

Chapter 2. Subgroups

2.1 Definition: A **subgroup** of a group G is a subset $H \subseteq G$ which is also a group using the same operation as in G . When H is a subgroup of G , we write $H \leq G$.

2.2 Example: In any group G we have the subgroups $\{e\} \leq G$ and $G \leq G$. The group $\{e\}$ is called the **trivial** group. A subgroup $H \leq G$ with $H \neq G$ is called a **proper** subgroup of G .

2.3 Example: We have $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$. and we have $\mathbb{Z}^* \leq \mathbb{Q}^* \leq \mathbb{R}^* \leq \mathbb{C}^*$.

2.4 Example: Note that $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ is not a subgroup of \mathbb{Z} , indeed it is not even a subset. Also, U_n is not a subgroup of \mathbb{Z}_n since it uses a different operation.

2.5 Theorem: (The Subgroup Test I) Let G be a group and let $H \subseteq G$. Then $H \leq G$ if and only if

- (1) H contains the identity, that is $e \in H$,
- (2) H is closed under the operation, that is $ab \in H$ for all $a, b \in H$, and
- (3) H is closed under inversion, that is $a^{-1} \in H$ for all $a \in H$.

Proof: Note first that the operation on the group G restricts to a well defined operation on H if and only if H is closed under the operation. In this case, the operation will be associative on H since it is associative on G . Next note that if $e = e_G \in H$ then e is an identity element for H , and conversely if e_H is an identity for H then since $e_H e_H = e_H$ (both in H and in G), cancellation in the group G gives $e_H = e_G$. Thus H has an identity if and only if $e_H = e_G \in H$. A similar argument shows that a given element $a \in H$ has an inverse in H if and only if $a^{-1} \in H$ where a^{-1} denotes the inverse of a in G .

2.6 Theorem: (The Subgroup Test II) Let G be a group and let $H \subseteq G$. Then $H \leq G$ if and only if

- (1) $H \neq \emptyset$, and
- (2) for all $a, b \in H$ we have $ab^{-1} \in H$.

Proof: From the Subgroup Test I, it is clear that if $H \leq G$ then (1) and (2) hold. Suppose, conversely, that (1) and (2) hold. By (1) we can choose an element $a \in H$, and then by (2) we have $e = aa^{-1} \in H$, so H contains the identity. For $a \in H$, we have $a^{-1} = ea^{-1} \in H$ by (2), so H is closed under inversion. For $a, b \in H$, we have $ab = a(b^{-1})^{-1} \in H$, so H is closed under the operation.

2.7 Theorem: (The Finite Subgroup Test) Let G be a group and let H be a finite subset of G . Then $H \leq G$ if and only if

- (1) $H \neq \emptyset$, and
- (2) H is closed under the operation, that is $ab \in H$ for all $a, b \in H$.

Proof: The proof is left as an exercise.

2.8 Example: The set $\{(x, y) \in \mathbb{R}^2 \mid xy \geq 0\}$ is not a subgroup of \mathbb{R}^2 since it is not closed under addition.

2.9 Example: For $n \in \mathbb{Z}^+$ we have $C_n \leq C_\infty \leq S^1 \leq \mathbb{C}^*$ where

$$\begin{aligned} C_n &= \{z \in \mathbb{C}^* \mid z^n = 1\} \\ C_\infty &= \{z \in \mathbb{C}^* \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\} \\ S^1 &= \{z \in \mathbb{C}^* \mid \|z\| = 1\} \end{aligned}$$

2.10 Example: Given a commutative ring R , in the general linear group $GL_n(R)$ we have the following subgroups, called the **special linear group**, the **orthogonal group** and the **special orthogonal group**.

$$\begin{aligned} SL_n(R) &= \{A \in M_n(R) \mid \det(A) = 1\} \\ O_n(R) &= \{A \in M_n(R) \mid A^T A = I\} \\ SO_n(R) &= \{A \in M_n(R) \mid A^T A = I, \det(A) = 1\} \end{aligned}$$

2.11 Example: For $\theta \in \mathbb{R}$, the **rotation** in \mathbb{R}^2 about $(0, 0)$ by the angle θ is given by the matrix

$$R_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

and the **reflection** in \mathbb{R}^2 in the line through $(0, 0)$ and the point $(\cos \frac{\theta}{2}, \sin \frac{\theta}{2})$ is given by the matrix

$$F_\theta = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

We have

$$\begin{aligned} O_2(\mathbb{R}) &= \{R_\theta, F_\theta \mid \theta \in \mathbb{R}\} \\ SO_2(\mathbb{R}) &= \{R_\theta \mid \theta \in \mathbb{R}\} \end{aligned}$$

In $O_2(\mathbb{R})$, for $\alpha, \beta \in \mathbb{R}$ we have

$$F_\beta F_\alpha = R_{\beta - \alpha}, \quad F_\beta R_\alpha = F_{\beta - \alpha}, \quad R_\beta F_\alpha = F_{\alpha + \beta}, \quad R_\beta R_\alpha = R_{\alpha + \beta}.$$

2.12 Example: For $n \in \mathbb{Z}^+$, the **dihedral group** D_n is the group

$$D_n = \{R_k, F_k \mid k \in \mathbb{Z}_n\} = \{R_0, R_1, \dots, R_{n-1}, F_0, F_1, \dots, F_{n-1}\}$$

where for $k \in \mathbb{Z}_n$ we write $R_k = R_{\theta_k}$ and $F_k = F_{\theta_k}$ with $\theta_k = \frac{2\pi k}{n}$. We have

$$D_n \leq O_2(\mathbb{R}) \leq GL_2(\mathbb{R}) \leq \text{Perm}(\mathbb{R}^2)$$

and for $k, l \in \mathbb{Z}_n$, the operation in D_n is given by

$$F_l F_k = F_{l-k}, \quad F_l R_k = F_{l-k}, \quad R_l F_k = F_{k+l}, \quad R_l R_k = R_{k+l}.$$

2.13 Definition: Let G be a group and let $a \in G$. The **centre** of G is the set

$$Z(G) = \{a \in G \mid ax = xa \text{ for all } x \in G\}$$

and the **centralizer** of a in G to be the set

$$C(a) = C_G(a) = \{x \in G \mid ax = xa\}.$$

As an exercise, show that $Z(G)$ and $C_G(a)$ are both subgroups of G .

2.14 Example: Find the centre of D_4 and find the centralizers of R_k and F_k in D_4 .

2.15 Example: If H and K are subgroups of G then so is $H \cap K$. More generally, if A is a set and $H_\alpha \leq G$ for each $\alpha \in A$, then $\bigcap_{\alpha \in A} H_\alpha \leq G$ by the Subgroup Test II. Indeed we have $e_G \in H_\alpha$ for all $\alpha \in A$ so that $e_G \in \bigcap_{\alpha \in A} H_\alpha$, and if $a, b \in \bigcap_{\alpha \in A} H_\alpha$ then for every $\alpha \in A$ we have $a, b \in H_\alpha$ hence $ab^{-1} \in H_\alpha$, and so $ab^{-1} \in \bigcap_{\alpha \in A} H_\alpha$.

2.16 Definition: Let G be a group and let $S \subseteq G$. The **subgroup of G generated by S** , denoted by $\langle S \rangle$, is the smallest subgroup of G which contains S , that is the intersection of all subgroups of G which contain S . The elements of S are called **generators** of the group $\langle S \rangle$. When S is a finite set, we omit set brackets and write $\langle a_1, a_2, \dots, a_n \rangle = \langle \{a_1, a_2, \dots, a_n\} \rangle$. A **cyclic subgroup** of G is a subgroup of the form $\langle a \rangle$ for some $a \in G$. For $a \in G$, the subgroup $\langle a \rangle$ is called the **cyclic subgroup of G generated by a** . When $G = \langle a \rangle$ for some $a \in G$ we say that G is **cyclic**.

2.17 Theorem: (Elements of a Cyclic Group) Let G be a group and let $a \in G$. Then

- (1) we have $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$.
- (2) If $|a| = \infty$ then the elements a^k with $k \in \mathbb{Z}$ are all distinct so we have $|\langle a \rangle| = \infty$.
- (3) If $|a| = n$ then for $k, \ell \in \mathbb{Z}$ we have $a^k = a^\ell \iff k = \ell \pmod{n}$ and so

$$\langle a \rangle = \{a^k \mid k \in \mathbb{Z}^n\} = \{e, a, a^2, \dots, a^{n-1}\}$$

with the listed elements all distinct so that $|\langle a \rangle| = n$. In particular, $a^k = e \iff n \mid k$.

Proof: First we show that $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$. By definition, $\langle a \rangle$ is the intersection of all subgroups $H \leq G$ with $a \in H$. By closure under the operation and under inversion, if $H \leq G$ with $a \in H$ then $a^k \in H$ for all $k \in \mathbb{Z}$, and so $\{a^k \mid k \in \mathbb{Z}\} \subseteq \langle a \rangle$. On the other hand, since $e = a^0$, $a^k(a^\ell)^{-1} = a^{k-\ell}$, we see that $\{a^k \mid k \in \mathbb{Z}\}$ is a subgroup of G (by the Subgroup Test) and we have $a = a^1 \in \{a^k \mid k \in \mathbb{Z}\}$, and so $\langle a \rangle \subseteq \{a^k \mid k \in \mathbb{Z}\}$.

Now suppose that $|a| = \infty$ and suppose, for a contradiction, that $a^k = a^\ell$ with $k < \ell$. Then $a^{\ell-k} = a^\ell(a^k)^{-1} = a^\ell(a^\ell)^{-1} = e$ but this contradicts the fact that $|a| = \infty$.

Next suppose that $|a| = n$. Suppose that $a^k = a^\ell$. Then, as above, $a^{\ell-k} = e$. Write $\ell - k = qn + r$ with $0 \leq r < n$. Then $e = a^{\ell-k} = a^{qn+r} = (a^n)^q a^r = a^r$. Since $|a| = n$ we must have $r = 0$. Thus $\ell - k = qn$, that is $k = \ell \pmod{n}$. Conversely, suppose that $k = \ell \pmod{n}$, say $k = \ell + qn$. Then $a^k = a^{\ell+qn} = a^\ell(a^n)^q = a^\ell$.

2.18 Notation: When G is an abelian group under $+$, we have $\langle a \rangle = \{ka \mid k \in \mathbb{Z}\}$.

2.19 Example: The groups \mathbb{Z} and \mathbb{Z}_n are cyclic with $\mathbb{Z} = \langle 1 \rangle$ and $\mathbb{Z}_n = \langle 1 \rangle$. The group $C_n = \{z \in \mathbb{C}^* \mid z^n = 1\}$ is cyclic with $C_n = \langle e^{i2\pi/n} \rangle$.

2.20 Example: In the group \mathbb{Z} we have $\langle 2 \rangle = \{\dots, -2, 0, 2, 4, \dots\}$, but in the group \mathbb{R}^* we have $\langle 2 \rangle = \{\dots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \dots\}$.

2.21 Example: The group $U_{18} = \{1, 5, 7, 11, 13, 17\}$ is cyclic with $U_{18} = \langle 5 \rangle$ because in U_{18} we have

$$\begin{array}{ccccccc} k & 0 & 1 & 2 & 3 & 4 & 5 \\ 5^k & 1 & 5 & 7 & 17 & 13 & 11 \end{array}$$

2.22 Example: If G and H are groups then $|G \times H| = |G| |H|$. For $a \in G$ and $b \in H$,

$$|(a, b)| = \text{lcm}(|a|, |b|).$$

Indeed if $|a| = n$ and $|b| = m$ then for $k \in \mathbb{Z}$ we have

$$\begin{aligned} (a, b)^k = e_{G \times H} &\iff (a^k, b^k) = (e_G, e_H) \\ &\iff (a^k = e_G \text{ and } b^k = e_H) \\ &\iff n|k \text{ and } m|k \\ &\iff k \text{ is a common multiple of } n \text{ and } m. \end{aligned}$$

2.23 Theorem: (The Classification of Subgroups of a Cyclic Group) Let G be group and let $a \in G$.

- (1) Every subgroup of $\langle a \rangle$ is cyclic.
- (2) If $|a| = \infty$ then $\langle a^k \rangle = \langle a^\ell \rangle \iff \ell = \pm k$ so the distinct subgroups of $\langle a \rangle$ are the trivial group $\langle a^0 \rangle = \{e\}$ and the groups $\langle a^d \rangle = \{a^{kd} \mid k \in \mathbb{Z}\}$ with $d \in \mathbb{Z}^+$.
- (3) If $|a| = n$ then we have $\langle a^k \rangle = \langle a^\ell \rangle \iff \gcd(k, n) = \gcd(\ell, n)$ and so the distinct subgroups of $\langle a \rangle$ are the groups $\langle a^d \rangle = \{a^{kd} \mid k \in \mathbb{Z}_{n/d}\} = \{a^0, a^d, a^{2d}, \dots, a^{n-d}\}$ where d is a positive divisor of n .

Proof: First we show that every subgroup of $\langle a \rangle$ is cyclic. Let $H \leq \langle a \rangle$. If $H = \{e\}$ then $H = \langle e \rangle$, which is cyclic. Suppose that $H \neq \{e\}$. Note that H contains some element of the form a^k with $k \in \mathbb{Z}^+$ since we can choose $a^\ell \in H$ for some $\ell \neq 0$, and if $\ell < 0$ then we also have $a^{-\ell} = (a^\ell)^{-1} \in H$. Let k be the smallest positive integer such that $a^k \in H$. We claim that $H = \langle a^k \rangle$. Since $a^k \in H$, by closure under the operation and under inversion we have $(a^k)^j \in H$ for all $j \in \mathbb{Z}$ and so $\langle a^k \rangle \subseteq H$. Let $a^\ell \in H$, where $\ell \in \mathbb{Z}$. Write $\ell = kq + r$ with $0 \leq r < k$. Then $a^\ell = a^{kq}a^r$ so we have $a^r = a^\ell(a^{kq})^{-1} \in H$. By our choice of k we must have $r = 0$, so $\ell = qk$ and so $a^\ell \in \langle a^k \rangle$. Thus $H \subseteq \langle a^k \rangle$.

Suppose that $|a| = \infty$. If $\ell = \pm k$ then clearly $\langle a^\ell \rangle = \langle a^k \rangle$. Suppose that $\langle a^\ell \rangle = \langle a^k \rangle$. Since $a^k \in \langle a^\ell \rangle$ we have $k = \ell t$ for some $t \in \mathbb{Z}$, so $\ell|k$. Similarly, since $a^\ell \in \langle a^k \rangle$ we have $k|\ell$. Since $k|\ell$ and $\ell|k$ we have $\ell = \pm k$.

Now suppose that $|a| = n$. Note first that for any divisor $d|n$ we have

$$\langle a^d \rangle = \{a^{dk} \mid k \in \mathbb{Z}_{n/d}\} = \{a^0, a^d, a^{2d}, \dots, a^{n-d}\}$$

with the listed elements distinct so that $|a^d| = \frac{n}{d}$. We claim that $\langle a^k \rangle = \langle a^d \rangle$ where $d = \gcd(k, n)$. Since $d|k$ we have $a^k \in \langle a^d \rangle$ so $\langle a^k \rangle \subseteq \langle a^d \rangle$. Choose $s, t \in \mathbb{Z}$ so that $ks + nt = d$. Then $a^d = a^{ks+nt} = (a^k)^s(a^n)^t = (a^k)^s \in \langle a^k \rangle$ and so $\langle a^d \rangle \subseteq \langle a^k \rangle$. Thus $\langle a^k \rangle = \langle a^d \rangle$, as claimed. Now if $\langle a^k \rangle = \langle a^\ell \rangle$ and $d = \gcd(k, n)$ and $c = \gcd(\ell, n)$ then $\langle a^d \rangle = \langle a^k \rangle = \langle a^\ell \rangle = \langle a^c \rangle$ and so $|\langle a^d \rangle| = |\langle a^c \rangle|$, that is $\frac{n}{d} = \frac{n}{c}$, and so $d = c$. Conversely, if $d = \gcd(k, n) = \gcd(\ell, n) = c$ then we have $\langle a^k \rangle = \langle a^d \rangle = \langle a^\ell \rangle = \langle a^c \rangle$.

2.24 Corollary: (Orders of Elements in a Cyclic Group) Let G be a group and let $a \in G$.

- (1) If $|a| = \infty$ then $|a^0| = 1$ and $a^k = \infty$ for $k \neq 0$, and
- (2) if $|a| = n$ then $|a^k| = \frac{n}{\gcd(k, n)}$.

2.25 Corollary: (Generators of a Cyclic Group) Let G be a group and let $a \in G$. Then

- (1) if $|a| = \infty$ then $\langle a^k \rangle = \langle a \rangle \iff k = \pm 1$, and
- (2) if $|a| = n$ then $\langle a^k \rangle = \langle a \rangle \iff \gcd(k, n) = 1 \iff k \in U_n$.

2.26 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let G be a group and let $a \in G$ with $|a| = n$. Then for each $k \in \mathbb{Z}$, the order of a^k is a positive divisor of n , and for each positive divisor $d|n$, the number of elements in $\langle a \rangle$ of order d is equal to $\varphi(d)$.

2.27 Corollary: For $n \in \mathbb{Z}^+$ we have $\sum_{d|n} \varphi(d) = n$.

2.28 Corollary: (The Number of Elements of Each Order in a Finite Group) Let G be a finite group. For each $d \in \mathbb{Z}^+$, the number of elements in G of order d is equal to $\varphi(d)$ multiplied by the number of cyclic subgroups of G of order d .

2.29 Theorem: (Elements of $\langle S \rangle$) Let G be a group and let $\emptyset \neq S \subseteq G$. Then

$$\begin{aligned} \langle S \rangle &= \{a_1^{k_1} a_2^{k_2} \cdots a_\ell^{k_\ell} \mid \ell \geq 0, a_i \in S, k_i \in \mathbb{Z}\} \\ &= \{a_1^{k_1} a_2^{k_2} \cdots a_\ell^{k_\ell} \mid \ell \geq 0, a_i \in S \text{ with } a_i \neq a_{i+1}, 0 \neq k_i \in \mathbb{Z}\} \end{aligned}$$

where the empty product (when $\ell = 0$) is the identity element. If G is abelian then

$$\langle S \rangle = \{a_1^{k_1} a_2^{k_2} \cdots a_\ell^{k_\ell} \mid \ell \geq 0, a_i \in S \text{ with } a_i \neq a_j \text{ for } i \neq j, 0 \neq k_i \in \mathbb{Z}\}.$$

Proof: The proof is left as an exercise.

2.30 Notation: If G is an abelian group under $+$ then

$$\langle S \rangle = \text{Span}_{\mathbb{Z}}\{S\} = \{k_1 a_1 + k_2 a_2 + \cdots + k_\ell a_\ell \mid \ell \geq 0, a_i \in S \text{ with } a_i \neq a_j, 0 \neq k_i \in \mathbb{Z}\}.$$

2.31 Example: As an exercise, show that in \mathbb{Z} we have $\langle k, \ell \rangle = \langle d \rangle$ where $d = \gcd(k, \ell)$.

2.32 Example: In \mathbb{Z}^2 , the elements of $\langle(1, 3), (2, 1)\rangle$ are the vertices of parallelograms which cover \mathbb{R}^2 .

2.33 Example: We have $D_n = \langle R_1, F_0 \rangle$ in $O_2(\mathbb{R})$ because $R_k = R_1^k$ and $F_k = R_k F_0$.

2.34 Definition: Let S be a set. The **free group** on S is the set whose elements are

$$F(S) = \{a_1^{k_1} a_2^{k_2} \cdots a_\ell^{k_\ell} \mid \ell \geq 0, a_i \in S, 0 \neq k_i \in \mathbb{Z}\}$$

with the operation given by concatenation

$$(a_1^{j_1} \cdots a_\ell^{j_\ell})(b_1^{k_1} \cdots b_m^{k_m}) = a_1^{j_1} \cdots a_\ell^{j_\ell} b_1^{k_1} \cdots b_m^{k_m}$$

followed by grouping and cancellation in the sense that if $a_\ell = b_1$ then we replace $a_\ell^{j_\ell} b_1^{k_1}$ by $a_\ell^{j_\ell+k_1}$ and if, in addition, $j_\ell + k_1 = 0$ then we omit the term a_ℓ^0 and perform further grouping if $a_{\ell-1} = b_2$. For example, in $F(a, b)$ we have

$$(a b^2 a^{-3} b)(b^{-1} a^3 b a^{-2}) = a b^2 a^{-3} b b^{-1} a^3 b a^{-2} = a b^2 a^{-3} a^3 b a^{-2} = a b^2 b a^{-2} = a b^3 a^{-2}.$$

Note that in the free group $F(S)$ we have $F(S) = \langle S \rangle$.

2.35 Definition: Let S be a set. The **free abelian group** on S is the set

$$A(S) = \{k_1 a_1 + \cdots + k_\ell a_\ell \mid \ell \geq 0, a_i \in S \text{ with } a_i \neq a_j, 0 \neq k_i \in \mathbb{Z}\}.$$

If we identify the element $k_1 a_1 + k_2 a_2 + \cdots + k_\ell a_\ell$ with the function $f : S \rightarrow \mathbb{Z}$ given by $f(a_i) = k_i$ and $f(a) = 0$ for $a \neq a_i$ for any i , then we can identify $A(S)$ with the set

$$A(S) = \sum_{a \in S} \mathbb{Z} = \{f : S \rightarrow \mathbb{Z} \mid f(a) = 0 \text{ for all but finitely many } a \in S\}.$$

Under this identification, we use the operation given by $(f + g)(a) = f(a) + g(a)$.