Chapter 2. The Ring of Integers Modulo N

2.1 Definition: A (commutative) ring (with 1) is a set R with two elements 0,1 € R
(usually assumed to be distinct) and two binary operations, +, x : R x R — R (usually
called addition and multiplication) where, for a,b € R, we write +(a,b) as a + b and we
write x(a,b) as a X b or a-b or ab, which satisfy the following axims.

R1. + is associative: (a +b)+c=a+ (b+c¢) for all a,b,c € R,

R2. 4 is commutative: a + b =0b+ a for all a,b,c € R,

R3. 0 is an additive identity: a + 0 = a for all a € R,

R4. every a € R has an additive inverse: for all a € R there exists b€ R such that a +b = 0,
R5. x is associative: (ab)c = a(bc) for all a,b,c € R,

R6. x is commutative: a *b =bx*a for all a,b € R,

R7. 1 is a multiplicative identity: a x 1 = a for all a € R, and

R8. x is distributive over +: a(b+ ¢) = ab+ ac and (a + b)c = ac + be for all a,b,c € R.

For a € R we say that a is invertible (or that a is a unit) when there is an element b € R
with ab = 1. A field is a commutative ring F' in which 0 # 1 and

R9. every non-zero element is a unit: for all 0 # a € F there exists b € F such that ab = 1.
2.2 Example: Z is a ring, and Q, R and C are fields.

2.3 Example: Let d € Z be a non-square (that is d # s? with s € Z). When d > 0 we
have v/d € R and when d < 0 we write v/d = /|d|i € C. Let

Z[Vd] = {a+bVd|a,be L},
Q[Vd] = {a+bVd|a,be Q}.

Verify that Z[\/a] is a ring and that Q[\/ﬁ] is a field. When d > 0 so Z[v/d] C Q[Vd] C R,
we say that Z[v/d] is a real quadratic ring and Q[v/d] is a real quadratic field, and
when when d < 0 so Z[v/d] C Q[v/d] C C and we say that Z[/d] is a complex quadratic
ring and Q[v/d] is a complex quadratic field. The ring Z[/—1] = Z]i] is called the ring
of Gaussian integers.

2.4 Example: Many students will be familiar with the ring Z,, of integers modulo n.
Later in this chapter, we shall define the ring Z,, and show that Z,, is a field if and only if
n 1s prime.

2.5 Remark: When R is a commutative ring, the set R[z] of polynomials with coefficients
in R is a commutative ring and, when n € Z with n > 2, the set M,,(R) of n x n matrices
with entries in R is an example of a non-commutative ring (Axiom R6 does not hold).

2.6 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

(1) the additive identity element 0 is unique in the sense that if e € R has the property
that a + e = a for all a € R then e = 0,

(2) the multiplicative identity element 1 is unique in the sense that for allu € R, if au = a
for all a € R then u =1,

(3) the additive inverse of each a € R is unique in the sense that for all a,b,c € R if
a+b=0and a+c=0 then b= c, and

(4) the multiplicative inverse of each unit a € R is unique in the sense that for all a € R,
if there exist b,c € R such that ab= 1 and ac = 1 then b = c.

Proof: The proof is left as an exercise.



2.7 Notation: Let R be a ring. For a € R we denote the unique additive inverse of a € R
by —a, and for a,b € R we write b — a for b+ (—a). If a is a unit we denote its unique
multiplicative inverse by a~!. When F is a field, and a,b € F with b # 0 we also write

b~1 as % and we write ab—! as %.

2.8 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all a,b,c € R,

(1) ifa+b=a+c thenb=c,
(2) if a4+ b =" then a = 0, and
(3) if a4+ b =0 then a = —b.

Proof: The proof is left as an exercise.

2.9 Note: We do not, in general, have similar rules for cancellation under multiplication.
In general, for a,b, c in a ring R, ab = ac does not imply that b = ¢, ab = b does not imply
that a = 1, and ac = 0 does not imply that a = 0 or b = 0 (and in the case that R is not
commutative, ac = 1 does not imply that ca = 1). When ac = 0 but a # 0 and b # 0, we
say that a and b are zero divisors. A commutative ring with 1 which has no zero divisors
is called an integral domain.

2.10 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all a,b,c € R,
if ab = ac then either a = 0 or b = ¢ or a is a zero divisor.

Proof: Suppose ab = ac. Then ab — ac = 0 so a(b — ¢) = 0. By the definition of a zero
divisor, either a = 0 or b — ¢ = 0 (hence b = ¢), or else both a and b — ¢ are zero divisors.

2.11 Theorem: (Basic Properties of Rings) Let R be a ring. Then

(1)0-a =0 for all a € R,

(2) (—a)b = —(ab) = a(=b) for all a,b € R,
(3) (—a)(=b) = ab for all a,b € R,

(4) (—1)a = —a for all a € R.

Proof: Let @ € R. Then 0-a = (04+0)-a=0-a+0-a. Thus 0-a = 0 by additive
cancellation. The proof that a-0 = 0 is similar, and the other proofs are left as an exercise.

2.12 Remark: In a ring R, we usually assume that 0 # 1. Note that if 0 = 1 then in fact
R = {0} because for all a € R we have a = a-1=a-0 = 0. The ring R = {0} is called
the trivial ring.

2.13 Notation: Let R be a ring. For a € R and k € Z we define ka € R as follows. We
define 0Oa = 0, and for k € Z* we define ka = a + a + --- + a with k terms in the sum,
and we define (—k)a = k(—a). For a € R and k € N we define a* € R as follows. We
define a® = 1 and for k¥ € Z* we define a* = a-a-...-a with k terms in the product.
When a is a unit and k € Z*, we also define a=* = (a=1)*. For all k,l € Z and all a € R
we have (k + l)a = ka + la, (—k)a = —(ka) = k(—a), —(—a) = a, —(a +b) = —a — b,
(ka)(1b) = (kI)(ab). For all k,I € N and all a € R we have a**! = a¥a!. When @ and b are
units, for all k,! € Z we have a**! = a*a!, a=% = (a*)71, (a7 !) ' = and (ab) "' =b"ta"L



2.14 Definition: Let n € Z*. For a,b € Z we say that a is equal (or congruent) to b
modulo n, and we write a = b mod n, when n‘(a — b) or, equivalently, when a = b+ kn
for some k € Z.

2.15 Theorem: Letn € Z*. For a,b € Z we have a = b mod n if and only if a and b have
the same remainder when divided by n. In particular, for every a € 7 there is a unique
r € Z witha =7 mod n and 0 <r <n.

Proof: Let a,b € Z. Use the Division Algorithm to write a = gn + r with 0 < r < n and
b=pn+s with 0 < s < n. We need to show that a = b mod n if and only if r = s.
Suppose that a = b mod n, say a = b+ kn where k € Z. Then since a = gn + r and
a=b+kn=(pn+s)+kn=((p+kn+swith0<r<nand0<s <n, it follows that
q = p+s and r = s by the uniqueness part of the Division Algorithm. Conversely, suppose
that r = s. Then we have 0 = r —s = (a — gn) — (b — pn) so that a = b+ (¢ — p)n, and
hence a = b mod n.

2.16 Example: Find 117 mod 35.

Solution: We are being asked to find the unique integer r with 0 < r < n such that
117 = r mod 35 or, in other words, to find the remainder r when 117 is divided by 35.
Since 117 = 3 - 35 4+ 12 we have 117 = 12 mod 35.

2.17 Definition: An equivalence relation on a set S is a binary relation ~ on S such
that

El. ~ is reflexive: for every a € S we have a ~ a,
E2. ~ is symmetric: for all a,b € S, if a ~ b then b ~ a, and
E3. ~ is transitive: for all a,b,c € S, if a ~ b and b ~ ¢ then a ~ c.

When ~ is an equivalence relation on S and a € S, the equivalence class of a in S is the

set
[a) = {z € S|z ~a}.

2.18 Theorem: Let n € Z™. Then congruence modulo n is an equivalence relation on Z.

Proof: Let a € Z. Since a = a4+ 0-n we have a = a mod n. Thus congruence modulo
n satisfies Property E1. Let a,b € Z and suppose that a = b mod n, say a = b+ kn
with k € Z. Then b = a + (—k)n so we have b = a mod n. Thus congruence modulo n
satisfies Property E2. Let a,b,c € Z and suppose that a = b mod n and b = ¢ mod n.
Since a = b mod n we can choose k € Z so that a = b+ kn. Since b = ¢ mod n we can
choose ¢ € Z so that b =c+ ¢n. Then a = b+ kn = (c+4n) + kn = c+ (k + {)n and so
a = ¢ mod n. Thus congruence modulo n satisfies Property E3.

2.19 Definition: A partition of a set S is a set P of nonempty disjoint subsets of S
whose union is S. This means that

P1l. for all A€ P we have D 2 AC S,

P2. for all A,B € P,if A# B then AN B = (), and

P3. for every a € S we have a € A for some A € P.

2.20 Example: P = {{1,3,5},{2},{4,6}} is a partition of S = {1,2,3,4,5,6}.



2.21 Theorem: Let ~ be an equivalence relation on a set S. Then P = {[a] ’a € S} is a
partition of S.

Proof: For a € S, it is clear from the definition of [a] that [a] C S, and we have [a] # ()
because a ~ a so a € [a]. This shows that P satisfies P1.

Let a,b € S. We claim that a ~ b if and only if [a] = [b]. Suppose that a ~ b. Let
x € S. Suppose that x € [a]. Then x ~ a by the definition of [a]. Since x ~ a and a ~ b
we have z ~ b since ~ is transitive. Since x ~ b we have = € [b]. This shows that [a] C [b].
Since a ~ b implies that b ~ a by symmetry, a similar argument shows that [b] C [a]. Thus

we have [a] = [b]. Conversely, suppose that [a] = [b]. Then since a ~ a we have a € |[a].
Since a € [a] and [a] = [b], we have a € [b]. Since a € [b], we have a ~ b. Thus a ~ b if and
only if [a] = [b], as claimed.

Let a,b € S. We claim that if [a] # [b] then [a] N [b] = 0. Suppose that [a] N [b] # 0.
Choose ¢ € [a]N[b]. Since ¢ € [a] so that ¢ ~ a we have [c] = [a] (by the above claim). Since
c € [b] so that ¢ ~ b we have [c] = [b]. Thus [a] = [c] = [b], as required. This completes the

proof that P satisfies P2.
Finally, note that P satisfies P3 because given a € S we have a € [a] € P.

2.22 Definition: Let ~ be an equivalence relation on a set S. The quotient of the set
S by the relation ~, denoted by S/N, is the partition P of the above theorem, that is

S/~ = {la]|a € S}.

2.23 Definition: Let n € Z™. Let ~ be the equivalence relation on Z defined for a,b € Z
by a ~ b<=a = b mod n, and write [a]| = {z € Z|x ~ a} = {x € Z|zr = a mod n}. The
set of integers modulo n, denoted by Z,, is defined to be the quotient set

Zyn = Zj~ = {[a]|a € Z}.
Since every a € 7Z is congruent modulo n to a unique r € Z with 0 < r < n, we have
Loy = {[0]7 1], [2],-+,[n = 1]}
and the elements listed in the above set are distinct so that Z,, is an n-element set.

2.24 Example: We have
Z3 = {[0]7 [1]7[2]} = {{"'7_37073767"'}5 {"'7_27174777"'}7 {7_17275a87}}



2.25 Theorem: (Addition and Multiplication Modulo n) Let n € Z*. For a,b,c,d € 7Z,
ifa =cmod n and b = d mod n then a + b = ¢+ d mod n and ab = ¢d mod n. It follows
that we can define addition and multiplication operations on Z,, by defining

[a] + [b] = [a+b] and [a] [b] = [ab]

for all a,b € Z. When n > 2, the set Z,, is a commutative ring using these operations with
zero and identity elements [0] and [1] (in Z, we have [0] = [1], so Z; is the trivial ring).

Proof: Let a,b,c,d € Z. Suppose that a = ¢ mod n and b = d mod n. Since a = ¢ mod n
we can choose k € Z so that a = ¢+ kn. Since b = d mod n we can choose ¢ € Z so that
b=d+/¢n. Then a+b = (c+kn)+(d+¥¢n) = (c+d)+ (k+{)n so that a+b = c+d mod n,
and ab = (¢ + kn)(d + ¢n) = cd + cbn + knd + knln = cd + (kd + fc + kfn)n so that
ab = cd mod n.

It follows that we can define addition and multiplication operations in Z,, by defining
[a] + [b] = [a+ b] and [a] [b] = [ab] for all a,b € Z. Tt is easy to verify that these operations
satisfy all of the Axioms R1 - R8 which define a commutative ring. As a sample proof, we
shall verify that one half of the distributivity Axiom RY7 is satisfied. Let a,b,c € Z. Then

[a]([b] + [c]) = [a] [b+ ¢] , by the definition of addition in Z,
= [a(b+ c)] , by the definition of multiplication in Z,,
= [ab + ac] , by distributivity in Z.
= [ab] + [ac] , by the definition of addition in Z,,
= [a] [b] + [a] [¢] , by the definition of multiplication in Z,.

2.26 Note: When no confusion arises, we shall often omit the square brackets from our
notation so that for a € Z we write [a] € Z,, simply as a € Z,. Using this notation, for
a,b € Z we have a = b in Z,, if and only if a = b mod n in Z.

2.27 Example: Addition and multiplication in Zg are given by the following tables.

+ 01 2 3 4 5 x 01 2 3 4 5
0 01 2 3 4 5 0 0 0 0 0 0 O
1 1 2 3 4 5 0 1 01 2 3 4 5
2 2 3 4 5 01 2 0 2 4 0 2 4
3 3 4 5 0 1 2 3 03 0 3 0 3
4 4 5 0 1 2 4 4 0 4 2 0 4 2
5 5 01 2 3 4 5 0 5 4 3 2 1

2.28 Example: Find 251 - 329 + (41)% mod 16.

Solution: Since 251 = 15-16+ 11 and 329 = 20-16+9 and 41 = 2-16 + 9, working in Zg
we have 251 = 11 and 329 = 41 = 9 so that

251-329 + (41)2 =11-94+92=(11+9)-9=20-9=4-9=36 = 4.
Thus 251 - 329 + (41)? = 4 mod 16.

2.29 Example: Show that for all a € Z, if a = 3 mod 4 then a is not equal to the sum of
2 perfect squares.

Solution: In Z4 we have 02 = 0,12 = 1,22 =4 = 0 and 32 = 9 = 1 so that 2 € {0, 1} for all
x € Z4. Tt follows that for all x,y € Z4 we have 22 +y% € {0+0,0+1,14+0,1+1} = {0,1,2}
so that 22 4 y? # 3. Equivalently, for all 2,y € Z we have 22 + y? # 3 mod 4.



2.30 Example: Show that there do not exist integers # and y such that 3z + 4 = 3.

Solution: In Zg we have

x 01 2 3 456 7 8
2 01 4 0 7 7 0 4 1
2 01 8 01 8 0 1 8
332 0 3 3 0 3 3 0 3 3

32244 4 7 7T 4 7T 7T 4 T 7

From the table we see that for all z,y € Zg we have 322 +4 € {4,7} and y3 € {0,1,8} and
so 3x2 + 4 # y3. It follows that for all x,y € Z we have 322 + 4 # 13.

2.31 Example: There are several well known tests for divisibility which can be easily
explained using modular arithmetic. Suppose that a positive integer n is written in decimal
form as n = dy---didy where each d; is a decimal digit, that is d; € {0,1,---,9}. This
means that

(o
n=73 10,
k=0

¢
Since 2‘10 we have 10 = 0 mod 2. It follows that in Zs we have 10 = 0son = >_ 10'd; = dp.
i=0
Thus in Z, we have 2|n<=mn = 0 mod 2 <= dy = 0 mod 2 <= 2|dy. In other words,

2 divides n if and only if 2 divides the final digit of n.
More generally for £k € Z with 1 < k < /, since 2’“!10"c it follows that in Z,r we have

k=1
10* = 0, hence 10° = 0 for all i > k, and so n = Z 10°d; = 5 10%d;. Thus in Z, we have
1=0 1=0

2k|n if and only if 2%

Z 10°d;. In other words,

=

2% divides n if and only if 2% divides the tailing k-digit number of n.
Similarly, since 5’1“"1011C it follows that

5% divides n if and only if 5* divides the tailing k-digit number of n.

e ¢
Since 10 = 1 mod 3 it follows that in Z3 we have 10 = 1 so that n = > 10’d; = Z d;.
i=1

Thus in Z, 3|n<=n = 0 mod 3 <= Z d; = 0 mod 3 < 3| Z In other words, 3 divides
=0
n if and only if 3 divides the sum of the digits of n. Similarly, since 10 = 1 mod 9,

9 divides n if and only if 9 divides the sum of the digits of n.

¢ ¢
Since 10 = —1 mod 11, in Z;; we have 10 = —1 so that n = _ 10°d; = >_(—1)%d;. Thus
i=0 i=0

£ .
in Z, 11|n(:> 11| > (—1)%d;. In other words,
i=0
11 divides n if and only if 11 divides the alternating sum of the digits of n.

2.32 Exercise: Use the divisibility tests described in the above example to find the prime
factorization of the number 28880280. Also, consider the problem of factoring the number
28880281.



2.33 Remark: For a,b € Z and n € ZT note that if a = b mod n so that [a] = [b] € Z,
then we have ged(a,n) = ged(b,n) and so it makes sense to define ged([al,n) = ged(a,n).

2.34 Theorem: (Inverses Modulo n) Let n € Z withn > 2. For a € Z, [a] is a unit in Z,,
if and only if gcd(a,n) =1 in Z.

Proof: Let a € Z and let d = gcd(a,n). Suppose that [a] is a unit in Z,,. Choose b € Z so
that [a] [b] = [1] € Z,,. Then [ab] = [1] € Z,, and so ab =1 mod n in Z. Since ab =1 mod n
we can choose k so that ab = 1 + kn. Then we have ab — kn = 1. Since d|a and d|n it
follows that d‘(a:z: + ny) for all x,y € Z so in particular d!(ab — kn), that is d|1. Since d|1
and d > 0, we must have d = 1.

Conversely, suppose that d = 1. By the Euclidean Algorithm with Back-Substitution,
we can choose s,t € Z so that as+nt = 1. Then we have as = 1 —nt so that as = 1 mod n.
Thus in Z,, we have [as] = [1] so that [a][s] = [1]. Thus [a] is a unit with [a]~! = [s].

2.35 Corollary: Forn € Z™", the ring Z, is a field if and only if n is prime.
Proof: The proof is left as an exercise.
2.36 Example: Determine whether 125 is a unit in Z47; and if so find 12571,
Solution: The Euclidean Algorithm gives
471 =3-1254+96, 1256 =1-964+29, 96=3-29+9, 29=3-9+2,9=4-2+1

and so d = ged(125,471) = 1 and it follows that 125 is a unit in Z471. Back-Substitution
gives the sequence

1, —4,13, —43, 56, —211
so we have 125(—211) +471(56) = 1. It follows that in Z47; we have 12571 = —211 = 260.

2.37 Example: Solve the pair of equations 3x + 4y = 7 (1) and 11z + 15y = 8 (2) for
T,y € Z20-

Solution: We work in Zsg. Since 3-7 = 21 = 1 we have 37! = 7. Multiply both sides
of Equation (1) by 7 to get z + 8y = 9, that is x = 9 — 8y (3). Substitute x = 9 — 8y
into Equation (2) to get 11(9 — 8y) + 15y = &, that is 19 — 8y + 15y = 8 or equivalently
7y = 9 (4). Multiply both sides of Equation (4) by 77! = 3 to get y = 7. Put y = 7 into
Equation (3) to get t =9 —8-7 =9 — 16 = 13. Thus the only solution is (z,y) = (13,7).

2.38 Definition: A group is a set G with an element e € G and a binary operation
x: G X G — G, where for a,b € G we write *(a,b) as a x b or simply as ab, such that

G1. * is associative: for all a,b,c € G we have (ab)c = a(bc),
G2. e is an identity element: for all a € G we have ae = ea = a, and
G3. every a € G has an inverse: for every a € G there exists b € GG such that ab = ba = e.

A group G is called abelian when
G4. * is commutative: for all a,b € G we have ab = ba.

2.39 Definition: When R is a ring under the operations + and x, the set R is also a
group under the operation + with identity element 0. The group R under + is called the
additive group of R. The set R is not a group under the operation x because not every
element a € R has an inverse under x (in particular, the element 0 has no inverse). The
set of all invertible elements in R, however, is a group under multiplication, and we denote
it by R*, so we have
R*={ac R‘a is a unit }.
The group R* is called the group of units of R.



2.40 Example: When F' is a field, every nonzero element in F' is invertible so we have
F* = F\ {0}. In Z, the only invertible elements are +1 and so Z* = {1, —1}.

2.41 Definition: For n € Z with n > 2, the group of units of Z,, is called the group of
units modulo n and is denoted by U,,. Thus

Un,={ac Zn| ged(a,n) = 1}.

For convenience, we also let Uy be the trivial group U; = Z; = {1}. For a set S, let
|S| denote the cardinality of S, so that in particular when S is a finite set, |\S| denotes
the number of elements in S. We define the Euler phi function, also called the Euler
totient function, ¢ : ZT — Z* by

p(n) = |Un|
so that ¢(n) is equal to the number of elements a € {1,2,---,n} such that ged(a,n) = 1.
2.42 Example: Since Uy = {1,3,7,9,11,13,17,19} we have ¢(20) = 8.
2.43 Example: When p is a prime number and k € Z™ notice that

Upr = {1,2,3,---, 0"} \ {p, 2, 3p, - -, p*}
and so
p(P*) =pF —p* =P - 1) = pF (1 4).
At the end of this chapter (see Theorem 2.51) we will show, more generally, that when
p1,- -+, pe are distinct prime numbers and ki, - - -, ky € Z* we have

¢ ¢ ¢ ¢ ¢
o(TTn) = T plo) = T~ )= [T (1 1) =n T (- 1),
2.44 Theorem: (The Linear Congruence Theorem) Let n € ZT, let a,b € Z, and let
d = ged(a,n). Consider the congruence ax = b mod n.

(1) The congruence has a solution x € Z if and only if d|b, and
(2) if x = u is one solution to the congruence, then the general solution is

x:umod%.

Proof: Suppose that the congruence ax = b mod n has a solution. Let = u be a solution
so we have au = b mod n. Since au = b mod n we can choose k € Z so that au = b+ kn,
that is au — nk = b. Since d|a and d|n it follows that d|(ax + ny) for all z,y € Z, and
so in particular d|(au — nk), hence d|b. Conversely, suppose that d|b. By the Linear
Diophanitine Equation Theorem, the equation axz +ny = b has a solution. Choose u,v € Z
so that au+ nv = b. Then since au = b —nv we have au = b mod n and so the congruence
ax = b mod n has a solution (namely z = u).

Suppose that x = w is a solution to the given congruence, so we have au = b mod n.
We need to show that for every k € Z if we let x = u + k% then we have ax = b mod n
and, conversely, that for every x € Z such that ax = b mod n there exists k£ € Z such
that = u + k%. Let k € Z and let x = u + k%. Then ax = a(u—l—k’%) = au+%”n.
Since ar = au + %L n and d|a so that %‘L € Z, it follows that ar = au mod n. Since
axr = au mod n and au = b mod n we have ax = b mod n, as required.

Conversely, let x € Z and suppose that ax = b mod n. Since ax = b mod n and
au = b mod n we have ax = au mod n. Since ax = au mod n we can choose ¢ € Z so that
az = au + ¢n. Then we have a(z — u) = ¢n and so %(z — u) = 2{. Since 2|%(z — u) and
ged (%, %) = 1, it follows that %‘(w —u). Thus we can choose k € Z so that x —u = k%
and then we have x = u + k%, as required.



2.45 Example: Solve 221z = 595 mod 323.
Solution: The Euclidean Algorithm gives
323=1-2214102, 221 =2-1024+17, 102=6-17+0

and so ged(221,323) = 17. Note that % = 35, so the congruence has a solution. Back-
Substitution gives the sequence
1, -2,3

so we have 221 -3 — 323 - 2 = 17. Multiply by 35 to get 221 - 105 — 323 - 70 = 595. Thus
one solution to the given congruence is x = 105. Since % =19 and 105 =5-19 + 10, the

general solution is given by x = 105 = 10 mod 19.

2.46 Theorem: (The Chinese Remainder Theorem) Let n,m € Z* and let a,b € Z.
Consider the pair of congruences
xr = a mod n,

z = b mod m.

(1) The pair of congruences has a solution « € Z if and only if ged(n,m)|(b — a), and
(2) if x = u is one solution, then the general solution is x = u mod lem(n,m).

Proof: Suppose that the given pair of congruences has a solution and let d = ged(n, m).
Let x = u be a solution, so we have © = @ mod n and v = b mod m. Since u = a mod n
we can choose k € Z so that u = a + kn. Since u = b mod m we can choose ¢ € Z so that
u = b+ ¢m. Since u = a + kn = b+ ¢n we have b — a = nk — m{. Since d|n and d|m
it follows that d|(nx + my) for all z,y € Z so in particular d|(nk — mf), hence d|(b — a).
Conversely, suppose that d|(b — a). By the Linear Diophantine Equation Theorem, the
equation nx +my = b — a has a solution. Choose k, ¢ € Z so that nk — m¢ = b — a. Then
we have a+nk = b+ml. Let u = a+nk = b+ml. Since u = a+nk we have u = a mod n
and since u = b+ mf we have u = b mod m. Thus x = wu is a solution to the pair of
congruence.

Now suppose that v = a mod n and v = b mod m. Let £ = lem(n,m). Let k € Z be
arbitrary and let z = u + k{. Since x — u = k¢ we have /|(z — u). Since n|¢ and £|(z — u)
we have n‘(a; — u) so that £ = u mod n. Since x = v mod n and u = a mod n we have
x = a mod n. Similarly x = b mod m.

Conversely, let x € 7Z and suppose that x+ = a mod n and x = b mod m. Since
x = amod n and u = a mod n we have z = © mod n so that n|(m—u) Since x = b mod m
and u = b mod m we have = u mod m so that m|(z —u). Since n|(z —u) and m|(z —v)
and ¢ = lem(n, m), it follows that ¢|(z — u) so that = u mod /.



2.47 Example: Solve the pair of congruences x = 2 mod 15 and z = 13 mod 28.

Solution: We want to find k, ¢ € Z such that x = 2+15k = 13+28¢. We need 15k—28¢ = 11.
The Euclidean Algorithm gives

28=1-15+13,15=1-1342,13=6-2+1
so that ged(15,28) = 1 and Back-Substitution gives the sequence
1, —-6,7, —13

so that (15)(—13) 4 (28)(7) = 1. Multiplying by 11 gives (15)(—143) + (28)(77) = 11, so
one solution to the equation 15k — 28¢ = 11 is given by (k,l) = (—143,77). It follows that
one solution to the pair of congruences is given by u = 2 + 15k = 2 — 15 - 143 = —2143.
Since lem(15,28) = 1528 = 420, and —2143 = —6 - 420 + 377, the general solution to the
pair of congruences is x = —2143 = 377 mod 420.

2.48 Exercise: Solve the congruence z3 + 2z = 18 mod 35.
2.49 Exercise: Solve the system x = 17 mod 25, x = 14 mod 18 and = = 22 mod 40.

2.50 Theorem: (Euler’s Totient Function) Let n = [[p;* where py,---,p, are distinct
primes and ki, ---,ky € ZT. Then

p(n) =

—

0
p(pi) = I (pi* —pi™t).
1=

=1

Proof: As mentioned earlier (in Example 2.43) when n = p* we have

Uy = {1’2,...,],’9} \ {p72p,3p’...’pk¢}

and hence ¢(p*) = p* — p*~1. Thus it suffices to prove that if k,¢ € Z with ged(k, ) = 1
then we have @(kf) = o(k)p(0).

Let k,¢ € Z with ged(k,?) = 1. Define F' : Zgy — Zy X Zy by F(x) = (z,z) where
x € Z. Note that F' is well-defined because if + = y mod kl then x = y mod k£ and
x = y mod ¢. Note that F' is bijective by the Chinese Remainder Theorem: indeed F' is
surjective because given a,b € Z there exists a solution x € Z to the pair of congruences
x =a mod k and x = b mod ¢, and F' is injective because the solution x is unique modulo
k¢. We claim that the restriction of F' to Uy, is a bijection from Uy to Ux x U,;. Note
that if x € Uye then we have ged(x, kf) = 1 so that ged(x, k) = 1 and ged(z,¢) = 1, and
hence = € Uy and z € Uy, and so we have F(z) = (x,z) € U x U;. Suppose, on the other
hand, that a € Uy, and b € Uy and let x = F~*(a,b) € Zy, so we have 2 = a mod k and
x = b mod /. Since x = a mod k we have ged(x, k) = ged(a, k) = 1 and since = b mod ¢
we have ged(z,¢) = ged(b,£) = 1. Since ged(z, k) = 1 and ged(x,¢) = 1 it follows that
ged(z, kf) = 1 and so we have x € Uyy. Thus the restriction of F' to Uy, is a well-defined
bijective map from Uy, to Uy X Uy. It follows that

@(kl) = |Ue| = |Ux x Up| = |U| - |Ue| = (k)(£),
as required.

2.51 Theorem: (The Generalized Chinese Remainder Theorem) Let { € 7", let n; € Z+
and a; € 7 for all indices i with 1 < ¢ < (. Consider the system of ¢ congruences
x = a; mod n,; for all indices i with 1 <4 < /.

(1) The system has a solution x if and only if ged(n;, nj)}(ai —aj) for all i,j, and
(2) if z = u is one solution then the general solution is * = u mod lem(ny,na, -+, ny).

Proof: The proof is left as an exercise.
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