Chapter 2. Subgroups

2.1 Definition: A subgroup of a group G is a subset H C G which is also a group using
the same operation as in G. When H is a subgroup of G, we write H < G.

2.2 Example: In any group G we have the subgroups {e} < G and G < G. The group {e}
is called the trivial group. A subgroup H < GG with H # G is called a proper subgroup
of G.

2.3 Example: We have Z < Q <R < C. and we have Z* < Q* < R* < C*.

2.4 Example: Note that Z, = {0,1,---,n — 1} is not a subgroup of Z, indeed it is not
even a subset. Also, U, is not a subgroup of Z,, since it uses a different operation.

2.5 Theorem: (The Subgroup Test I) Let G be a group and let H C G. Then H < G if
and only if

(1) H contains the identity, that is e € H,
(2) H is closed under the operation, that is ab € H for all a,b € H, and
(3) H is closed under inversion, that is a=* € H for alla € H.

Proof: Note first that the operation on the group G restricts to a well defined operation
on H if and only if H is closed under the operation. In this case, the operation will be
associative on H since it is associative on G. Next note that if e = e, € H then e is an
identity element for H, and conversely if e, is an identity for H then since e, e, = e,
(both in H and in G, cancellation in the group G gives e,, = e.. Thus H has an identity
if and only if e,, = e, € H. A similar argument shows that a given element a € H has an
inverse in H if and only if a=! € H where a~! denotes the inverse of a in G.

2.6 Theorem: (The Subgroup Test 1I) Let G be a group and let H C G. Then H < G
if and only if

(1) H # 0, and

(2) for all a,b € H we have ab~! € H.

Proof: From the Subgroup Test I, it is clear that if H < G then (1) and (2) hold. Suppose,
conversely, that (1) and (2) hold. By (1) we can choose an element a € H, and then by (2)
we have e = aa~! € H, so H contains the identity. For a € H, we have a ™! = ea™! € H
by (2), so H is closed under inversion. For a,b € H, we have ab = a(b=')"! € H, so H is
closed under the operation.

2.7 Theorem: (The Finite Subgroup Test) Let G be a group and let H be a finite subset
of H. Then H < G if and only if

(1) H # (), and

(2) H is closed under the operation, that is ab € H for all a,b € H.

Proof: The proof is left as an exercise.

2.8 Example: The set {(x, y) € Rﬂxy > O} is not a subgroup of R? since it is not closed
under addition.



2.9 Example: For n € Z1 we have C,, < C < S' < C* where
C, = {z € C*|z” = 1}
Cw = {z € C*|z" =1 for some n € Z+}
St = {z € (C*|||z|| =1}

2.10 Example: Given a commutative ring R, in the general linear group GL,(R) we
have the following subgroups, called the special linear group, the orthogonal group
and the special orthogonal group.

SL,(R) = {A € M,(R)|det(A) =1}
On(R) = {A € M,(R)|ATA =T}
SOn(R) = {A € M,(R)|ATA = I,det(A) = 1}
2.11 Example: For § € R, the rotation in R? about (0,0) by the angle @ is given by the

matrix
cosf) —sin6
Fo = (sin9 cos 6 )
and the reflection in R? in the line through (0,0) and the point (cos 9 sin Q) is given by

2>°H 5
the matrix
- cosf sind
7 \sinh —cosf |-

O2(R) = {R@,Fg‘@ € R}
SO2(R) = {Rg|6 € R}
In O3(R), for a, 5 € R we have
Fgly = Rg_o , FgRy = Fp_o , Rty = Foi, RgRy = Ratp -

We have

2.12 Example: For n € Z*, the dihedral group D,, is the group
Dy, ={Ry, Fplk € Zn} = {Ro, Ry, -, Rn—1, Fo, F1,- -+ Fr_1 }

where for k € Z,, we write Ry = Ry, and F}, = Fy, with 0 = % We have

D, < 05(R) < GLy(R) < Perm(R?)
and for k,l € Z,, the operation in D,, is given by

FiFy=F_k, Ry =F_ , RiFy=Fxy, RiRr = Rp41 -
2.13 Definition: Let G be a group and let a € G. The centre of GG is the set
Z(G) = {a € Glax = za for all x € G}

and the centralizer of a in G to be the set

C(a) = C,(a) = {z € Glaz = za} .
As an exercise, show that Z(G) and C (a) are both subgroups of G.
2.14 Example: Find the centre of D4 and find the centralizers of Ry and F}) in Djy.



2.15 Example: If H and K are subgroups of G then so is H N K. More generally, if A

is a set and H, < G for each o € A, then (| H, < G by the Subgroup Test II. Indeed
a€A

we have e, € H,, for all « € A so that e, € () H,, and if a,b € (| H, then for every

acA
a € A we have a,b € H, hence ab™! € H,, and so ab™! € (| H,.
acA

2.16 Definition: Let G be a group and let S C G. The subgroup of G generated by 5,
denoted by (5), is the smallest subgroup of G which contains S, that is the intersection of all
subgroups of G which contain S. The elements of S are called generators of the group (5).
When S is a finite set, we omit set brackets and write (a1, a2, -+, a,) = <{a1, as, -, an}>.
A cyclic subgroup of G is a subgroup of the form (a) for some a € G. For a € G, the
subgroup (a) is called the cyclic subgroup of G generated by a. When G = (a) for
some a € G we say that G is cyclic.

a€A

2.17 Theorem: (Elements of a Cyclic Group) Let G be a group and let a € G. Then
(1) we have {ak‘k €Z}.
(2) If |a| = o0 then the elements a* with k € Z are all distinct so we have |(a)| = cc.
(3) If |a| = n then for k,{¢ € Z we have a* = a* <= k ={ mod n and so

= {aﬂk € Z”} = {e,a,aQ,---,a”_l}
with the listed elements all distinct so that ’ a | = n. In particular, a* = e <~ n|k

Proof: First we show that (a) = {ak‘k € Z}. By definition, (a) is the intersection of all
subgroups H < G with a G H By closure under the operation and under inversion, if
H < G with a € H then a* € H for all k € Z, and so {a*|k € Z} C (a). On the other
hand, since e = a°, a*(a')~! = ak_l, we see that {a*|k € Z} is a subgroup of G (by the

Subgroup Test) and we have a = a' € {ak’k: € Z} and so {ak‘k E Z}
Now suppose that |a| = co and suppose, for a contradlctlon that a* = a® with k < .
Then a*=% = a’(a*)~! = a*(a’)~! = e but this Contradlcts the fact that |a| =

Next suppose that |a| = n. Suppose that a* = a*. Then, as above, a‘~ k = e. Write
{—k=gqn+rwith0<r <n. Thene=a’" k—aq”+’":(a )9a” = a”. Since |a] = n
we must have r = 0. Thus ¢ — k = gn, that is £k = £ mod n. Conversely, suppose that
k = ¢ mod n, say k = £ + gn. Then o = a*t9" = a*(a™)9 = a’.

2.18 Notation: When G is an abelian group under +, we have (a) = {kalk € Z}.

2.19 Example: The groups Z and Z,, are cyclic with Z = (1) and Z,, = (1). The group
C,, = {z € C*|z" = 1} is cyclic with C), = <ei27f/”>_

2.20 Example: In the group Z we have (2) = {---,-2,0,2,4,---}, but in the group R*
we have (2) = {---1,5,1,2,4,8,--- }.

2.21 Example: The group Ujs = {1,5,7,11,13,17} is cyclic with U;s = (5) because in

Uis we have
3 4 5

1 2
5 7 17 13 11



2.22 Example: If G and H are groups then |G x H| = |G| |H|. For a € G and b € H,
@ 8)] = lem(Jal, 1)
Indeed if |a] = n and |b| = m then for k € Z we have

(a,b)k:e — (ak,bk):(ec,eH)

— (ak = e, and b* = ey)

GXH

= n!k and m‘k)
<= k is a common multiple of n and m.

2.23 Theorem: (The Classification of Subgroups of a Cyclic Group) Let G be group and
let a € G.

(1) Every subgroup of (a) is cyclic.

(2) If |a| = oo then (a*) = (a*) <= E = ik: so the distinct subgroups of (a) are the

trivial group (a®) = {e} and the groups (a?) = {a*¥|k € Z} with d € Z*.
(3) If |a| = n then we have (a > = <a€) < gcd(k,n) = gcd(é n) and so the distinct
subgroups of {(a) are the groups ( = {akd‘k € Zn/d} {a a?, a?? --~,a”_d} where d

is a positive divisor of n.

Proof: First we show that every subgroup of (a) is cyclic. Let H < (a). If H = {e} then
H = (e), which is cyclic. Suppose that H # {e}. Note that H contains some element of
the form a* with k € Z* since we can choose a’ € H for some £ # 0, and if £ < 0 then we
also have a=* = (a*)~! € H. Let k be the smallest positive integer such that a* € H. We
claim that H = (a*). Since a* € H, by closure under the operation and under inversion we
have (a*)/ € H for all j € Z and so {a*) C H. Let a* € H, where ¢ € Z. Write £ = kq +r
with 0 <7 < k. Then a* = a*%a" so we have a” = a’(a*?)~! € H. By our choice of k we
must have r = 0 , so £ = gk and so a’ € (a*). Thus H C (a*).

Suppose that |a| = oo. If £ = £k then clearly (a*) = (a*). Suppose that (a’) = (a").
Since a” € (a*) we have k = (t for some t € Z, so {|k. Similarly, since a‘ € (a*) we have
k’ﬁ. Since k!ﬁ and E‘k we have ¢ = £k.

Now suppose that |a| = n. Note first that for any divisor d !n we have

{adk‘keZn/d} {a a® a?, .. a"" d}

with the listed elements distinct so that |a?| = We claim that (a*) = (a?) where
d = ged(k,n). Since d|k; we have a* € (a?) so (a¥) C (ad>. Choose s,t € Z so that
ks +nt = d. Then a¢ = a*+"t = ( F)s(a™)t = (a¥)* € (a*) and so (a?) C (a*). Thus
(a*) = (a?), as claimed. Now if (a > (a*) and d = gc d(k' n) and ¢ = ged(¢,n) then
(a?) = (a*) = (a*) = (a°) and so |(a®)| = ’ ©)|, that is % = 2, and so d = c¢. Conversely,
if d = ged(k,n) = ged(¢,n) = c then we have (a*) = (a) = (a).

%
(a

2.24 Corollary: (Orders of Elements in a Cyclic Group) Let G be a group and let a € G.
(1) If |a] = oo then |a°| = 1 and a* = oo for k # 0, and

(2) if |a| = n then |a*| = FICEOR

2.25 Corollary: (Generators of a Cyclic Group) Let G be a group and let a € G. Then
(1) if |a| = oo then {(a*) = (a) <= k = +1, and

(2) if |a| = n then (a*) = (a) <= ged(k,n) =1 <= k€ U,.



2.26 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let G be
a group and let a € G with |a| = n. Then for each k € Z, the order of a* is a positive
divisor of n, and for each positive divisor d ‘n, the number of elements in (a) of order d is
equal to ¢(d).

2.27 Corollary: For n € Z* we have > ¢(d) = n.
d|n

2.28 Corollary: (The Number of Elements of Each Order in a Finite Group) Let G be
a finite group. For each d € 7", the number of elements in G of order d is equal to p(d)
multiplied by the number of cyclic subgroups of G of order d.

2.29 Theorem: (Elements of (S)) Let G be a group and let ) #.S C G. Then
(S) = {a1k1a2k2 . --agkf|£ >0,a; € S,k; € Z}
= {a1k1a2k2 . --agke|€ > 0,a; € S with a; # a;41,0 # k; € Z}
where the empty product (when ¢ = 0) is the identity element. If G is abelian then
(S) = {alklagkz . ~agk‘~"€ > 0,a; € S with a; # a; fori# 5,0 # k; € Z}.
Proof: The proof is left as an exercise.
2.30 Notation: If G is an abelian group under + then
(S) = SpanZ{S} = {k1a1 + koaog + -+ + kgag|€ > 0,a;, € S with a; # a;,0 #k; € Z}.
2.31 Example: As an exercise, show that in Z we have (k, ) = (d) where d = ged(k, ?).

2.32 Example: In Z2, the elements of <(1, 3), (2, 1)> are the vertices of parallelograms
which cover R2.

2.33 Example: We have D,, = <R1, Fy) in O2(R) because Ry, = R, and F), = Ry Fp.
2.34 Definition: Let S be a set. The free group on S is the set whose elements are
F(9) = {alklagkz . --agl‘“’ﬁ >0,a; € S,0#£k; € Z}
with the operation given by concatenation
(a7 -+ @) (b - b ) = a7t @ by B by B

followed by grouping and cancellation in the sense that if ay = b; then we replace agdtb ™
by ag7¢t*1 and if, in addition, j, + k1 = 0 then we omit the term a,° and perform further
grouping if ay_; = be. For example, in F'(a,b) we have

(ab®a3b) (b ta®ba?) = ab*a bbb 'aPba? = ab’aa’ba " = ab*ba % = ab’a 2.
Note that in the free group F(S) we have F'(S) = (5).
2.35 Definition: Let S be a set. The free abelian group on S is the set
A(S) = {klal —|—---—|—kgag|€ >0,a; € S with a; # a;,0 #k; € Z}.

If we identify the element kiai + koas + - - - + kyay with the function f : S — Z given by
f(a;) = k; and f(a) = 0 for a # a; for any i, then we can identify A(S) with the set

AS)= Y Z={f:5—Z|f(a) =0 for all but finitely many a € S}.
a€sS

Under this identification, we use the operation given by (f + g)(a) = f(a) + g(a).



