

Chapter 2. Rings (Review)

Factorization in Commutative Rings

2.1 Definition: Let R be a ring. An ideal P in R is called **prime** when $P \neq R$ and for all ideals A and B in R , if $AB \subseteq P$ then either $A \subseteq P$ or $B \subseteq P$. An ideal M in R is called **maximal** when $M \neq R$ and there is no ideal A in R with $M \subsetneq A \subsetneq R$.

2.2 Example: As an exercise, use the above definition to show that the maximal ideals in \mathbb{Z} are the ideals of the form $\langle p \rangle$ with p prime, and the prime ideals in \mathbb{Z} are the ideals of the form $\langle p \rangle$ with $p = 0$ or p prime.

2.3 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R with $P \neq R$. Then P is prime if and only if P has the property that for all $a, b \in R$, if $ab \in P$ then either $a \in P$ or $b \in P$.

Proof: Since R is commutative with 1, we have $\langle a \rangle = \{ar \mid r \in R\}$ and $\langle b \rangle = \{bs \mid s \in R\}$ and so

$$\begin{aligned} \langle a \rangle \langle b \rangle &= \left\{ \sum_{i=1}^n a_i b_i \mid a_i \in \langle a \rangle, b_i \in \langle b \rangle \right\} = \left\{ \sum_{i=1}^n (ar_i)(bs_i) \mid r_i, s_i \in R \right\} \\ &= \left\{ \sum_{i=1}^n (ab)t_i \mid t_i \in R \right\} = \langle ab \rangle. \end{aligned}$$

Suppose that P is prime. Let $a, b \in R$ with $ab \in P$. Then $\langle a \rangle \langle b \rangle = \langle ab \rangle \subseteq P$ and so, since P is prime, either $\langle a \rangle \subseteq P$ or $\langle b \rangle \subseteq P$, and hence either $a \in P$ or $b \in P$.

Conversely, suppose that P has the property that for all $a, b \in R$, if $ab \in P$ then either $a \in P$ or $b \in P$. Let A and B be ideals in R with $AB \subseteq P$. Suppose that $A \not\subseteq P$. Choose $a \in A$ with $a \notin P$. Let $b \in B$ be arbitrary. Then $ab \in AB \subseteq P$ and so, because of the property held by P , either $a \in P$ or $b \in P$. Since $a \notin P$ we must have $b \in P$. Thus $B \subseteq P$.

2.4 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R . Then P is prime if and only if R/P is an integral domain.

Proof: Suppose that P is prime. Since $P \neq R$ we have $1 \notin P$ (since $\langle 1 \rangle = R$) and so $1 + P \neq 0 + P \in R/P$. Since R is commutative, so is R/P . Finally, note that R/P has no zero divisors because for $a, b \in R$ we have

$$\begin{aligned} (a + P)(b + P) &= (0 + P) \implies ab + P = 0 + P \implies ab \in P \implies a \in P \text{ or } b \in P \\ &\implies a + P = 0 + P \text{ or } b + P = 0 + P. \end{aligned}$$

Conversely, suppose that R/P is an integral domain. Since $1 + P \neq 0 + P \in R/P$, it follows that $1 \notin P$ and so $P \neq R$. Let $a, b \in R$ with $ab \in P$. Then we have $ab + P = 0 + P$, and so $(a + P)(b + P) = 0 + P$. Since R/P has no zero divisors, this implies that either $a + P = 0 + P$ or $b + P = 0 + P$, and so either $a \in P$ or $b \in P$.

2.5 Example: Let R be a commutative ring with 1. Show that every maximal ideal in R is also prime.

Solution: Let M be a maximal ideal in R . Let $a, b \in R$ with $ab \in M$. Suppose that $a \notin M$. Then we have $M \not\subseteq M + \langle a \rangle$ and so, since M is maximal, we must have $M + \langle a \rangle = R$. In particular $1 \in M + \langle a \rangle$, so we have $1 = m + ar$ for some $r \in R$. Thus

$$b = b \cdot 1 = b(m + ar) = bm + abr \in M.$$

We remark that this result also follows from the following theorem.

2.6 Theorem: Let R be a commutative ring with 1. Let M be an ideal in R . Then M is maximal if and only if R/M is a field.

Proof: Suppose M is maximal. Since $M \neq R$ we have $1 \notin M$ and so $1+M \neq 0+M \in R/M$. Since R is commutative, so is R/M . Let $a+M$ be a nonzero element in R/M . We must show that $a+M$ is a unit. Since $a+M \neq 0+M$ we have $a \notin M$. Since $a \notin M$ we have $M \subsetneq M+\langle a \rangle$. Since M is maximal, we must have $M+\langle a \rangle = R$. In particular, $1 \in M+\langle a \rangle$, say $1 = m+ar$ with $r \in R$. Then $1+M = ar+M = (a+M)(r+M)$ and so $r+M$ is the inverse of $a+M$.

Conversely, suppose that R/M is a field. Since $1+M \neq 0+M$ in R/M , we have $1 \notin M$ so $M \neq R$. Let A be an ideal with $M \subseteq A \subseteq R$. Suppose $A \neq M$. Choose $a \in A$ with $a \notin M$. Since $a \notin M$ we have $a+M \neq 0+M$ in R/M . Since R/M is a field, $a+M$ has an inverse, say $(a+M)(b+M) = 1+M$. Then $ab+M = 1+M$ so we have $1-ab \in M$. Since $M \subseteq A$ we have $1-ab \in A$. Since $a \in A$ we have $ab \in A$, so $1 \in A$ and hence $A = R$.

2.7 Example: Find all prime and maximal ideals in \mathbb{Z} (that is redo example 2.2) using Theorems 2.4 and 2.6.

2.8 Example: Since $\mathbb{Q}[x]/\langle x^2 - 2 \rangle \cong \mathbb{Q}[\sqrt{2}]$, which is a field, it follows that $\langle x^2 - 2 \rangle$ is maximal (and prime). In $\mathbb{R}[x]$, however, we have $(x^2 - 2) = (x - \sqrt{2})(x + \sqrt{2})$, and so the ideal $\langle x^2 - 2 \rangle$ is not maximal because $\langle x^2 - 2 \rangle \subsetneq \langle x - \sqrt{2} \rangle \subsetneq \mathbb{R}[x]$ and it is not prime because $(x - \sqrt{2})(x + \sqrt{2}) \in \langle x^2 - 2 \rangle$ but $(x - \sqrt{2}) \notin \langle x^2 - 2 \rangle$ and $(x + \sqrt{2}) \notin \langle x^2 - 2 \rangle$.

2.9 Example: In $\mathbb{Z}[x]$, we have $\langle x \rangle = \{f \in \mathbb{Z}[x] \mid f(0) = 0\}$. The ideal $\langle x \rangle$ is prime because for $f, g \in \mathbb{Z}[x]$, if $fg \in \langle x \rangle$ then $f(0)g(0) = 0$ and so either $f(0) = 0$ or $g(0) = 0$. But the ideal $\langle x \rangle$ is not maximal since $\langle x \rangle \subsetneq \langle 2, x \rangle = \{f \in \mathbb{Z}[x] \mid f(0) \text{ is even}\} \subsetneq \mathbb{Z}[x]$.

2.10 Definition: Let R be a commutative ring with 1. Let $a, b \in R$. We say that a divides b (or that a is a divisor or factor of b , or that b is a multiple of a), and we write $a|b$, when $b = ar$ for some $r \in R$. We say that a and b are associates, and we write $a \sim b$, when $a|b$ and $b|a$. Note that association is an equivalence relation on R .

2.11 Theorem: Let R be a commutative ring with 1. Let $a, b \in R$. Then

- (1) $a|b$ if and only if $b \in \langle a \rangle$ if and only if $\langle b \rangle \subseteq \langle a \rangle$,
- (2) $a \sim b$ if and only if $\langle a \rangle = \langle b \rangle$ if and only if a and b have the same multiples and divisors,
- (3) $a \sim 0$ if and only if $a = 0$ if and only if $\langle a \rangle = \{0\}$,
- (4) $a \sim 1$ if and only if a is a unit if and only if $\langle a \rangle = R$.
- (5) if R is an integral domain then $a \sim b$ if and only if $b = au$ for some unit $u \in R$.

Proof: We prove Part (5) and leave the other proofs as an exercise. Suppose that $b = au$ where $u \in R$ is a unit. Since $b = au$ we have $a|b$ and since $a = bu^{-1}$ we have $b|a$. Since $a|b$ and $b|a$ we have $a \sim b$ (we did not need to assume that R is an integral domain for this direction). Now suppose that R is an integral domain and that $a \sim b$, say $a = br$ and $b = as$ with $r, s \in R$. Then we have $b = as = brs$ so that $b(1 - rs) = 0$. Since R is an integral domain, either $b = 0$ or $1 - rs = 0$. If $b = 0$ then $a = br = 0$, so we have $b = a \cdot u$ for any unit u (for example $u = 1$). If $1 - rs = 0$ then $rs = 1$ so that r and s are units, so we have $b = au$ where $u = s$ (which is a unit).

2.12 Example: In the ring \mathbb{Z} , we have $k \sim \ell \iff k = \pm \ell$. Verify that in \mathbb{Z}_{12} the association classes are $\{0\}$, $\{1, 5, 7, 11\}$, $\{2, 10\}$, $\{3, 9\}$, $\{4, 8\}$, $\{6\}$.

2.13 Definition: Let R be a commutative ring with 1. Let $a \in R$ be a non-zero non-unit. We say that a is **reducible** when $a = bc$ for some non-units $b, c \in R$, and otherwise we say that a is **irreducible**. We say that a is **prime** when for all $b, c \in R$, if $a|bc$ then either $a|b$ or $a|c$.

2.14 Theorem: Let R be a commutative ring with 1. Let $a, b \in R$ with $a \sim b$. Then

- (1) $a = 0$ if and only if $b = 0$,
- (2) a is a unit if and only if b is a unit,
- (3) a is reducible if and only if b is reducible,
- (4) a is irreducible if and only if b is irreducible,
- (5) a is prime if and only if b is prime.

Proof: The proof is left as an exercise.

2.15 Example: In the ring \mathbb{Z} , for $k \in \mathbb{Z}$, k is irreducible if and only if k is prime if and only if $k = \pm p$ for some (positive) prime number p .

2.16 Example: As an exercise, verify that in the ring \mathbb{Z}_{12} , the irreducible elements are 2 and 10 and the prime elements are 2, 3, 9 and 10.

2.17 Example: Use the method of the Sieve of Eratosthenes to find several irreducible elements in $\mathbb{Z}[\sqrt{3}i]$ and also some irreducible elements which are not prime.

2.18 Theorem: Let R be a commutative ring with 1. Let $a \in R$. Then

- (1) If a is irreducible then the divisors of a are the units in R and the associates of a in R .
- (2) a is prime if and only if $\langle a \rangle$ is a non-zero prime ideal.

Proof: The proof is left as an exercise.

2.19 Theorem: Let R be an integral domain and let $a \in R$. Then

- (1) if a is prime then a is irreducible,
- (2) a is irreducible if and only if $\langle a \rangle$ is maximal amongst non-zero proper principal ideals,
- (3) if R is a PID and a is irreducible, then a is prime.

Proof: To Prove Part (1), suppose that a is prime. Suppose that $a = bc$ with $b, c \in R$. Since $a = bc$ we have $a|bc$ and hence, since a is prime, either $a|b$ or $a|c$. Suppose that $a|b$, say $b = ar$. Then $a = bc = arc$ so that $a(1 - rc) = 0$. Since R is an integral domain and $a \neq 0$ it follows that $rc = 1$ so that c is a unit. A similar argument shows that if $a|c$ then b is a unit, and so a is irreducible, as required.

To prove Part (2), suppose that a is irreducible. Since $a \neq 0$ we have $\langle a \rangle \neq 0$ and since a is not a unit we have $\langle a \rangle \neq R$. Let $b \in R$ and suppose that $\langle a \rangle \subseteq \langle b \rangle \subseteq R$. Since $\langle a \rangle \subseteq \langle b \rangle$ we have $a \in \langle b \rangle$, say $a = bc$ with $c \in R$. Since a is irreducible, either b is a unit, in which case $\langle b \rangle = R$, or c is a unit in which case $b \sim a$ so that $\langle b \rangle = \langle a \rangle$.

Suppose, conversely, that $\langle a \rangle$ is maximal amongst nonzero proper principal ideals in R . Since $\langle a \rangle \neq \{0\}$ we have $a \neq 0$ and since $\langle a \rangle \neq R$ it follows that a is not a unit. Suppose that $a = bc$ where $b, c \in R$. Since $a = bc$ we have $a \in \langle b \rangle$ so that $\langle a \rangle \subseteq \langle b \rangle$. By the maximality of $\langle a \rangle$, either $\langle b \rangle = \langle a \rangle$ or $\langle b \rangle = R$. If $\langle b \rangle = R$ then b is a unit. Suppose that $\langle b \rangle = \langle a \rangle$, say $b = ar$ with $r \in R$. Then $a = bc = arc$ so that $a(1 - rc) = 0$. Since $a(1 - rc) = 0$ and $a \neq 0$ and R is an integral domain, it follows that $rc = 1$ so that c is a unit. This completes the proof of Part (2).

Finally note that if a is irreducible and R is a PID then, by Part (2), $\langle a \rangle$ is a maximal ideal, hence $\langle a \rangle$ is a prime ideal, hence a is prime. This proves Part (3).

2.20 Definition: A **Euclidean domain** (or ED) is an integral domain R together with a function $N : R \setminus \{0\} \rightarrow \mathbb{N}$, called a **norm**, with the property that for all $a, b \in R$ with $a \neq 0$ there exist $q, r \in R$ such that $b = qa + r$ and either $r = 0$ or $N(r) < N(a)$.

2.21 Definition: A **principal ideal domain** (or PID) is an integral domain R such that every ideal in R is principal.

2.22 Definition: A **unique factorization domain** (or UFD) is an integral domain R with the property that for every nonzero non-unit $a \in R$ we have

- (1) $a = a_1 a_2 \cdots a_l$ for some $l \in \mathbb{Z}^+$ and some irreducible elements $a_i \in R$, and
- (2) if $a = a_1 a_2 \cdots a_l = b_1 b_2 \cdots b_m$ where $l, m \in \mathbb{Z}^+$ and each a_i and b_j is irreducible, then $m = l$ and for some permutation $\sigma \in S_m$ we have $a_i \sim b_{\sigma(i)}$ for all i .

2.23 Example: The ring \mathbb{Z} is a Euclidean domain with norm given by $N(k) = |k|$.

2.24 Example: Every field F is a Euclidean domain, using any function $N : F \setminus \{0\} \rightarrow \mathbb{N}$ as a norm. Indeed, given $a, b \in F$ with $a \neq 0$ we can choose $q = \frac{b}{a}$ and $r = 0$ to get $b = aq + r$.

2.25 Example: If F is a field then $F[x]$ is a Euclidean domain with norm $N(f) = \deg(f)$.

2.26 Example: Show that in the ring $\mathbb{Z}[\sqrt{3}i]$, the elements 2 and $1 \pm \sqrt{3}i$ are irreducible and $2 \not\sim 1 \pm \sqrt{3}i$. It follows that $\mathbb{Z}[\sqrt{3}i]$ is not a unique factorization domain because $4 = 2 \cdot 2 = (1 + \sqrt{3}i)(1 - \sqrt{3}i)$.

2.27 Theorem: Every Euclidean domain is a principal ideal domain.

Proof: Let R be a Euclidean domain with norm N . Let A be an ideal in R . If $A = \{0\}$ then A is principal with $A = \langle 0 \rangle$. Suppose that $A \neq \{0\}$. Choose a nonzero element $0 \neq a \in A$ of smallest possible norm. We claim that $A = \langle a \rangle$. Since $a \in A$ we have $\langle a \rangle \subseteq A$. Let $b \in A$ be arbitrary. Choose $q, r \in R$ such that $b = qa + r$ and either $r = 0$ or $N(r) < N(a)$. Note that $r = b - qa \in A$ so we must have $r = 0$ by the choice of a . Thus $b = qa \in \langle a \rangle$.

2.28 Definition: A ring R is called **Noetherian** when it satisfies the following condition, which is called the **ascending chain condition**: for every ascending chain of ideals $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ in R , there exists $n \in \mathbb{Z}^+$ such that $A_k = A_n$ for all $k \geq n$.

2.29 Theorem: Every principal ideal domain is Noetherian.

Proof: Let R be a principal ideal domain. Let $a_1, a_2, a_3, \dots \in R$ with

$$\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \cdots$$

Let $A = \bigcup_{k=1}^{\infty} \langle a_k \rangle$. Verify that A is an ideal. Choose $a \in R$ so that $A = \langle a \rangle$. Since $a \in A$, we can choose $n \in \mathbb{Z}^+$ so that $a \in \langle a_n \rangle$. For all $k \geq n$, we have $\langle a_k \rangle \subseteq A = \langle a \rangle \subseteq \langle a_n \rangle \subseteq \langle a_k \rangle$ and so $\langle a_k \rangle = \langle a_n \rangle$.

2.30 Theorem: Every principal ideal domain is a unique factorization domain.

Proof: Let R be a principal ideal domain. Let $a \in R$ be a non-zero non-unit. We claim that a has an irreducible factor. If a is irreducible then we are done. Suppose that a is reducible, say $a = a_1 b_1$ where a_1 and b_1 are non-units. Note that $\langle a \rangle \not\subseteq \langle a_1 \rangle$. If a_1 is irreducible then we are done. Suppose that a_1 is reducible, say $a_1 = a_2 b_2$ where a_2 and b_2 are non-units. Then $a = a_1 b_1 = a_2 b_2 b_1$ and $\langle a \rangle \not\subseteq \langle a_1 \rangle \not\subseteq \langle a_2 \rangle$. If a_2 is irreducible then we are done, and otherwise we continue this procedure. Eventually, the procedure must end giving us an irreducible factor a_n of a , otherwise we would obtain an infinite chain of ideals $\langle a \rangle \not\subseteq \langle a_1 \rangle \not\subseteq \langle a_2 \rangle \not\subseteq \dots$, contradicting the fact that R is Noetherian.

Next we claim that $a = a_1 a_2 \dots a_l$ for some $l \in \mathbb{Z}^+$ and some irreducible $a_i \in R$. If a is irreducible then we are done. Suppose that a is reducible. Let a_1 be an irreducible factor of a , and say $a = a_1 b_1$. Note that b_1 is not a unit since, if it was then we would have $a \sim a_1$, but a is reducible and a_1 is not. If b_1 is irreducible then we are done. Suppose b_1 is reducible. Let a_2 be an irreducible factor of b_1 and say $b_1 = a_2 b_2$. As above, note that b_2 is not a unit. If b_2 is irreducible then we are done, and otherwise we continue the procedure. Eventually, the procedure must end giving us $a = a_1 a_2 \dots a_n b_n$ with each a_i and b_n irreducible, otherwise we would obtain an infinite chain $\langle a \rangle \not\subseteq \langle b_1 \rangle \not\subseteq \langle b_2 \rangle \not\subseteq \dots$.

Finally, we claim that if $a = a_1 a_2 \dots a_l = b_1 b_2 \dots b_l$ with $l, m \in \mathbb{Z}^+$ and each a_i and b_j irreducible, then $m = l$ and for some permutation $\sigma \in S_m$ we have $a_i \sim b_{\sigma(i)}$ for all i . Suppose that $a = a_1 a_2 \dots a_l = b_1 b_2 \dots b_m$ where $l, m \in \mathbb{Z}^+$ and the a_i and b_j are irreducible. Since $a_1 | a_1 a_2 \dots a_l$, we have $a_1 | b_1 b_2 \dots b_m$. Since a_1 is irreducible and R is a principal ideal domain, it follows that a_1 is prime by Part 3 of Theorem 2.19. Since a_1 is prime and $a_1 | b_1 b_2 \dots b_m$, it follows that $a_1 | b_k$ for some k . After permuting the elements b_i we can assume $a_1 | b_1$. Since b_1 is irreducible, its divisors are units and associates and, since a_1 is not a unit, we have $a_1 \sim b_1$. Since $a_1 \sim b_1$ we have $b_1 = a_1 u$ for some unit u . Thus we have $a_1 a_2 \dots a_l = b_1 b_2 \dots b_m = a_1 u b_2 b_3 \dots b_m$, and by cancellation, $a_2 a_3 \dots a_l = u b_2 b_3 \dots b_m$. A suitable induction argument gives $l = m$ and $a_i \sim b_i$ for all i .

2.31 Example: Show that $\mathbb{Z}[i]$ is a ED.

2.32 Example: Since $\mathbb{Z}[\sqrt{3}i]$ is not a UFD, it cannot be a PID. Find an ideal in $\mathbb{Z}[\sqrt{3}i]$ which is not principal.

2.33 Example: Show that $\mathbb{Z}\left[\frac{1+\sqrt{19}i}{2}\right]$ is a PID, but not a ED (under any norm).

Polynomial Rings

2.34 Note: Here are a few remarks about polynomials. Recall that $R[x]$ denotes the ring of polynomials with coefficients in the ring R , and R^R denotes the ring of all functions $f : R \rightarrow R$.

(1) A polynomial $f \in R[x]$ determines a function $f \in R^R$. Given $f(x) = \sum_{i=0}^n a_i x^i \in R[x]$

we obtain the function $f : R \rightarrow R$ given by $f(x) = \sum_{i=0}^n a_i x^i$.

(2) Although we do not usually distinguish notationally between the polynomial $f \in R[x]$ and its corresponding function $f \in R^R$, they are not always identical. If the ring R is not commutative then multiplication of polynomials does not agree with multiplication of functions. For $f, g \in R[x]$ given by $f(x) = a + bx$ and $g(x) = c + dx$, in the ring $R[x]$ we have $(fg)(x) = (a + bx)(c + dx) = (ac) + (ad + bc)x + (bd)x^2$, but in the ring R^R we have $(fg)(x) = (a + bx)(c + dx) = ac + adx + bxc + bxdx$.

(3) Equality of polynomials may not agree with equality of functions. For $f, g \in R[x]$ given by $f(x) = \sum_{i=0}^n a_i x^i$ and $g(x) = \sum_{i=0}^m b_i x^i$ we have $f = g \in R[x]$ if and only if $a_i = b_i$ for all i

(and if say $n < m$ then $b_i = a_i = 0$ for $i > n$), but $f = g \in R^R$ if and only if $f(x) = g(x)$ for all $x \in R$. These two notions of equality do not always agree. For example if R is finite then the ring $R[x]$ is infinite but the ring R^R is finite. Indeed if $|R| = n$ then $R[x]$ is countably infinite but $|R^R| = n^n$. For a more specific example, if $f(x) = x^p - x$ then we have $f \neq 0 \in \mathbb{Z}_p[x]$ (because its coefficients are not equal to zero) but $f = 0 \in \mathbb{Z}_p^{\mathbb{Z}_p}$ because, by Fermat's Little Theorem, we have $f(x) = 0$ for all $x \in \mathbb{Z}_p$.

(4) Recall that for $f(x) = \sum_{i=0}^n a_i x^i$ with each $a_i \in R$ and $a_n \neq 0$, the element $a_n \in R$ is called

the leading coefficient of f , and the non-negative integer n is called the degree of $f(x)$, and we write $\deg(f) = n$. For convenience, we also define $\deg(0) = -1$. When R is an integral domain, it is easy to see that for $0 \neq f, g \in R[x]$ we have $\deg(fg) = \deg(f) + \deg(g)$. When R is not an integral domain, however, we only have $\deg(fg) \leq \deg(f) + \deg(g)$ because the product of the two leading coefficients can be equal to zero.

(5) When R is an integral domain, because we have $\deg(fg) = \deg(f) + \deg(g)$ for all $0 \neq f, g \in R[x]$, it is easy to see that the units in $R[x]$ are the constant polynomials $f(x) = c$ where c is a unit in R . In particular, when F is a field, the units in $F[x]$ are the elements $f \in F[x]$ with $\deg(f) = 0$. In the ring $\mathbb{Z}_4[x]$ (which is not an integral domain) we have $(1 + 2x)^2 = 1 + 4x + 4x^2 = 1$, so $f(x) = (1 + 2x)$ is a unit in $\mathbb{Z}_4[x]$.

2.35 Theorem: (Division Algorithm) Let R be a ring with 1. Let $f, g \in R[x]$ and suppose that the leading coefficient of g is a unit in R . Then there exist unique polynomials $q, r \in R$ such that $f = qg + r$ and $\deg(r) < \deg(g)$.

Proof: First we prove existence. If $\deg(f) < \deg(g)$ then we can take $q = 0$ and $r = f$. Suppose that $\deg(f) \geq \deg(g)$, Say $f(x) = \sum_{i=0}^n a_i x^i$ with $a_i \in R$ and $a_n \neq 0$ and $g(x) = \sum_{i=0}^m b_i x^i$ with $b_i \in R$ and b_m is a unit. Note that the polynomial $a_n b_m^{-1} x^{n-m} g(x)$ has degree n and leading coefficient a_n . It follows that the polynomial $f(x) - a_n b_m^{-1} x^{n-m} g(x)$ has degree smaller than n (because the leading coefficients cancel). We can suppose, inductively, that there exist polynomials $p, r \in R[x]$ such that $f(x) - a_n b_m^{-1} x^{n-m} g(x) = p(x)g(x) + r(x)$ and $\deg(r) < \deg(g)$. Then we have $f = qg + r$ by taking $q(x) = a_n b_m^{-1} x^{n-m} - p(x)$.

Next we prove uniqueness. Suppose that $f = qg + r = pg + s$ where $q, p, r, s \in R[x]$ with $\deg(r) < \deg(g)$ and $\deg(s) < \deg(g)$. Then we have $(q - p)g = s - r$ and so $\deg((q - p)g) = \deg(s - r)$. Since the leading coefficient of g is a unit (hence not a zero divisor), it follows that $\deg((q - p)g) = \deg(q - p) + \deg(g)$. If we had $q - p \neq 0$ then we would have $\deg((q - p)g) \geq \deg(g)$ but $\deg(s - r) < \deg(g)$, giving a contradiction. Thus we must have $q - p = 0$. Since $q - p = 0$ we have $s - r = (q - p)g = 0$. Since $q - p = 0$ and $s - r = 0$ we have $q = p$ and $r = s$, proving uniqueness.

2.36 Corollary: (The Remainder Theorem) Let R be a ring with 1, let $f \in R[x]$, and let $a \in R$. When we divide $f(x)$ by $(x - a)$ to obtain the quotient $q(x)$ and remainder $r(x)$, the remainder is the constant polynomial $r(x) = f(a)$.

Proof: Use the division algorithm to obtain $q, r \in R[x]$ such that $f = q(x)(x - a) + r(x)$ and $\deg(r) < \deg(x - a)$. Since $\deg(x - a) = 1$ we have $\deg(r) \in \{-1, 0\}$, and so r is a constant polynomial, say $r(x) = c$ with $c \in R$. Then we have $f(x) = q(x)(x - a) + c$. Put in $x = a$ to get $f(a) = q(a)(a - a) + c = q(a) \cdot 0 + c = c$.

2.37 Corollary: (The Factor Theorem) Let R be a commutative ring with 1, let $f \in R[x]$ and let $a \in R$. Then $f(a) = 0$ if and only if $(x - a) | f(x)$.

Proof: Suppose that $f(a) = 0$. Choose $q, r \in R[x]$ such that $f(x) = q(x)(x - a) + r(x)$ and $\deg(r) < \deg(x - a)$. Then $r(x)$ is the constant polynomial $r(x) = f(a) = 0$ and so we have $f(x) = q(x)(x - a)$. Since $f(x) = (x - a)q(x)$ we have $(x - a) | f(x)$. Conversely, suppose that $(x - a) | f(a)$ and choose $p \in R[x]$ so that $f(x) = (x - a)p(x)$. Then $f(a) = (a - a)p(a) = 0 \cdot p(a) = 0$.

2.38 Definition: Let R be a commutative ring with 1, let $f \in R[x]$, and let $a \in R$. We say that a is a **root** of f when $f(a) = 0$. When $f \neq 0$, we define the **multiplicity** of a as a root of f to be the largest $m = m(f, a) \in \mathbb{N}$ such that $(x - a)^m | f(x)$ (where we use the convention that $(x - a)^0 = 1$). Note that a is a root of f if and only if $m(f, a) \geq 1$.

2.39 Example: Let $f(x) = x^3 - 3x - 2 \in \mathbb{Q}[x]$. Since $f(x) = (x + 1)^2(x - 2) \in \mathbb{Q}[x]$, we have $m(f, 2) = 1$ and $m(f, -1) = 2$.

2.40 Example: Let p be an odd prime and let $f(x) = x^p - a \in \mathbb{Z}_p[x]$. Find $m(f, a)$.

2.41 Theorem: (The Roots Theorem) Let R be an integral domain, let $0 \neq f \in R[x]$ and let $n = \deg(f)$. Then

- (1) f has at most n distinct roots in R , and
- (2) if a_1, a_2, \dots, a_ℓ are all of the distinct roots of f in R and $m_i = m(f, a_i)$ for $1 \leq i \leq \ell$, then $(x - a_1)^{m_1}(x - a_2)^{m_2} \cdots (x - a_\ell)^{m_\ell} \mid f(x)$ and so $\sum_{i=1}^{\ell} m(f, a_i) \leq n$.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. If $\deg(f) = 0$, then $f(x) = c$ for some $0 \neq c \in R$, and so $f(x)$ has no roots. Let f be a polynomial with $\deg(f) = n \geq 1$ and suppose, inductively, that every polynomial $g \in R[x]$ with $\deg(g) = n-1$ has at most $n-1$ distinct roots. Suppose that a is a root of f in R . By the Factor Theorem, $(x - a) \mid f(x)$ so we can choose a polynomial $g \in R[x]$ so that $f(x) = (x - a)g(x)$. Note that $\deg(g) = n-1$ so, by the induction hypothesis, g has at most $n-1$ distinct roots. Let $b \in R$ be any root of f with $b \neq a$. Since $f(x) = (x - a)g(x)$ and $f(b) = 0$ we have $0 = f(b) = (b - a)g(b)$. Since $(b - a)g(b) = 0$ and $(b - a) \neq 0$ and R has no zero divisors, it follows that $g(b) = 0$. Thus b must be one of the roots of g . Since every root b of f with $b \neq a$ is equal to one of the roots of g , and since g has at most $n-1$ distinct roots, it follows that f has at most n distinct roots, as required.

2.42 Example: When R is not an integral domain, a polynomial $f \in R[x]$ of degree n can have more than n roots. For example, in the ring $\mathbb{Z}_6[x]$ the polynomial $f(x) = x^2 + x$ has roots 0, 2, 3 and 5.

2.43 Theorem: (The Rational Roots Theorem) Let $f(x) = \sum_{i=0}^n c_i x^i \in \mathbb{Z}[x]$ where $n \in \mathbb{Z}^+$ and $c_n \neq 0$. Let $r, s \in \mathbb{Z}$ with $s \neq 0$ and $\gcd(r, s) = 1$. Then if $f\left(\frac{r}{s}\right) = 0$ then $r \mid c_0$ and $s \mid c_n$.

Proof: Suppose that $f\left(\frac{r}{s}\right) = 0$, that is $c_0 + c_1 \frac{r}{s} + c_2 \frac{r^2}{s^2} + \cdots + c_n \frac{r^n}{s^n} = 0$. Multiply by s^n to get

$$0 = c_0 s^n + c_1 s^{n-1} r^1 + \cdots + c_{n-1} s^1 r^{n-1} + c_n r^n.$$

Thus we have

$$\begin{aligned} c_0 s^n &= -r(c_1 s^{n-1} + \cdots + c_{n-1} s^1 r^{n-2} + c_n r^{n-1}) \text{ and} \\ c_n r^n &= -s(c_0 s^{n-1} + c_1 s^{n-2} r^1 + \cdots + c_{n-1} r^{n-1}) \end{aligned}$$

and it follows that $r \mid c_0 s^n$ and that $s \mid c_n r^n$. Since $\gcd(r, s) = 1$ we also have $\gcd(r, s^n) = 1$, and since $r \mid c_0 s^n$ it follows that $r \mid c_0$. Since $\gcd(s, r) = 1$ we also have $\gcd(s, r^n) = 1$, and since $s \mid c_n r^n$ it follows that $s \mid c_n$.

2.44 Example: Show that $\sqrt{1 + \sqrt{2}} \notin \mathbb{Q}$.

2.45 Note: Here are a few remarks about irreducible polynomials.

(1) When F is a field, we know that $F[x]$ is a unique factorization domain. For $f \in F[x]$ we know that $f = 0$ if and only if $\deg(f) = -1$, and f is a unit if and only if $\deg(f) = 0$, and for $0 \neq f, g \in F[x]$ we know that $\deg(fg) = \deg(f) + \deg(g)$. It follows that for $f \in F[x]$, if $\deg(f) = 1$ then f is irreducible. It also follows that for $f \in F[x]$, if $\deg(f) = 2$ or 3 then f is reducible in $F[x]$ if and only if f has a root in F .

(2) For $f \in \mathbb{C}[x]$, we know (from the Fundamental Theorem of Algebra) that f is irreducible if and only if $\deg(f) = 1$. For $f \in \mathbb{R}[x]$, we know that f is irreducible polynomial if and only if either $\deg(f) = 1$ or $f(x) = ax^2 + bx + c$ for some $a, b, c \in \mathbb{R}$ with $a \neq 0$ and $b^2 - 4ac < 0$.

(3) When p is a fairly small prime number and n is a fairly small positive integer, it is easy to list all reducible and irreducible polynomials $f \in \mathbb{Z}_p[x]$ with $\deg(f) \leq n$. Note that it suffices to list monic polynomials (since for $f \in \mathbb{Z}_p[x]$ and $0 \neq c \in \mathbb{Z}_p[x]$ we have $f \sim cf$). We start by listing all monic polynomials of degree 1, that is all polynomials of the form $f(x) = x + a$ with $a \in \mathbb{Z}_p$, and noting that they are all irreducible. Having constructed all reducible and irreducible monic polynomials of all degrees less than n , we can construct all of the reducible monic polynomials of degree n by forming products of the reducible monic polynomials of smaller degree in all possible ways, and then all the remaining monic polynomials of degree n must be irreducible.

2.46 Example: Note that $f(x) = x^3 - 3x + 1$ is irreducible in $\mathbb{Q}[x]$ because it is cubic and has no roots in \mathbb{Q} by the Rational Roots Theorem. The same polynomial is reducible in $\mathbb{R}[x]$ and in $\mathbb{C}[x]$ because it is cubic.

2.47 Example: List all monic reducible and irreducible polynomials in $\mathbb{Z}_2[x]$ of degree less than 4, then determine the number of irreducible polynomials in $\mathbb{Z}_2[x]$ of degree 4.

2.48 Definition: Let R be an integral domain. Define a binary relation on the set $R \times (R \setminus \{0\})$ by stipulating that

$$(a, b) \sim (b, d) \iff ad = bc.$$

It is easy to check that this is an equivalence relation. Let

$$F = Q(R) = (R \times (R \setminus \{0\})) / \sim = \left\{ [(a, b)] \mid a, b \in R, b \neq 0 \right\}.$$

Define addition and multiplication operations on F by

$$\begin{aligned} [(a, b)] + [(c, d)] &= [(ad + bc, bd)], \\ [(a, b)] \cdot [(c, d)] &= [(ac, bd)]. \end{aligned}$$

It is not hard to verify that these operations are well-defined (noting that when $b \neq 0$ and $d \neq 0$ we also have $bd \neq 0$ because R is an integral domain) and that they make F into a field with zero element $[(0, 1)]$ and identity element $[(1, 1)]$. This field $F = Q(R)$ is called the **quotient field** of the integral domain R . For $a, b \in R$ with $b \neq 0$ we use the following notation:

$$\frac{a}{b} = [(a, b)], \quad a = [(a, 1)], \quad \frac{1}{b} = [(1, b)].$$

The use of the notation $a = [(a, 1)]$, for $a \in R$, allows to consider R as a subring of its quotient field F .

2.49 Example: The quotient field of \mathbb{Z} is equal to \mathbb{Q} , and the quotient field of $\mathbb{Z}[\sqrt{2}]$ is equal to $\mathbb{Q}[\sqrt{2}]$.

2.50 Example: When R is an integral domain, the quotient field of the polynomial ring $R[x]$ is the **field of rational functions** $R(x) = \left\{ \frac{f}{g} \mid f, g \in R[x], g \neq 0 \right\}$. More generally, the quotient field of $R[x_1, \dots, x_n]$ is the field of rational functions $R(x_1, \dots, x_n)$.

2.51 Definition: Let R be a unique factorization domain. For a polynomial $f \in R[x]$, the **content** of f , written as $c(f)$, is a greatest common divisor of the coefficients of f . Note that the greatest common divisor is unique up to association and so $c(f)$ is unique up to association, that is up to multiplication by a unit. We often abuse notation by writing $c(f) = a$ when in fact $c(f) \sim a$. We say that f is **primitive** when $c(f) = 1$ (that is when $c(f)$ is a unit). Note that $f = 0$ if and only if $c(f) = 0$. Note that when $f \in R[x]$ and $a \in R$ we have $c(af) = a c(f)$. In particular, we have $f = c(f)g$ for a primitive polynomial $g \in R[x]$.

2.52 Example: For $f(x) = 6x + 30 \in \mathbb{Z}[x]$ we have $c(f) = 6$. Since $\deg(f) = 1$, it follows that f is irreducible in $\mathbb{Q}[x]$. But since $c(f) = 6$, it follows that f is reducible in $\mathbb{Z}[x]$, indeed in $\mathbb{Z}[x]$ we have $f(x) = 2 \cdot 3 \cdot (x + 5)$.

2.53 Theorem: (Gauss' Lemma) Let R be a UFD with quotient field F .

- (1) For all $f, g \in R[x]$ we have $c(fg) = c(f)c(g)$.
- (2) Let $0 \neq f \in R[x]$ and let $g(x) = \frac{1}{c(f)}f(x) \in R[x]$. Then f is irreducible in $F[x]$ if and only if g is irreducible in $R[x]$.
- (3) Let $0 \neq f \in R[x]$. Then f is reducible in $F[x]$ if and only if f can be factored as a product of two nonconstant polynomials in $R[x]$.

Proof: Let $f, g \in R[x]$. If $f = 0$ or $g = 0$ then we have $c(fg) = 0 = c(f)c(g)$. Suppose that $f \neq 0$ and $g \neq 0$. Let $h(x) = \frac{1}{c(f)}f(x)$ and $k(x) = \frac{1}{c(g)}g(x)$. Then we have $h, k \in R[x]$ with $c(h) = c(k) = 1$ and $fg = c(f)c(g)hk$ so that $c(fg) = c(f)c(g)c(hk)$. Thus to prove Part (1) it suffices to show that $c(hk) = 1$. Let $h(x) = \sum_{i=0}^n a_i x^i$ and $k(x) = \sum_{i=0}^m b_i x^i$ with $a_n \neq 0$ and $b_m \neq 0$. Suppose, for a contradiction, that $c(hk) \neq 1$. Let p be a prime factor of $c(hk)$. Then p divides all of the coefficients of $(hk)(x) = (a_0 b_0) + (a_1 b_0 + a_0 b_1)x + \dots + (a_n b_m)x^{n+m}$. Since $c(h) = 1$, p does not divide all the coefficients of $h(x)$, so we can choose an index $r \geq 0$ so that $p|a_i$ for all $i < r$ and $p \nmid a_r$. Since $c(k) = 1$ we can choose an index $s \geq 0$ so that $p|b_i$ for all $i < s$ and $p \nmid b_s$. Since p divides every coefficient of $(hk)(x)$, it follows that in particular p divides the coefficient

$$c_{r+s} = a_0 b_{r+s} + a_1 b_{r+s-1} + \dots + a_r b_s + \dots + a_{r+s-1} b_1 + a_{r+s}.$$

Since $p|c_{r+s}$ and $p|a_i$ for all $i < r$ and $p|b_i$ for all $i < s$ it follows that $p|a_r b_s$. Since p is prime and $p|a_r b_s$ it follows that $p|a_r$ or $p|b_s$. But r and s were chosen so that $p \nmid a_r$ and $p \nmid b_s$ so we have obtained the desired contradiction. This proves Part (1).

To prove Parts (2) and (3), let $0 \neq f(x) \in R[x]$ and let $g(x) = \frac{1}{c(f)}f(x)$, and note that $g \in R[x]$ with $c(g) = 1$. Suppose that g is reducible in $R[x]$, say $g(x) = h(x)k(x)$ where $h(x)$ and $k(x)$ are non-units in $R[x]$. Since $c(h)c(k) = c(hk) = c(g) = 1$ it follows that $c(h) = c(k) = 1$. Note that $h(x)$ cannot be a constant polynomial since if we had $h(x) = r$ with $r \in R$, then we would have $c(h) = r$ and also $c(h) = 1$ so that r is a unit in R , but then h would be a unit in $R[x]$. Similarly $k(x)$ cannot be a constant polynomial. Since $h(x)$ and $k(x)$ are nonconstant polynomials in $R[x]$, they are also nonconstant polynomials in $F[x]$. Since $f(x) = c(f)g(x) = c(f)h(x)k(x)$ and since $c(f)h(x)$ and $k(x)$ are both nonconstant polynomials (hence nonunits) in $F[x]$, it follows that $f(x)$ is reducible in $F[x]$.

Conversely, suppose that $f(x)$ is reducible in $F[x]$, say $f(x) = h(x)k(x)$ where h and k are nonzero, nonunits in $F[x]$. Since h and k are nonzero nonunits in $F[x]$, they are nonconstant polynomials. Let a be a least common multiple of the denominators of the coefficients of $h(x)$ and let b be a least common multiple of denominators of the coefficients of $k(x)$, and note that $ah(x) \in R[x]$ and $bk(x) \in R[x]$. Let $p(x) = \frac{1}{c(ah)}ah(x)$ and let $q(x) = \frac{1}{c(bk)}bk(x)$ and note that $p(x), q(x) \in R[x]$ with $c(p) = c(q) = 1$ and that $\deg(p) = \deg(h)$ and $\deg(q) = \deg(k)$. Since $f(x) = ah(x)bk(x) = c(ah)c(bk)p(x)q(x)$ we have $c(f) = c(ah)c(bk)c(pq) = c(ah)c(bk)$ so $g(x) = \frac{1}{c(f)}f(x) = \frac{1}{c(ah)c(bk)}ah(x)bk(x) = p(x)q(x)$. Since $g(x) = p(x)q(x)$ where $p(x)$ and $q(x)$ are nonconstant polynomials in $R[x]$, we see that $g(x)$ is reducible in $R[x]$.

2.54 Theorem: (Modular Reduction) Let $f(x) = \sum_{i=0}^n c_i x^i$ with $n \in \mathbb{Z}^+$, $c_i \in \mathbb{Z}$ and $c_n \neq 0$. Let p be a prime number with $p \nmid c_n$. Let $\bar{f}(x) = \sum_{i=0}^n \bar{c}_i x^i \in \mathbb{Z}_p[x]$ where $\bar{c}_i = [c_i] \in \mathbb{Z}_p$. If \bar{f} is irreducible in $\mathbb{Z}_p[x]$ then f is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose that $f(x)$ is reducible in $\mathbb{Q}[x]$. By Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbb{Z}[x]$ such that $f = gh \in \mathbb{Z}[x]$. Write $g(x) = \sum_{i=0}^k a_i x^i \in \mathbb{Z}[x]$ and $h(x) = \sum_{i=0}^\ell b_i x^i \in \mathbb{Z}[x]$ with $a_k \neq 0$, $b_\ell \neq 0$ and $k, \ell \geq 1$. Let $\bar{g} = \sum_{i=0}^k \bar{a}_i x^i \in \mathbb{Z}_p[x]$ and $\bar{h}(x) = \sum_{i=0}^\ell \bar{b}_i x^i \in \mathbb{Z}_p[x]$, and note that $\bar{f} = \bar{g} \bar{h} \in \mathbb{Z}_p[x]$. Since $c_n = a_k b_\ell$ and $p \nmid c_n$ it follows that $p \nmid a_k$ and $p \nmid b_\ell$ in \mathbb{Z} so $\bar{a}_k \neq 0$ and $\bar{b}_\ell \neq 0$ in \mathbb{Z}_p . Thus $\deg(\bar{g}) = \deg(g) = k$ and $\deg(\bar{h}) = \deg(h) = \ell$ so that \bar{g} and \bar{h} are nonconstant polynomials in $\mathbb{Z}_p[x]$, and so the polynomial $\bar{f} = \bar{g} \bar{h}$ is reducible in $\mathbb{Z}_p[x]$.

2.55 Exercise: Prove that $f(x) = x^5 + 2x + 4$ is irreducible in $\mathbb{Q}[x]$ by working in $\mathbb{Z}_3[x]$.

2.56 Exercise: Show that $f(x) = x^4 + 1$ is irreducible in $\mathbb{Q}[x]$ but reducible in $\mathbb{Z}_p[x]$ for every prime number $p \in \mathbb{Z}^+$.

2.57 Theorem: (Eisenstein's Criterion) Let $f(x) = \sum_{i=0}^n c_i x^i$ with $n \in \mathbb{Z}^+$, $c_i \in \mathbb{Z}$ and $c_n \neq 0$.

Let p be a prime number such that $p_i | c_i$ for $0 \leq i < n$ and $p \nmid c_n$ and $p^2 \nmid c_0$. Then f is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose, for a contradiction, that $f(x)$ is reducible in $\mathbb{Q}[x]$. By Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbb{Z}[x]$ such that $f = gh \in \mathbb{Z}[x]$. Write $g(x) = \sum_{i=0}^k a_i x^i \in \mathbb{Z}[x]$ and $h(x) = \sum_{i=0}^\ell b_i x^i \in \mathbb{Z}[x]$ with $k, \ell \geq 1$ and $a_k \neq 0$, $b_\ell \neq 0$. Since $c_0 = a_0 b_0$ and $p \nmid c_0$, it follows that p divides exactly one of the two numbers a_0 and b_0 . Suppose that p divides a_0 but not b_0 (the case that p divides b_0 but not a_0 is similar). Since $p \nmid c_1$, that is $p \nmid (a_0 b_1 + a_1 b_0)$, and $p \nmid a_0$ it follows that $p \nmid a_1 b_0$, and since $p \nmid b_0$ it follows that $p \nmid a_1$. Since $p \nmid c_2$, that is $p \nmid (a_0 b_2 + a_1 b_1 + a_2 b_0)$ and $p \nmid a_0$ and $p \nmid a_1$, it follows that $p \nmid a_2 b_0$, and since $p \nmid b_0$ it then follows that $p \nmid a_2$. Repeating this argument we find, inductively, that $p \nmid a_i$ for all $i \geq 0$, and in particular we have $p \nmid a_k$. Since $c_n = a_k b_\ell$ and $p \nmid a_k$ it follows that $p \nmid c_n$, giving the desired contradiction.

2.58 Example: Note that $f(x) = 5x^5 + 3x^4 - 18x^3 + 12x + 6$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein's Criterion using $p = 3$.

2.59 Exercise: Let p be a prime number. Show that $f(x) = 1 + x + x^2 + \cdots + x^{p-1}$ is irreducible in $\mathbb{Q}[x]$,

2.60 Theorem: If R is a UFD then so is $R[x]$.

Proof: Suppose that R is a UFD and let F be the quotient field of R . Note that the units in $R[x]$ are the constant polynomials which are also units in R . Let $f \in R[x]$ be a non-zero non-unit. If f is a constant polynomial, then the factorization of f in $R[x]$ is the same as the factorization of f in R . Suppose that $\deg(f) \geq 1$. Let $g = \frac{1}{c(f)} f$ so that $g \in R[x]$ with $c(g) = 1$. The factorization of $c(f)$ in $R[x]$ is the same as the factorization in R , so it suffices to show that the polynomial g factors uniquely into irreducibles in $R[x]$. Since $F[x]$ is a ED, hence a UFD, we know that g factors into irreducibles in $F[x]$. By Gauss' Lemma, we can multiply each of the irreducible factors in $F[x]$ by an element of F to write g as a product of irreducible factors in $R[x]$, say $g = f_1 f_2 \cdots f_\ell$ where each f_j is irreducible in $R[x]$. Since $c(g) = 1$ we must have $c(f_j) = 1$ for each index j .

Suppose that $g = f_1 f_2 \cdots f_\ell = g_1 g_2 \cdots g_m$ where f_j and g_k are irreducible in $R[x]$ with $c(f_j) = c(g_k) = 1$ for all j, k . Note that each f_j must be non-constant since if we had $f_j(x) = r \in R$ then we would have $c(f_j) = r$ and $c(f_j) = 1$ so that r is a unit in R , but then f_j would be a unit in $R[x]$. Similarly each g_k is non-constant. It follows that the polynomials f_j and g_k are also irreducible in $F[x]$. By unique factorization in $F[x]$, we must have $m = \ell$ and, after possibly reordering the polynomials g_k , we have $f_j \sim g_j$ in $F[x]$ for all indices j . Since $f_j \sim g_j$ in $F[x]$, we have $g_j = u f_j$ for some $0 \neq u \in F$. Say $u = \frac{a}{b}$ where $a, b \in R$ with $\gcd(a, b) = 1$. Then we have $a f_j = b g_j$ in $R[x]$. Since $c(f_j) = c(g_j) = 1$ we have $c(af_j) = a$ and $c(bg_j) = b$ and it follows that $a \sim b$ in R , hence $a = bv$ for some unit $v \in R$. Thus we have $g_j = u f_j = \frac{a}{b} f_j = v f_j$ and so $f_j \sim g_j$ in $R[x]$.

2.61 Corollary: If R is a UFD then so is the polynomial ring $R[x_1, x_2, \dots, x_n]$.