
Chapter 5. Topology in Euclidean Space

Dot Product and Norm

5.1 Definition: For vectors x, y ∈ Rn we define the dot product of x and y to be

x . y = yTx =
n∑
i=1

xiyi .

5.2 Theorem: (Properties of the Dot Product) For all x, y, z ∈ Rn and all t ∈ R we have

(1) (Bilinearity) (x+ y) . z = x . z + y . z , (tx) . y = t(x . y)
x . (y + z) = x . y + x . z , x . (ty) = t(x . y),

(2) (Symmetry) x . y = y .x, and
(3) (Positive Definiteness) x .x ≥ 0 with x .x = 0 if and only if x = 0.

Proof: The proof is left as an exercise.

5.3 Definition: For a vector x ∈ Rn, we define the norm (or length) of x to be

|x| =
√
x .x =

√∑n
i=1 xi

2.

We say that x is a unit vector when |x| = 1.

5.4 Theorem: (Properties of the Norm) Let x, y ∈ Rn and let t ∈ R. Then

(1) (Positive Definiteness) |x| ≥ 0 with |x| = 0 if and only if x = 0,
(2) (Scaling) |tx| = |t||x|,
(3) |x± y|2 = |x|2 ± 2(x . y) + |y|2.
(4) (The Polarization Identities) x . y = 1

2

(
|x+ y|2 − |x|2 − |y|2

)
= 1

4

(
|x+ y|2 − |x− y|2

)
,

(5) (The Cauchy-Schwarz Inequality) |x . y| ≤ |x| |y| with |x . y| = |x| |y| if and only if the
set {x, y} is linearly dependent, and
(6) (The Triangle Inequality) |x+ y| ≤ |x|+ |y|.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {x, y} is linearly
dependent. Then one of x and y is a multiple of the other, say y = tx with t ∈ R. Then

|x . y| = |x . (tx)| = |t(x .x)| = |t| |x|2 = |x| |tx| = |x| |y|.

Suppose next that {x, y} is linearly independent. Then for all t ∈ R we have x + ty 6= 0
and so

0 6= |x+ ty|2 = (x+ ty) . (x+ ty) = |x|2 + 2t(x . y) + t2|y|2.

Since the quadratic on the right is non-zero for all t ∈ R, it follows that the discriminant
of the quadratic must be negative, that is

4(x . y)2 − 4|x|2|y|2 < 0.

Thus (x . y)2 < |x|2|y|2 and hence |x . y| < |x| |y|. This proves part (5).
Using part (5) note that

|x+y|2 = |x|2 +2(x . y)+ |y|2 ≤ |x+y|2 +2|x . y|+ |y|2 ≤ |x|2 +2|x| |y|+ |y|2 =
(
|x|+ |y|

)2
and so |x+ y| ≤ |x|+ |y|, which proves part (6).
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5.5 Definition: For points a, b ∈ Rn, we define the distance between a and b to be

dist(a, b) = |b− a|.
5.6 Theorem: (Properties of Distance) Let a, b, c ∈ Rn. Then

(1) (Positive Definiteness) dist(a, b) ≥ 0 with dist(a, b) = 0 if and only if a = b,
(2) (Symmetry) dist(a, b) = dist(b, a), and
(3) (The Triangle Inequality) dist(a, c) ≤ dist(a, b) + dist(b, c).

Proof: The proof is left as an exercise.

5.7 Definition: For nonzero vectors 0 6= u, v ∈ Rn, we define the angle between u and
v to be θ(u, v) = cos−1 u. v

|u| |v| ∈ [0, π]. We say that u and v are orthogonal when u . v = 0.

As an exercise, determine (with proof) some properties of angles.

Open and Closed Sets

5.8 Definition: For a ∈ Rn and 0 < r ∈ R, the sphere, the open ball, the closed ball,
and the (open) punctured ball in Rn centered at a of radius r are defined to be the sets

S(a, r) =
{
x ∈ Rn

∣∣dist(x, a) = r
}

=
{
x ∈ Rn

∣∣|a− x| = r
}
,

B(a, r) =
{
x ∈ Rn

∣∣dist(x, a) < r
}

=
{
x ∈ Rn

∣∣|a− x| < r
}
,

B(a, r) =
{
x ∈ Rn

∣∣dist(x, a) ≤ r
}

=
{
x ∈ Rn

∣∣|a− x| ≤ r},
B∗(a, r) =

{
x ∈ Rn

∣∣0 < dist(x, a) < r
}

=
{
x ∈ Rn

∣∣0 < |a− x| < r
}
.

5.9 Definition: Let A ⊆ Rn. We say that A is bounded when A ⊆ B(a, r) for some
a ∈ Rn and some 0 < r ∈ R. As an exercise, verify that A is bounded if and only if
A ⊆ B(0, r) for some r > 0.

5.10 Definition: For a set A ⊆ Rn, we say that A is open (in Rn) when for every a ∈ A
there exists r > 0 such that B(a, r) ⊆ A, and we say that A is closed (in Rn) when its
complement Ac = Rn \A is open in Rn.

5.11 Exercise: Show that in R, open intervals are open, and closed intervals are closed.

5.12 Example: Show that for a ∈ Rn and 0 < r ∈ R, the set B(a, r) is open and the set
B(a, r) is closed.

Solution: Let a ∈ Rn and let r > 0. We claim that B(a, r) is open. We need to show that
for all b ∈ B(a, r) there exists s > 0 such that B(b, s) ⊆ B(a, r). Let b ∈ B(a, r) and note
that |b − a| < r. Let s = r − |b − a| and note that s > 0. Let x ∈ B(b, s), so we have
|x− b| < s. Then, by the Triangle Inequality, we have

|x− a| = |x− b+ b− a| ≤ |x− b|+ |b− a| < s+ |b− a| = r

and so x ∈ B(a, r). This shows that B(b, s) ⊆ B(a, r) and hence B(a, r) is open.
Next we claim that B(a, r) is closed, that is B(a, r)c is open. Let b ∈ B(a, r)c, that is

let b ∈ Rn with b /∈ B(a, r). Since b /∈ B(a, r) we have |b− a| > r. Let s = |b− a| − r > 0.
Let x ∈ B(b, s) and note that |x− b| < s. Then we have

|b− a| = |b− x+ x− a| ≤ |b− x|+ |x− a| < s+ |x− a|
and so |x− a| > |b− a| − s = r. Since |x− a| > r we have x /∈ B(a, r) and so x ∈ B(a, r)c.
This shows that B(b, s) ⊆ B(a, r)c and it follows that B(a, r)c is open and hence that
B(a, r) is closed.
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5.13 Theorem: (Basic Properties of Open Sets)

(1) The sets ∅ and Rn are open in Rn.
(2) If S is a set of open sets then the union

⋃
S =

⋃
U∈S U is open.

(3) If S is a finite set of open sets then the intersection
⋂
S =

⋂
U∈S U is open.

Proof: The empty set is open because any statement of the form “for all x∈∅ F” (where
F is any statement) is considered to be true (by convention). The set Rn is open because
given a ∈ Rn we can choose any value of r > 0 and then we have B(a, r) ⊆ Rn by the
definition of B(a, r). This proves Part (1).

To prove Part (2), let S be any set of open sets. Let a ∈
⋃
S =

⋃
U∈S U . Choose

an open set U ∈ S such that a ∈ U . Since U is open we can choose r > 0 such that
B(a, r) ⊆ U . Since U ∈ S we have U ⊆

⋃
S. Since B(a, r) ⊆ U and U ⊆

⋃
S we have

B(a, r) ⊆
⋃
S. Thus

⋃
S is open, as required.

To prove Part (3), let S be a finite set of open sets. If S = ∅ then we use the convention
that

⋂
S = Rn, which is open. Suppose that S 6= ∅, say S = {U1, U2, · · · , Um} where each

Uk is an open set. Let a ∈
⋂
S =

⋂m
k=1 Uk. For each index k, since a ∈ Uk we can

choose rk > 0 so that B(a, rk) ⊆ Uk. Let r = min{r1, r2, · · · , rm}. Then for each index
k we have B(a, r) ⊆ B(a, rk) ⊆ Uk. Since B(a, r) ⊆ Uk for every index k, it follows that
B(a, r) ⊆

⋂m
k=1 Uk =

⋂
S. Thus

⋂
S is open, as required.

5.14 Theorem: (Basic Properties of Closed Sets)

(1) The sets ∅ and Rn are closed in Rn.
(2) If S is a set of closed sets then the intersection

⋂
S =

⋂
K∈S K is closed.

(3) If S is a finite set of closed sets then the union
⋃
S =

⋃
K∈S K is closed.

Proof: The proof is left as an exercise

Interior and Closure

5.15 Definition: Let A ⊆ Rn. The interior and the closure of A (in Rn) are the sets

A0 =
⋃{

U ⊆ Rn
∣∣U is open, and U ⊆ A

}
,

A =
⋂{

K ⊆ Rn
∣∣K is closed and A ⊆ K

}
.

5.16 Theorem: Let A ⊆ Rn.

(1) The interior of A is the largest open set which is contained in A. In other words,
A0 ⊆ A and A0 is open, and for every open set U with U ⊆ A we have U ⊆ A0.

(2) The closure of A is the smallest closed set which contains A. In other words, A ⊆ A
and A is closed, and for every closed set K with A ⊆ K we have A ⊆ K.

Proof: Note that A0 is open by Part (2) of Theorem 5.13, because A0 is equal to the union
of a set of open sets. Also note that A0 ⊆ A because A0 is equal to the union of a set of
subsets of A. Finally note that for any open set U with U ⊆ A we have U ∈ S so that
U ⊆

⋃
S = A0. This completes the proof of Part (1), and the proof of Part (2) is similar.

5.17 Corollary: Let A ⊆ Rn.

(1) (A0)0 = A0 and A = A.
(2) A is open if and only if A = A0

(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.
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Interior Points, Limit Points and Boundary Points

5.18 Definition: Let A ⊆ Rn. An interior point of A is a point a ∈ A such that for
some r > 0 we have B(a, r) ⊆ A. A limit point of A is a point a ∈ Rn such that for every
r > 0 we have B∗(a, r) ∩ A 6= ∅. An isolated point of A is a point a ∈ A which is not a
limit point of A. A boundary point of A is a point a ∈ Rn such that for every r > 0 we
have B(a, r) ∩ A 6= ∅ and B(a, r) ∩ Ac 6= ∅. The set of limit points of A is denoted by A′.
The boundary of A, denoted by ∂A, is the set of all boundary points of A.

5.19 Theorem: (Properties of Interior, Limit and Boundary Points) Let A ⊆ Rn.
(1) A0 is equal to the set of all interior points of A.
(2) A is closed if and only if A′ ⊆ A.
(3) A = A ∪A′.
(4) ∂A = A \A0.

Proof: We leave the proofs of Parts (1) and (4) as exercises. To prove Part (2) note that
when a /∈ A we have B(a, r) ∩A = B∗(a, r) ∩A and so

A is closed ⇐⇒ Ac is open

⇐⇒ ∀a∈Ac ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
a /∈A =⇒ ∃r>0 B∗(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
∀r>0 B∗(a, r) ∩A 6= ∅ =⇒ a∈A

)
⇐⇒ ∀a∈Rn

(
a ∈ A′ =⇒ a ∈ A

)
⇐⇒ A′ ⊆ A.

To prove Part (3) we shall prove that A ∪ A′ is the smallest closed set which contains A.
It is clear that A ∪ A′ contains A. We claim that A ∪ A′ is closed, that is (A ∪ A′)c is
open. Let a ∈ (A ∪ A′)c, that is let a ∈ X with a /∈ A and a /∈ A′. Since a /∈ A, we note
that B∗(a, r) ∩ A = B(a, r) ∩ A. Since a /∈ A and a /∈ A′ we can choose r > 0 so that
B(a, r) ∩ A = ∅. We claim that because B(a, r) ∩ A = ∅ it follows that B(a, r) ∩ A′ = ∅.
Suppose, for a contradiction, that B(a, r) ∩ A′ 6= ∅. Choose b ∈ B(a, r) ∩ A′. Since
b ∈ B(a, r) and B(a, r) is open, we can choose s > 0 so that B(b, s) ⊆ B(a, r). Since b ∈ A′
it follows that B(b, s)∩A 6= ∅. Choose x ∈ B(b, s)∩A. Then we have x ∈ B(b, s) ⊆ B(a, r)
and x ∈ A and so x ∈ B(a, r) ∩ A, which contradicts the fact that B(a, r) ∩ A = ∅. Thus
B(a, r) ∩ A′ = ∅, as claimed. Since B(a, r) ∩ A = ∅ and B(a, r) ∩ A′ = ∅ it follows that
B(a, r)∩ (A∪A′) = ∅ hence B(a, r) ⊆ (A∪A′)c. Thus proves that (A∪A′)c is open, and
hence A ∪A′ is closed.

It remains to show that for every closed set K in X with A ⊆ K we have A∪A′ ⊆ K.
Let K be a closed set in X with A ⊆ K. Note that since A ⊆ K it follows that A′ ⊆ K ′

because if a ∈ A′ then for all r > 0 we have B∗(a, r) ∩ A 6= ∅ hence B∗(a, r) ∩K 6= ∅ and
so a ∈ K ′. Since K is closed we have K ′ ⊆ K by Part 2. Since A′ ⊆ K ′ and K ′ ⊆ K we
have A′ ⊆ K. Since A ⊆ K and A′ ⊆ K we have A∪A′ ⊆ K, as required. This completes
the proof of Part (3).
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Connected Sets and Compact Sets

5.20 Definition: Let A ⊆ Rn. For sets U, V ⊆ Rn, we say that U and V separate A
when

U ∩A 6= ∅ , V ∩A 6= ∅ , U ∩ V = ∅ and A ⊆ U ∪ V.

We say that A is connected when there do not exist open sets U and V in Rn which
separate A. We say that A is disconnected when it is not connected, that is when there
do exist open sets U and V in Rn which separate A.

5.21 Theorem: The connected sets in R are the intervals, that is the sets of one
of the forms (a, b) , [ a, b) , (a, b ] , [ a, b ] , (a,∞) , [ a,∞) , (−∞, b) , (−∞, b ] , (−∞,∞) for
some a, b ∈ R with a ≤ b. We include the case that a = b in order to include the degener-
ate intervals ∅ = (a, a) and {a} = [a, a].

Proof: We use the fact that the intervals in R are the sets with the intermediate value
property (a set A ⊆ R has the intermediate value property when for all a, b,∈ A and
all x ∈ R, if a < x < b then x ∈ A). Let A ⊆ R. Suppose that A is not an interval. Then
A does not have the intermediate value property so we can choose a, b ∈ A and u ∈ R with
a < u < b. Then U = (−∞, u) and V = (u,∞) separate A and so A is disconnected.

Suppose, conversely, that A is disconnected. Choose open sets U and V which separate
A. Choose a ∈ U and b ∈ V . Note that a 6= b since U ∩ V = ∅. Suppose that a < b (the
case that b < a is similar). Let u = sup

(
U ∩ [a, b]

)
. Note that u 6= a since we can choose

δ > 0 such that [a, a+δ) ⊆ U ∩ [a, b] and then we have u = sup
(
U ∩ [a, b]

)
≥ a+ δ. Note

that u 6= b since we can choose δ > 0 such that (b−δ, b] ⊆ V ∩ [a, b] and then we have
u = sup

(
U ∩ [a, b]

)
≤ b − δ since U ∩ V = ∅. Thus we have a < u < b. Note that u /∈ U

since if we had u ∈ U we could choose δ > 0 such that (u−δ, u+δ) ⊆ U ∩ [a, b] which
contradicts the fact that u = sup

(
U ∩ [a, b]

)
. Note that u /∈ V since if we had u ∈ V then

we could choose δ > 0 such that (u−δ, u+δ) ⊆ V ∩ [a, b] which contradicts the fact that
u = sup

(
U ∩ [a, b]

)
because U ∩ V = ∅. Since u /∈ U and u /∈ V and A ⊆ U ∩ V we have

u /∈ A, so A does not have the intermediate value property, and so A is not an interval.

5.22 Definition: Let A ⊆ Rn. An open cover of A is a set S of open sets in Rn such
that A ⊆

⋃
S. A subcover of an open cover S of A is a subset T ⊆ S such that A ⊆

⋃
T .

We say that A is compact when every open cover of A has a finite subcover.

5.23 Exercise: Show that the set A =
{

1
n

∣∣n ∈ Z+
}

is not compact, but that the set
B = A ∪ {0} is compact.

5.24 Theorem: (The Nested Interval Theorem) Let I0, I1, I2, · · · be nonempty, closed
bounded intervals in R. Suppose that I0 ⊇ I1 ⊃ I2 ⊃ · · ·. Then

⋂∞
k=0 Ik 6= ∅.

Proof: For each k ≥ 1, let Ik = [ak, bk] with ak < bk. For each k, since Ik+1 ⊆ Ik we have
ak ≤ ak+1 < bk+1 ≤ bk+1. Since ak ≥ ak+1 for all k, the sequence (ak) is increasing. Since
ak < bk ≤ bk−1 ≤ · · · ≤ b1 for all k, the sequence (ak) is bounded above by b1. Since (ak) is
increasing and bounded above, it converges. Let a = sup{ak} = limk→∞ ak. Similarly, (bk)
is decreasing and bounded below by a1, and so it converges. Let b = inf{bk} = limk→∞ bk.
Fix m ≥ 1. For all k ≥ m we have am < bm ≤ bm+1 ≤ · · · ≤ bk. Since ak ≤ bk for all k,
by the Comparison Theorem we have a ≤ b, and so the interval [a, b] is not empty. Since
(ak) is increasing with ak → a, it follows (we leave the proof as an exercise) that ak ≤ a
for all k ≥ 1. Similarly, we have bk ≥ b for all k ≥ 1 and so [a, b] ⊆ [ak, bk] = Ik. Thus
[a, b] ⊆

⋂∞
k=1 Ik, and so

⋂∞
k=1 Ik 6= ∅.
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5.25 Definition: A closed rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn]

=
{

(x1, x2, · · · , xn) ∈ Rn
∣∣aj ≤ xj ≤ bj for all j

}
.

5.26 Theorem: (Nested Rectangles) Let R1, R2, R3, · · · be closed rectangles in Rn with
R1 ⊇ R2 ⊇ R3 ⊇ · · ·. Then

∞⋂
k=1

Rk 6= ∅.

Proof: Let Rk = [ak,1, bk,1]× [ak,2, bk,2]× · · · × [ak,n, bk,n]. Since R1 ⊇ R2 ⊇ · · · it follows
that for each index j with 1 ≤ j ≤ n we have [a1,j , b1,j ] ⊇ [a2,j , b2,j ] ⊇ · · ·. By the

Nested Interval Theorem, for each index j we can choose uj ∈
∞⋂
k=1

[ak,j , bk,j ]. Then for

u = (u1, u2, · · · , un) we have u ∈
∞⋂
k=1

Rk.

5.27 Theorem: (Compactness of Rectangles) Every closed rectangle in Rn is compact.

Proof: Let R = I1× I2×· · ·× In where Ij = [aj , bj ] with aj ≤ bj . Let d be the diameter of

R, that is d=diam(R)=
( n∑
j=1

(bj − aj)2
)1/2

. Let S be an open cover of R. Suppose, for a

contradiction, that S does not have a finite subset which covers R. Let a1,j = aj , b1,j = bj ,
I1,j = Ij = [a1,j , b1,j ] and R1 = R = I1,1 × · · · × I1,n. Recursively, we construct rectangles
R = R1 ⊇ R2 ⊇ R3 ⊇ · · ·, with Rk = Ik,1 × · · · × Ik,n where Ik,j = [ak,j , bk,j ], and

dk = diam(Rk) =
( n∑
j=1

(bk,j − ak,j)2
)1/2

= d
2k−1 , such that the open cover S does not have

a finite subset which covers any of the rectangles Rk. We do this recursive construction
as follows. Having constructed one of the rectangles Rk, we partition each of the intervals
Ik,j = [ak,j , bk,j ] into the two equal-sized subintervals [ak,j ,

ak,j+bk,j

2 ] and [
ak,j+bk,j

2 , bk,j ],
and we thereby partition the rectangle Rk into 2n equal-sized sub-rectangles. We choose
Rk+1 to be equal to one of these 2n sub-rectangles with the property that the open cover
S does not have a finite subset which covers Rk+1 (if each of the 2n sub-rectangles could
be covered by a finite subset of S then the union of theses 2n finite subsets would be a
finite subset of S which covers Rk).

By the Nested Rectangles Theorem, we can choose an element u ∈
∞⋂
k=1

Rk. Since

u ∈ R and S covers R we can choose an open set U ∈ S such that u ∈ U . Since U is open
we can choose r > 0 such that B(u, r) ⊆ U . Since dk → 0 we can choose k so that dk < r.
Since u ∈ Rk and diamRk = dk < r we have Rk ⊆ B(u, r) ⊆ U . Thus S does have a finite
subset, namely {U}, which covers Rk, giving the desired contradiction.

5.28 Theorem: Let A ⊆ K ⊆ Rn. If A is closed and K is compact then A is compact.

Proof: Suppose that A is closed in Rn and that K is compact. Let S be an open cover
of A. Let Ac = Rn \ A. Since A ⊆

⋃
S we have

⋃
S ∪ {Ac} = Rn and so S ∪ {Ac} is an

open cover of K. Since K is compact, we can choose a finite subset T ⊆ S ∪ {Ac} with
K ⊆

⋃
T . Since A ⊆ K ⊆

⋃
T we also have A ⊆

⋃(
T \ {Ac}

)
. Thus the open cover S of

A does have a finite subcover, namely T \ {Ac}, and so A is compact, as required.
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5.29 Theorem: (The Heine-Borel Theorem) Let A ⊆ Rn. Then A is compact if and only
if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded.
For each k ∈ Z+ let Uk = B(0, k) and let S =

{
Uk
∣∣k ∈ Z+

}
. Then

⋃
S = Rn so S

is an open cover of A. Let T be any finite subset of S. If T = ∅ then
⋃
T = ∅ and

A 6⊆
⋃
T . Suppose that T 6= ∅, say T =

{
Uk1 , Uk2 , · · · , Ukm

}
with k1 < k2 < · · · < km.

Since Uk1 ⊆ Uk2 ⊆ · · · ⊆ Ukm we have
⋃
T =

⋃m
i=1 Uki = Ukm = B(0, km). Since A is not

bounded we have A 6⊆ B(0, km) and so A 6⊆
⋃
T . This shows that the open cover S has

no finite subcover T , which contradicts the fact that A is compact.
Next suppose, for a contradiction, that A is not closed. By Part (2) of Theorem 5.19,

it follows that A′ 6⊆ A. Choose a ∈ A′ with a /∈ A. For each k ∈ Z+ let Uk be the
open set Uk = B

(
a, 1k

)c
=
{
x ∈ Rn

∣∣|x − a| > 1
k

}
and let S =

{
Uk
∣∣k ∈ Z+

}
. Note that⋃

S = Rn \ {a} so S is an open cover of A. Let T be any finite subset of S. If T = ∅
then

⋃
T = ∅ so A 6⊆

⋃
T (since A is not closed so A 6= ∅). Suppose that T 6= ∅, say

T =
{
Uk1 , Uk2 , · · · , Ukm

}
with k1 < k2 < · · · < km. Since Uk1 ⊆ Uk2 ⊆ · · · ⊆ Ukm we have⋃

T =
⋃m
i=1 Uki = Ukm = B

(
a, 1

km

)c
. Since a ∈ A′, we have B∗

(
a, 1

km

)
∩ A 6= ∅ hence

B
(
a, 1

km

)
∩A 6= ∅ and so A 6⊆ B

(
a, 1

km

)c
, hence A 6⊆

⋃
T . This shows that the open cover

S has no finite subcover T , which again contradicts the fact that A is compact.
Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose

r > 0 so that A ⊆ B(0, r). Let R be the closed rectangle R =
{
x ∈ Rn

∣∣|xk| ≤ r for all k
}

.
Note that B(0, r) ⊆ R since when x = (x1, · · · , xn) ∈ B(0, r), for each index k we have

|xk| =
(
xk

2
)1/2 ≤ ( n∑

i=1

xi
2
)1/2

= |x| < r.

Since A is closed and A ⊆ R and R is compact, A is compact by the above theorem.

Topology in Subsets of Euclidean Space

5.30 Definition: Let P ⊆ Rn. For a ∈ P and 0 < r ∈ R we define the open ball in P
and the closed ball in P centred at a of radius r to be the sets

BP (a, r) =
{
x ∈ P

∣∣ |x− a| < r
}

= B(a, r) ∩ P,
BP (a, r) =

{
x ∈ P

∣∣ |x− a| ≤ r} = B(a, r) ∩ P.
For A ⊆ P ⊆ Rn, we say A is open in P when for every a ∈ A there exists r > 0 such
that BP (a, r) ⊆ A, and we say A is closed in P when Ac = P \A is open in P .

5.31 Theorem: Let A ⊆ P ⊆ Rn.

(1) A is open in P if and only if there exists an open set U in Rn such that A = U ∩ P .
(2) A is closed in P if and only if there exists a closed set K in Rn such that A = K ∩ P .

Proof: To prove Part (1), suppose first that A is open in P . For each a ∈ A, choose ra > 0
so that B(a, ra) ∩ P ⊆ A, and let U =

⋃
a∈AB(a, ra). Since U is equal to the union of

a set of open sets in Rn, it follows that U is open in Rn. Note that A ⊆ U ∩ P and,
since B(a, ra) ∩ P ⊆ A for every a ∈ A, we also have U ∩ P =

(⋃
a∈U B(a, ra)

)
∩ P =⋃

a∈A
(
B(a, ra) ∩ P

)
⊆ A. Thus A = U ∩ P , as required.

Suppose, conversely, that A = U ∩ P with U open in Rn. Let a ∈ A. Since a ∈ A =
U ∩ P , we also have a ∈ U . Since a ∈ U and U is open in Rn we can choose r > 0 so that
B(a, r) ⊆ U . Since B(a, r) ⊆ U and U ∩ P = A we have B(a, r) ∩ P ⊆ U ∩ P = A, as
required.
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To prove Part (2), suppose first that A is closed in P . Let B be the complement of
A in P , that is B = P \ A. Then B is open in P . Choose an open set U in Rn such that
B = U ∩ P . Let K be the complement of U in Rn, that is K = Rn \ U . Then A = K ∩ P
since for x ∈ Rn we have x ∈ A ⇐⇒

(
x ∈ P and x /∈ B

)
⇐⇒

(
x ∈ P and x /∈ U ∩ P

)
⇐⇒

(
x ∈ P and x /∈ U

)
⇐⇒

(
x ∈ P and x ∈ K

)
⇐⇒ x ∈ K ∩ P .

Suppose, conversely, that K is a closed set in P with A = K ∩ P . Let B be the
complement of A in P , that is B = P \ A, and let U be the complement of K in P ,
that is U = P \ K, and note that U is open in P . Then we have B = U ∩ P since
for x ∈ P we have x ∈ B ⇐⇒

(
x ∈ P and x /∈ A

)
⇐⇒

(
x ∈ P and x /∈ K ∩ P

)
⇐⇒

(
x ∈ P and x /∈ K

)
⇐⇒

(
x ∈ P and x ∈ U

)
⇐⇒ x ∈ U ∩ P . Since U is open in

P and B = U ∩ P we know that B is open in P . Since B is open in P , its complement
A = P \B is closed in P .

5.32 Theorem: Let A ⊆ P ⊆ Rn. Define A to be connected in P when there do not
exists sets E,F ⊆ P which are open in P and which separate A. Define A to be compact
in P when for every set S of open sets in P such that A ⊆

⋃
S there exists a finite subset

T ⊆ S such that A ⊆
⋃
T . Then

(1) A is connected in P if and only if A is connected in Rn, and
(2) A is compact in P if and only if A is compact in Rn.

Proof: We prove. Part (1) and leave the proof of Part (2) as an exercise. Suppose that
A is not connected in Rn. Choose open sets U and V in Rn which separate A, that is
U ∩A 6= ∅, V ∩A 6= ∅, U ∩ V = ∅ and A ⊆ U ∪ V . Let E = U ∩ P and F = V ∩ P . Note
that E and F are open in P and E and F separate A.

Suppose, conversely, that there exist sets E,F ⊆ P which are open in P and which
separate A, that is A ∩ E 6= ∅, A ∩ F 6= ∅, E ∩ F = ∅ and A ⊆ E ∪ F . Choose open sets
U, V ⊆ Rn such that E = U ∩ P and F = V ∩ P . Note that it is possible that U ∩ V 6= ∅
and so U and V might not separate A in Rn. For this reason, we shall construct open
subsets U0 ⊆ U and V0 ⊆ V which do separate A in Rn. For each a ∈ E choose ra > 0
such that B(a, 2ra) ⊆ U and then let U0 =

⋃
a∈E B(a, ra). Note that U0 is open in Rn

(since it is a union of open sets in Rn) and that we have E ⊆ U0 ⊆ U . Similarly, for each
b ∈ F choose sb > 0 so that B(b, 2sb) ⊆ V , and then let V0 =

⋃
b∈F B(b, sb). Note that

V0 is open in Rn and F ⊆ V0 ⊆ V . We claim that the open sets U0 and V0 separate A in
Rn. Since E ⊆ U0 and F ⊆ V0 we have ∅ 6= A ∩ E ⊆ A ∩ U0, ∅ 6= A ∩ F ⊆ A ∩ V0 and
A ⊆ E ∪ F ⊆ U0 ∪ V0. It remains to show that U0 ∩ V0 = ∅. Suppose, for a contradiction,
that U0 ∩V0 6= ∅. Choose x ∈ U0 ∩V0. Since x ∈ U0 =

⋃
a∈E B(a, ra) we can choose a ∈ E

such that x ∈ B(a, ra). Similarly, we can choose b ∈ F so that x ∈ B(b, sb). Suppose
that ra ≥ sb (the case that sb ≥ ra is similar). By the Triangle Inequality, it follows that
|b − a| ≤ |b − x| + |x − a| < sb + ra ≤ 2ra and so we have b ∈ B(a, 2ra) ⊆ U . Since
b ∈ F ⊆ P and b ∈ U we have b ∈ U ∩ P = E. Thus we have b ∈ E ∩ F which contradicts
the fact that E ∩ F = ∅, and so U0 ∩ V0 = ∅, as required.

5.33 Corollary: A set A ⊆ Rn is connected (in Rn) if and only if the only subsets of A
which are both open and closed in A are the sets ∅ and A.

Proof: We leave it as an exercise to show that this follows from the above theorem by
taking A = P .
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Limits of Sequences

5.34 Definition: For p ∈ Z, let Z≥p =
{
n ∈ Z|n ≥ p} = {p, p+1, p+2, · · ·}. For a set

A, a sequence in A is a function x : Z≥p → A for some p ∈ Z. We write (xn)n≥p to
denote the sequence x : Z≥p → A given by x(n) = xn, where xn ∈ A for all n ≥ p. A
subsequence of the sequence (xn)n≥p is a sequence of the form (yk)k≥q with yk = xnk

for some p ≤ nk < nk+1 for all k ≥ q.

5.35 Definition: Let (xn)n≥p be a sequence in Rm. We say the sequence (xn)n≥p is
bounded when

∃r>0 ∀n∈Z≥p |an| ≤ r.

For a ∈ Rm, we say that the sequence (xn)n≥p converges to a and write lim
n→∞

xn = a (or

xn → a) when

∀ε>0 ∃N ∈Z≥p ∀n∈ Z≥p
(
n ≥ N =⇒ |xn − a| < ε

)
.

We say the sequence (xn)n≥p diverges to ∞ and write lim
n→∞

xn =∞ (or xn →∞) when

∀r>0 ∃N ∈ Z≥p ∀n∈Z≥p
(
n≥N =⇒ |xn| ≥ r

)
.

We say that the sequence (xn)n≥p converges when it converges to some point a ∈ Rm
and otherwise we say that it diverges.

5.36 Theorem: (Convergent Sequences are Bounded) Let (xn)n≥p be a sequence in Rm.
If (xn)n≥p converges in Rm then (xn)n≥p is bounded.

Proof: Suppose that (xn)n≥p converges in Rm. Let a = lim
n→∞

xn ∈ Rm. Choose N ≥ p

such that n ≥ N =⇒ |xn − a| < 1. For n ≥ N , by the Triangle Inequality we have
|xn| ≤ |xn−a|+|a| < 1+|a|. Thus we can choose r = max

{
|xp|, |xp+1|, · · · , |xN−1| , 1+|a|

}
to obtain |xn| ≤ r for all n ≥ p, and so the sequence (xn)n≥p is bounded, as required.

5.37 Theorem: (Uniqueness of Limits of Sequences) Let (xn)n≥p be a sequence in Rm
and let a, b ∈ Rm ∪ {∞}. If lim

n→∞
xn = a and lim

n→∞
xn = b then a = b.

Proof: We prove the theorem in the case that a, b ∈ Rm and leave the case that a =∞ or
b = ∞ as an exercise. Suppose that lim

n→∞
xn = a ∈ Rm and lim

n→∞
xn = b ∈ Rm. Suppose,

for a contradiction, that a 6= b. Choose N1 ≥ p such that n ≥ N1 =⇒ |xn− a| < |a−b|
2 and

choose N2 ≥ p such that n ≥ N2 =⇒ |xn − b| < |a−b|
2 . Let N = max{N1, N2}. For n ≥ N

we have |a− b| ≤ |a− xn|+ |xn− b| < |a−b|
2 + |a−b|

2 = |a− b| which is impossible. Thus we
must have a = b, as required.

5.38 Theorem: (Limits of Subsequences) Let (xn)n≥p be a sequence in Rm and let
(xnk

)k≥q be a subsequence of (xn)n≥p. If lim
n→∞

xn = a ∈ Rm ∪ {∞} then lim
k→∞

xnk
= a.

Proof: We give the proof in the case that a ∈ Rm. Suppose that lim
n→∞

xn = a ∈ Rm

and let (xnk
)k≥q be any subsequence of (xn). Let ε > 0. Choose N ≥ p such that

n ≥ N =⇒ |xn − a| < ε. Choose M ≥ q such that k ≥ M =⇒ nk ≥ N (we can do this
since each nk ∈ Z with nk < nk+1 and hence nk → ∞ as k → ∞). Then for k ≥ M we
have nk ≥ N and so |xnk

− a| < ε. Thus lim
k→∞

xnk
= a, as required.
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5.39 Remark: It follows from the above theorem that the initial index p of a sequence
(xn)n≥p does not affect whether or not the sequence converges, and it does not influence
the value of the limit. For this reason, we often omit the initial index p from our notation
and denote the sequence (xn)n≥p simply as (xn).

5.40 Definition: Let (xn)n≥p be a sequence in Rm. For n≥p let xn= (xn,1, xn,2, · · ·, xn,m).
For each index k with 1 ≤ k ≤ m, the kth component sequence of (xn)n≥p is the
sequence (xn,k)n≥p = (xp,k, xp+1,k · · ·). Note that the sequence (xn)n≥p in Rm determines
and is determined by its component sequences (xn,k)n≥p.

5.41 Theorem: (Limits of Component Sequences) Let (xn)n≥p be a sequence in Rm, say
xn =

(
xn,1, xn,2, · · · , xn,m

)
∈ Rm.

(1) (xn)n≥p is bounded if and only if (xn,k)n≥p is bounded for all indices k.
(2) For a = (a1, · · · , am) ∈ Rm we have lim

n→∞
xn = a if and only if lim

n→∞
xn,k = ak for all k.

Proof: Suppose that (xn)n≥p is bounded. Choose r > 0 such that |xn| ≤ r for all n ≥ p.
Let n ≥ p and let 1 ≤ k ≤ m. Then |xn,k| ≤ |xn| ≤ r and so the sequence (xn,k)n≥p is also
bounded. Now suppose, conversely, that (xn,k)n≥p is bounded for all indices k. For each k,
chose rk > 0 such that |xn,k| ≤ rk for all n ≥ p. Let r = r1 + · · ·+ rm. Then for all n ≥ p,
by the Triangle Inequality we have |xn| ≤ |xn,1|+|xn,2|+· · ·+|xn,m| < r1+r2+· · ·+rm = r
and so the sequence (xn)n≥p is bounded. This proves Part (1).

To prove Part (2), suppose first that lim
n→∞

xn = a. Let ε > 0 and choose N ≥ p so that

n ≥ N =⇒
∣∣xn − a| < ε. Let 1 ≤ k ≤ m. For n ≥ N we have

∣∣xn,k − ak∣∣ ≤ |xn − a| < ε
and so lim

n→∞
xn,k = ak. Now suppose, conversely, that lim

n→∞
xn,k = ak for all indices k.

Let ε > 0. For each index k, choose Nk ≥ p such that n ≥ Nk =⇒
∣∣xn,k − ak∣∣ < ε

m .

Then for n ≥ N , by the Triangle Inequality we have |xn − a| ≤
m∑
k=1

|xn,k − ak| < ε and so

lim
n→∞

xn = a.

5.42 Theorem: (Operations on Limits of Sequences) Let (xn) and (yn) be sequences in
Rm and let c ∈ R. Suppose that lim

n→∞
xn = u ∈ Rm and lim

n→∞
yn = v ∈ Rm. Then

(1) lim
n→∞

(xn + yn) = u+ v,

(2) lim
n→∞

(c xn) = c u,

(3) lim
n→∞

|xn| = |u|,
(4) lim

n→∞
(xn . yn) = u . v, and

(5) if m = 3 then lim
n→∞

(xn × yn) = u× v.

Proof: These follow easily from Part (2) of the above theorem and from known properties
of sequences in R. For example, to prove Part (1), note that

lim
n→∞

(xn + yn)k = lim
n→∞

(xn,k + yn,k) = lim
n→∞

xn,k + lim
n→∞

yn,k = uk + vk = (u+ v)k.
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5.43 Theorem: (Sequential Characterization of Limit Points) Let A ⊆ Rm and let
a ∈ Rm. Then a ∈ A′ if and only if there exists a sequence (xn) in A \ {a} such that
lim
n→∞

xn = a.

Proof: Let a ∈ A′. For each n ∈ Z+, since a ∈ A′ we have B∗
(
a, 1

n

)
∩A 6= ∅ so we can choose

an element xn ∈ B∗
(
a, 1

n

)
∩A and then we have xn ∈ A\{a} and |xn−a| < 1

n . Given ε > 0
we can choose a positive integer N > 1

ε and then we have n ≥ N =⇒ |xn−a| < 1
n ≤

1
N < ε.

Thus (xn)n≥1 is a sequence in A \ {a} with lim
n→∞

xn = a.

Suppose, conversely, that (xn)n≥p is a sequence in A \ {a} with lim
n→∞

xn = a. Let

r > 0. Since lim
n→∞

xn = a we can choose N ≥ p so that n ≥ N =⇒ |xn − a| < r. Then we

have xN ∈ A \ A and |xN − a| < r so that xN ∈ B∗
(
a, r), and hence B∗(a, r) 6= 0. Since

r > 0 was arbitrary, it follows that a ∈ A′.

5.44 Theorem: (Sequential Characterization of Closed Sets) Let A ⊆ Rm. Then A is
closed (in Rm) if and only if every for every sequence in A which converges in Rm, the
limit of the sequence lies in A.

Proof: Suppose that A is closed. Let (xn)n≥p be a sequence in A which converges in
Rn. Let a = lim

n→∞
xn. Suppose, for a contradiction, that a /∈ A. Since a /∈ A we have

A = A \ {a} and so (xn) is a sequence in A \ {a}. Since (xn) is a sequence in A \ {a} with
lim
n→∞

xn = a, we have a ∈ A′ by the Characterization of Limit Points. Since A is closed

we have A′ ⊆ A and so a ∈ A, giving the desired contradiction.
Suppose, conversely, that for every sequence in A which converges in Rn, the limit

of the sequence lies in A. Let a ∈ A′. By the Characterization of Limit Points, we can
choose a sequence (xn) in A \ {a} such that lim

n→∞
xn = a. Then (xn) is a sequence in A

which converges in Rn, and so its limit must lie in A, thus we have a ∈ A. Since a ∈ A′
was arbitrary, this proves that A′ ⊆ A and so A is closed.

5.45 Theorem: (Bolzano-Weierstrass) Every bounded sequence in Rm has a convergent
subsequence.

Proof: For this proof, we shall label the components of an element in Rm using superscripts
rather than subscripts, so we shall write an element x ∈ Rm as (x1, x2, · · · , xm). Let (xn) be
a bounded sequence in Rm. Then the first component sequence (x1n) is a bounded sequence
in R. By the Bolzano-Weierstrass Theorem for sequences in R, we can choose a convergent
subsequence (x1n`

), where n1 < n2 < · · ·. Since the second component sequence (x2n) is
bounded, the subsequence (x2n`

) is also bounded so we can choose a convergent subsequence
(x2n`k

), where `1 < `2 < · · ·. Note that the sequence (x1n`k
) also converges because it is a

subsequence of the convergent subsequence (x1n`
). Since the sequence (x3n) is bounded, the

subsequence (x3n`k
) is also bounded so we can choose a convergent subsequence (x3n`kj

),

where k1 < k2 < · · ·. We then obtain convergent subsequences of each of the first 3
component sequences (xin) for i = 1, 2, 3, namely the subsequences (xin`kj

). We repeat the

procedure until we obtain simultaneous subsequences of all m component sequences (xin),
which we can combine to form a subsequence of the original sequence (xn) in Rm.
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5.46 Definition: Let (xn)n≥p be a sequence in Rm. We say that (xn) is Cauchy when

∀ ε>0 ∃N ∈Z≥p ∀ k, `∈Z≥p
(
k, ` ≥ N =⇒ |xk − x`| < ε

)
.

5.47 Theorem: (The Completeness of Rm) For every sequence in Rm, the sequence
converges if and only if it is Cauchy.

Proof: Let (xn) be a sequence in Rm. Suppose that (xn) converges. Let a = lim
n→∞

xn. Let

ε > 0. Choose N so that n ≥ N =⇒ |xn− a| < ε
2 . Then for k, ` ≥ N we have |xk − a| < ε

2
and |x` − a| < ε

2 so |xk − x`| ≤ |xk − a|+ |a− x`| < ε. Thus (xn) is Cauchy.
Now suppose that (xn)n≥p is Cauchy. ChooseN ≥ p so that k, ` ≥ N =⇒ |xk−x`| < 1.

Then for all k ≥ N we have |xk − xN | < 1 hence |xk| ≤ |xk − xN | + |xN | < 1 + |xN |,
and so (xn) is bounded by max

{
|xp|, |xp+1|, · · · , |xN−1| , 1+ |xN |

}
. Choose a convergent

subsequence (xnk
) and let a = lim

k→∞
xnk

. Let ε > 0. Since (xn) is Cauchy we can choose M

so that n, ` ≥M =⇒ |xn − x`| < ε
2 . Since lim

k→∞
xnk

= a we can choose k so that nk ≥M

and |xnk
− a| < ε

2 . Then for n ≥M we have |xn − a| ≤ |xn − xnk
|+ |xnk

− a| < ε.

Limits of Functions

5.48 Definition: Let A ⊆ R` and let f : A → Rm. When a is a limit point of A and
b ∈ Rm, we say that f(x) converges to b as x tends to a, and we write lim

x→a
f(x) = b

when
∀ ε>0 ∃ δ>0 ∀x∈A

(
0< |x−a|<δ =⇒ |f(x)−b|<ε

)
.

When a is a limit point of A, we say that f(x) diverges to ∞ and we write lim
x→a

f(x) =∞
when

∀ r>0 ∃ δ>0 ∀x∈A
(

0< |x−a|<δ =⇒ |f(x)|≥r
)
.

5.49 Theorem: (Sequential Characterization of Limits) Let f : A ⊆ R` → Rm, let a be a
limit point of A and let u ∈ Rm ∪ {∞}. Then lim

x→a
f(x) = u if and only if lim

n→∞
f(xn) = u

for every sequence (xn) in A \ {a} with lim
n→∞

xn = a.

Proof: We give the proof in the case that u ∈ Rm. Suppose first that lim
x→a

f(x) = u ∈ Rm.

Let (xn) be a sequence in A \ {a} with xn → a. Let ε > 0. Since lim
x→a

f(x) = u we can

choose δ > 0 so that 0 < |x− a| < δ =⇒ |f(x)− u| < ε. Since xn → a we can choose N so
that n ≥ N =⇒ |xn − a| < δ. For n ≥ N we have |xn − a| < δ and we have xn 6= a (since
xn ∈ A \ {a}) and so 0 < |xn − a| < δ and hence |f(xn) − u| < ε. Thus lim

n→∞
f(xn) = u,

as required.
Suppose, conversely, that lim

x→a
f(x) 6= u. Choose ε such that for every δ > 0 there

exists x ∈ A such that 0 < |x− a| < δ and |f(x)−u| ≥ ε. For each n ∈ Z+, choose xn ∈ A
such that 0 < |xn − a| < 1

n and |f(xn) − u| ≥ ε. For each n, since 0 < |xn − a| we have
xn 6= a so the sequence (xn) lies in A \ {a}. Since |xn − a| < 1

n for all n ∈ Z+ it follows
that xn → a. Since |f(xn)−u| ≥ ε for all n, it follows that lim

n→∞
f(xn) 6= u. Thus we have

found a sequence (xn) in A \ {a} with xn → a such that lim
n→∞

f(xn) 6= u.

5.50 Note: Using the Sequential Characterization of Limits, many properties of limits of
sequences immediately imply analogous properties of limits of function. We list some of
these properties in the following theorems.
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5.51 Theorem: (Uniqueness of Limits of Functions) Let f : A ⊆ R` → Rm, let a ∈ A′,
and let u, v ∈ Rm ∪ {∞}. If lim

x→a
f(x) = u and lim

x→a
f(x) = v then u = v.

Proof: This can be proven by imitating the proof of the Uniqueness of Limits of Sequences.
Alternatively, we can use Uniqueness of Limits of Sequences together with the Sequential
Characterization of Limits as follows. Since a ∈ A′ we can choose a sequence (xn) ∈ A\{a}
such that xn → a. By the Sequential Characterization of Limits, since lim

x→a
f(x) = u we

have lim
n→∞

f(xn) = u and since lim
x→a

f(x) = v we have lim
n→∞

f(xn) = v. By the Uniqueness

of Limits of Sequences, since lim
n→∞

f(xn) = u and lim
n→∞

f(xn) = v it follows that u = v.

5.52 Theorem: (Local Determination of Limits of Functions) Let A ⊆ R`, let a ∈ A′,
let B = B∗(a, r) ∩ A with r > 0. Let f : A → Rm and let g : B → Rm and suppose that
f(x) = g(x) for all x ∈ B. Then lim

x→a
f(x) exists in Rm ∪ {∞} if an only if lim

x→a
g(x) exists

in Rm ∪ {∞} and, in this case, the limits are equal.

Proof: We leave the proof as an exercise.

5.53 Definition: Let f : A ⊆ R` → Rm. We can write f(x) =
(
f1(x), f2(x), · · · , fm(x)

)
where fk : A → R for each index k. Then the function fk is called the kth component
function of f . Note that fk = pk ◦ f where pk : Rm → R is the k projection map given
by pk(y1, · · · , yk, · · · , ym) = yk.

5.54 Theorem: (Limits of Component Functions) Let f : A ⊆ R` → Rm be given by
f(x) =

(
f1(x), · · · , fm(x)

)
, let a be a limit point of A, and let b = (b1, b2, · · · , bm) ∈ Rm.

Then lim
x→a

f(x) = b if and only if lim
x→a

fk(x) = bk for all indices k.

Proof: Suppose that lim
x→a

f(x) = b. Let (xn) be any sequence in A \ {a} with xn → a.

By the Sequential Characterization of Limits, we have lim
n→∞

f(xn) = b. By Limits of

Component Sequences, we have lim
n→∞

fk(xn) = bk for all indices k. By the Sequential

Characterization of Limits again, it follows that lim
x→a

fk(x) = bk for all indices k.

Suppose, conversely, that lim
x→a

fk(x) = bk for all k. Let (xn) be any sequence in A\{a}
with xn → a. By the Sequential Characterization of Limits, we have lim

n→∞
fk(xn) = bk

for all k. By Limits of Component Sequences, we have lim
n→∞

f(x) = b. By the Sequential

Characterization of Limits again, it follows that lim
x→a

f(x) = b.

5.55 Theorem: (Operations on Limits of Functions) Let f, g : A ⊆ R` → Rm, let a ∈ A′
and let c ∈ R. Suppose that lim

x→a
f(x) = u ∈ Rm and lim

n→∞
g(x) = v ∈ Rm. Then

(1) lim
x→a

(f + g)(x) = u+ v,

(2) lim
x→a

(cf)(x) = cu,

(3) lim
x→a
|f |(x) = |u|,

(4) lim
x→a

(f . g)(x) = u . v, and

(5) when m = 3 we have lim
x→∞

(f × g)(x) = u× v.

Proof: This follows from Operations on Limits of Sequences, together with the Sequential
Characterization of Limits.
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5.56 Theorem: (Comparison Theorem) Let f, g : A ⊆ R` → R with f(x) ≤ g(x) for all
x ∈ A and let a ∈ A′.
(1) If lim

x→a
f(x) = u ∈ R ∪ {±∞} and lim

x→a
g(x) = v ∈ R ∪ {±∞} then u ≤ v.

(2) If lim
x→a

f(x) =∞ then lim
x→a

g(x) =∞.

(3) If lim
x→a

g(x) = −∞ then lim
x→∞

f(x) = −∞.

Proof: This follows from the Comparison Theorem for Sequences in R together with the
Sequential Characterization of Limits.

5.57 Theorem: (Squeeze Theorem) Let f, g, h : A ⊆ R` → R with f(x) ≤ g(x) ≤ h(x)
for all x ∈ A, and let u ∈ R ∪ {±∞}. If lim

x→a
f(x) = u = lim

x→a
h(x) then lim

x→a
g(x) = u.

Proof: This follows from the Squeeze Theorem for Sequences in R together with the
Sequential Characterization of Limits.

Continuity

5.58 Definition: Let A ⊆ R`, let B ⊆ Rm, and let f : A→ B. For a ∈ A, we say that f
is continuous at a when

∀ ε>0 ∃ δ>0 ∀x∈A
(
|x−a|<δ =⇒ |f(x)−f(a)|<ε

)
.

We say that f is continuous (in A) when f is continuous at a for every a ∈ A. We say
that f is uniformly continuous in A when

∀ ε>0 ∃ δ>0 ∀ a∈A ∀x∈A
(
|x−a|<δ =⇒ |f(x)−f(a)|<ε

)
.

5.59 Theorem: (Continuity and Limits) Let A ⊆ R` and let f : A→ Rm.

(1) When a is a limit point of A, f is continuous at a ⇐⇒ lim
x→a

f(x) = f(a).

(2) When a is an isolated point of A, f is always continuous at a.

Proof: We leave the proof as an exercise.

5.60 Theorem: (Sequential Characterization of Continuity) Let A ⊆ R`, let f : A→ Rm,
and let a ∈ A. Then f is continuous at a if and only if lim

n→∞
f(xn) = f(a) for every sequence

(xn)n≥p in A with lim
n→∞

xn = a.

Proof: Suppose f is continuous at a. Let (xn) be any sequence in A with xn → a. Let ε > 0.
Since f is continuous at a we can choose δ > 0 so that |x− a| < δ =⇒ |f(x)− f(a)| < ε.
Since xn → a we can choose N so that n ≥ N =⇒ |xn − a| < δ. Then for all n ≥ N we
have |xn − a| < δ hence |f(xn)− f(a)| < ε, and so lim

n→∞
f(xn) = f(a), as required.

Suppose that f is not continuous at a. Choose ε > 0 such that for every δ > 0 there
exists x ∈ A such that |x− a| < δ and |f(x)− f(a)| ≥ ε. For each n ∈ Z+, choose xn ∈ A
such that |xn− a| < 1

n and |f(xn)− f(a)| ≥ ε. Since |xn− a| < 1
n for all n ∈ Z+ it follows

that xn → a. Since
∣∣f(xn) − f(a)

∣∣ ≥ ε for all n, it follows that lim
n→∞

f(xn) 6= f(a). Thus

we have found a sequence (xn) in A with xn → a such that lim
x→a

f(xn) 6= f(a).

5.61 Theorem: (Local Determination of Continuity) Let A ⊆ R`, let a ∈ A′, and let
B = B∗(a, r) ∩ A where r > 0. Let f : A → Rm and g : B → Rm and suppose that
f(x) = g(x) for all x ∈ B. Then f is continuous at a if and only if g is continuous at a.

Proof: The proof is left as an exercise.
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5.62 Theorem: (Continuity of Component Functions) Let A ⊆ R` and let f : A → Rm.
Then f is continuous at a if and only if fk is continuous at a for every index k.

Proof: This can be proven by imitating the proof of Continuity of Component Sequences
or by using the result of Continuity of Component Sequences together with the Sequential
Characterization of Continuity.

5.63 Theorem: (Operations on Continuous Functions) Let A ⊆ R`, let f, g : A → Rm,
let a ∈ A and let c ∈ R. If f and g are continuous at a then so are each of the functions
f + g, cf , |f | and f . g, and also f × g in the case that m = 3.

Proof: This follows from the Sequential Characterization of Continuity along with Opera-
tions on Limits of Sequences.

5.64 Theorem: (Composition and Limits) Let f : A ⊆ R` → Rm, let g : B ⊆ Rm → Rn
and let h = g ◦ f : C ⊆ R` → Rn where C = A ∩ f−1(B). Let a ∈ C ′ ⊆ A′ and let b ∈ B′.
Suppose that lim

x→a
f(x) = b and lim

y→b
g(y) = c ∈ Rn ∪ {∞}.

(1) If f(x) 6= b for all x ∈ C \ {a} then lim
x→a

h(x) = c.

(2) If b ∈ B and g is continuous at b then lim
x→a

h(x) = g(b) = c.

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that
b ∈ B and g is continuous at b. Note that since b ∈ B′ and g is continuous at b we have
g(b) = lim

y→b
g(y) = c by Theorem 5.59. Let (xk) be any sequence in C \ {a} with xk → a.

Since C ⊆ A, the sequence (xk) also lies in A \ {a}. By the Sequential Characterization
of Limits of Functions, since lim

x→a
f(x) = b we have lim

k→∞
f(xk) = b. For each index k we

have xk ∈ C = A ∩ f−1(B) so that f(xk) ∈ B, and so the sequence
(
f(xk)

)
lies in B. By

the Sequential Characterization of Continuity, since g is continuous at b and f(xk) → b
we have lim

k→∞
g
(
f(xk)

)
= g(b) = c, that is lim

k→∞
h(xk) = g(b) = c. By the Sequential

Characterization of Limits, it follows that lim
x→a

h(x) = g(b) = c.

5.65 Corollary: (Composition of Continuous Functions) Let f : A ⊆ R` → Rm, let
g : B ⊆ Rm → Rn, and let h = g ◦ f : C ⊆ R` → Rn where C = A ∩ f−1(B).

(1) If f is continuous at a∈A and g is continuous at b=f(a)∈B then h is continuous at a.
(2) If f is continuous in A and g is continuous in B then h is continuous in C.

5.66 Definition: An elementary function is a function f : A ⊆ R` → Rm which
can be obtained, using the operations of addition, subtraction, multiplication, division,
and composition of functions (whenever those operations are defined) from the following
functions, which we call the basic elementary functions: and the single-variable, real-
valued functions c, xn, x1/n, ex, lnx, sinx, cosx, tanx, sin−1 x, cos−1 x and tan−1 x. and
the kth inclusion map Ik : R→ R` given by Ik(t) = (0, · · · , 0, t, 0, · · · , 0) = t ek, and the
kth projection map Pk : R` → R given by Pk(x1, · · · , x`) = xk.

5.67 Corollary: Elementary functions are continuous in their domains.

5.68 Exercise: Show that lim
(x,y)→(0,0)

x2 − 2y2

x2 + y2
, lim
(x,y)→(0,0)

xy

x2 + y2
and lim

(x,y)→(0,0)

xy2

x2 + y4

do not exist, and that lim
(x,y)→(0,0)

3x2y

x2 + 2y2
= 0 and lim

(x,y)→(0,0)

xy√
x2 + y2

= 0.
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Continuity and Topology

5.69 Theorem: (Topological Characterization of Continuity) Let A ⊆ Rn, let B ⊆ Rm,
and let f : A→ B.

(1) f is continuous if and only if f−1(E) is open in A for every open set E in B.
(2) f is continuous if and only if f−1(F ) is closed in A for every closed set F in B.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. Suppose that f
is continuous. Let E be an open set in B. Let a ∈ f−1(E) so we have f(a) ∈ E. Since
f(a) ∈ E and E is open in B we can choose ε > 0 so that BB

(
f(a), ε

)
⊆ E. Since f is

continuous at a we can choose δ > 0 so that for all x ∈ A, |x−a| < δ =⇒
∣∣f(x)−f(a)

∣∣ < ε.
Let x ∈ BA(a, δ), that is let x ∈ A with |x − a| < δ. Since x ∈ A and f : A → B we
have f(x) ∈ B. Since x ∈ A with |x − a| < δ, we have and

∣∣f(x) − f(a)
∣∣ < ε. Since

f(x) ∈ B with
∣∣f(x) = f(a)

∣∣ < ε, we have f(x) ∈ BB
(
f(a), ε

)
⊆ E hence x ∈ f−1(E).

Since a ∈ BA(a, δ) was arbitrary, this shows that BA(a, δ) ⊆ f−1(E). Thus f−1(E) is
open in A, as required.

Suppose, on the other hand, that f−1(E) is open in A for every open set E in B. Let
a ∈ A and let ε > 0. The set E = BB(f(a), ε

)
is open in B so the set f−1(E) is open

in A, and so we can choose δ > 0 such that BA(a, δ) ⊆ f−1(E). It follows that for all
x ∈ BA(a, δ) we have f(a) ∈ E = BB

(
f(a), ε

)
. Equivalently, for all x ∈ A, if |x − a| < δ

then f(x) ∈ B with
∣∣f(x)−f(a)

∣∣ < ε. hus f is continuous at a. Since a ∈ A was arbitrary,
f is continuous (in its domain A).

5.70 Theorem: (Properties of Continuous Functions) Let ∅ 6= A ⊆ Rn, let B ⊆ Rm, and
let f : A→ B be continuous.

(1) If A is connected then f(A) is connected.
(2) If A is compact then f(A) is compact.
(3) If A is compact then f is uniformly continuous on A.
(4) If A is compact and m = 1 then f(x) attains its maximum and minimum values on A.
(5) if A is compact and f is bijective then f−1 is continuous.

Proof: We sketch a proof for Parts (1), (2) and (4) and leave some details, along with
the other two parts, as an exercise. To prove Part (1), suppose that f(A) is disconnected.
Choose open sets U and V in Rm which separate f(A). Since f is continuous and U and
V are open, it follows that f−1(U) and f−1(V ) are open in A. Verify that f−1(U) and
f−1(V ) separate A, so A is disconnected.

To prove Part (2), suppose that A is compact. Let S =
{
Uk
∣∣k ∈ K} be an open cover

of f(A) (with each Uk open in Rn). For each set k ∈ K, since Uk is open in Rm and f is
continuous, it follows that f−1(Uk) is open in A. Let T =

{
f−1(Uk)

∣∣k ∈ K}. Verify that
T is an open cover of A (with each set f−1(Uk) open in A). Since A is compact, we can
choose a finite subset J ⊆ K such that the set

{
f−1(Uj)

∣∣j ∈ J} is an open cover of A.

Verify that the set
{
Uj
∣∣j ∈ J} is an open cover for f(A), so f(A) is compact.

To prove Part (4), suppose that f : A ⊆ Rn → R with A is compact. Since A is
compact and f is continuous, f(A) is compact by Part (2). Since f(A) is compact, it is
closed and bounded by the Heine Borel Theorem. Since f(A) is bounded and non-empty
(since A 6= ∅) it has a supremum and an infemum in R. Let u = sup f(A). By the
Approximation Property of the Supremum, for each k ∈ Z+ we can choose xk ∈ A with
u − 1

n < f(xk) ≤ u, and it follows that f(xk) → u and hence u is a limit point of f(A).
Since u is a limit point of f(A) and f(A) is closed, we have u ∈ f(A). Thus we can choose
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a ∈ A such that f(a) = u = sup f(A) = max f(A), and then f attains its maximum value
at a ∈ A. Similarly, we can choose b ∈ A such that f(b) = inf f(A) = min f(A).

5.71 Definition: Let A ⊆ Rn. For a, b ∈ A, the line segment between a and b is the set

[a, b] =
{
a+ t(b−a)

∣∣ 0≤ t≤1
}
.

We say that A is convex when for every a, b ∈ A we have [a, b] ⊆ A.

5.72 Example: Show that for a ∈ Rn and r > 0, the ball B(a, r) is convex.

Proof: Let b, c ∈ B(a, r) so we have |b − a| < r and |c − a| < r. Let x ∈ [b, c], say
x = b+ t(c− b) = (1− t)b+ tc with 0 ≤ t ≤ 1. Note that

x− a = (1− t)b+ tc− ((1− t) + t)a = (1− t)(b− a) + t(c− a).

By the Triangle Inequality, we have

|x− a| =
∣∣(1− t)(b− a) + t(c− a)

∣∣ ≤ ∣∣(1− t)(b− a)
∣∣+
∣∣t(c− a)

∣∣
= (1− t)|b− a|+ t|c− a| < (1− t)r + tr = r

so that x ∈ B(a, r). This shows that [b, c] ⊆ B(a, r) and so B(a, r) is convex.

5.73 Definition: Let A ⊆ Rn and let a, b ∈ A. A (continuous) path from a to b in A
is a continuous function f : [0, 1] → A with f(0) = a and f(1) = b. We say that A is
path-connected when for every a, b ∈ A there exists a continuous path from a to b in A.

5.74 Note: For A ⊆ Rn, if A is convex then A is path connected because given a, b ∈ A,
since [a, b] ⊆ A, the map f(t) = a+ t(b− a) is a continuous path from a to b in A.

5.75 Theorem: (Path-Connectedness and Connectedness) Let A ⊆ Rn.

(1) If A is path-connected then A is connected.
(2) If A is open and connected then A is path-connected.

Proof: We prove Part (1) and leave Part (2) as an exercise. Suppose that A is path
connected and suppose, for a contradiction, that A is not connected. Let U and V be open
sets in Rn which separate A, that is U ∩ A 6= ∅, V ∩ A 6= ∅, U ∩ V = ∅ and A ⊆ U ∪ V .
Choose a ∈ U ∩ A and b ∈ V ∩ A. Since A is path connected we can choose a continuous
path f : [0, 1] → A with f(0) = a and f(1) = b. Since f is continuous, f−1(U) and
f−1(V ) are open in [0, 1]. Since f(0) = a ∈ U we have 0 ∈ f−1(U) so f−1(U) 6= ∅.
Similarly 1 ∈ f−1(V ) so f−1(V ) 6= ∅. Since U ∩ V = ∅ we also have f−1(U) ∩ f−1(V ) = ∅
(indeed if we had t ∈ f−1(U) ∩ f−1(V ) then we would have f(t) ∈ U and f(t) ∈ V so
that f(t) ∈ U ∩ V ). Since f : [0, 1]→ A ⊆ U ∪ V it follows that [0, 1] = f−1(U) ∪ f−1(V )
(indeed, given t ∈ [0, 1] we have f(t) ∈ A ⊆ U ∪ V , so either f(t) ∈ U or f(t) ∈ V hence
either t ∈ f−1(U) or t ∈ f−1(V )). Thus the open sets f−1(U) and f−1(V ) separate [0, 1].
This is not possible since [0, 1] is connected, so we have obtained the desired contradiction.

5.76 Example: Show that the set U =
{

(x, y) ∈ R2
∣∣y > x2

}
is open in R2.

Solution: The map f : R2 → R given by f(x, y) = y−x2 is continuous (it is an elementary
function), and the interval I = (0,∞) is open and so the set U = f−1(I) is open (by the
Topological Characterization of Continuity).

5.77 Example: Show that for a ∈ Rn and r > 0, the set B(a, r) is connected.

Solution: Since B(a, r) is convex (by Example 5.72), it is path connected (by Note 5.74),
and hence it is connected (by Part 1 of Theorem 5.75).
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