Chapter 1. The Euclidean Algorithm and Unique Factorization

1.1 Definition: For a,b € Z we say that a divides b (or that a is a factor of b, or that
b is a multiple of a), and we write a‘b, when b = ak for some k € 7Z.

1.2 Theorem: (Basic Properties of Divisors) Let a,b,c € Z. Then

(1) al0 for all a € Z and Ola <= a = 0,

(2) a|]l <= a = %1 and 1|a for all a € Z.

(3) If a|b and b|c then alc.

(4) If a|b and bla then b = +a.

(5) If alb then |a| < |b).

(6) If alb and alc then a|(bx + cy) for all z,y € Z.

Proof: The proof is left as an exercise.

1.3 Theorem: (The Division Algorithm) Let a,b € Z with b # 0. Then there exist unique
integers q and r such that
a=qgb+rand 0 <r <|bl.

The integers q and r are called the quotient and remainder when a is divided by b.

Proof: To prove this, we shall use the floor and ceiling properties of Z in R: for every
x € R, there exists a unique positive integer n with z — 1 < n < z (this integer n is
called the floor of = we write n = |x|), and there exists a unique positive integer m with
x <m < z+1 (the integer m is called the ceiling of z and we write m = [z]).

Let a,b € Z with b # 0. Case 1: suppose that b > 0 and note that |b] = b. Choose
q= L%j then choose 7 = a — qb so that a = bg+ 7. Since 7 —1 < ¢ < ¢ and b > 0 we have
a—b<gb<a, hence —a < —gb < —a + b, and hence 0 < a — ¢gb < b, that is 0 < r < |b|.
Case 2: suppose that b < 0 and note that |b| = —b. Choose ¢ = (%w then choose r = a—qgb
so that a = gb +r. Since § < ¢ < § + 1 and —b > 0 we have —a < —gb < —a — b hence
0 <a—gb< —b, that is 0 < r < |b|. In either case, we have found ¢ and r, as required.

It remains to verify that the values of ¢ and r are unique. Suppose that a = gb + r
with 0 < r < |[b] and @ = pb+ s with 0 < s < |b|. Suppose, for a contradiction, that
r # s and say T < s so that we have 0 < r < s < |b|. Since a = gb+ r = pb + s we have
s —r =qgb—pb=(q—p)b so that b|(s — r). Since b|(s —r) we have [b| < |s —r|=s—7r
(by one of the basic properties of divisors). But since s < |b| and r» > 0 we have s —r < |b|
giving the desired contradiction. Thus we have r = s. Since r = s and s —r = (¢ — p)b we
have 0 = (¢ — p)b hence p = ¢ (since b # 0).

1.4 Note: For a,b € Z, when we write a = ¢gb + r with ¢, € Z and 0 < r < |b|, we have
bla if and only if » = 0. Indeed if r = 0 then a = ¢b so that bja and, conversely, if bla with
say a = pb = pb+ 0, then we must have ¢ = p and r = 0 by the uniqueness of the quotient
and remainder.

1.5 Definition: Let a,b € Z. A common divisor of a and b is an integer d such that
d|a and d|b. When a and b are not both 0, we denote the greatest common divisor of
a and b by ged(a,b). For convenience, we also define ged(0,0) = 0.



1.6 Theorem: (Basic Properties of the Greatest Common Divisor) Let a,b,q,r € 7Z.
(1) ged(a,b) = ged(b, a).

(2) ged(a, b) = ged(lal, [b]).

(3) If a|b then ged(a,b) = |a|. In particular, ged(a,0) = |al.

(4) If b = qa + r then ged(a,b) = ged(a, 7).

Proof: The proof is left as an exercise.

1.7 Theorem: (Bézout’s Identity) Let a and b be integers and let d = gcd(a,b). Then
there exist integers s and t such that as + bt = d. The proof provides explicit procedures
for finding d and for finding s and t.

Proof: We can find d using the following procedure, called the Euclidean Algorithm. If
bla then we have d = |b|. Otherwise, let 7_1 = a and ro = b and use the division algorithm
repeatedly to obtain integers ¢; and r; such that

r-1=a=qb+m 0<r <|al
ro =b=qor1 + 1o 0<ro<nm
r1 = @32 + 713 0<ry3 <mrg
Tk—2 = QpTk—1 T Tk 0<rp <rip—
Th—2 = qnTn—1+7Tn 0<r, <rpn_1

'm—1 = 4n+1Tn + Tn+1 T'n4+1 = 0.

Since 7,1 = @n+17n We have rn|rn_1 so ged(rp—1,7n) = Tyn. Since rg_o = qprp—1 + 1 We
have ged(rg—2,7k—1) = ged(rk—1,7%) and so

d = ged(a,b) = ged(b,ry) = ged(ry,r2) = -+ = ged(rp—2,Tn-1) = ged(rn_1,7) = rn -

Having found d using the Euclidean algorithm, as above, we can find s and t using
the following procedure, which is known as Back-Substitution. If b}a so that d = |b|,
then we can take s =0 and t = £1 to get as + bt = d. Otherwise, we let

sop=1, 81 =—qn,and spy1 =5p-1 —qnySefor 1 <l <n-—-1
and then we can take s = s,_1 and t = s,, to get as + bt = d, because, writing k =n — ¢,

d= Tn =Tn—2 — qn’n—1 = S1Tn—1 + SoTn—2

= =8Tn—t T S0-1Tn—t—1 = Sn—kTk + Sn—k—1Tk—1
= Sn—k (T‘ka - kaq) + Sp—k—1Tk—1 = (Snfk:fl - kanfk)rszl + Sp—kTk—2

= (S0-1 — Qn—1050)Tn—0—1+ SeTn—t—2 = Se+1Tn—t-1 + SeTn—r1—2

= = 8,70+ Sp—1T-1 = Snb + Spn_10.



1.8 Example: Let a = 5151 and b = 1632. Find d = gcd(a,b) and then find integers s
and ¢ so that as + bt = d.

Solution: The Euclidean Algorithm gives
5151 = 3-1632 + 255
1632 = 6 - 255 + 102
255 =2-102 + 51
102=2-51+0

so d = 51. Using the quotients g1 = 3, g2 = 6 and g3 = 2, Back-Substitution gives

so=1

$1=—q3 = —2

S =80 — @251 =1—6(—2) =13

S3 =81 —q182 = —2 — 3(13) = —41,
so we take s = so = 13 and t = s3 = —41. (It is a good idea to check that indeed we have
(1632)(—41) + (5151)(13) = 51).
1.9 Example: Let a = 754 and b = —3973. Find d = ged(a, b) then find integers s and ¢
such that as + bt = d.
Solution: The Euclidean Algorithm gives
3973 = 5-7544203 , 754 = 3-203+145, 203 = 1-145+58 , 145 = 2-58+29 , 58 = 2-29+0
so that d = 29. Then Back-Substitution gives rise to the sequence

1, =2, 3, —11, 58

so we have (754)(58) + (3973)(—11) = 29, that is (754)(58) + (—3973)(11) = 29. Thus we
can take s = 58 and ¢t = 11.
1.10 Theorem: (More Properties of the Greatest Common Divisor) Let a,b,c,d € Z.

(1) If ¢|a and c|b then c| ged(a,b).

(3) We have ged(a,b) = 1 if and only if there exist x,y € Z such that ax + by = 1.
(4) If d = ged(a,b) # 0 then ged (4, %) = 1.

(5) If albc and ged(a,b) =1 then alc.

Proof: These properties all follow from Bézout’s Identity. We shall prove Parts 1 and 5
and leave the proofs of the remaining parts as an exercise. To prove Part 1, suppose that
cla and ¢|b, say a = ck and b = cl. Let d = ged(a, b) and choose s,t € Z so that as+bt = d.
Then we have d = as + bt = cks + clt = c¢(ks + It) and so c|d.

To prove Part 5, suppose that a|bc and ged(a,b) = 1. Since a|be we can choose k € Z
so that bc = ak. Since ged(a,b) = 1, by the Bézout’s Identity, we can choose s,t € Z with
as + bt = 1. Then we have

c=c-1=c(as+bt) = acs + bet = acs + akt = a(cs + kt),

and so alc, as required.



1.11 Definition: A diophantine equation is a polynomial equation in which the vari-
ables represent integers. Some diophantine equations are fairly easy to solve while others
can be extremely difficult.

1.12 Theorem: (Linear Diophantine Equations) Let a,b,c € Z with (a,b) # (0,0). Let
d = ged(a,b) and note that d # 0. Consider the Diophantine equation ax + by = c.

(1) The equation has a solution (x,y) € Z?* if and only if d|c, and

(2) if (u,v) € Z?* is one solution to the equation then the general solution is given by
(z,9) = (u,v) + k(= %, 2) for some k € Z.

Proof: Suppose that the equation az +by = ¢ has a solution (z,y) € Z2. Choose (s,t) € Z?
so that as 4+ bt = ¢. Since d|a and d|b, it follows that d|(ax + by) for all z,y € 7Z, so in
particular d|(as+ bt), that is d|c. Conversely, suppose that d|c, say ¢ = d¢ with ¢ € Z. Use
the Euclidean Algorithm with Back-Substitution to find s,t € Z such that as + bt = d.
Multiply by ¢ to get a(sf) 4+ b(tf) = d¢ = c. Thus we can take x = ef and y = ¢/ to obtain
a solution (x,y) € Z? to the equation ax + by = c. This proves Part (1)

Now suppose that (u,v) € Z? is a solution to the given equation, so we have au—i—bv = c.
To prove Part (2), we need to prove that for all k € Z, if we let (z,y) = (u,v) +k(— 2, %)
then (x,y) is a solution to az 4+ by = ¢ and, conversely, that if (z,y) is a solution then
there exists k € Z such that (z,y) = (u,v) + k:( - 3, ).

Let k € Z and let (z,y) = (u,v) +k(—2,2). Then 2 = u— %2 and y = v+ £% and so
az +by = a(u— %) +b(v+ &) = (au + bv) — k2t —l—%‘b =au+bv=c.
Conversely, let (z,y) be a solution to the given equation, so we have ax + by = c¢. Suppose
that a # 0 (we leave the case a = 0 as an exercise). Since ax + by = ¢ and au + bu = ¢
we have az + by = au + bv and so a(x — u) = —b(y — v). Divide both sides by d to get

&z —u) = —2(y —v). Since %‘Z(y —v) and ged (%,2) = 1, it follows that 9‘(y —v).
Choose k € Z so that y — v = £2_ Since a 75 0 and a(z — u) = —b(y — v) = —£2 we have
z—u=—% and so (z,y) = (u v) + k(—%,%), as required.

1.13 Example: Let a = 426, b = 132 and ¢ = 42. Find all z,y € Z such that ax + by = c.
Solution: The Euclidean Algorithm gives
426 =3-1324+30, 132=4-30+12, 30=2-124+6, 12=2-6+0

so that d = ged(a, b) = 6. Note that d|c, indeed ¢ = df with £ = 7, so a solution does exist.
Back-Substitution gives the sequence

1,-2,9, =29

so we have a(9) + b(—29) = d. Multiply by £ = 7 to get a(63) +
solution is given by (z,y) = (63,—203). Since ¢ = 426 = 71 and

general solution is (z,y) = (63, —203) + k(—22,71).

1.14 Exercise: Let a = 4123, b = 17689 and ¢ = 798. Find all z,y € Z with 0 <y < 100
such that ax + by = c.

b(—203) = ¢, so one
b _ 132
- - 3—7—22 The



1.15 Definition: Let n be a positive integer. We say that n is a prime number when
n > 2 and n has no factor a € Z with 1 < a < n. We say that n is composite when n > 2
and n is not prime, that is when n does have a factor a € Z with 1 < a < n.

1.16 Theorem: (Basic Properties of Primes) Let p be a prime number.
(1) For all a € Z we have ged(a,p) € {1,p} with ged(a,p) = p if and only if p|a.
(2) For all a,b € Z, if p|ab then either p|a or pl|b.

Proof: Part 1 follows directly from the definition of a prime number the definition of
ged(a, p). Part 2 then follows from Part 5 of Theorem 1.10.

1.17 Theorem: Every integer n > 2 has a prime factor. Every composite integer n > 2
has a prime factor p with p < /n.

Proof: Let n > 2. Suppose, inductively, that every integer k with 2 < k < n has a prime
factor. If n is prime, then n is a prime factor of itself, so n has a prime factor. Suppose
that n is composite. Let a be a factor of n with 1 < a < n. By the induction hypothesis,
a has a prime factor. Let p be a prime factor of a. Since p|a and a|n we have p|n, and
so p is a prime factor of n. It follows, by induction, that every integer n > 2 has a prime
factor.

Now suppose that n is composite. Write n = ab where a,b € Z with 1 < a < b < n.
Note that a < y/n because if we had a > /n then we would also have b > a > /n so that
n = ab > y/ny/n = n which is impossible. Let p be a prime factor of a. Since p|a and a|n
we have p|n so that p is a prime factor of n. Since pla and a < /n we have p < a < \/n.

1.18 Note: Given an integer n > 2, we can list all primes p with p < n using the
following procedure, which is called the Sieve of Eratosthenes. We begin by listing all
the integers from 1 to n, and we cross off the number 1 (1 is a unit; it is not a prime). We
circle the smallest remaining number p; (namely p; = 2, which is prime) then we cross off
all other multiples of p; (which are composite). We circle the smallest remaining number
p2 (namely po = 3, which is prime) then we cross off all other multiples of py (which are
all composite). At the k' step of the procedure, when we circle the smallest remaining
number pg, it must be prime because if pi, was composite then it would have a prime factor
p; with p; < px, but we have already found all primes p; < pr and we have already crossed
off all their multiples. We continue the procedure until we have circled a prime p, with
pe > +/n and crossed off its multiples. At this stage we circle all of the remaining numbers
in the list because they are all prime. Indeed, if a remaining number m was composite
then it would have a prime factor p with p < {/m < /n, but we have already found all
primes p with < y/n and crossed off all their multiples.

1.19 Exercise: Use the Sieve of Eratosthenes to list all primes p with p < 100.
1.20 Theorem: (Euclid) There exist infinitely many prime numbers.

Proof: Suppose, for a contradiction, that there exist finitely many prime numbers. Let
P1,P2, -, pe be all of the prime numbers. Consider the number n = pips---ps + 1. By
Theorem 1.17, the number n has a prime factor and so pg|n for some index k. But py is
not a factor of n because when we write n = ¢pi + 7 as in the Division Algorithm, we find
that the remainder is r = 1 # 0 (and the quotient is ¢ = [] pi).
ik

1.21 Example: Note that there exist arbitrarily large gaps between consecutive prime
numbers because, given a positive integer m > 2, we have 2|(m!+2), 3|(m!+3), 4|(m!+4)
and so on, so the consecutive numbers m!+2, m!+3, m!4+4, --- , m!+m are all composite.



1.22 Remark: Here are a few facts about prime numbers which are difficult to prove.
(1) Bertrand’s Postulate: for every integer n > 1 there exists a prime p with n < p < 2n.
(2) Dirichlet’s Theorem: for all positive integers a, b with ged(a, b) = 1, there exist infinitely
many primes of the form p = a + kb for some k € N.

(3) The Prime Number Theorem: for x € R, let 7(z) be the number of primes p with

p < x. Then lim m(z) =1
z—oo x/Inx

1.23 Remark: Here are a few statements about prime numbers which are conjectured to
be true, but for which no proof has, as yet, been found.

1) Legendre’s Conjecture: for every n € ZT there exists a prime p with n? < p < (n+1)2.

2) Goldbach’s Conjecture: every even integer n > 4 is the sum of two prime numbers.

(1)
(2)
(3) Twin Primes Conjecture: there exist infinitely many p for which p and p+ 2 are prime.
(4) The n? + 1 Conjecture: there exist infinitely many primes p = n? + 1 with n € Z7.
(5)

5) Mersenne Primes Conjecture: there exist infinitely many primes p = 2¥ —1 with k € Z*.

(6) Fermat Primes Conjecture: there exist finitely many primes p = 2% + 1 with k € N.

1.24 Theorem: (The Fundamental Theorem of Arithmetic, or The Unique Factorization
¢
Theorem) Every integer n > 2 can be written uniquely in the formn = [] pr = pip2 - pe
k=1
where ¢ € Z" and the p;, are primes with p; < py < -+ < py.

Proof: First we prove the existence of such a factorization. Let n be an integer with n > 2

and suppose, inductively, that every integer k with 2 < k£ < n can be written in the required
‘

form. If n is prime then we can write n = [[ pr = p1 with £ = 1 and p; = n. Suppose
k=1
that n is composite. Write n = ab where a,b € Z with 1 < a <nand 1 < b < n. By

the induction hypothesis, we can write @ = ¢i1¢2---q¢ and b = riry - - -1, where £,m € Z*
and the p; and ¢; are primes with p; < py < --- < pyand ¢1 < ¢ < --- < ¢g. Then
n=qiqa- - qrira - Tm = P1P2 - - - Potm Where the ordered (£+m)-tuple (p1,p2, ", Prtm)
is obtained from the ordered (¢+ m)-tuple (q1,q2, -, qe, 71,72, -+, Tm) by rearranging the
terms into non-decreasing order.

Let us prove uniqueness. Suppose that n = pips---pr = q1q2 - - - ¢, Where £,m € ZT
and the p; and ¢; are primes with p; < py <--- <ppand ¢t < g2 < -+ < qp,. We need
to prove that ¢ = m and that p; = ¢; for every index i. Since n = pips---ps we see that
p1|n and so p’qlqg -+ qm. By applying Part (2) of Theorem 5.12 repeatedly, it follows that
p1|qi for some index 7. Since p1|g; and g; is prime, we must have p; € {+1,+¢;}. Since
p1 is prime, we have p; > 1. Since p; > 1 and p; € {£1, +¢;} it follows that p; = ¢;. A
similar argument shows that ¢; = p; for some index j. Since p1 = ¢; > q1 = p; > p1, it
follows that p; = ¢.

Since p1p2--pe = Q192 ---q¢m and p; = q1, we can divide both sides by p; to get
P2pP3 - -Pe = Q2q3---¢m. By repeating the above argument, we can show that ps = qo,
then we can divide both sides by ps = g5 to get p3---pr = q3- - ¢ and so on.

If we had ¢ # m, say ¢ < m, repeating the above procedure would eventually yield
De = Geqe+1 -+ - Gm With pp = q¢ and then 1 = gp11 - - - ¢, Which is not possible since each
q; > 1. Thus we must have ¢ = m and repeating the above procedure gives p; = ¢; for all
indices 7, as required.



1.25 Note: Here are two alternate ways of expressing the Unique Factorization Theorem.
¢
(1) Every integer n > 2 can be written uniquely in the form n = [] p;” = p1™* - p,™
i=1
where ¢ € ZT and the p; are distinct primes with p; < ps < --- < py and each m; € Z™.
(2) Given distinct primes pq, pa, - -, pe, every n € ZT whose prime factors are included in
¢
{p1,--+,pe} can be written uniquely in the form n = [] p;"" = p1™* - - - p"™* with m; € N.
i=1

1.26 Theorem: (Unique Factorization and Divisors) Let n = p1™ps™2 - p," where
¢ € 7T, the p; are distinct primes, and each m; € N. Then the positive divisors of n are
the numbers of the form a = p17*py?2 - - - py' where each j; € Z with 0 < j; < m;.

Proof: Suppose that n = p;™'py™2 ---p, and a = p171ps?2 - - - pe?? where p1,pa, -+, pe
are distinct primes and 0 < j; < m; for all indices i. Let b = p1Fipok2 o ppke where
k; = m; — j; (note that k; > 0 since j; < m;). Then

k1| 1j1+k1 X my

ab= (pr”* - -p?) (™ - p™) = p cpdtR =™ =
and so a|n.

Conversely, suppose that n = p™'p."™2 - -p, as above, and let a be a positive
divisor of n. Let p be any prime factor of a. Since p|a and a|n we have p|n. Since p|n
and n = p;"py""2 - - - py" we have p|p; for some index i. Since p and p; are both prime
and p|p;, we have p = p;. This proves that every prime factor of a is among the primes
pi,p2, -, pe. It follows that a can be written in the form a = p17*py?2 - - - p,7¢ with each
Ji € N. It remains to show that j; < m;.

Since a|n we can choose b € Z so that n = ab. Since n and a are positive, so is b.
Since b is a positive factor of n, the above argument shows that every prime factor of b is
among the primes pi,pa, - - -, pe and so we can write b = p1*1ps*2 - . p,/* for some k; € N.
Since n = ab we have

Jit+ki Ejz-Hw‘

1™ P2 pe™ == ab = (p17* - pt) (pr - pe™) = pa p

By the uniqueness of prime factorization, it follows that m; = j; + k; for all indices 7. Since
k; > 0 it follows that j; = m; — k; < m;, as required.

1.27 Definition: For a,b € Z, a common multiple of a and b is an integer m such that
alm and blm. When a and b are both nonzero, we define the least common multiple
of a and b, denoted by lcm(a,b), to be the smallest positive common multiple of a and b.
For convenience, we also define lem(a,0) = lem(0,a) = 0 for a € Z.

¢ ¢
1.28 Theorem: Let a = [] p;/* and b = [] p;* where ¢ € Z7T, the p; are distinct primes,
i=1 i=1
and j;,k; € N. Then
¢ o
(1) ged(a,b) = [T pi™" ek,
i=1
£ ji K
(2) lem(a,b) = ] pima"{”’ "}, and
i=1
(3) ged(a,b) - lem(a,b) = ab.

Proof: The proof is left as an exercise.

1.29 Exercise: Define, and find similar formulas for, ged(aq, - -+, ar) and lem(aq,-- -, ay).



1.30 Definition: For a prime p and a positive integer n, the exponent of p in (the
prime factorization of ) n, denoted by e(p,n), is defined as follows. We write n in the form
n = p™tpy™2 - p, where the p; are distinct primes and each m; € N, then we define
e(p,n) = m; if p = p; and we define e(p,n) = 0 if p # p; for any index 1.

1.31 Exercise: Show that e(p,n!) = [ 7]+ [Jz]+ [J5] +- - and that [ %] = U%J/pJ

1.32 Example: Since e(5,100!) = [120] 4+ [10] 4+ [{99] + .- =20+ 4+ 0 = 24 and
e(2,100!) > 24, it follows that the number 100! ends with exactly 24 zeros in its decimal

representation.

1.33 Definition: For a positive integer n, we write 7(n) to denote the number of positive
divisors of n, we write o(n) to denote the sum of the positive divisors of n, and we write
p(n) to denote the product of the positive divisors of n. It is common to write

T(n)=>.1, c(n)=>.d, and p(n) =[] d.
d|n d|n

d|n

¢
1.34 Theorem: Let n = [] p;* where py,pa,---,p; are distinct primes and each k; € N.
i=1
ki+1_q

V4 V4
Then we have 7(n) = 11;[1(]% +1), 0(n) = Zl;ll psz and p(n) = nT(M/2,

Proof: The positive divisors of n are of the form d = p17ipy72 -+ p,7¢ with 0 < j; < k;

for each index i. Since there are (k; + 1) choices for the index i, there are a total of
¢

(k1 +1)(ka+1)---(ke+ 1) choices for the positive divisor d, so we have 7(n) = [ (k; +1).
i=1
Also, again since the positive divisors of n are of the form d = p;7ipy?2 - - - py/¢ with
0 < j; < k; for each index i, we have

oy = Z Z Z Z p1j1p2j2_,,p€_1k£71p£je

0<71<k1 0<j2<k2 0<jr—1<kr—1 0<7,<ky

= > D> > p1j1pzj2---pe_1ké—1( > pe”)

0<j1<k1 0<j2<k2 0<je—1<ke1 0<je<ke
0<j1<k 0<j2<ks 0<7e<ke

=(U+p+p®+ - +p") (et p™) - (Lt pe+ -+ po™)

V4
_ p Pt _q pat2 11\ (ptetiog _ H pikitt_1
p1—1 p2—1 pe—1 pi—1

1=

To obtain the formula for p(n), note that each positive factor d of n can be paired

with the corresponding positive factor % so we have p(n)? = }‘_[ d-5=1[n= n™(),

d|n
1.35 Definition: An arithmetic function is any real- or complex-valued function whose
domain is the set of positive integers Z™. For an arithmetic function f, we say that f is
multiplicative when f(ab) = f(a)f(b) for all a,b € Z* with ged(a,b) = 1, and we say
that f is completely multiplicative when f(ab) = f(a)f(b) for all a,b € Z*.

1.36 Example: The divisors function 7 and the sum of divisors function o are both
multiplicative arithmetic functions. The product of divisors function p is not multiplicative.



