have gj = ufj for some 0 6= u ∈ F .
Say u = a

b where a, b ∈ R with gcd(a, b) = 1. Then we have a fj = b gj in R[x]. Since
c(fj) = c(gj) = 1 we have c(afj) = a and c(bgj) = b and it follows that a ∼ b in R, hence
a = bv for some unit v ∈ R. Thus we have gj = ufj = a

b fj = vfj and so fj ∼ gj in R[x].

2.61 Corollary: If R is a UFD then so is the polynomial ring R[x1, x2, · · · , xn].
.
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