
Chapter 1. Groups

The Action of a Group on a Set

1.1 Definition: Let G be a group. A representation of G is a group homomorphism
ρ : G → Perm(X) for some set X. A representation ρ : G → Perm(X) is called faithful
when it is injective.

1.2 Remark: Given a faithful representation ρ : G → Perm(X), we sometimes identify
the group G with its isomorphic image ρ(G), which is a group of permutations of X.

1.3 Definition: Let G be a group and let X be a set. A group action of G on X is a
map ∗ : G×X → X, where for a ∈ G and x ∈ X we write ∗(a, x) as a ∗ x or simply as ax,
such that

(1) ex = x for all x ∈ X, and
(2) (ab)x = a(bx) for all a, b ∈ G and all x ∈ S.

1.4 Note: Given a group G and a set X, here is a natural bijective correspondence between
representations ρ : G→ Perm(X) and group actions ∗ : G×X → X. The representation
ρ and its corresponding group action ∗ determine one another by the formula

a ∗ x = ρ(a)(x) for all a ∈ G, x ∈ X .

As an exercise, verify that given a representation ρ, this formula defines a group action ∗,
and conversely that given a group action ∗, the formula defines a representation ρ.

1.5 Definition: Suppose that a group G acts on a set X. The group action is called
faithful when the corresponding representation is faithful.

1.6 Example: When a group G acts on itself by its own operation, so a∗x = ax = `a(x),
the corresponding representation ρ : G→ Perm(G) is given by ρ(a) = `a. This map is used
in the proof of Cayley’s Theorem: the representation is faithful, so it gives an isomorphism
from G to its image ρ(G) ≤ Perm(G).

1.7 Example: When a group G acts on itself by conjugation, so a ∗ x = axa−1 = ca(x),
the corresponding representation ρ : G→ Perm(G) is given by ρ(a) = ca. This map is used
to show that G

/
Z(G) ∼= Inn(G): indeed we have Ker(ρ) = Z(G) and Image(ρ) = Inn(G)

giving the isomorphism G
/
Z(G) ∼= Inn(G).

1.8 Example: When F is a field (or a commutative ring with 1) and the group GLn(F )
acts on Fn by matrix multiplication, so that A ∗ x = Ax = LA(x), the corresponding
representation ρ : GLn(F ) → Perm(Fn) is given by ρ(A) = LA (so ρ sends the matrix A
to the linear map LA given by LA(x) = Ax). The representation is faithful, so its gives an
isomorphism from GLn(F ) (which is a set of invertible matrices) to its image (which is a
set of invertible linear maps).
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1.9 Definition: Let G be a group which acts on a set X. For a ∈ G we define the fixed
set of a in X to be the set

Fix(a) =
{
x ∈ X

∣∣ax = x
}
⊆ X .

For x ∈ X we define the orbit of x under G to be the set

Orb(x) =
{
ax
∣∣a ∈ G} ⊆ X .

Verify that for x, y ∈ S we have y ∈ Orb(x) ⇐⇒ Orb(x) = Orb(y) so, for the equivalence
relation on X given by x ∼ y ⇐⇒ Orb(x) = Orb(y), the equivalence class of x is equal
to the orbit of x, and X is equal to the disjoint union of the orbits.
The set of distinct orbits is denoted by X/G so we have

X/G =
{

Orb(x)
∣∣x ∈ X} .

For x ∈ X we define the stabilizer of x in G to be the subgroup

Stab(x) =
{
a ∈ G

∣∣ax = x
}
≤ G .

Note that Stab(x) ≤ G because ex = x, if ax = x and bx = x then (ab)x = a(bx) = ax = x,
and if ax = x then x = ex = (a−1a)x = a−1(ax) = a−1x.

1.10 Theorem: (The Orbit-Stabilizer Theorem) Let G be a group which acts on a set
X. Then for all x ∈ X we have

|G| =
∣∣Orb(x)

∣∣∣∣Stab(x)
∣∣ .

Proof: Let x ∈ X. We shall show that
∣∣∣Orb(x)

∣∣∣ =
∣∣∣G/Stab(x)

∣∣∣. Write H = Stab(x).

Define a map Φ : G/H → Orb(x) by Φ(aH) = ax. Then Φ is well-defined because for
a, b ∈ G we have aH = bH =⇒ b−1a ∈ H =⇒ b−1a x = x =⇒ ax = bx, Φ is injective
because for a, b ∈ G we have ax = bx =⇒ b−1a x = x =⇒ b−1a ∈ H =⇒ aH = bH, and
the map Φ is clearly surjective.

1.11 Exercise: Consider D6 as a subgroup of S6. Find Orb(1) and Stab(1).

1.12 Exercise: Let G be the rotation group of a cube Q. Label the vertices of the cube
by elements of S = {1, 2, · · · , 6}, think of the elements of G as permutations of S and hence
identify G with a subgroup of S6. Find

∣∣Orb(1)
∣∣ and

∣∣Stab(1)
∣∣ and hence find |G|.

1.13 Theorem: (The Class Equation) Let G be a finite group. Choose a1, a2, · · · , an ∈ G
with one element ai selected from each conjugacy class containing more than one element.
Then

|G| =
∣∣Z(G)

∣∣+
n∑
i=1

∣∣G/C(ai)
∣∣.

Proof: For a ∈ G we have
∣∣Cl(a)

∣∣ = 1 ⇐⇒ bab−1 = a for all b ∈ G ⇐⇒ a ∈ Z(G).

Say Z(G) =
{
an+1, an+2, · · · , am

}
so that G has exactly m distinct conjugacy classes

and the elements a1, · · · , an, an+1, · · · , am make up exactly one element from each class.
Let G act on itself by conjugation, so that b ∗ a = bab−1. Note that for a ∈ G, we
have Orb(a) =

{
xax−1

∣∣x ∈ G} = Cl(a) (the conjugacy class of a in G) and we have

Stab(a) =
{
x ∈ G

∣∣xax−1 = a
}

= C(a) (the centralizer of a in G). Also, by the Orbit-

Stabilizer Theorem, we have
∣∣Orb(ai)

∣∣ = |G|
|C(ai)| =

∣∣G/C(ai)
∣∣. Since G is the disjoint union

of the orbits,

|G| =
m∑
i=1

|Orb(ai)
∣∣ =

n∑
i=1

∣∣G/C(ai)
∣∣+

m∑
i=n+1

1 =
n∑
i=1

|G/C(ai)|+ |Z(G)|.
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1.14 Example: Let X be the set of all subgroups of a group G. Let G act on X by
conjugation, so a ∗H = ca(H) = aHa−1, where a ∈ G and H ≤ G. For H ∈ X, that is
H ≤ G, we have

Stab(H) =
{
a ∈ G

∣∣aHa−1 = H
}

=
{
a ∈ G

∣∣aH = Ha
}

= NG(H),

Orb(H) =
{
aHa−1

∣∣a ∈ G} = Cl(H),

where NG(H) is the normalizer of H in G and Cl(H) is the conjugacy class of H in G,
that is the set of all subgroups conjugate to H in G.

1.15 Theorem: (Cauchy’s Theorem) Let G be a finite group. Let p be a prime divisor
of |G|. Then G contains an element of order p. Indeed∣∣∣{a ∈ G∣∣|a| = p

}∣∣∣ = p− 1 mod p(p− 1) .

Proof: Let n be the number of elements of order p in G, that is n =
∣∣{a ∈ G∣∣|a| = p

}∣∣.
Recall that n = 0 mod (p − 1) (indeed n is equal to (p − 1) times the number of cyclic
subgroups of order p in G because each of these subgroups has φ(p) = p − 1 generators).
Let X =

{
(x1, x2, · · · , xp) ∈ Gp

∣∣x1x2 · · ·xp = e
}

. Note that |X| = |G|p−1 since to get
(x1, x2, · · · , xp) ∈ X we can choose x1, x2, · · · , xp−1 arbitrarily and then xp must be given
by xp = (x1x2 · · ·xp−1)−1. Note that Zp acts on X by cyclic permutation, that is by

k ∗ (x1, x2, · · · , xp) = (x1+k, x2+k, · · · , xp, x1, · · · , xk)

since if x1x2 · · ·xp = e then x1x2 · · ·xk = (xk+1 · · ·xp)−1 so x1+kx2+k · · ·xpx1 · · ·xk = e.
For x = (x1, x2, · · · , xp) ∈ S, by the Orbit/Stabilizer Theorem

∣∣Orb(x)
∣∣ divides |Zp| = p

so that
∣∣Orb(x)

∣∣ ∈ {1, p}, so we have∣∣∣Orb(x)
∣∣∣ =

{
1 , if x = (a, a, · · · , a) for some a ∈ G, and

p , otherwise.

Since X is the disjoint union of the orbits, we have |X| = k + pl where k is the number
of orbits of size 1 and l is the number of orbits of size p. Note that k is equal to the
number of elements a ∈ G with ap = 1, and so k = 1 + n. Since |X| = |G|p−1 = 0 mod p
we have n = k − 1 = |S| − pl − 1 = −1 mod p . Since n = −1 = p − 1 mod p and
n = 0 = p − 1 mod (p − 1), we have n = p − 1 mod p(p − 1) by the Chinese Remainder
Theorem.

1.16 Theorem: Let G be a finite group and let H ≤ G. Suppose that |G/H| = p, where
p is the smallest prime divisor of |G|. Then H ≤ G.

Proof: Let X = G/H =
{
aH
∣∣a ∈ G}. Since |X| = p we have Perm(X) ∼= Sp. Let G act

on X by left multiplication, so we have a∗ (bH) = abH for a, b ∈ G. Let ρ : G→ Perm(X)
be the associated representation, so ρ(a)(bH) = abH. Let

K = Ker(ρ) =
{
a ∈ G

∣∣abH = bH for all b ∈ G
}
≤ G .

Note that K ≤ H because a ∈ K =⇒ aeH = eH =⇒ a ∈ H. Since K ≤ G (it is the
kernel of a homomorphism) and K ≤ H, we also have K ≤ H. By the First Isomorphism
Theorem, we have G/K ∼= ρ(G) ≤ Perm(X) ∼= Sp. By Lagrange’s Theorem |G/K| divides
|Sp| = p!. By another application of Lagrange’s Theorem, |G/K| also divides |G|. Since
|G/K|

∣∣ |G| and p is the smallest prime factor of |G|, |G/K| has no prime factors less than

p. Since |G/K|
∣∣ p!, we must have |G/K| = 1 or p. Since |G/K| = |G/H| |H/K| = p|H/K|

we have |G/K| = p and |H/K| = 1. Thus in fact H = K ≤ G.
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The Sylow Theorems

1.17 Definition: Let G be a group with |G| = pm` where p is prime and gcd(p, `) = 1.
A p-subgroup of G is a subgroup of order pk for some k, and a Sylow p-subgroup of G
is a subgroup of order pm.

1.18 Exercise: Find the Sylow p-subgroups of S3 and A4 for p = 2, 3.

1.19 Theorem: (The Sylow Theorems) Let G be a group with |G| = pm` where p is
prime and gcd(p, `) = 1.

(1) For every 0 ≤ k ≤ m, G has a subgroup of order pk, and when k < n, each subgroup of
order pk is normal in a subgroup of order pk+1. In particular, G has a Sylow p-subgroup,
and every p-subgroup of G is contained in a Sylow p-subgroup.
(2) If P is a p-subgroup of G and S is a Sylow p-subgroup of G, then there exists a ∈ G
such that aPa−1 ≤ S. In particular, any two Sylow p-subgroups of G are conjugate.
(3) The number of distinct Sylow p-subgroups of G divides |G| and is equal to 1 mod p.

Proof: To prove Part 1, note that the trivial subgroup of G is a p-subgroup of order p0.
By induction, it suffices to show that for every p-subgroup P ≤ G with |P | = pk for
0 ≤ k < m we have P ≤ H for some H ≤ G with |H| = pk+1. Let 0 ≤ k < m and let
P ≤ G with |P | = pk. Consider the action of P on the set of left cosets G/P given by
x ∗ (aP ) = xaP . Note that G/P is the disjoint union of the orbits, and the size of each
orbit divides |P | = pk. Some of the orbits have size 1 and the size of all other orbits is a
multiple of p, and so |G/P | is equal to the number of orbits of size 1, modulo p. For a ∈ G,

|Orb(aP )| = 1 ⇐⇒ xaP = aP for all x ∈ P ⇐⇒ a−1xa ∈ P for all x ∈ P
⇐⇒ a−1Pa = P ⇐⇒ Pa = aP ⇐⇒ a ∈ N(P ) = NG(P ),

so the number of orbits of size 1 is equal to the number of cosets aP with a ∈ N(P ), which
is equal to N(P )/P . Thus we have |N(P )/P | ≡ |G/P | ≡ 0 mod p. By Cauchy’s Theorem,
since p divides |N(P )/P | it follows that the group N(P )/P contains an element of order p,
hence a subgroup of order p. This subgroup is of the form H/P where P ≤ H ≤ N(P ) ≤ G.
Since P ≤ N(P ) we also have P ≤ H. Since |H/P | = p and |P | = pk we have |H| = pk+1.

To prove Part 2, let P be a p-subgroup of G with |P | = pk, and let S be a Sylow
p-subgroup of G. Consider the action of P on the G/S given by x(aS) = xaS. Since G/S is
equal to the disjoint union of the orbits, and the size of each orbit divides |P | = pk, it follows
that |G/S| is equal to the number of orbits of size 1, modulo p. Since |G/S| 6= 0 mod p,
there is at least one orbit of size 1, so we can choose a ∈ G such that xaS = aS for all
x ∈ P . Then we have a−1xa ∈ S for all x ∈ P , so that a−1Pa ≤ S, and hence P ≤ aSa−1.
Finally, note that aSa−1 is a Sylow p-subgroup of G.

To prove Part 3, let X be the set of all Sylow p-subgroups of G, and choose S ∈ X.
By Part 2, G acts on X by conjugation, that is by a∗T = aTa−1 where a ∈ G, T ∈ X, and
the number of Sylow p-subgroups is |X| =

∣∣Orb(S)
∣∣, which divides G. Likewise, we can

consider the action of S on X by conjugation. Since X is the disjoint union of the orbits,
and the size of each orbit divides |S| = pm, it follows that |X| is equal to the number of
orbits of size 1, modulo p. For T ∈ X, we have

|Orb(T )| = 1 ⇐⇒ aTa−1 = T for all a ∈ S ⇐⇒ S ≤ N(T ) = NG(T ).

Since S and T are Sylow p-subgroups of G, they are also Sylow p-subgroups of N(T ), and
so they are conjugate in N(T ) by Part 2, and since T ≤ N(T ) it follows that S = T . Thus
there is only one orbit of size 1, namely {S}, so we have |X| ≡ 1 mod p, as required.
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The Classification of Groups of Small Order

1.20 Theorem: (Some Classification Theorems) Let G be a finite group and let p and q
be prime numbers with p > q.

(1) If |G| = p then G ∼= Zp.
(2) If |G| = p2 then either G ∼= Zp2 or G ∼= Zp × Zp.
(3) If |G| = 2p then either G ∼= Z2p or G ∼= Dp.
(4) If |G| = pq and q6

∣∣p−1 then G ∼= Zpq. If |G| = pq and q
∣∣p−1 then G ∼= Zpq or G ∼= T

where T is a group whose elements are uniquely of the form αiβj with i ∈ Zp and j ∈ Zq,
with |α| = p, |β| = q and βαβ−1 = αs, where s 6= 1 and sq = 1 mod p.

Proof: To prove Part 1, suppose that |G| = p and choose a ∈ G with a 6= e. By Lagrange’s
Theorem, we have |a| = p, so that G = 〈a〉 ∼= Zp.

To prove Part 2, suppose that |G| = p2. Consider the action of G on itself given by
conjugation, that is by x∗a = xax−1. Note thatG is the disjoint union of the orbits, and the
size of each orbit divides |G| = p2. Some of the orbits have size 1 and the size of each of the
other orbits is a multiple of p. It follows that |G| is equal to the number of orbits of size 1,
modulo p. For a ∈ G we have

∣∣Orb(a)
∣∣ = 1 ⇐⇒ xax−1 = a for all x ∈ G ⇐⇒ a ∈ Z(G),

and hence |Z(G)| ≡ |G| = p2 ≡ 0 mod p. Thus |Z(G)| 6= 1 so, by Lagrange’s Theorem,
either |Z(G)| = p or |Z(G)| = p2. If we had |Z(G)| = p then we could choose a ∈ G with
a /∈ Z(G), but then we would have proper subgroups Z(G) < C(a) and C(a) < G which
is not possible by Lagrange’s Theorem, since |Z(G)| = p and |G| = p2. Thus we must
have |Z(G)| = p2, and hence Z(G) = G so that G is abelian. By the classification of finite
abelian groups, either G ∼= Zp2 or G ∼= Zp × Zp, as required.

Part 3 follows as a special case of Part 4, but we provide a proof anyway. If p = 2
and |G| = 2p = 4 then, by Part 2, either G ∼= Z4 or G ∼= Z2 × Z2

∼= D2. Suppose that
p > 2 and |G| = 2p, and suppose that G 6∼= Z2p. Each non-identity element of G has order
2 or p. By Cauchy’s Theorem, we can choose a ∈ G with |a| = p, then we choose b /∈ 〈a〉,
so that G is the disjoint union of two cosets G = 〈a〉 ∪ b〈a〉. Note that b2〈a〉 6= b〈a〉 since
b = b−1b2 /∈ 〈a〉, and so we must have b2〈a〉 = 〈a〉 and hence b2 ∈ 〈a〉. Note that |b| 6= p,
since if we had bp = e then (since p + 1 is even) we would have b = bp+1 ∈ 〈b2〉 ⊆ 〈a〉,
and so |b| = 2. The same argument shows that |x| = 2 for every x /∈ 〈a〉. Consider
the element ab. Note that ab /∈ 〈a〉 = a〈a〉 since b = a−1ab /∈ 〈a〉, and so we have
|ab| = 2. Thus abab = e and so ab = (ab)−1 = b−1a−1 = bap−1 Since G is the disjoint
union G = 〈a〉 ∪ b〈a〉, we have G =

{
e, a, a2, · · · , ap−1, b, ba, ba2, · · · , bap−1

}
with the listed

elements distinct. Since ab = ba−1, we have a2b = aba−1 = ba−2 and a3b = aba−2 = ba−3

and so on so that akb = ba−k. This determines the operation on G completely: indeed
we have ak · al = ak+l, ak · bal = bal−k, bak · al = bak+l and bak · bal = al−k, and hence
G ∼= Dp, as required.

To prove Part 4, suppose that |G| = pq. By Cauchy’s Theorem, we can choose a, b ∈ G
with |a| = p and |b| = q. Let H = 〈a〉 and K = 〈b〉. Since |G/H| = q, which is the smallest
prime divisor of |G|, if follows from Theorem 1.16 that H ≤ G. Since |G/H| = q, which
is prime, G/H is cyclic, and G is the disjoint union of the cosets bjH = Hbj . Thus each
element in G can be written uniquely in the form aibj with 0 ≤ i < p and 0 ≤ j < q. In
particular, we have G = 〈a, b〉 = HK and H ∩K = {e}.

Note that K is a Sylow q-subgroup of G. By the third Sylow Theorem, the number
of Sylow q-subgroups divides |G|, so it must be equal to 1, p, q or pq, and it is also equal
to 1 modulo q (so it cannot be equal to q or pq). Thus if q6

∣∣p−1 (so that p 6= 1 mod q)

then K is the only Sylow p-subgroup, while if q
∣∣p−1 (so that p = 1 mod q) then either K

5



is the only Sylow q-subgroup or there are exactly p distinct Sylow q-subgroups.
If K is the only Sylow q-subgroup, then by the second Sylow Theorem we must have

bKb−1 = K for all b ∈ G, so that K ≤ G. Recall (or verify) that since H ≤ G, K ≤ G,
G = HK and H ∩K = {e}, it follows that G ∼= H ×K ∼= Zp × Zq ∼= Zpq.

Suppose that K is not the only Sylow q-subgroup. Note that G cannot be abelian
(if G was abelian we would have G ∼= Zpq which has a unique Sylow q-subgroup). Since
H ≤ G we have bab−1 = ar for some r ∈ Zp. Note that r 6= 0 since a 6= e and r 6= 1 since
G is not abelian. The fact that bab−1 = ar determines the operation on G completely:
We have b2ab−2 = b(bab−1)b−1 = barb−1 = (bab−1)r = (ar)r = ar

2

and similarly we have

b3ab−3 = bar
2

b−1 = (bab−1)r
2

= ar
3

and so on, so that by induction bjab−j = ar
j

, that is

bja = ar
j

bj , for all j ∈ Z+. Also, we have bja2 = ar
j

bja = ar
j

ar
j

bj = a2r
j

bj and similarly
bja3 = a2r

j

bja = a3r
j

bj and so on, so that in general bjak = akr
j

bj for all j, k ∈ Z+. Thus
the elements in G are of the form aibj with i ∈ Zp and j ∈ Zq, and the operation is given
by

(aibj)(akb`) = ai(bjak)b` = ai
(
akr

j

bj
)
b` = ai+kr

j

bj+`.

The same calculation shows that in the group T , the fact that βαβ−1 = αs determines the
operation, and it is given by

(αiβj)(αkβ`) = αi+ks
j

βj+`.

We claim that G ∼= T . Since bq = e we have a = bqab−q = ar
q

. Since |a| = p and ar
q

= a
we have rq = 1 mod p. Recall (or verify) that the group of units Up = (Zp)∗ is a cyclic
group of order p − 1. Since r 6= 1 and rq = 1 mod p, we see that r is a generator of the
(unique) q-element subgroup of Up. Likewise, since s 6= 1 and sq = 1 mod p, we have
〈s〉 = 〈r〉 =

{
1, r, r2, · · · , rq−1

}
≤ Up and so we can choose t ∈ Zq−1 so that rt = s mod p.

Verify that the map φ : T → G given by φ(αiβj) = aibtj is a group isomorphism.
There is one last subtle detail which remains, and that is to prove that the group T

actually exists, that is to show that there exists s ∈ Zp with s 6= 1 and sq = 1 mod p,
and there exists a group T whose elements are uniquely of the form αiβj with i ∈ Zp and
j ∈ Zq such that |α| = p, |β| = q and βαβ−1 = αs. We leave this part of the proof as an
exercise.

1.21 Remark: The above theorem fully classifies, up to isomorphism, all groups of order
n ≤ 20 except for n ∈ {8, 12, 16, 18, 20}.

1.22 Exercise: Show that every group of order 8 is isomorphic to one of the groups
Z2 × Z2 × Z2, Z2 × Z4, Z8, D4 or Q8, where Q8 is the quaternionic group.

1.23 Exercise: Show that every group of order 12 is isomorphic to one of the groups
Z2 ×Z6, Z12, D6, A4 or T , where T = 〈α, β〉 with |α| = 6, |β| = 4, β2 = α3 and αβα = β.

1.24 Exercise: Classify (up to isomorphism) all groups of order 18 and 20.
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Composition Series and Simple Groups

1.25 Definition: A group G is called simple when it has no nontrivial proper normal
subgroup.

1.26 Definition: Let G be a group. A subnormal series for G is a sequence of subgroups

{e} = N0 ≤ N1 ≤ · · · ≤ N` = G

with Nk−1< Nk for 1 ≤ k ≤ `. A composition series for G is a subnormal series
{e} = N0 ≤ N1 ≤ · · ·N` = G such that Nk−1< Nk with Nk/Nk−1 simple for 1 ≤ k ≤ `.

1.27 Example: In the group D4 = 〈σ, τ〉 with |σ| = 4, |τ | = 2 and στσ = τ , we have the
two composition series

{e} ≤ 〈r2〉 ≤ 〈r〉 ≤ D4 and {e} ≤ 〈τ〉 ≤ 〈σ2, τ〉 ≤ D4.

1.28 Theorem: (The Jordan-Hölder Theorem) Let G be a finite group. Then

(1) G has a composition series and
(2) the composition factors are unique in the sense that if {e} = N0 ≤ N1 ≤ · · · ≤ Nn = G
and {e} = M0 ≤ M1 ≤ · · · ≤ Mm = G are two composition series for G, then n = m and
there is a permutation σ ∈ Sn such that Mσ(k)/Mσ(k)−1 ∼= Nk/Nk−1 for 1 ≤ k ≤ n.

Proof: The proof is left as a (fairly long) exercise.

1.29 Remark: The above theorem suggests a two-part program, known as the Hölder
program, for classifying all finite groups, up to isomorphism. The first part of the program
is to classify all finite simple groups, and the second part is two determine, given a list
of simple groups, all the ways to form a group G with the given simple groups as the
composition factors. The first part of this program is considered to have been completed:
the simple groups include the cyclic groups of prime order, the alternating groups An with
n ≥ 5, 16 additional infinite families of finite simple groups which are said to be of Lee
type, along with 27 specific finite simple groups, called the sporadic groups. The second
part of the program is known as the extension problem, and it is considered to be an
extremely difficult problem.

1.30 Example: Show that for n ≥ 3, An is generated by the set of all 3-cycles, and for
any a 6= b ∈ {1, 2, · · · , n}, An is generated by the 3-cycles of the form (abk) with k 6= a, b.

Solution: Recall that every permutation in An is equal to a product of an even number
of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab), (ab)(ac) or
(ab)(cd), where a, b, c, d are distinct, and we have

(ab)(ab) = (abc)(acb) , (ab)(ac) = (acb) , (ab)(cd) = (adc)(abc) ,

and so An is generated by the set of all 3-cycles. Now fix a, b ∈ {1, 2, · · · , n} with a 6= b.
Note that every 3-cycle is of one of the forms (abk), (akb), (akl), (bkl) or (klm), where
a, b, k, l,m are all distinct, and we have

(akb)=(abk)2 , (akl)=(abl)(abk)2 , (bkl)=(abl)2(abk) , (klm)=(abk)2(abm)(abl)2(abk) .
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1.31 Theorem: For n ≥ 5, the alternating group An is simple.

Proof: Let H ≤ An. We shall show that H = An. We consider 5 cases. Case 1: sup-
pose first that H contains a 3-cycle, say (abc) ∈ H. Then for any k 6= a, b, c we have
(abk) = (ab)(ck) (abc)2(ck)(ab) ∈ H It follows that An = H because An is generated by
the 3-cycles of the form (abk) with k 6= a, b (as shown in Example 1.30). Case 2: suppose
that H contains an element α which, when written in cycle notation, has a cycle of length
r ≥ 4, say α = (a1a2a3 · · · ar)β ∈ H. Then (a1a3ar) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H
and so H = An by Case 1. Case 3: suppose that H contains an element α which, when
written in cycle notation, has at least two 3-cycles, say α = (a1a2a3)(a4a5a6)β ∈ H.
Then we have (a1a4a2a6a3) = α−1(a1a2a4)α(a1a2a4)−1 ∈ H and so H = An by Case 2.
Case 4: suppose that H contains an element α which, when written in cycle nota-
tion, is a product of one 3-cycle and some 2-cycles, say α = (a1a2a3)β ∈ H where
β is a product of disjoint 2-cycles so that β2 = e. Then (a1a3a2) = α2 ∈ H and
so H = An by Case 1. Case 5: suppose that H contains an element α which, when
written in cycle notation, is a product of 2-cycles, say α = (a1a2)(a3a4)β ∈ H. Then
(a1a3)(a2a4) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H. Let γ = (a1a3)(a2a4) and choose b distinct
from a1, a2, a3, a4. Then (a1a3b) = γ(a1a2b)γ(a1a3b)

−1 ∈ H and so H = An by Case 1.

1.32 Theorem: (The Sylow Test for Nonsimplicity) Let G be a finite group with |G| = n.
Suppose that n is not prime and n has a prime divisor p such that 1 is the only divisor of
n which is equal to 1 modulo p. Then G is not simple.

Proof: If n = pk with k ≥ 2 then Z(G) 6= {e} by the class equation, so either Z(G) = G
so that G is abelian, or Z(G) is a nontrivial proper subgroup of G, and in either case G
is not simple. Suppose that n is not a power of p, and let H be a Sylow p-subgroup of
G. Since the number of Sylow p-subgroups divides n = |G| and is equal to 1 modulo p,
there is only one Sylow p-subgroup, by the hypothesis of the theorem. Since H is the only
Sylow p-subgroup, we have aHa−1 = H for all a ∈ G so that H is normal. Thus H is a
nontrivial normal subgroup of G so that G is not simple.

1.33 Exercise: Verify that the only composite numbers n with 1 ≤ n ≤ 100 for which
Theorem 1.32 does not rule out the possible existence of a simple group of order n are the
numbers

n ∈ {12, 24, 30, 36, 48, 56, 60, 72, 80, 90, 96}.

1.34 Remark: In fact, the Sylow Theorems can be used to show that the only composite
number n with 1 ≤ n ≤ 100 for which there exists a simple group of order n is the number
n = 60 (and indeed A5 is a simple group of order 60).

1.35 Exercise: Show that there is no simple group of order 30.

1.36 Exercise: Classify, up to isomorphism, all groups of order 30.
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1.37 Example: Show that every group of order 8 is isomorphic to one of the groups Z8,
Z2 × Z4, Z2 × Z2 × Z2, D4 or Q where Q is the quaternionic group.

Solution: We know that every abelian group of order 8 is isomorphic to one of the groups
Z8, Z2×Z4 or Z2×Z2×Z2. Let G be a non-abelian group with |G| = 8. The elements in
G can have order equal to 1, 2, 4 or 8. If there was an element of order 8 the G would be
cyclic. If every non-identity element had order 2 then G would be abelian (since we would
have a2 = b2 = (ab)2 = e hence ab = a(ab)2b = a2bab2 = ba for all a, b). Thus G must
have an element of order 4. Choose a ∈ G with |a| = 4.

1.38 Example: Show that every group of order 12 is isomorphic to one of the groups
Z12, Z2 × Z6, A4, D6 or T where T =

〈
α, β

〉
with |α| = 6, |β| = 4, β2 = α3 and αβα = β.

Solution: Let G be a non-abelian group of order 12. By Cauchy’s Theorem, we can choose
c ∈ G with |c| = 3. Let H = 〈c〉 and note that H is a Sylow 3-subgroup. When G acts on
G/H by a ∗ (bH) = abH, the corresponding representation ρ : G → Perm(G/H) is given
by ρ(a)(bH) = abH. For K = Ker(ρ), note that K ≤ G and K ≤ H (since when a ∈ K we
have abH = bH for all b ∈ G, hence aH = H, hence a ∈ H). Since K ≤ H and |H| = 3,
either K = {e} or K = H. If K = {e} then we have G ∼= ρ(G) ≤ Perm(G/H) ∼= S4 so
that G is isomorphic to a 12-element subgroup of S4, and the only such subgroup is A4,
so we have G ∼= A4.

Suppose that K = H so that H ≤ G. Since H is a Sylow 3-subgroup and H ≤ G, it
follows that H is the only Sylow 3-subgroup, and so G has exactly 2 elements of order 3,
namely c and c2. Consider the centralizer C(c). We have H = 〈c〉 ≤ C(c) ≤ G. Recall
that when G acts on itself by conjugation, we have Orb(c) = Cl(c) and Stab(c) = C(c) so
that |G/C(c)| = |Cl(c)|. Since c and c2 are the only two elements in G of order 3, either
Cl(c) = {c} or Cl(c) = {c, c2}, so that |G/C(c)| = |Cl(c)| = 1 or 2, and hence |C(c)| = 6
or 12. In either case, we can choose an element d ∈ C(c) with |d| = 2. Let a = cd and note
that since |c| = 3 and |d| = 2 and d ∈ C(c) so that d and c commute, we have |a| = 6.

Since |G/〈a〉| = 2 we have 〈a〉≤ G. Choose b ∈ G with b /∈ 〈a〉. Note that G is the
disjoint union G = 〈a〉 ∪ 〈a〉b. Since 〈a〉≤ G we have bab−1 ∈ 〈a〉, say bab−1 = ar with
r ∈ Z6. Note that b2 ∈ 〈a〉 (because if we had b2 ∈ 〈a〉b with say b2 = ajb, then we would
have b = aj ∈ 〈a〉), say b2 = as with s ∈ Z6. Since b2 = as and bab−1 = ar we have

a = asa a−s = b2a b−2 = b(bab−1)b−1 = barb−1 = (bab−1)r = (ar)r = ar
2

.

Since ar
2

= a and |a| = 6, we must have r2 = 1 ∈ Z6 so that r = ±1. If we had r = 1 so
that bab−1 = a, then we would have ba = ab, but then G would be abelian, so we must
have r = −1. Thus bab−1 = a−1, or equivalently, aba = b. Note that s 6= ±1 because if we
had b2 = a or b2 = a−1 then we would have |b| = 12, but then G would be cyclic, hence
abelian. Also s 6= 2 since if we had b2 = a2 then we would have aba = b, abab = b2 = a2,
Also s 6= 4 since if we had s = 4 then we would have Thus either s = 0 so that b2 = e or
s = 3 so that b2 = a3.
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1.39 Example: Show that there is no simple group of order 30.

Solution: Suppose, for a contradiction, that G is a simple group of order 30. By the third
Sylow theorem, the number of Sylow 5-subgroups of G divides 30 and is equal to 1 modulo
5, so it is equal to 1 or 6. If there was a unique Sylow 5-subgroup then it would be normal
and so, since G is simple, there must be 6 Sylow 5-subgroups. Similarly, the number of
Sylow 3-subgroups of G divides 60 and is equal to 1 modulo 3, so it is equal to 1 or 10, and
there cannot be a unique Sylow 3-subgroup so there must be 10 Sylow 3-subgroups. Each
Sylow 5-subgroup H has 5 elements, and the 4 non-identity elements generate H, so the
union of the 6 Sylow 5-subgroups consists of the identity along with 24 distinct elements
of order 5. Similarly, the union of the 10 Sylow 3-subgroups consists of the identity along
with 20 distinct elements of order 3. Thus G has at least 24 elements of order 5 and 20
elements of order 3, which is not possible since G only has 30 elements.

1.40 Example: Classify, up to isomorphism, all groups of order 30.

Solution: We claim that every group of order 30 is isomorphic to one of the groups Z30,
D15, Z3 × D5 or Z5 × D3. Let G be a group with |G| = 30. As in the above example,
we see that it is not possible for G to have both 6 Sylow 5-subgroups and 10 Sylow 3-
subgroups, so either G has a unique (hence normal) Sylow 5-subgroup or G has a unique
(hence normal) Sylow 3-subgroup. Let H be a Sylow 5-subgroup and let K be a Sylow
3-subgroup. Since either H ≤ G or K ≤ G, it follows that HK ≤ G, and since |HK| = 15
so that |G/HK| = 2, we must have HK ≤ G. Since |HK| = 15, it is cyclic (by Part
4 of Theorem 1.20). Let a be a generator of HK, so we have |a| = 15. By Cauchy’s
Theorem, we can choose b ∈ G with |b| = 2. Since 〈a〉 = HK ≤ G, each element in G
can be written uniquely in the form aibj with i ∈ Z15 and j ∈ Z2, and we can choose
r ∈ Z15 such that bab−1 = ar. This determines the operation completely. Since b2 = e
we have a = b2ab−2 = b(bab−1)b−1 = barb−1 = (bab−1)r = (ar)r = ar

2

. Since |a| = 15

and ar
2

= a we must have r2 = 1 mod 15 and hence r ∈ {1, 4, 11, 14} mod 15. When
r = 1 so that bab−1 = a, that is ba = ab, the group G is abelian and we have G ∼= Z30.
When r = 14 = −1 so that bab−1 = a−1, we have G ∼= D15 since D15 = 〈σ, τ〉 with
|σ| = 15, |τ | = 2 and τστ−1 = σ−1. When r = 4 so that bab−1 = a4 we have G ∼= Z3 ×D5

because Z3 × D5 = 〈α, β〉 where α = (1, σ) and β = (0, τ) so that |α| = 15, |β| = 2 and
βαβ−1 = (0, τ) ∗ (1, σ) ∗ (0, τ) = (1, τστ) = (1, σ4) = (1, σ)4 = α4. When α = 11 we have
G ∼= Z5 ×D3 because Z5 ×D3 = 〈α, β〉 where α = (1, σ) and β = (0, τ) so that |α| = 15
and |β| = 2 and βαβ = (0, τ) ∗ (1, σ) ∗ (0, τ) = (1, τστ) = (1, σ2) = (1, σ)11 = α11
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