Chapter 1. Groups

The Action of a Group on a Set

1.1 Definition: Let G be a group. A representation of G is a group homomorphism
p: G — Perm(X) for some set X. A representation p : G — Perm(X) is called faithful
when it is injective.

1.2 Remark: Given a faithful representation p : G — Perm(X), we sometimes identify
the group G with its isomorphic image p(G), which is a group of permutations of X.

1.3 Definition: Let G be a group and let X be a set. A group action of G on X is a
map * : G X X — X, where for a € G and x € X we write *(a,z) as a*z or simply as az,
such that

(1) ex =z for all z € X, and
(2) (ab)x = a(bx) for all a,b € G and all z € S.

1.4 Note: Given a group G and a set X, here is a natural bijective correspondence between
representations p : G — Perm(X) and group actions * : G X X — X. The representation
p and its corresponding group action * determine one another by the formula

axx = p(a)(z) foralla e G,z € X.

As an exercise, verify that given a representation p, this formula defines a group action x,
and conversely that given a group action *, the formula defines a representation p.

1.5 Definition: Suppose that a group G acts on a set X. The group action is called
faithful when the corresponding representation is faithful.

1.6 Example: When a group G acts on itself by its own operation, so a*x = ax = f4(x),
the corresponding representation p : G — Perm(G) is given by p(a) = ¢,. This map is used
in the proof of Cayley’s Theorem: the representation is faithful, so it gives an isomorphism
from G to its image p(G) < Perm(G).

1.7 Example: When a group G acts on itself by conjugation, so a * x = aza™! = c,(),

the corresponding representation p : G — Perm(G) is given by p(a) = ¢,. This map is used
to show that G/Z(G) = Inn(G): indeed we have Ker(p) = Z(G) and Image(p) = Inn(G)
giving the isomorphism G/Z(G) = Inn(G).

1.8 Example: When F' is a field (or a commutative ring with 1) and the group GL,,(F)
acts on F™ by matrix multiplication, so that A x x = Ax = L4(z), the corresponding
representation p : GL, (F) — Perm(F™) is given by p(A) = La (so p sends the matrix A
to the linear map L4 given by L 4(x) = Ax). The representation is faithful, so its gives an
isomorphism from GL, (F') (which is a set of invertible matrices) to its image (which is a
set of invertible linear maps).



1.9 Definition: Let G be a group which acts on a set X. For a € G we define the fixed
set of a in X to be the set

Fix(a {x€X|a:1:—:1:}CX
For z € X we define the orbit of z under G to be the set
Orb(x {am‘aGG} C X.

Verify that for z,y € S we have y € Orb( ) <= Orb(z) = Orb(y) so, for the equivalence
relation on X given by z ~y <= Orb(x) = Orb(y), the equivalence class of = is equal
to the orbit of x, and X is equal to the disjoint union of the orbits.
The set of distinct orbits is denoted by X/G so we have
X/G = {Orb(z)|z € X}.
For x € X we define the stabilizer of x in G to be the subgroup
Stab(x {aEG‘ax—x} <G.

Note that Stab(x) < G because ex = z, if ax = x and bx = z then (ab)x = a(bx) = ax = =z,
and if ar = x then x = ez = (a7 la)z = a7 !(az) = a 12,

1.10 Theorem: (The Orbit-Stabilizer Theorem) Let G be a group which acts on a set
X. Then for all x € X we have

|G| = |Orb(z)||Stab(z)] .

Proof: Let z € X. We shall show that }Orb ‘ ’G/Stab ‘ Write H = Stab(z).
Define a map ¢ : G/H — Orb(z) by ®(aH) = az. Then & is well-defined because for
a,b € G we have aH = bH = b la € H = b laz = = ax = bz, ® is injective
because for a,b € G we have ax = bx = b lar =2 = b 'a € H = aH = bH, and
the map & is clearly surjective.

1.11 Exercise: Consider Dg as a subgroup of Sg. Find Orb(1) and Stab(1).

1.12 Exercise: Let G be the rotation group of a cube (). Label the vertices of the cube
by elements of S = {1,2,---,6}, think of the elements of G as permutations of S and hence
identify G with a subgroup of Sg. Find |Orb(1)| and |Stab(1)| and hence find |G].

1.13 Theorem: (The Class Equation) Let G be a finite group. Choose ay,asz,---,a, € G

with one element a; selected from each conjugacy class containing more than one element.
Then

Gl = |2(G)| + i G/C(a)].

Proof: For a € G we have |Cl(a)] =1 <= bab~! =aforallb e G < a € Z(G).
Say Z(G) = {an+1,an+2,~~ am} so that G has exactly m distinct conjugacy classes
and the elements aq,---,ay,an+1, -, a, make up exactly one element from each class.
Let G act on itself by conjugation so that b x a = bab~'. Note that for a € G, we
have Orb = {zaz~ 1|x €eG} = a) (the conjugacy class of a in G) and we have
Stab(a) = {a: € G‘xam =a} = (the centralizer of a in G). Also, by the Orbit-
Stablhzer Theorem, we have ’Orb az) = % = |G /C(a; ‘ Since G is the disjoint union

of the orbits,

G| = ZIOrb a; }— \G/C )|+ > 1—Z|G/C(az)!+\Z( )l

i=1 i=n+1 =1



1.14 Example: Let X be the set of all subgroups of a group G. Let G act on X by
conjugation, so a x H = c,(H) = aHa™ !, where a € G and H < G. For H € X, that is
H < G, we have

Stab(H) = {a € GlaHa ' = H} = {a € G|aH = Ha} = N¢(H),
Orb(H) = {aHa '|a € G} = CI(H),

where Ng(H) is the normalizer of H in G and Cl(H) is the conjugacy class of H in G,
that is the set of all subgroups conjugate to H in G.

1.15 Theorem: (Cauchy’s Theorem) Let G be a finite group. Let p be a prime divisor
of |G|. Then G contains an element of order p. Indeed

‘{aEGHa| :p}‘ =p—1mod p(p—1).

Proof: Let n be the number of elements of order p in G, that is n = |{a € G|la| = p}|.
Recall that n = 0 mod (p — 1) (indeed n is equal to (p — 1) times the number of cyclic
subgroups of order p in G because each of these subgroups has ¢(p) = p — 1 generators).
Let X = {(z1,32,---,2p) € GP|v132-- 2, = e}. Note that |X| = |G|P~! since to get
(x1,22, -+, xp) € X we can choose 1,2, -, p—1 arbitrarily and then z, must be given
by x, = (z122---xp_1) 1. Note that Z, acts on X by cyclic permutation, that is by

k: * (x17x27 e vxp) == (x1+kax2—|—k7 e wrpvxl) e 7'1.]6)
since if 1@+ 1y = € then x1@a -+ Tp = (Tpy1 - Tp) "' SO T14pTog -+ TpT1 - T = €.
For « = (x1,22,--+,%,) € S, by the Orbit/Stabilizer Theorem |Orb(z)| divides |Z,| = p
so that |Orb(z)| € {1, p}, so we have

‘Orb(q:)’ = {1 ) if z = (a7a7"'7a) for SomeaeG7 and

p , otherwise.

Since X is the disjoint union of the orbits, we have | X| = k 4 pl where k is the number
of orbits of size 1 and [ is the number of orbits of size p. Note that k£ is equal to the
number of elements a € G with a? = 1, and so k = 1 + n. Since |X| = |G[P"' =0 mod p
we have n = k —1 = |S| —pl —1 = —1 mod p. Since n = —1 = p — 1 mod p and
n=0=p—1mod (p—1), we have n = p—1 mod p(p — 1) by the Chinese Remainder
Theorem.

1.16 Theorem: Let G be a finite group and let H < G. Suppose that |G/H| = p, where
p is the smallest prime divisor of |G|. Then H 1G.

Proof: Let X = G/H = {aH|a € G}. Since |X| = p we have Perm(X) = S,. Let G act
on X by left multiplication, so we have a* (bH) = abH for a,b € G. Let p : G — Perm(X)
be the associated representation, so p(a)(bH) = abH. Let

K =Ker(p) = {a € G|labH = bH for allbe G} 4 G.

Note that K < H because a € K = aeH = eH = a € H. Since K I G (it is the
kernel of a homomorphism) and K < H, we also have K < H. By the First Isomorphism
Theorem, we have G/K = p(G) < Perm(X) = S,. By Lagrange’s Theorem |G/ K| divides
|Sp| = p!. By another application of Lagrange’s Theorem, |G//K| also divides |G|. Since
|G/K| ‘ |G| and p is the smallest prime factor of |G|, |G/K| has no prime factors less than
p. Since |G/K||p!, we must have |G/K| =1 or p. Since |G/K|=|G/H||H/K| = p|H/K]|
we have |G/K| =p and |H/K| = 1. Thus in fact H = K JG.



The Sylow Theorems

1.17 Definition: Let G be a group with |G| = p™¢ where p is prime and ged(p, £) = 1.
A p-subgroup of G is a subgroup of order p* for some k, and a Sylow p-subgroup of G
is a subgroup of order p™.

1.18 Exercise: Find the Sylow p-subgroups of S3 and A4 for p = 2, 3.

1.19 Theorem: (The Sylow Theorems) Let G be a group with |G| = p™{ where p is
prime and ged(p,¢) = 1.

(1) For every 0 < k < m, G has a subgroup of order p*, and when k < n, each subgroup of
order p* is normal in a subgroup of order p**'. In particular, G has a Sylow p-subgroup,
and every p-subgroup of G is contained in a Sylow p-subgroup.

(2) If P is a p-subgroup of G and S is a Sylow p-subgroup of G, then there exists a € G
such that aPa~' < S. In particular, any two Sylow p-subgroups of G are conjugate.

(3) The number of distinct Sylow p-subgroups of G divides |G| and is equal to 1 mod p.

Proof: To prove Part 1, note that the trivial subgroup of G is a p-subgroup of order p°.
By induction, it suffices to show that for every p-subgroup P < G with |P| = p* for
0 < k < m we have P<I H for some H < G with |H| = p**!. Let 0 < k < m and let
P < G with |P| = p*. Consider the action of P on the set of left cosets G/P given by
x * (aP) = xaP. Note that G/P is the disjoint union of the orbits, and the size of each
orbit divides |P| = p*. Some of the orbits have size 1 and the size of all other orbits is a
multiple of p, and so |G/ P)| is equal to the number of orbits of size 1, modulo p. For a € G,

|Orb(aP)| =1 <= xaP =aP forallz € P < a 'za€ Pforallz c P
<= a 'Pa=P <= Pa=aP < ac N(P)= Ng(P),

so the number of orbits of size 1 is equal to the number of cosets aP with a € N(P), which
is equal to N(P)/P. Thus we have |[N(P)/P| = |G/P| =0 mod p. By Cauchy’s Theorem,
since p divides | N(P)/P| it follows that the group N(P)/P contains an element of order p,
hence a subgroup of order p. This subgroup is of the form H/P where P < H < N(P) < G.
Since P <1 N(P) we also have P <1 H. Since |H/P| = p and |P| = p* we have |H| = pk*1.

To prove Part 2, let P be a p-subgroup of G with |P| = p*, and let S be a Sylow
p-subgroup of G. Consider the action of P on the G/S given by x(aS) = zaS. Since G/S is
equal to the disjoint union of the orbits, and the size of each orbit divides |P| = p¥, it follows
that |G/S] is equal to the number of orbits of size 1, modulo p. Since |G/S| # 0 mod p,
there is at least one orbit of size 1, so we can choose a € G such that xaS = aS for all
x € P. Then we have a 'aza € S for all z € P, so that a ' Pa < S, and hence P < aSa™".
Finally, note that aSa~! is a Sylow p-subgroup of G.

To prove Part 3, let X be the set of all Sylow p-subgroups of GG, and choose S € X.
By Part 2, G acts on X by conjugation, that is by a*xT = aTa~! wherea € G, T € X, and
the number of Sylow p-subgroups is | X| = ‘Orb(S) , which divides G. Likewise, we can
consider the action of S on X by conjugation. Since X is the disjoint union of the orbits,
and the size of each orbit divides |S| = p™, it follows that |X| is equal to the number of
orbits of size 1, modulo p. For T' € X, we have

|Orb(T)| =1 <= aTa =T forallac S +— S < N(T) = Ng(T).

Since S and T are Sylow p-subgroups of G, they are also Sylow p-subgroups of N(7T'), and
so they are conjugate in N(7T') by Part 2, and since T'<d N(T') it follows that S = T'. Thus
there is only one orbit of size 1, namely {S}, so we have |X| =1 mod p, as required.




The Classification of Groups of Small Order

1.20 Theorem: (Some Classification Theorems) Let G be a finite group and let p and ¢
be prime numbers with p > q.

(1) If |G| = p then G = Z,.

(2) If |G| = p* then either G = Z,> or G 2 Zy, X Z,,.

(3) If |G| = 2p then either G = Zsy, or G = D,,.

(4) If |G| = pq and q/fp—l then G = Zy,. If |G| = pq and q|p—1 then G = Zp, or G =T
where T' is a group whose elements are uniquely of the form o'’ with i € Z, and j € Zg,
with |a| = p, || = q and BaB~! = a®, where s # 1 and s =1 mod p.

Proof: To prove Part 1, suppose that |G| = p and choose a € G with a # e. By Lagrange’s
Theorem, we have |a| = p, so that G = (a) = Z,,.

To prove Part 2, suppose that |G| = p?. Consider the action of G on itself given by
conjugation, that is by zxa = xaxz~'. Note that G is the disjoint union of the orbits, and the
size of each orbit divides |G| = p?. Some of the orbits have size 1 and the size of each of the
other orbits is a multiple of p. It follows that |G| is equal to the number of orbits of size 1,
modulo p. For a € G we have [Orb(a)| =1 <= zaz ™' =aforallz € G < a € Z(G),
and hence |Z(G)| = |G| = p*> =0 mod p. Thus |Z(G)| # 1 so, by Lagrange’s Theorem,
either |Z(G)| = p or |Z(G)| = p?. If we had |Z(G)| = p then we could choose a € G with
a ¢ Z(G), but then we would have proper subgroups Z(G) < C(a) and C(a) < G which
is not possible by Lagrange’s Theorem, since |Z(G)| = p and |G| = p?. Thus we must
have |Z(G)| = p?, and hence Z(G) = G so that G is abelian. By the classification of finite
abelian groups, either G = Z,> or G = Z,, x Z,,, as required.

Part 3 follows as a special case of Part 4, but we provide a proof anyway. If p = 2
and |G| = 2p = 4 then, by Part 2, either G = Zy or G = Zy X Zs = Ds. Suppose that
p > 2 and |G| = 2p, and suppose that G % Zs,. Each non-identity element of G has order
2 or p. By Cauchy’s Theorem, we can choose a € G with |a| = p, then we choose b ¢ (a),
so that G is the disjoint union of two cosets G = (a) U b(a). Note that b*(a) # b(a) since
b=b"10% ¢ (a), and so we must have b*(a) = (a) and hence b* € {a). Note that |b| # p,
since if we had b? = e then (since p + 1 is even) we would have b = vP*! € (b?) C (a),
and so |b|] = 2. The same argument shows that |z| = 2 for every x ¢ (a). Consider
the element ab. Note that ab ¢ (a) = a(a) since b = a~tab ¢ (a), and so we have
lab| = 2. Thus abab = e and so ab = (ab)™! = b~ta~! = baP~! Since G is the disjoint
union G = (a) Ub(a), we have G = {e,a,a?,---,aP~* b,ba,ba?, - -, baP~'} with the listed
elements distinct. Since ab = ba~!, we have a?b = aba™! = ba~? and a®b = aba=2 = ba =3
and so on so that a*b = ba=%. This determines the operation on G completely: indeed
we have a* - a! = a*T!, a¥ - bal = ba! =%, ba¥ - o' = baFt! and ba* - ba! = a'~*, and hence
G = D, as required.

To prove Part 4, suppose that |G| = pq. By Cauchy’s Theorem, we can choose a,b € G
with |a| = p and |b| = ¢q. Let H = (a) and K = (b). Since |G/H| = q, which is the smallest
prime divisor of |G|, if follows from Theorem 1.16 that H < G. Since |G/H| = ¢, which
is prime, G/H is cyclic, and G is the disjoint union of the cosets b’ H = H’. Thus each
element in G can be written uniquely in the form a’b’ with 0 < i <pand 0 < j < ¢. In
particular, we have G = (a,b) = HK and H N K = {e}.

Note that K is a Sylow ¢g-subgroup of G. By the third Sylow Theorem, the number
of Sylow g-subgroups divides |G|, so it must be equal to 1, p, ¢ or pq, and it is also equal
to 1 modulo ¢ (so it cannot be equal to ¢ or pq). Thus if Q/fp—l (so that p 21 mod q)
then K is the only Sylow p-subgroup, while if q‘ p—1 (so that p =1 mod ¢) then either K
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is the only Sylow g-subgroup or there are exactly p distinct Sylow ¢-subgroups.

If K is the only Sylow ¢-subgroup, then by the second Sylow Theorem we must have
bKb~! = K for all b € G, so that K < G. Recall (or verify) that since H G, K <G,
G = HK and H N K = {e}, it follows that G = H x K = 7Z,, X Ly = Zypq.

Suppose that K is not the only Sylow g-subgroup. Note that G cannot be abelian
(if G was abelian we would have G = Z,,, which has a unique Sylow g¢-subgroup). Since
H <G we have bab~! = a" for some r € Z,. Note that r # 0 since a # e and r # 1 since
G is not abelian. The fact that bab~! = a” determines the operation on G completely:
We have b2ab2 = b(bab=1)b~! = ba"b~! = (bab~!)" = (a”)" = a” and similarly we have
b3ab=3 = ba” b1 = (bab=1)"" =™ and so on, so that by induction ¥ab= = ™’ that is
Va=a"bl, forall j € Z*. Also, we have b’a® = a” bV a = a” a” v = a®>’' 1/ and similarly
bVa® =a® ba = a® b and so on, so that in general b’a* = o*”' b/ for all j, k € Z*+. Thus
the elements in G are of the form a'b’ with ¢ € Z,, and j € Z,, and the operation is given
by

(a't?)(a*b") = a' (b a®)b* = a' (OL/I‘"“ij)bZ = @' TRt

The same calculation shows that in the group 7, the fact that SaB~! = o® determines the
operation, and it is given by
(aiﬂj)(akﬂe) — ai—!—ksj Bj_H-

We claim that G 22 T Since b? = e we have a = b%ab™? = a™". Since |a| = p and ™ = a
we have r? =1 mod p. Recall (or verify) that the group of units U, = (Z,)* is a cyclic
group of order p — 1. Since r # 1 and r? = 1 mod p, we see that r is a generator of the
(unique) g-element subgroup of U,. Likewise, since s # 1 and s = 1 mod p, we have
(s) = (r)y={1,r,r% .-, r71} <U, and so we can choose t € Z,_; so that 7’ = s mod p.
Verify that the map ¢ : T — G given by ¢(a’8?) = a*b¥ is a group isomorphism.

There is one last subtle detail which remains, and that is to prove that the group T
actually exists, that is to show that there exists s € Z, with s # 1 and s? = 1 mod p,
and there exists a group T whose elements are uniquely of the form o3’ with i € Z,, and
j € Zg such that |a| = p, |8] = ¢ and Baf~ = a®. We leave this part of the proof as an
exercise.

1.21 Remark: The above theorem fully classifies, up to isomorphism, all groups of order
n < 20 except for n € {8,12, 16, 18,20}.

1.22 Exercise: Show that every group of order 8 is isomorphic to one of the groups
Lo X Lo X Lig, Lo X Ly, Lg, Dy or Qg, where (g is the quaternionic group.

1.23 Exercise: Show that every group of order 12 is isomorphic to one of the groups
Zo X g, Lo, Dg, Ag or T, where T = («, B) with |a| =6, |8| = 4, 8% = o® and afBa = 3.

1.24 Exercise: Classify (up to isomorphism) all groups of order 18 and 20.



Composition Series and Simple Groups

1.25 Definition: A group G is called simple when it has no nontrivial proper normal
subgroup.

1.26 Definition: Let GG be a group. A subnormal series for G is a sequence of subgroups
{e}=No< N <--- <N, =C

with Np_1 <A N for 1 < k < /. A composition series for G is a subnormal series
{e} = Ny < Ny <--- Ny = G such that Ni_; <10 N with Ny /Nj_1 simple for 1 < k < /.

1.27 Example: In the group Dy = (o, 7) with |o| =4, |7| =2 and o710 = 7, we have the
two composition series

{e} <(r?) <(r) <Dy and {e} < (r) < (0®,7) < Du.
1.28 Theorem: (The Jordan-Hélder Theorem) Let G be a finite group. Then

(1) G has a composition series and

(2) the composition factors are unique in the sense that if {e} = Ng < Ny <--- < N, =G
and {e} = My < My < --- < M, = G are two composition series for G, then n = m and
there is a permutation o € S,, such that My ) /My)—1 = Nig/Ni—1 for 1 <k <n.

Proof: The proof is left as a (fairly long) exercise.

1.29 Remark: The above theorem suggests a two-part program, known as the Holder
program, for classifying all finite groups, up to isomorphism. The first part of the program
is to classify all finite simple groups, and the second part is two determine, given a list
of simple groups, all the ways to form a group G with the given simple groups as the
composition factors. The first part of this program is considered to have been completed:
the simple groups include the cyclic groups of prime order, the alternating groups A,, with
n > 5, 16 additional infinite families of finite simple groups which are said to be of Lee
type, along with 27 specific finite simple groups, called the sporadic groups. The second
part of the program is known as the extension problem, and it is considered to be an
extremely difficult problem.

1.30 Example: Show that for n > 3, A,, is generated by the set of all 3-cycles, and for
any a #b € {1,2,---,n}, A, is generated by the 3-cycles of the form (abk) with k # a,b.

Solution: Recall that every permutation in A,, is equal to a product of an even number
of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab), (ab)(ac) or
(ab)(cd), where a, b, ¢, d are distinct, and we have

(ab)(ab) = (abc)(acd) , (ab)(ac) = (acb) , (ab)(cd) = (adc)(abe),
and so A, is generated by the set of all 3-cycles. Now fix a,b € {1,2,---,n} with a # b.

Note that every 3-cycle is of one of the forms (abk), (akb), (akl), (bkl) or (klm), where
a,b, k,l,m are all distinct, and we have

(akb)=(abk)? , (akl)=(abl)(abk)? , (bkl)=(abl)*(abk) , (klm)= (abk)?(abm)(abl)?(abk).



1.31 Theorem: For n > 5, the alternating group A,, is simple.

Proof: Let H <1 A,. We shall show that H = A,. We consider 5 cases. Case 1: sup-
pose first that H contains a 3-cycle, say (abc) € H. Then for any k # a,b,c we have
(abk) = (ab)(ck) (abc)?(ck)(ab) € H Tt follows that A, = H because A, is generated by
the 3-cycles of the form (abk) with k # a,b (as shown in Example 1.30). Case 2: suppose
that H contains an element o which, when written in cycle notation, has a cycle of length
r > 4, say a = (ajaza3---a,)3 € H. Then (ajaza,) = o (ajazaz)a(aiazas)™ € H
and so H = A,, by Case 1. Case 3: suppose that H contains an element o which, when
written in cycle notation, has at least two 3-cycles, say a = (ajaq2a3)(agasa6)5 € H.
Then we have (ajasazagaz) = a 1(ajasas)a(aiazas)™ € H and so H = A, by Case 2.
Case 4: suppose that H contains an element « which, when written in cycle nota-
tion, is a product of one 3-cycle and some 2-cycles, say o = (ajagas)B € H where
B is a product of disjoint 2-cycles so that 32 = e. Then (ajasaz) = o> € H and
so H = A, by Case 1. Case 5: suppose that H contains an element « which, when
written in cycle notation, is a product of 2-cycles, say a = (ajaz)(asaq)8 € H. Then
(ara3)(azas) = a~(ajazas)alaiazas)™! € H. Let v = (a1a3)(azas) and choose b distinct
from ay, as,as,as. Then (ajazb) = y(aiazb)y(arasb)™! € H and so H = A,, by Case 1.

1.32 Theorem: (The Sylow Test for Nonsimplicity) Let G be a finite group with |G| = n.
Suppose that n is not prime and n has a prime divisor p such that 1 is the only divisor of
n which is equal to 1 modulo p. Then G is not simple.

Proof: If n = p* with & > 2 then Z(G) # {e} by the class equation, so either Z(G) = G
so that G is abelian, or Z(G) is a nontrivial proper subgroup of G, and in either case G
is not simple. Suppose that n is not a power of p, and let H be a Sylow p-subgroup of
G. Since the number of Sylow p-subgroups divides n = |G| and is equal to 1 modulo p,
there is only one Sylow p-subgroup, by the hypothesis of the theorem. Since H is the only
Sylow p-subgroup, we have aHa~' = H for all @ € G so that H is normal. Thus H is a
nontrivial normal subgroup of G so that G is not simple.

1.33 Exercise: Verify that the only composite numbers n with 1 < n < 100 for which
Theorem 1.32 does not rule out the possible existence of a simple group of order n are the
numbers

n € {12, 24, 30, 36, 48, 56, 60, 72, 80, 90, 96 } .

1.34 Remark: In fact, the Sylow Theorems can be used to show that the only composite
number n with 1 <n < 100 for which there exists a simple group of order n is the number
n = 60 (and indeed Aj is a simple group of order 60).

1.35 Exercise: Show that there is no simple group of order 30.

1.36 Exercise: Classify, up to isomorphism, all groups of order 30.



1.37 Example: Show that every group of order 8 is isomorphic to one of the groups Zs,
Lo X Ly, Lo X Loy X Lo, Dy or (Q where () is the quaternionic group.

Solution: We know that every abelian group of order 8 is isomorphic to one of the groups
Zg, Ty X Ly o1 Lo X Lo X Zo. Let G be a non-abelian group with |G| = 8. The elements in
G can have order equal to 1, 2, 4 or 8. If there was an element of order 8 the G would be
cyclic. If every non-identity element had order 2 then G would be abelian (since we would
have a? = b? = (ab)? = e hence ab = a(ab)?b = a*bab® = ba for all a,b). Thus G must
have an element of order 4. Choose a € G with |a| = 4.

1.38 Example: Show that every group of order 12 is isomorphic to one of the groups
Lo, Lo X ZLg, As, Dg or T where T = <a,ﬁ> with |a| = 6, |3] = 4, 82 = o3 and afa = B.

Solution: Let G be a non-abelian group of order 12. By Cauchy’s Theorem, we can choose
c € G with |c| = 3. Let H = (¢) and note that H is a Sylow 3-subgroup. When G acts on
G/H by a* (bH) = abH, the corresponding representation p : G — Perm(G/H) is given
by p(a)(bH) = abH. For K = Ker(p), note that K <G and K < H (since when a € K we
have abH = bH for all b € G, hence aH = H, hence a € H). Since K < H and |H| = 3,
either K = {e} or K = H. If K = {e} then we have G = p(G) < Perm(G/H) = Sy so
that G is isomorphic to a 12-element subgroup of Sy, and the only such subgroup is Ay,
so we have G = Ay.

Suppose that K = H so that H I G. Since H is a Sylow 3-subgroup and H I G, it
follows that H is the only Sylow 3-subgroup, and so G has exactly 2 elements of order 3,
namely ¢ and ¢?. Consider the centralizer C(c). We have H = (c¢) < C(c) < G. Recall
that when G acts on itself by conjugation, we have Orb(c) = Cl(¢) and Stab(c) = C(c) so
that |G/C(c)| = |Cl(c)|. Since ¢ and c? are the only two elements in G of order 3, either
Cl(c) = {c} or Cl(c) = {c,c?}, so that |G/C(c)| = |Cl(c)| = 1 or 2, and hence |C(c)| = 6
or 12. In either case, we can choose an element d € C(c) with |d| = 2. Let a = c¢d and note
that since |¢| = 3 and |d| = 2 and d € C(c) so that d and ¢ commute, we have |a| = 6.

Since |G/(a)| = 2 we have (a) I G. Choose b € G with b ¢ (a). Note that G is the
disjoint union G = (a) U {a)b. Since {a) <A G we have bab~! € (a), say bab~! = a" with
r € Zg. Note that b? € {a) (because if we had b € (a)b with say b*> = a’b, then we would
have b = a’ € (a)), say b> = a® with s € Zg. Since b> = a® and bab~! = a” we have

a=a‘aa"* =b*ab? =bbab )bt =ba"b! = (bab™ )" = (a")" = a .

Since a”” = a and la| = 6, we must have r? = 1 € Zg so that r = +1. If we had r = 1 so
that bab~! = a, then we would have ba = ab, but then G would be abelian, so we must
have r = —1. Thus bab~! = a~!, or equivalently, aba = b. Note that s # +1 because if we
had b® = a or b2 = a~! then we would have |b| = 12, but then G would be cyclic, hence
abelian. Also s # 2 since if we had b®> = a? then we would have aba = b, abab = b* = a2,
Also s # 4 since if we had s = 4 then we would have Thus either s = 0 so that > = e or

s = 3 so that b% = a>.



1.39 Example: Show that there is no simple group of order 30.

Solution: Suppose, for a contradiction, that G is a simple group of order 30. By the third
Sylow theorem, the number of Sylow 5-subgroups of G divides 30 and is equal to 1 modulo
5, so it is equal to 1 or 6. If there was a unique Sylow 5-subgroup then it would be normal
and so, since G is simple, there must be 6 Sylow 5-subgroups. Similarly, the number of
Sylow 3-subgroups of GG divides 60 and is equal to 1 modulo 3, so it is equal to 1 or 10, and
there cannot be a unique Sylow 3-subgroup so there must be 10 Sylow 3-subgroups. Each
Sylow 5-subgroup H has 5 elements, and the 4 non-identity elements generate H, so the
union of the 6 Sylow 5-subgroups consists of the identity along with 24 distinct elements
of order 5. Similarly, the union of the 10 Sylow 3-subgroups consists of the identity along
with 20 distinct elements of order 3. Thus G has at least 24 elements of order 5 and 20
elements of order 3, which is not possible since GG only has 30 elements.

1.40 Example: Classify, up to isomorphism, all groups of order 30.

Solution: We claim that every group of order 30 is isomorphic to one of the groups Zs,
D15, Z3 x D5 or Zs x Ds. Let G be a group with |G| = 30. As in the above example,
we see that it is not possible for G' to have both 6 Sylow 5-subgroups and 10 Sylow 3-
subgroups, so either G has a unique (hence normal) Sylow 5-subgroup or G has a unique
(hence normal) Sylow 3-subgroup. Let H be a Sylow 5-subgroup and let K be a Sylow
3-subgroup. Since either H 4G or K 4G, it follows that HK < G, and since |[HK| = 15
so that |G/HK| = 2, we must have HK JG. Since |[HK| = 15, it is cyclic (by Part
4 of Theorem 1.20). Let a be a generator of HK, so we have |a| = 15. By Cauchy’s
Theorem, we can choose b € G with |b] = 2. Since (a) = HK {4 G, each element in G
can be written uniquely in the form a‘b’ with i € Z;5 and j € Zj, and we can choose
r € Zis such that bab~! = a”. This determines the operation completely. Since b? = e
we have a = b2ab=2 = b(bab=1)b~! = ba"b! = (bab~!)" = (a")" = a” . Since |a| = 15
and @ = a we must have 72 = 1 mod 15 and hence r € {1,4,11,14} mod 15. When
r = 1 so that bab~! = a, that is ba = ab, the group G is abelian and we have G = Zsy.
When 7 = 14 = —1 so that bab™! = a~!, we have G = D;5 since D15 = (o, 7) with
lo| =15, |7] =2 and 707! = 071. When r = 4 so that bab~! = a* we have G = Z3 x Ds
because Zz x D5 = (a, ) where a = (1,0) and = (0,7) so that || = 15, || = 2 and
Bap~t = (0,7)* (1,0) * (0,7) = (1,707) = (1,0%) = (1,0)* = a*. When o = 11 we have
G = Zs X D3 because Zs x D3 = {(«, ) where a = (1,0) and 8 = (0,7) so that |a] = 15
and |8 =2 and BafB = (0,7) * (1,0) x (0,7) = (1,707) = (1,02) = (1,0)! = at?
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