

Chapter 2. The Ring of Integers Modulo N

2.1 Definition: A (commutative) **ring** (with 1) is a set R with two elements $0, 1 \in R$ (usually assumed to be distinct) and two binary operations, $+, \times : R \times R \rightarrow R$ (usually called *addition* and *multiplication*) where, for $a, b \in R$, we write $+(a, b)$ as $a + b$ and we write $\times(a, b)$ as $a \times b$ or $a \cdot b$ or ab , which satisfy the following axioms.

- R1. $+$ is associative: $(a + b) + c = a + (b + c)$ for all $a, b, c \in R$,
- R2. $+$ is commutative: $a + b = b + a$ for all $a, b, c \in R$,
- R3. 0 is an additive identity: $a + 0 = a$ for all $a \in R$,
- R4. every $a \in R$ has an additive inverse: for all $a \in R$ there exists $b \in R$ such that $a + b = 0$,
- R5. \times is associative: $(ab)c = a(bc)$ for all $a, b, c \in R$,
- R6. \times is commutative: $a * b = b * a$ for all $a, b \in R$,
- R7. 1 is a multiplicative identity: $a \times 1 = a$ for all $a \in R$, and
- R8. \times is distributive over $+$: $a(b + c) = ab + ac$ and $(a + b)c = ac + bc$ for all $a, b, c \in R$.

For $a \in R$ we say that a is **invertible** (or that a is a **unit**) when there is an element $b \in R$ with $ab = 1$. A **field** is a commutative ring F in which $0 \neq 1$ and

- R9. every non-zero element is a unit: for all $0 \neq a \in F$ there exists $b \in F$ such that $ab = 1$.

2.2 Example: \mathbb{Z} is a ring, and \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.

2.3 Example: Let $d \in \mathbb{Z}$ be a non-square (that is $d \neq s^2$ with $s \in \mathbb{Z}$). When $d > 0$ we have $\sqrt{d} \in \mathbb{R}$ and when $d < 0$ we write $\sqrt{d} = \sqrt{|d|}i \in \mathbb{C}$. Let

$$\begin{aligned}\mathbb{Z}[\sqrt{d}] &= \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}, \\ \mathbb{Q}[\sqrt{d}] &= \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}.\end{aligned}$$

Verify that $\mathbb{Z}[\sqrt{d}]$ is a ring and that $\mathbb{Q}[\sqrt{d}]$ is a field. When $d > 0$ so $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{Q}[\sqrt{d}] \subseteq \mathbb{R}$, we say that $\mathbb{Z}[\sqrt{d}]$ is a **real quadratic ring** and $\mathbb{Q}[\sqrt{d}]$ is a **real quadratic field**, and when when $d < 0$ so $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{Q}[\sqrt{d}] \subseteq \mathbb{C}$ and we say that $\mathbb{Z}[\sqrt{d}]$ is a **complex quadratic ring** and $\mathbb{Q}[\sqrt{d}]$ is a **complex quadratic field**. The ring $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z}[i]$ is called the ring of **Gaussian integers**.

2.4 Example: Many students will be familiar with the ring \mathbb{Z}_n of integers modulo n . Later in this chapter, we shall define the ring \mathbb{Z}_n and show that \mathbb{Z}_n is a field if and only if n is prime.

2.5 Remark: When R is a commutative ring, the set $R[x]$ of polynomials with coefficients in R is a commutative ring and, when $n \in \mathbb{Z}$ with $n \geq 2$, the set $M_n(R)$ of $n \times n$ matrices with entries in R is an example of a *non-commutative* ring (Axiom R6 does not hold).

2.6 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

- (1) the additive identity element 0 is unique in the sense that if $e \in R$ has the property that $a + e = a$ for all $a \in R$ then $e = 0$,
- (2) the multiplicative identity element 1 is unique in the sense that for all $u \in R$, if $au = a$ for all $a \in R$ then $u = 1$,
- (3) the additive inverse of each $a \in R$ is unique in the sense that for all $a, b, c \in R$ if $a + b = 0$ and $a + c = 0$ then $b = c$, and
- (4) the multiplicative inverse of each unit $a \in R$ is unique in the sense that for all $a \in R$, if there exist $b, c \in R$ such that $ab = 1$ and $ac = 1$ then $b = c$.

Proof: The proof is left as an exercise.

2.7 Notation: Let R be a ring. For $a \in R$ we denote the unique additive inverse of $a \in R$ by $-a$, and for $a, b \in R$ we write $b - a$ for $b + (-a)$. If a is a unit we denote its unique multiplicative inverse by a^{-1} . When F is a field, and $a, b \in F$ with $b \neq 0$ we also write b^{-1} as $\frac{1}{b}$ and we write ab^{-1} as $\frac{a}{b}$.

2.8 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all $a, b, c \in R$,

- (1) if $a + b = a + c$ then $b = c$,
- (2) if $a + b = b$ then $a = 0$, and
- (3) if $a + b = 0$ then $a = -b$.

Proof: The proof is left as an exercise.

2.9 Note: We do not, in general, have similar rules for cancellation under multiplication. In general, for a, b, c in a ring R , $ab = ac$ does not imply that $b = c$, $ab = b$ does not imply that $a = 1$, and $ac = 0$ does not imply that $a = 0$ or $b = 0$ (and in the case that R is not commutative, $ac = 1$ does not imply that $ca = 1$). When $ac = 0$ but $a \neq 0$ and $b \neq 0$, we say that a and b are **zero divisors**. A commutative ring with 1 which has no zero divisors is called an **integral domain**.

2.10 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all $a, b, c \in R$, if $ab = ac$ then either $a = 0$ or $b = c$ or a is a zero divisor.

Proof: Suppose $ab = ac$. Then $ab - ac = 0$ so $a(b - c) = 0$. By the definition of a zero divisor, either $a = 0$ or $b - c = 0$ (hence $b = c$), or else both a and $b - c$ are zero divisors.

2.11 Theorem: (Basic Properties of Rings) Let R be a ring. Then

- (1) $0 \cdot a = 0$ for all $a \in R$,
- (2) $(-a)b = -(ab) = a(-b)$ for all $a, b \in R$,
- (3) $(-a)(-b) = ab$ for all $a, b \in R$,
- (4) $(-1)a = -a$ for all $a \in R$.

Proof: Let $a \in R$. Then $0 \cdot a = (0 + 0) \cdot a = 0 \cdot a + 0 \cdot a$. Thus $0 \cdot a = 0$ by additive cancellation. The proof that $a \cdot 0 = 0$ is similar, and the other proofs are left as an exercise.

2.12 Remark: In a ring R , we usually assume that $0 \neq 1$. Note that if $0 = 1$ then in fact $R = \{0\}$ because for all $a \in R$ we have $a = a \cdot 1 = a \cdot 0 = 0$. The ring $R = \{0\}$ is called the **trivial ring**.

2.13 Notation: Let R be a ring. For $a \in R$ and $k \in \mathbb{Z}$ we define $ka \in R$ as follows. We define $0a = 0$, and for $k \in \mathbb{Z}^+$ we define $ka = a + a + \dots + a$ with k terms in the sum, and we define $(-k)a = k(-a)$. For $a \in R$ and $k \in \mathbb{N}$ we define $a^k \in R$ as follows. We define $a^0 = 1$ and for $k \in \mathbb{Z}^+$ we define $a^k = a \cdot a \cdot \dots \cdot a$ with k terms in the product. When a is a unit and $k \in \mathbb{Z}^+$, we also define $a^{-k} = (a^{-1})^k$. For all $k, l \in \mathbb{Z}$ and all $a \in R$ we have $(k+l)a = ka + la$, $(-k)a = -(ka) = k(-a)$, $-(-a) = a$, $-(a+b) = -a - b$, $(ka)(lb) = (kl)(ab)$. For all $k, l \in \mathbb{N}$ and all $a \in R$ we have $a^{k+l} = a^k a^l$. When a and b are units, for all $k, l \in \mathbb{Z}$ we have $a^{k+l} = a^k a^l$, $a^{-k} = (a^k)^{-1}$, $(a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1} a^{-1}$.

2.14 Definition: Let $n \in \mathbb{Z}^+$. For $a, b \in \mathbb{Z}$ we say that a is equal (or **congruent**) to b **modulo** n , and we write $a = b \pmod{n}$, when $n|(a - b)$ or, equivalently, when $a = b + kn$ for some $k \in \mathbb{Z}$.

2.15 Theorem: Let $n \in \mathbb{Z}^+$. For $a, b \in \mathbb{Z}$ we have $a = b \pmod{n}$ if and only if a and b have the same remainder when divided by n . In particular, for every $a \in \mathbb{Z}$ there is a unique $r \in \mathbb{Z}$ with $a = r \pmod{n}$ and $0 \leq r < n$.

Proof: Let $a, b \in \mathbb{Z}$. Use the Division Algorithm to write $a = qn + r$ with $0 \leq r < n$ and $b = pn + s$ with $0 \leq s < n$. We need to show that $a = b \pmod{n}$ if and only if $r = s$. Suppose that $a = b \pmod{n}$, say $a = b + kn$ where $k \in \mathbb{Z}$. Then since $a = qn + r$ and $a = b + kn = (pn + s) + kn = (p + k)n + s$ with $0 \leq r < n$ and $0 \leq s < n$, it follows that $q = p + s$ and $r = s$ by the uniqueness part of the Division Algorithm. Conversely, suppose that $r = s$. Then we have $0 = r - s = (a - qn) - (b - pn)$ so that $a = b + (q - p)n$, and hence $a = b \pmod{n}$.

2.16 Example: Find $117 \pmod{35}$.

Solution: We are being asked to find the unique integer r with $0 \leq r < n$ such that $117 = r \pmod{35}$ or, in other words, to find the remainder r when 117 is divided by 35 . Since $117 = 3 \cdot 35 + 12$ we have $117 = 12 \pmod{35}$.

2.17 Definition: An **equivalence relation** on a set S is a binary relation \sim on S such that

- E1. \sim is reflexive: for every $a \in S$ we have $a \sim a$,
- E2. \sim is symmetric: for all $a, b \in S$, if $a \sim b$ then $b \sim a$, and
- E3. \sim is transitive: for all $a, b, c \in S$, if $a \sim b$ and $b \sim c$ then $a \sim c$.

When \sim is an equivalence relation on S and $a \in S$, the **equivalence class** of a in S is the set

$$[a] = \{x \in S \mid x \sim a\}.$$

2.18 Theorem: Let $n \in \mathbb{Z}^+$. Then congruence modulo n is an equivalence relation on \mathbb{Z} .

Proof: Let $a \in \mathbb{Z}$. Since $a = a + 0 \cdot n$ we have $a = a \pmod{n}$. Thus congruence modulo n satisfies Property E1. Let $a, b \in \mathbb{Z}$ and suppose that $a = b \pmod{n}$, say $a = b + kn$ with $k \in \mathbb{Z}$. Then $b = a + (-k)n$ so we have $b = a \pmod{n}$. Thus congruence modulo n satisfies Property E2. Let $a, b, c \in \mathbb{Z}$ and suppose that $a = b \pmod{n}$ and $b = c \pmod{n}$. Since $a = b \pmod{n}$ we can choose $k \in \mathbb{Z}$ so that $a = b + kn$. Since $b = c \pmod{n}$ we can choose $\ell \in \mathbb{Z}$ so that $b = c + \ell n$. Then $a = b + kn = (c + \ell n) + kn = c + (k + \ell)n$ and so $a = c \pmod{n}$. Thus congruence modulo n satisfies Property E3.

2.19 Definition: A **partition** of a set S is a set P of nonempty disjoint subsets of S whose union is S . This means that

- P1. for all $A \in P$ we have $\emptyset \neq A \subseteq S$,
- P2. for all $A, B \in P$, if $A \neq B$ then $A \cap B = \emptyset$, and
- P3. for every $a \in S$ we have $a \in A$ for some $A \in P$.

2.20 Example: $P = \{\{1, 3, 5\}, \{2\}, \{4, 6\}\}$ is a partition of $S = \{1, 2, 3, 4, 5, 6\}$.

2.21 Theorem: Let \sim be an equivalence relation on a set S . Then $P = \{[a] \mid a \in S\}$ is a partition of S .

Proof: For $a \in S$, it is clear from the definition of $[a]$ that $[a] \subseteq S$, and we have $[a] \neq \emptyset$ because $a \sim a$ so $a \in [a]$. This shows that P satisfies P1.

Let $a, b \in S$. We claim that $a \sim b$ if and only if $[a] = [b]$. Suppose that $a \sim b$. Let $x \in S$. Suppose that $x \in [a]$. Then $x \sim a$ by the definition of $[a]$. Since $x \sim a$ and $a \sim b$ we have $x \sim b$ since \sim is transitive. Since $x \sim b$ we have $x \in [b]$. This shows that $[a] \subseteq [b]$. Since $a \sim b$ implies that $b \sim a$ by symmetry, a similar argument shows that $[b] \subseteq [a]$. Thus we have $[a] = [b]$. Conversely, suppose that $[a] = [b]$. Then since $a \sim a$ we have $a \in [a]$. Since $a \in [a]$ and $[a] = [b]$, we have $a \in [b]$. Since $a \in [b]$, we have $a \sim b$. Thus $a \sim b$ if and only if $[a] = [b]$, as claimed.

Let $a, b \in S$. We claim that if $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$. Suppose that $[a] \cap [b] \neq \emptyset$. Choose $c \in [a] \cap [b]$. Since $c \in [a]$ so that $c \sim a$ we have $[c] = [a]$ (by the above claim). Since $c \in [b]$ so that $c \sim b$ we have $[c] = [b]$. Thus $[a] = [c] = [b]$, as required. This completes the proof that P satisfies P2.

Finally, note that P satisfies P3 because given $a \in S$ we have $a \in [a] \in P$.

2.22 Definition: Let \sim be an equivalence relation on a set S . The **quotient** of the set S by the relation \sim , denoted by S/\sim , is the partition P of the above theorem, that is

$$S/\sim = \{[a] \mid a \in S\}.$$

2.23 Definition: Let $n \in \mathbb{Z}^+$. Let \sim be the equivalence relation on \mathbb{Z} defined for $a, b \in \mathbb{Z}$ by $a \sim b \iff a = b \bmod n$, and write $[a] = \{x \in \mathbb{Z} \mid x \sim a\} = \{x \in \mathbb{Z} \mid x = a \bmod n\}$. The set of **integers modulo n**, denoted by \mathbb{Z}_n , is defined to be the quotient set

$$\mathbb{Z}_n = \mathbb{Z}/\sim = \{[a] \mid a \in \mathbb{Z}\}.$$

Since every $a \in \mathbb{Z}$ is congruent modulo n to a unique $r \in \mathbb{Z}$ with $0 \leq r < n$, we have

$$\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$$

and the elements listed in the above set are distinct so that \mathbb{Z}_n is an n -element set.

2.24 Example: We have

$$\mathbb{Z}_3 = \{[0], [1], [2]\} = \{\{\dots, -3, 0, 3, 6, \dots\}, \{\dots, -2, 1, 4, 7, \dots\}, \{\dots, -1, 2, 5, 8, \dots\}\}.$$

2.25 Theorem: (Addition and Multiplication Modulo n) Let $n \in \mathbb{Z}^+$. For $a, b, c, d \in \mathbb{Z}$, if $a = c \pmod{n}$ and $b = d \pmod{n}$ then $a + b = c + d \pmod{n}$ and $ab = cd \pmod{n}$. It follows that we can define addition and multiplication operations on \mathbb{Z}_n by defining

$$[a] + [b] = [a + b] \text{ and } [a][b] = [ab]$$

for all $a, b \in \mathbb{Z}$. When $n \geq 2$, the set \mathbb{Z}_n is a commutative ring using these operations with zero and identity elements $[0]$ and $[1]$ (in \mathbb{Z}_1 we have $[0] = [1]$, so \mathbb{Z}_1 is the trivial ring).

Proof: Let $a, b, c, d \in \mathbb{Z}$. Suppose that $a = c \pmod{n}$ and $b = d \pmod{n}$. Since $a = c \pmod{n}$ we can choose $k \in \mathbb{Z}$ so that $a = c + kn$. Since $b = d \pmod{n}$ we can choose $\ell \in \mathbb{Z}$ so that $b = d + \ell n$. Then $a + b = (c + kn) + (d + \ell n) = (c + d) + (k + \ell)n$ so that $a + b = c + d \pmod{n}$, and $ab = (c + kn)(d + \ell n) = cd + c\ell n + knd + kn\ell n = cd + (kd + \ell c + k\ell n)n$ so that $ab = cd \pmod{n}$.

It follows that we can define addition and multiplication operations in \mathbb{Z}_n by defining $[a] + [b] = [a + b]$ and $[a][b] = [ab]$ for all $a, b \in \mathbb{Z}$. It is easy to verify that these operations satisfy all of the Axioms R1 - R8 which define a commutative ring. As a sample proof, we shall verify that one half of the distributivity Axiom R7 is satisfied. Let $a, b, c \in \mathbb{Z}$. Then

$$\begin{aligned} [a]([b] + [c]) &= [a][b + c], \text{ by the definition of addition in } \mathbb{Z}_n \\ &= [a(b + c)], \text{ by the definition of multiplication in } \mathbb{Z}_n, \\ &= [ab + ac], \text{ by distributivity in } \mathbb{Z}, \\ &= [ab] + [ac], \text{ by the definition of addition in } \mathbb{Z}_n, \\ &= [a][b] + [a][c], \text{ by the definition of multiplication in } \mathbb{Z}_n. \end{aligned}$$

2.26 Note: When no confusion arises, we shall often omit the square brackets from our notation so that for $a \in \mathbb{Z}$ we write $[a] \in \mathbb{Z}_n$ simply as $a \in \mathbb{Z}_n$. Using this notation, for $a, b \in \mathbb{Z}$ we have $a = b$ in \mathbb{Z}_n if and only if $a = b \pmod{n}$ in \mathbb{Z} .

2.27 Example: Addition and multiplication in \mathbb{Z}_6 are given by the following tables.

$+$	0	1	2	3	4	5	\times	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	4	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

2.28 Example: Find $251 \cdot 329 + (41)^2 \pmod{16}$.

Solution: Since $251 = 15 \cdot 16 + 11$ and $329 = 20 \cdot 16 + 9$ and $41 = 2 \cdot 16 + 9$, working in \mathbb{Z}_{16} we have $251 = 11$ and $329 = 41 = 9$ so that

$$251 \cdot 329 + (41)^2 = 11 \cdot 9 + 9^2 = (11 + 9) \cdot 9 = 20 \cdot 9 = 4 \cdot 9 = 36 = 4.$$

Thus $251 \cdot 329 + (41)^2 = 4 \pmod{16}$.

2.29 Example: Show that for all $a \in \mathbb{Z}$, if $a = 3 \pmod{4}$ then a is not equal to the sum of 2 perfect squares.

Solution: In \mathbb{Z}_4 we have $0^2 = 0$, $1^2 = 1$, $2^2 = 4 = 0$ and $3^2 = 9 = 1$ so that $x^2 \in \{0, 1\}$ for all $x \in \mathbb{Z}_4$. It follows that for all $x, y \in \mathbb{Z}_4$ we have $x^2 + y^2 \in \{0+0, 0+1, 1+0, 1+1\} = \{0, 1, 2\}$ so that $x^2 + y^2 \neq 3$. Equivalently, for all $x, y \in \mathbb{Z}$ we have $x^2 + y^2 \neq 3 \pmod{4}$.

2.30 Example: Show that there do not exist integers x and y such that $3x^2 + 4 = y^3$.

Solution: In \mathbb{Z}_9 we have

x	0	1	2	3	4	5	6	7	8
x^2	0	1	4	0	7	7	0	4	1
x^3	0	1	8	0	1	8	0	1	8
$3x^2$	0	3	3	0	3	3	0	3	3
$3x^2 + 4$	4	7	7	4	7	7	4	7	7

From the table we see that for all $x, y \in \mathbb{Z}_9$ we have $3x^2 + 4 \in \{4, 7\}$ and $y^3 \in \{0, 1, 8\}$ and so $3x^2 + 4 \neq y^3$. It follows that for all $x, y \in \mathbb{Z}$ we have $3x^2 + 4 \neq y^3$.

2.31 Example: There are several well known tests for divisibility which can be easily explained using modular arithmetic. Suppose that a positive integer n is written in decimal form as $n = d_\ell \cdots d_1 d_0$ where each d_i is a decimal digit, that is $d_i \in \{0, 1, \dots, 9\}$. This means that

$$n = \sum_{k=0}^{\ell} 10^k d_i.$$

Since $2|10$ we have $10 \equiv 0 \pmod{2}$. It follows that in \mathbb{Z}_2 we have $10 \equiv 0 \pmod{2}$ so $n \equiv \sum_{i=0}^{\ell} 10^i d_i \equiv d_0 \pmod{2}$.

Thus in \mathbb{Z} , we have $2|n \iff n \equiv 0 \pmod{2} \iff d_0 \equiv 0 \pmod{2} \iff 2|d_0$. In other words,

2 divides n if and only if 2 divides the final digit of n .

More generally for $k \in \mathbb{Z}$ with $1 \leq k \leq \ell$, since $2^k|10^k$ it follows that in \mathbb{Z}_{2^k} we have $10^k \equiv 0 \pmod{2^k}$, hence $10^i \equiv 0 \pmod{2^k}$ for all $i \geq k$, and so $n \equiv \sum_{i=0}^{\ell} 10^i d_i \equiv \sum_{i=0}^{k-1} 10^i d_i \pmod{2^k}$. Thus in \mathbb{Z} , we have $2^k|n$ if and only if $2^k| \sum_{i=0}^{k-1} 10^i d_i$. In other words,

2^k divides n if and only if 2^k divides the tailing k -digit number of n .

Similarly, since $5^k|10^k$ it follows that

5^k divides n if and only if 5^k divides the tailing k -digit number of n .

Since $10 \equiv 1 \pmod{3}$ it follows that in \mathbb{Z}_3 we have $10 \equiv 1 \pmod{3}$ so that $n \equiv \sum_{i=1}^{\ell} 10^i d_i \equiv \sum_{i=0}^{\ell} d_i \pmod{3}$.

Thus in \mathbb{Z} , $3|n \iff n \equiv 0 \pmod{3} \iff \sum_{i=0}^{\ell} d_i \equiv 0 \pmod{3} \iff 3| \sum_{i=0}^{\ell} d_i$. In other words, 3 divides n if and only if 3 divides the sum of the digits of n . Similarly, since $10 \equiv 1 \pmod{9}$,

9 divides n if and only if 9 divides the sum of the digits of n .

Since $10 \equiv -1 \pmod{11}$, in \mathbb{Z}_{11} we have $10 \equiv -1 \pmod{11}$ so that $n \equiv \sum_{i=0}^{\ell} 10^i d_i \equiv \sum_{i=0}^{\ell} (-1)^i d_i \pmod{11}$. Thus in \mathbb{Z} , $11|n \iff 11| \sum_{i=0}^{\ell} (-1)^i d_i$. In other words,

11 divides n if and only if 11 divides the alternating sum of the digits of n .

2.32 Exercise: Use the divisibility tests described in the above example to find the prime factorization of the number 28880280. Also, consider the problem of factoring the number 28880281.

2.33 Remark: For $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ note that if $a = b \pmod{n}$ so that $[a] = [b] \in \mathbb{Z}_n$ then we have $\gcd(a, n) = \gcd(b, n)$ and so it makes sense to define $\gcd([a], n) = \gcd(a, n)$.

2.34 Theorem: (Inverses Modulo n) Let $n \in \mathbb{Z}$ with $n \geq 2$. For $a \in \mathbb{Z}$, $[a]$ is a unit in \mathbb{Z}_n if and only if $\gcd(a, n) = 1$ in \mathbb{Z} .

Proof: Let $a \in \mathbb{Z}$ and let $d = \gcd(a, n)$. Suppose that $[a]$ is a unit in \mathbb{Z}_n . Choose $b \in \mathbb{Z}$ so that $[a][b] = [1] \in \mathbb{Z}_n$. Then $[ab] = [1] \in \mathbb{Z}_n$ and so $ab = 1 \pmod{n}$ in \mathbb{Z} . Since $ab = 1 \pmod{n}$ we can choose k so that $ab = 1 + kn$. Then we have $ab - kn = 1$. Since $d|a$ and $d|n$ it follows that $d|(ax + ny)$ for all $x, y \in \mathbb{Z}$ so in particular $d|(ab - kn)$, that is $d|1$. Since $d|1$ and $d \geq 0$, we must have $d = 1$.

Conversely, suppose that $d = 1$. By the Euclidean Algorithm with Back-Substitution, we can choose $s, t \in \mathbb{Z}$ so that $as + nt = 1$. Then we have $as = 1 - nt$ so that $as = 1 \pmod{n}$. Thus in \mathbb{Z}_n , we have $[as] = [1]$ so that $[a][s] = [1]$. Thus $[a]$ is a unit with $[a]^{-1} = [s]$.

2.35 Corollary: For $n \in \mathbb{Z}^+$, the ring \mathbb{Z}_n is a field if and only if n is prime.

Proof: The proof is left as an exercise.

2.36 Example: Determine whether 125 is a unit in \mathbb{Z}_{471} and if so find 125^{-1} .

Solution: The Euclidean Algorithm gives

$$471 = 3 \cdot 125 + 96, \quad 125 = 1 \cdot 96 + 29, \quad 96 = 3 \cdot 29 + 9, \quad 29 = 3 \cdot 9 + 2, \quad 9 = 4 \cdot 2 + 1$$

and so $d = \gcd(125, 471) = 1$ and it follows that 125 is a unit in \mathbb{Z}_{471} . Back-Substitution gives the sequence

$$1, -4, 13, -43, 56, -211$$

so we have $125(-211) + 471(56) = 1$. It follows that in \mathbb{Z}_{471} we have $125^{-1} = -211 = 260$.

2.37 Example: Solve the pair of equations $3x + 4y = 7$ (1) and $11x + 15y = 8$ (2) for $x, y \in \mathbb{Z}_{20}$.

Solution: We work in \mathbb{Z}_{20} . Since $3 \cdot 7 = 21 = 1$ we have $3^{-1} = 7$. Multiply both sides of Equation (1) by 7 to get $x + 8y = 9$, that is $x = 9 - 8y$ (3). Substitute $x = 9 - 8y$ into Equation (2) to get $11(9 - 8y) + 15y = 8$, that is $99 - 88y + 15y = 8$ or equivalently $7y = 9$ (4). Multiply both sides of Equation (4) by $7^{-1} = 3$ to get $y = 7$. Put $y = 7$ into Equation (3) to get $x = 9 - 8 \cdot 7 = 9 - 16 = 13$. Thus the only solution is $(x, y) = (13, 7)$.

2.38 Definition: A **group** is a set G with an element $e \in G$ and a binary operation $* : G \times G \rightarrow G$, where for $a, b \in G$ we write $*(a, b)$ as $a * b$ or simply as ab , such that

G1. $*$ is associative: for all $a, b, c \in G$ we have $(ab)c = a(bc)$,

G2. e is an identity element: for all $a \in G$ we have $ae = ea = a$, and

G3. every $a \in G$ has an inverse: for every $a \in G$ there exists $b \in G$ such that $ab = ba = e$.

A group G is called **abelian** when

G4. $*$ is commutative: for all $a, b \in G$ we have $ab = ba$.

2.39 Definition: When R is a ring under the operations $+$ and \times , the set R is also a group under the operation $+$ with identity element 0. The group R under $+$ is called the **additive group** of R . The set R is not a group under the operation \times because not every element $a \in R$ has an inverse under \times (in particular, the element 0 has no inverse). The set of all invertible elements in R , however, is a group under multiplication, and we denote it by R^* , so we have

$$R^* = \{a \in R \mid a \text{ is a unit}\}.$$

The group R^* is called the **group of units** of R .

2.40 Example: When F is a field, every nonzero element in F is invertible so we have $F^* = F \setminus \{0\}$. In \mathbb{Z} , the only invertible elements are ± 1 and so $\mathbb{Z}^* = \{1, -1\}$.

2.41 Definition: For $n \in \mathbb{Z}$ with $n \geq 2$, the group of units of \mathbb{Z}_n is called the **group of units modulo n** and is denoted by U_n . Thus

$$U_n = \{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}.$$

For convenience, we also let U_1 be the trivial group $U_1 = \mathbb{Z}_1 = \{1\}$. For a set S , let $|S|$ denote the cardinality of S , so that in particular when S is a finite set, $|S|$ denotes the number of elements in S . We define the **Euler phi function**, also called the **Euler totient function**, $\varphi : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ by

$$\varphi(n) = |U_n|$$

so that $\varphi(n)$ is equal to the number of elements $a \in \{1, 2, \dots, n\}$ such that $\gcd(a, n) = 1$.

2.42 Example: Since $U_{20} = \{1, 3, 7, 9, 11, 13, 17, 19\}$ we have $\varphi(20) = 8$.

2.43 Example: When p is a prime number and $k \in \mathbb{Z}^+$ notice that

$$U_{p^k} = \{1, 2, 3, \dots, p^k\} \setminus \{p, 2p, 3p, \dots, p^k\}$$

and so

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p - 1) = p^k \left(1 - \frac{1}{p}\right).$$

At the end of this chapter (see Theorem 2.51) we will show, more generally, that when p_1, \dots, p_ℓ are distinct prime numbers and $k_1, \dots, k_\ell \in \mathbb{Z}^+$ we have

$$\varphi\left(\prod_{i=1}^{\ell} p_i^{k_i}\right) = \prod_{i=1}^{\ell} \varphi(p_i^{k_i}) = \prod_{i=1}^{\ell} p_i^{k_i-1} (p_i - 1) = \prod_{i=1}^{\ell} p_i^{k_i} \left(1 - \frac{1}{p_i}\right) = n \cdot \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i}\right).$$

2.44 Theorem: (The Linear Congruence Theorem) Let $n \in \mathbb{Z}^+$, let $a, b \in \mathbb{Z}$, and let $d = \gcd(a, n)$. Consider the congruence $ax \equiv b \pmod{n}$.

- (1) The congruence has a solution $x \in \mathbb{Z}$ if and only if $d|b$, and
- (2) if $x = u$ is one solution to the congruence, then the general solution is

$$x = u \pmod{\frac{n}{d}}.$$

Proof: Suppose that the congruence $ax \equiv b \pmod{n}$ has a solution. Let $x = u$ be a solution so we have $au \equiv b \pmod{n}$. Since $au \equiv b \pmod{n}$ we can choose $k \in \mathbb{Z}$ so that $au = b + kn$, that is $au - nk = b$. Since $d|a$ and $d|n$ it follows that $d|(ax + ny)$ for all $x, y \in \mathbb{Z}$, and so in particular $d|(au - nk)$, hence $d|b$. Conversely, suppose that $d|b$. By the Linear Diophantine Equation Theorem, the equation $ax + ny = b$ has a solution. Choose $u, v \in \mathbb{Z}$ so that $au + nv = b$. Then since $au \equiv b - nv \pmod{n}$ we have $au \equiv b \pmod{n}$ and so the congruence $ax \equiv b \pmod{n}$ has a solution (namely $x = u$).

Suppose that $x = u$ is a solution to the given congruence, so we have $au \equiv b \pmod{n}$. We need to show that for every $k \in \mathbb{Z}$ if we let $x = u + k\frac{n}{d}$ then we have $ax \equiv b \pmod{n}$ and, conversely, that for every $x \in \mathbb{Z}$ such that $ax \equiv b \pmod{n}$ there exists $k \in \mathbb{Z}$ such that $x = u + k\frac{n}{d}$. Let $k \in \mathbb{Z}$ and let $x = u + k\frac{n}{d}$. Then $ax = a(u + k\frac{n}{d}) = au + \frac{ka}{d}n$. Since $ax \equiv au + \frac{ka}{d}n \pmod{n}$ and $d|a$ so that $\frac{ka}{d} \in \mathbb{Z}$, it follows that $ax \equiv au \pmod{n}$. Since $ax \equiv au \pmod{n}$ and $au \equiv b \pmod{n}$ we have $ax \equiv b \pmod{n}$, as required.

Conversely, let $x \in \mathbb{Z}$ and suppose that $ax \equiv b \pmod{n}$. Since $ax \equiv b \pmod{n}$ and $au \equiv b \pmod{n}$ we have $ax \equiv au \pmod{n}$. Since $ax \equiv au \pmod{n}$ we can choose $\ell \in \mathbb{Z}$ so that $ax \equiv au + \ell n$. Then we have $a(x - u) = \ell n$ and so $\frac{a}{d}(x - u) = \frac{n}{d}\ell$. Since $\frac{n}{d} \mid \frac{a}{d}(x - u)$ and $\gcd\left(\frac{a}{d}, \frac{n}{d}\right) = 1$, it follows that $\frac{n}{d} \mid (x - u)$. Thus we can choose $k \in \mathbb{Z}$ so that $x - u = k\frac{n}{d}$ and then we have $x = u + k\frac{n}{d}$, as required.

2.45 Example: Solve $221x = 595 \pmod{323}$.

Solution: The Euclidean Algorithm gives

$$323 = 1 \cdot 221 + 102, \quad 221 = 2 \cdot 102 + 17, \quad 102 = 6 \cdot 17 + 0$$

and so $\gcd(221, 323) = 17$. Note that $\frac{595}{17} = 35$, so the congruence has a solution. Back-Substitution gives the sequence

$$1, -2, 3$$

so we have $221 \cdot 3 - 323 \cdot 2 = 17$. Multiply by 35 to get $221 \cdot 105 - 323 \cdot 70 = 595$. Thus one solution to the given congruence is $x = 105$. Since $\frac{323}{17} = 19$ and $105 = 5 \cdot 19 + 10$, the general solution is given by $x = 105 + 10 \pmod{19}$.

2.46 Theorem: (*The Chinese Remainder Theorem*) Let $n, m \in \mathbb{Z}^+$ and let $a, b \in \mathbb{Z}$. Consider the pair of congruences

$$\begin{aligned} x &= a \pmod{n}, \\ x &= b \pmod{m}. \end{aligned}$$

(1) The pair of congruences has a solution $x \in \mathbb{Z}$ if and only if $\gcd(n, m) \mid (b - a)$, and
(2) if $x = u$ is one solution, then the general solution is $x = u \pmod{\text{lcm}(n, m)}$.

Proof: Suppose that the given pair of congruences has a solution and let $d = \gcd(n, m)$. Let $x = u$ be a solution, so we have $u = a \pmod{n}$ and $u = b \pmod{m}$. Since $u = a \pmod{n}$ we can choose $k \in \mathbb{Z}$ so that $u = a + kn$. Since $u = b \pmod{m}$ we can choose $\ell \in \mathbb{Z}$ so that $u = b + \ell m$. Since $u = a + kn = b + \ell m$ we have $b - a = nk - m\ell$. Since $d \mid n$ and $d \mid m$ it follows that $d \mid (nx + my)$ for all $x, y \in \mathbb{Z}$ so in particular $d \mid (nk - m\ell)$, hence $d \mid (b - a)$. Conversely, suppose that $d \mid (b - a)$. By the Linear Diophantine Equation Theorem, the equation $nx + my = b - a$ has a solution. Choose $k, \ell \in \mathbb{Z}$ so that $nk - m\ell = b - a$. Then we have $a + nk = b + m\ell$. Let $u = a + nk = b + m\ell$. Since $u = a + nk$ we have $u = a \pmod{n}$ and since $u = b + m\ell$ we have $u = b \pmod{m}$. Thus $x = u$ is a solution to the pair of congruence.

Now suppose that $u = a \pmod{n}$ and $u = b \pmod{m}$. Let $\ell = \text{lcm}(n, m)$. Let $k \in \mathbb{Z}$ be arbitrary and let $x = u + k\ell$. Since $x - u = k\ell$ we have $\ell \mid (x - u)$. Since $n \mid \ell$ and $\ell \mid (x - u)$ we have $n \mid (x - u)$ so that $x = u \pmod{n}$. Since $x = u \pmod{n}$ and $u = a \pmod{n}$ we have $x = a \pmod{n}$. Similarly $x = b \pmod{m}$.

Conversely, let $x \in \mathbb{Z}$ and suppose that $x = a \pmod{n}$ and $x = b \pmod{m}$. Since $x = a \pmod{n}$ and $u = a \pmod{n}$ we have $x = u \pmod{n}$ so that $n \mid (x - u)$. Since $x = b \pmod{m}$ and $u = b \pmod{m}$ we have $x = u \pmod{m}$ so that $m \mid (x - u)$. Since $n \mid (x - u)$ and $m \mid (x - u)$ and $\ell = \text{lcm}(n, m)$, it follows that $\ell \mid (x - u)$ so that $x = u \pmod{\ell}$.

2.47 Example: Solve the pair of congruences $x = 2 \pmod{15}$ and $x = 13 \pmod{28}$.

Solution: We want to find $k, \ell \in \mathbb{Z}$ such that $x = 2 + 15k = 13 + 28\ell$. We need $15k - 28\ell = 11$. The Euclidean Algorithm gives

$$28 = 1 \cdot 15 + 13, \quad 15 = 1 \cdot 13 + 2, \quad 13 = 6 \cdot 2 + 1$$

so that $\gcd(15, 28) = 1$ and Back-Substitution gives the sequence

$$1, -6, 7, -13$$

so that $(15)(-13) + (28)(7) = 1$. Multiplying by 11 gives $(15)(-143) + (28)(77) = 11$, so one solution to the equation $15k - 28\ell = 11$ is given by $(k, \ell) = (-143, 77)$. It follows that one solution to the pair of congruences is given by $u = 2 + 15k = 2 - 15 \cdot 143 = -2143$. Since $\text{lcm}(15, 28) = 15 \cdot 28 = 420$, and $-2143 = -6 \cdot 420 + 377$, the general solution to the pair of congruences is $x = -2143 = 377 \pmod{420}$.

2.48 Exercise: Solve the congruence $x^3 + 2x = 18 \pmod{35}$.

2.49 Exercise: Solve the system $x = 17 \pmod{25}$, $x = 14 \pmod{18}$ and $x = 22 \pmod{40}$.

2.50 Theorem: (Euler's Totient Function) Let $n = \prod p_i^{k_i}$ where p_1, \dots, p_ℓ are distinct primes and $k_1, \dots, k_\ell \in \mathbb{Z}^+$. Then

$$\varphi(n) = \prod_{i=1}^{\ell} \varphi(p_i^{k_i}) = \prod_{i=1}^{\ell} (p_i^{k_i} - p_i^{k_i-1}).$$

Proof: As mentioned earlier (in Example 2.43) when $n = p^k$ we have

$$U_{p^k} = \{1, 2, \dots, p^k\} \setminus \{p, 2p, 3p, \dots, p^k\}$$

and hence $\varphi(p^k) = p^k - p^{k-1}$. Thus it suffices to prove that if $k, \ell \in \mathbb{Z}$ with $\gcd(k, \ell) = 1$ then we have $\varphi(k\ell) = \varphi(k)\varphi(\ell)$.

Let $k, \ell \in \mathbb{Z}$ with $\gcd(k, \ell) = 1$. Define $F : \mathbb{Z}_{k\ell} \rightarrow \mathbb{Z}_k \times \mathbb{Z}_\ell$ by $F(x) = (x, x)$ where $x \in \mathbb{Z}$. Note that F is well-defined because if $x = y \pmod{k\ell}$ then $x = y \pmod{k}$ and $x = y \pmod{\ell}$. Note that F is bijective by the Chinese Remainder Theorem: indeed F is surjective because given $a, b \in \mathbb{Z}$ there exists a solution $x \in \mathbb{Z}$ to the pair of congruences $x = a \pmod{k}$ and $x = b \pmod{\ell}$, and F is injective because the solution x is unique modulo $k\ell$. We claim that the restriction of F to $U_{k\ell}$ is a bijection from $U_{k\ell}$ to $U_k \times U_\ell$. Note that if $x \in U_{k\ell}$ then we have $\gcd(x, k\ell) = 1$ so that $\gcd(x, k) = 1$ and $\gcd(x, \ell) = 1$, and hence $x \in U_k$ and $x \in U_\ell$, and so we have $F(x) = (x, x) \in U_k \times U_\ell$. Suppose, on the other hand, that $a \in U_k$ and $b \in U_\ell$ and let $x = F^{-1}(a, b) \in \mathbb{Z}_{k\ell}$, so we have $x = a \pmod{k}$ and $x = b \pmod{\ell}$. Since $x = a \pmod{k}$ we have $\gcd(x, k) = \gcd(a, k) = 1$ and since $x = b \pmod{\ell}$ we have $\gcd(x, \ell) = \gcd(b, \ell) = 1$. Since $\gcd(x, k) = 1$ and $\gcd(x, \ell) = 1$ it follows that $\gcd(x, k\ell) = 1$ and so we have $x \in U_{k\ell}$. Thus the restriction of F to $U_{k\ell}$ is a well-defined bijective map from $U_{k\ell}$ to $U_k \times U_\ell$. It follows that

$$\varphi(k\ell) = |U_{k\ell}| = |U_k \times U_\ell| = |U_k| \cdot |U_\ell| = \varphi(k)\varphi(\ell),$$

as required.

2.51 Theorem: (The Generalized Chinese Remainder Theorem) Let $\ell \in \mathbb{Z}^+$, let $n_i \in \mathbb{Z}^+$ and $a_i \in \mathbb{Z}$ for all indices i with $1 \leq i \leq \ell$. Consider the system of ℓ congruences $x = a_i \pmod{n_i}$ for all indices i with $1 \leq i \leq \ell$.

- (1) The system has a solution x if and only if $\gcd(n_i, n_j)|(a_i - a_j)$ for all i, j , and
- (2) if $x = u$ is one solution then the general solution is $x = u \pmod{\text{lcm}(n_1, n_2, \dots, n_\ell)}$.

Proof: The proof is left as an exercise.