Chapter 1. Complex Numbers

1.1 Definition: A complex number is a vector in R?. The complex plane , denoted
by C, is the set of complex numbers:

cn-{(3)

Yy
) (0 (1Y . [0 fx\ .. . [0

InCweusuallywrlteO—(O), —(0>,Z—(1),x—<0)71y—yl—(y) and

r+iy=z+yi= (?j)

1.2 Definition: If z = z + 1y with x,y € R then «x is called the real part of z and y is
called the imaginary part of z, and we write

:I;ER,yER}.

Rez=2x ,and Imz=y.

1.3 Definition: We define the sum of two complex numbers to be the usual vector sum:

(a +ib) + (¢ + id) = (Z) + <§> - (Z:;) —(a+c)+ib+d),
where a,b € R. We define the product of two complex numbers by setting i = —1 and
by requiring the product to be commutative and associative and distributive over the sum:
(a4 1ib)(c + id) = ac + iad + ibc + i*bd = (ac — bd) + i(ad + bc) .
1.4 Example: Let z =2+ ¢ and w =1+ 3i. Find z +w and zw.

Solution: z+w = (2+¢)+(1+3i) = (2+1)+i(1+3) =3+4i, and zw = (2414)(1+3i) =
246t+1—3=—-14T.

1.5 Example: Show that every non-zero complex number has a unique inverse z~! and
find a formula for the inverse.
Solution: We let z = a+1ib, a,b € R, and we solve (a+ib)(z+iy) = 1tofind 27 =z +
. N B . B ax — by 1

(a+ib)(z +iy) =1 <= (ax —by) +i(lay +bz) =1 <= (bm—l—ay) (0)

a =b\(xz\ _(1\ _ .  (z)_(a =b s 1

b a y/) \0 y) \b a 0_a2+b2—

1 a ) 1 .
m —b < Z'—f—Zy: a2—_|_b2(a—lb) ThUS
b
(a+ib) ™' =

—1 .
CI/2 + bQ (12 + bQ

1.6 Notation: For z,w € C we use the following obvious notation:

1 w —1

—z=-1z, w—z=w+(-2), —-=z and — =wz
z z
(4—1)—(1—29)

1+ 2

1.7 Example: Find



(4—i)— (1—2i)  3+i
1+2i 142

1.8 Note: The set of complex numbers is a field under the operations of addition and
multiplication. This means that for all u, v and w in C we have

Solution: =@B+i)(1+2)" =B+ (2 - 2i)=1—1.

u+v=v+u
(u+v)+w=u+ (v+w)
Ot+tu=u

u+(—u)=0

uv = vu

(uv)w = u(vw)

lu=wu
uvut=1ifu#0

u(v 4+ w) = uv + vw
1.9 Definition: If z = x + 1y with =,y € R then we define the conjugate of z to be
Z=x—1y.
1.10 Definition: If z = x + iy with z,y € R then we define the length (or magnitude)

of z to be
|z| = Va2 + y2.

Given two complex numbers z and w, we define the distance between z and w to be
d(z,w) = |z —w|.

1.11 Note: For z and w in C the following identities are all easy to verify.

1.12 Definition: If z # 0, we define the angle (or argument) of z to be the angle 6(z)
from 1 counterclockwise to z. In other words, 6(z) is the angle such that

z = |z|(cos0(z) + isinf(z)) .

1.13 Note: We can think of the angle 6(z) in several different ways. We can require, for
example, that 0 < 6(z) < 27 so that the angle is uniquely determined. Or we can allow
0(z) to be any real number, in which case the angle will be unique up to a multiple of 2.
Then again, we can think of 6(z) as an infinite set of real numbers; 6(z) = {6+ 27k|k € z}.
Perhaps best of all, we can think of 6(z) as an element of R/2m, the set of real numbers
modulo 27 (If « = f+ 27 then a # 3 € R but a = 5 € R/27).
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1.14 Notation: For 6 € R (or for §# € R/27) we shall write

e = cosf + isinf.

1.15 Note: If z # 0 and we have z = Re (z), y = Im (z), r = |2| and § = 0(z) then

r=rcosf, y=rsinf

r=vax2+y?, tan@z%, if x #0

, . _ 1 .
z=re®, zZ=re 0, l=Ze70
r

We say that x + iy is the cartesian form of z and re’? is the polar form.

1.16 Example: Let z = —3 — 4i. Express z in polar form.

Solution: We have |z| = 5 and tan6(z) = 5. Since 6(2) is in the third quadrant, we have
0(z) =m+tan' 5. So z = pei(mttan™(4/3)),

1.17 Example: Let 2z = 10¢f tan ' 3. Express z in cartesian form.

Solution: z = 10 ( cos(tan™1 3) + i sin(tan~13)) = 10 (ﬁ) + l\/ifo) = V10 + 3v/104.
1.18 Example: Find a formula for multiplication in polar coordinates.

Solution: For z = re!® and w = % we have zw = rs(cosa + isina)(cos 3 + isin3) =
((cos acos B —sinasin §) +i(sin ccos B+ cos asin 3)) = rs(cos(a+ 3) +isin(a+ B)) and

so we obtain the formula
rei®se’ = rgetl@th)

1.19 Note: An immediate consequence of the above example is that

(7“ ei@)n — rneinG

for r,0 € R and for n € Z. This result is known as De Moivre’s Law.
1.20 Example: Find (1 + )1°.

Solution: This can be done in cartesian coordinates using the binomial theorem (which

holds for complex numbers), but it is easier in polar coordinates. We have 1+i = V2ei /4
S0 (1 + Z')l() — (\/§6i7r/4)10 — (\/5)1061' 10m/4 326i7r/2 = 39;.

1.21 Example: Find a formula for the n*" roots of a complex number. In other words,
given z = re'?, solve w" = z.

Solution: Let w = se’®. We have w" = z <= (se'®)" = re?? = 5"!"® = re? —

0+ 2rk
s" =r and na = 0 + 27k for some k € Z <— s:%_“anda:iforsomekez.

n
Notice that when z # 0 there are exactly n solutions obtained by taking 0 < k < n. So we
obtain the formula

e = YEEOEI e 01,1,

In particular, (re*?)t/? = +/re??/2, For 0 < a € R we have 22 = a4 <= 2z = +,/a, and
for 0 > a € R we have 22 = a <= 2z = 4+/]al1.
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1.22 Note: For 0 # w € C, we can think of w!/™ as any one of the n solutions to 2" = w,
or we can think of it as the set of all n solutions. Consider the following “proof” that 1=-1:

1=V1=/(-1)(-1) =V-1V-1=i*=-1.

1.23 Note: It is not hard to show that the quadratic formula works for complex numbers;
indeed, for a,b,c € C with a # 0 we have az? + bz +c =0 < 22+§z+§ =0 <=

(z— £)2 = b _ e — Viodac Thyg 22 + bz + ¢ = 0 if and only if

2a T 4a? a 4a2

_ —bE Vb —dac

2a

z

where v/b?2 — 4ac denotes either one of the two square roots when b? # 4ac.
1.24 Example: Let f(2) = z* + 222 + 4. Factor f over the complex numbers.

Solution: By the quadratic formula, f(z) = 0 when 2% = —1 4+ /34 or in polar coordinates
z = 2eT27/3_ Thus the roots of f are z = £1/2e*7/3 and so f factors as

Z4+2Z2 +4 — (Z . \/ieiﬂ/?)) (Z— \/ie—iﬂ/i%) (Z—|— \/§ei7r/3) (Z+ \/ée—iﬂ/S) )

1.25 Note: We do not have inequalities between complex numbers. We can only write
a < bor a < bin the case that a and b are both real numbers. But there are several
inequalities between real numbers which concern complex numbers. For z € C and w € C,

[Re (2)] < [z], [m(2)] < |z
|z +w| < |z| 4+ |w|, this is called the triangle inequality
|2 +wl| > ||2] = |wl]

The first two inequalities follow from the fact that |z]? = |Re (2)|?+ |Im (2)|?. We can then
prove the triangle inequality as follows: |z+w|? = (z4+w)(Z+W) = |2|*+|w|* +(wZ+2w) =
1212 + |w|? + 2Re (2w) < |2]? + |w]? + 2|20 = |2]? + |w|? + 2|z||w| = (]z| + |w])?. The last
inequality follows from the triangle inequality since |z| = |z + w — w| < |z + w| + |w| and
lw| = |z +w — 2| < |z 4+ w|+ |z|. (Alternatively, the last two inequalities can be proven
using the Law of Cosines).

1.26 Example: Given complex numbers a and b, describe the set {z € C||z—a| < [z—b|} .

Solution: Geometrically, this is the set of all z such that z is closer to a than to b, so it is
the half-plane which contains a and lies on one side of the perpendicular bisector of the
line segment ab.

1.27 Example: Given a complex number a, describe the set {z € C|1 < |z —a| < 2}.

Solution: {z||z — a| = 1} is the circle centred at a of radius 1 and {z||z — a| = 2} is the
circle centred at a of radius 2, and {z € C|1 <l|z—al < 2} is the region between these
two circles. Such a region is called an annulus.
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1.28 Note: Historically, complex numbers arose in the study of cubic equations. An
equation of the form az® + bx? 4+ cx 4+ d = 0, where a,b,c,d € C with a # 0 can be solved
as follows. First, divide by a to obtain an equation of the form 23 + Bx? + Cz + D = 0.
Next, make the substitution y = z+ % and rewrite the equation in the form y3+py+q = 0.
To solve this, look for a solution of the form y = z +rz71. We need 0 = 33 + py + q =
(22 4+3r2+3r22 41327 +p(z+r2 )+ q=22+Br+p)z+q+rBr+p) 2zt +r3273
Choose r = —p/3 so that this simplifies to 2z + ¢ — g—iz_?’ = 0. Finally, we multiply by 23

3
to obtain 2% + g23 — r=, which we can solve for 23 using the quadratic formula.

1.29 Example: Let f(z) = 23 + 322 + 4z + 1. Note that f'(z) = 322 + 62 + 4 =
3(x+1)2+1 > 0, so f is increasing and hence has exactly one real root. Find the real
root of f.

Solution: Let y = x+1. Then 23+3z2+42+1 = (y—1)3+3(y—1)?+4(y—1)+1 = y3+y—1.
Try y = 2+ rz~! with r = —%, so we have y2 +y — 1 = (z — %2_1)34-(,2— %z‘l)—lz

23— 1 — %2*3. We solve 20 — 23 — 2—17 = 0 using the quadratic formula, and obtain

3 _ 1V 3/1+4/ 57 1 1 2 13/2(1=v/33) 3/1—v/57
z° = . If 2z =/ —X2 then rz =337/ = 3 [ = 5o
1+4/5% 27

2 2
[1_ /3L /14 /3L
Similarly, if z = \ 1T27 then r 2~ = \ 1+2 27 In either case we have y = z +rz~! =

/3T e 31 /3L _
\ —1+227+ V- 227,andx:y—1:€/ 227+1—€/ = L1 (Notice that we didn’t
use complex numbers in this example).

1.30 Example: Find the three real roots of f(z) = x> — 3z + 1.

Solution: Try # = z +rz~! with r = 1 so that f(z) = (z + 2713 =3z +2z71) +1 =

23 + 14 z73. Multiply by 23 and solve 25 + 23 +1 =0 to get 23 = %‘/‘3” = eF127/3 If

23 = '?™/3 then 2z = '27/9 ¢'87/9 or ¢147/9 and so x = 2+ 27! = 2+ Z = 2Re(2) =
8m 147

2c0s(2E), 2cos(8) or 2cos(14T). If 22 = e7*27/3 then we obtain the same values for z.

Thus the three real roots are 2cos(40°), —2cos(20°) and 2 cos(80°). (Notice that in this
example we used complex numbers to solve a problem involving real variables!)



Chapter 2. Complex Functions

2.1 Note: Amap f: R — R (or f: I — R where I is an interval in R) may be visualized
by drawing a picture of its graph, which is a curve in R?:

Graph (f) = {(g) 'y = f(x)} :

2.2 Note: A map f: R — C (or amap f: I — C where I is an interval in R) may be
visualized by drawing its image, which is a curve in C:

Image (f) = {f(t) e C|t € R}.
2.3 Example: The line segment from a € C to b € C is the image of the map
zt)=a+tlb—a), 0<t<1.
2.4 Example: The circle centred at a € C with radius r» > 0 is the image of the map
t

2(t)=a+7rcost+irsint=a+re’.

2.5 Example: Describe the image of the map z(t) = (1 +it)? .

Solution: We can sketch the image of any map z(t) simply by plotting points. Try plotting
the points z(t) for t = —2,—1,0,1,2. For this particular map, we can eliminate the
parameter ¢ to describe the image: 2(t) = (1+it)? = (1 —t?)+i(2t) so we have z = 1 —¢?
and y =2t,and sox =1 — in. This shows that the image is the parabola x =1 — %lyz.

\;4

>
L

2.6 Example: Describe the image of the map z(t) = sin(2t)e’®.

&
T

Solution: Since z(t) is given in polar coordinates, it is easier to sketch this curve on a polar
grid (the cartesian grid consists of vertical lines x = const. and horizontal lines y = const.,
while the polar grid consists of cirles » = const. and rays 6 = const.) Sketch the curve on a
polar grid which includes the rays 6 = {5k, and you will see that the curve is a four-leafed
rose: it consists of one loop in each of the four quadrants.
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2.7 Note: To visualize amap f : C — R (or amap f: U — R where U C C) we
can draw the level curves (also called contour lines). These are the inverse images of
constant values of u € R, and they are curves in C:

f7Hu) = {z € C|f(2) = u}.
We can use the level curves of f to help draw its graph, which is a surface in R3:

T
Graph (f) = y | eRP|u= f(z+iy)
u

2.8 Example: Describe the level curves and the graph of the map u = f(z) = Re (2).
Solution: We have f~1(u) = {u +iy|y € R}, which is the line z = u. And we have

x 0 1
Graph (f) = y | l[u = x p, which is the plane through [ 0 | perpendicular to | 0
U 0 —1

2.9 Example: Describe the level curves and the graph of u = f(z) = |2|?.

Solution: We have f~!(u) = {z +iy|2? + y*> = u} which, for u > 0, is the circle about
T
the origin of radius y/u . Also, Graph (f) = { Y

u = 2+ 1? }, which is a paraboloid.
U




2.10 Example: Sketch the level curves of u = f(z) = Re (1/2).

Solution: We have u(x +iy) = 5- When u =0 we have z = 0, and when u # 0 we

x

. 2 +y

havem:u = rz=ur’tuy? = 2 -4y =0 <= (z— ) +y ==
1

so the level curve u =constant is the circle centred at (ﬁ, 0) with radius 5-. These circles

all go through the origin. If you sketch several of them you will see that they form the
pattern which is made by the electric field of a dipole (a small bar magnet).

1

2.11 Note: To visualize a map f: C — C (or amap f : U — C where U C C) we can
sketch the images of various curves in the domain (if z = z + iy then we usually draw the
images of the lines x = const. and y = const. while if z = 7 €’? then we draw the images of
the circles r = const. and the rays § = const.). Alternatively, we could draw the inverse
images of various curves in the range (if w = f(z) with w = u + i v then we might draw
the inverse images of the lines u = const. and v = const.)

2.12 Example: Give a geometric description of the map w(z) = az + b where a € C and
b € C. Sketch the images of the lines + = —1,0,1 and y = —1,0,1 when z = x + ¢y and
a=142¢rand b =4+ 31.

Solution: If a = re’® and z = se'f then az = (r s)ei(‘”m, so multiplying z by a has
the effect of scaling z by a factor of r = |a| and rotating the result about the origin by
the angle a = 0(a). Adding b is the same as translating by b. This geometric description
shows that the three vertical lines x = —1,0,1 will be sent to the three lines which are
parallel to ai = —2 + ¢ and which pass through the points w(—1) = 3 + i, w(0) = 4 + 3i
and w(l) = 5 + bi, respectively, and the three horizontal lines y = —1,0,1 are sent
to the three lines parallel to a = 1 + 2i through w(—i) = 6 + 2i, w(0) = 4 + 3i and
w(i) = 2 + 44, respectively. This can also be shown algebraically. For example, the
vertical line x = c¢ is given parametrically by z(t) = ¢+ it, t € R, and it is sent to
w(z(t)) = a(c+it) +b=ac+ b+ iat = w(c) + at, which is the line through w(c) parallel
to ta.




2.13 Example: Let w(z) = z*. Describe the images of the circles r = const. and the rays
0 = const. where z = re*?. Also, sketch the image of the line = 1, where z = x + i y.

Solution: We have w = (re'?)* = rei4? 5o if w = se’? then we have s = r* and ¢ = 46.
Thus the circle » = ¢ is mapped to the circle s = ¢* and the ray § = « is mapped to the
ray ¢ = 4a. The line x = 1 is given parametrically by z = 1 4+ it and it is mapped to
the curve w(t) = (1 +it)* = 14+ 4ti — 6t — 430 +t* = (1 — 612 + t4) + i (4t — 4t3), so
its image is the curve given parametrically by u(t) = 1 — 6t2 + t* and v(t) = 4t — 4¢3.
The w-intercepts occur when v = 0, that is when ¢ = 0,+1 and the v-intercepts occur
when u = 0, that is when > = 3 £ 2v/2. Also, We have v/(t) = —12t + 4t3 = 4t(t> — 3)
and v/(t) = 4 — 12t2 = 4(1 — 3t?), and so the curve is vertical when «/(t) = 0, that
is when ¢t = 0,4+/3 and it is horizontal when v'(t) = 0, that is when ¢t = +1/v/3. To
sketch the curve, plot the points when ¢t = 0, :I:l/\/g, +1,4++/3, £2, and perhaps also when

t=+v3+2V2.
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2.14 Example: Let w(z) = —. Describe the images of the circles r = const. and the rays

= const., and then describe the images of the lines © = const. and y = const.

. . 1 1.
Solution: If z = re’? and w = se’® then we have w = —5 = ~e'? so that s =
re T

S|

and ¢ = 6. This map is known as the inversion in the unit circle: the circle r = ¢ is
mapped to the circle s = 1/c¢ while the ray § = « is mapped to itself. If z = z + iy
and w = u + iv then the vertical line x = c¢ is given parametrically by z(t) = ¢+ it

c+1it c
and it is sent to w(z(t)) = ———, so its image is the curve we have u(t) = ——
, (()) C2+t2 g (> C2+t2

v(t) = R When ¢ = 0 we have u = 0 and v = t/t? = 1/t, so the line x = 0 (excluding

and

the origin) is mapped to the line u = 0 (excludind the origin). When ¢ # 0, we can use the
expression for u(t) to solve for t to get t> = (¢ — uc?)/u and then we can substitute this
into the expression1v2(t) = t2/(c* 4+ t*)? and simplify to get v* = lu — u? or equivalently

(u— 52)? + v? = (3;). Thus the image of the line z = ¢, ¢ # 0 is the circle centred at 5-

with radius 2%, excluding the origin. Similarly, the image of the horizontal line y = ¢ is

the circle centred at Qicz with radius 2%, excluding the origin.
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2.15 Definition: We define the exponential function by
e T = ¢%elY = e% cosy +iesiny.

We also write exp(z) = e*.

2.16 Note: It is not hard to check that the exponential function has the following prop-
erties for all complex numbers z and w:

e =1
6_221/62, enz:(ez)n7nez
ez—l—w — ezew ez—w — ez/ew

)

ef =¢e¥ < w=2z+12nk for some k € Z

2.17 Example: Let w(z) = e*. Describe the images of the lines x = const. and y = const.
where z =z + i y.

Solution: We have w = e®e’y, so if w = re’? then we have r = €® and § = 3. So the
vertical line « = ¢ is mapped to the circle r = €€, and the horizontal line y = ¢ is mapped
to the ray 6 = c. Notice that the domain of e? is all of C while the range is C\ {0}. Also
notice that if the domain of e* is restricted to the horizontal strip @ < y < a + 27, then
it is 1:1 and its range is the plane C with the ray 8 = « removed.

2.18 Definition: We define the trigonometric functions by

. eZZ _ e—ZZ e’LZ + e—’LZ Si]le

sing = —— cosz = ————— tan z =
) )

27 2 CcoS 2

and secz = 1/cosz, cscz = 1/sinz and cot z = cosz/sinz. We define the hyperbolic
functions by

e —
sinhz = ——— | coshz:T, tanh z =

and coth z = cosh z/ sinh z.
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2.19 Note: It is not hard to verify the following properties, where z,w € C:

sin(z 4 27) =sinz , cos(z + 27w) = cosz
sin(—z) = —sinz , cos(—z) =cosz

2

sin?z +cos’z=1

sin(z + w) = sinzcosw + cos zsinw , sin(2z) = 2sin z cos z

2 2

cos(z +w) = coszcosw —sinzsinw , cos(2z) = cos® z — sin” 2z
sinh(—z) = —sinhz , cosh(—z) = cosh z

cosh? z —sinh? z = 1

sinh(z + w) = sinh z coshw + cosh zsinhw , sinh(2z) = 2sinh z cosh z

cosh(z + w) = cosh z coshw + sinh zsinhw , cosh(2z) = cosh? z 4 sinh? 2

In fact all of the trigonometric identities and hyperbolic identies which hold for real num-
bers also hold for complex numbers. Here are some more properties:

sinh(z +427) =sinhz, cosh(z+i27) = coshz
sinh(iz) =i sinz, cosh(iz)=cosz

sin(iz) =i sinhz, cos(iz) = coshz

sin(z 4 iy) =sinzcoshy + i coszsinhy , |sin(z +iy)|> = sin? z + sinh?y
cos(z 4+ iy) = coszcoshy —i sinxzsinhy , |cos(z +iy)|? = cos? z + sinh? y
sinh(z 4 iy) = sinhx cosy + i coshasiny , |sinh(xz +iy)|> = sinh® z + sin?y

cosh(z 4+ iy) = coshzcosy + i sinhasiny , |cosh(z +iy)[? = sinh?® z + cos? y

2.20 Example: Find sin(§ + ¢ In2).

5+ 3v3i
8

3 3
L V33
2 4

N | =
| Ot

Solution: sin(§ +i In2) = sin(F) cosh(In 2)+i cos(g) sinh(In2) =
2.21 Example: Solve coshz = —2.

Solution: If z = z 4 iy then we have coshz = coshxzcosy + i sinhxsiny, so we have
cosh z = —2 when cosh x cosy = —2 and sinh x siny = 0. We cannot have sinh x = 0, since
if sinhx = 0 then x = 0 so coshxcosy = cosy # —2. So we must have siny = 0 and so
y = km for some k € Z and we have cosy = £1. To have cosh x cosy = —2, we must have
cosy = —1 and coshz = 2 (since coshz is always positive). We can solve coshz = 2 as
follows: coshz =2 <= e +e @ =4 <= (%)2 —4e"+1=0 <= e =24 /3 50 we
have z = In(2+1/3) or equivalently z = = 1In(2++/3). Thus z = +In(2+v/3) +i (7 + 27k)
for some k € Z.

2.22 Example: Let w(z) = sinz. Describe the images of the lines = const. and
y = const. where z =z +1y.

Solution: The vertical line x = ¢ is given parametrically by z(¢) = ¢+t and it is mapped
to the curve w(t) = sin(c + ¢t) = sinccosht + i coscsinht. If w = v+ iv then we have
u(t) = sinccosht and v(t) = coscsinht. Using the identity cosh? t —sinh® t = 1 we obtain
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u? v?

e coc = 1, provided that ¢t # Sk,k € Z. This is the equation of a hyperbola.
The image of the line x = ¢ will be one of the two branches of this hyperbola; when sinc
is positive u(t) is also positive and the image is the branch on the right; when sinc is
negative, the image is the branch on the left. When sinc = 0 (so that ¢ = 7k), the image
is the line u = 0, that is, the v-axis. When cos ¢ = 0, the image lies on the line v = 0 (the
u-axis) and it is either the interval [1,00) (when sine = 1) or else the interval (—oo, —1]
(when sinc = —1).

The horizontal line y = ¢ is given parametrically by z(¢) =t + i c and it is mapped to
w(t) = sintcosh ¢+ i costsinh ¢ so we have u(t) = sint cosh ¢ and v(t) = costsinht. Since

u

sin?t + cos?t = 1 we have 5— + ——— = 1. The line y = ¢ is mapped to this ellipse,
_ _ cosh®c  sinh“c )

unless ¢ = 27k ¢ in which case the image can be seen to be the line segment [—1,1] on the

u-axis.

If you sketch a few of these hyperbolas and ellipses, you will get a nice picture of two
orthogonal families of curves. You will see that the domain and the range of sin z are both
C. When the domain of sin z is restricted to the vertical strip —3 < x < 7, it becomes
1:1 and its image is the plane C with the two intervals (—oo, —1] and [1, 00) removed.

Sz
e

2.23 Note: If amap f: U — f(U) is 1:1 then it has an inverse function, f~!, given by

fe)=w = fTH(w) =2

or equivalently by
FU w) =w,  [TH(f(2) =2

If a map f is not 1:1, then sometimes we can restrict its domain so that it becomes 1:1.
An alternate approach is to allow f~! to take on more that a single value and to define
fH(w) = {z € U|f(2) = w}. (If the inverse function is not single-valued, then it is not
really a function at all, but rather a multi-function). We shall be using both of these
approaches, and we shall not always specify which approach we are taking.

2.24 Example: In real variable calculus, to define sin™! z it is customary to restrict the
domain of sinx to —F < z < 7 so that it becomes 1:1. If we thought instead of sin!z as

a multi-function then for example we would have sin~'(3) = {Z + 2nk, 2T + 27k, k € Z}.

2.25 Example: The change-of-coordinate map f(r,0) = (rcosf,rsinf) is not 1:1. We
can make it 1:1 by restricting the domain to {(r,0)|r > 0,0 < § < 27}. If we make this
restriction then the inverse function is given by f~1(z,y) = (r,0) where r = |z + i y| and
0 = 0(x + iy) where 0 < O(x +iy) < 2m. Alternatively, if we think of f~! as a multi-
function, then f~!(z,y) = (r,0) where r = |z + iy| and 0 = 0(z + iy) where this time
0(x +i7) denotes the set {# € Rlre'? =z +iy}.
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2.26 Definition: The inverse of the exponential function e* is the logarithmic function,
denoted by log z.

2.27 Example: Find a formula for log z.

Solution: Let z = re'? and w =u+iv. Then w =logz <= eV =2z <= e%'? =re'?,

which happens whn e* = r and v = 0 + 27k for some k € Z. Thus
log (rew) =Inr+i(0+27k), k€ Z

This is the formula for the multi-valued logarithm. If we pick one particular value of k, the
resulting function is called a branch of the logarithm. If we restrict the domain of e* to
make it 1:1, then the inverse function is the branch with k& = 0, that is log(re??) = Inr+i 6.
This is called the principal branch of the logarithm.

2.28 Example: Find log(1 — 1)
Solution: log(1 — i) = log(v2e~*™/4) = Inv2 + i (—% + 27k), k € Z.

2.29 Note: For the multi-valued logarithm, you should convince yourself that the follow-
ing formulas make sense and they all hold:

elogz — 5
log(zw) = log z + log w
log(z/w) = log z — logw

2.30 Definition: We can use the logarithm to define complex exponents: given a € C
we define

2% = exp(alogz) .
2.31 Example: Find i~%.
Solution: i~% = exp(—2i logi) = exp(—2i (i (5 + 27k)) = exp(w + 47k), k € Z.
2.32 Example: Find the principal branch of z2/3.
Solution: Write z = re’?. Then 22/3 = exp(2 log z) = exp(2(Inr+i6)) = r*/3 exp(i 26/3).

2.33 Note: Check that

2" = exp(nlogz) is single valued for n € Z

1
21" = exp(=log z) takes n values for n € Z
n

2.34 Definition: The inverse trigonometric functions are denoted by sin™! z, cos ™! z,

tan~! z and so on. The inverse hyperbolic functions are denoted by sinh™! z, cosh™ z,
tanh™! z and so on.

13



2.35 Note: Since the trigonometric and the hyperbolic functions are defined using the
exponential function, their inverses can be expressed in terms of the logarithmic function:

sin~!z = —ilog (iz+ (1— z2)1/2)
cos™!z = —ilog (z+ (2% — 1)1/2)
tan~!z = Elogz_+z
2 11—z

sinh ™! 2z = log (z+ (2* + 1)1/2)
cosh™ z = log (z+ (2° — 1)1/2)

1+ 2
11—z

1
tanh ™'z = 3 log

where the square roots are double valued. Let us derive the formula for sin~* z. We have
w=sin"'z & z=sinw <= z= (" —e™)/2 = ()2 —2i2(e™)—-1=0
< e"™ =iz + V1 — 22 so we obtain iw = log(iz + v/1 — 22), as required.

2.36 Example: Find cosh™'(—2).

Solution: Actually, we already did this in example 2.21, but we’ll do it again using the
above logarithmic formula: we have cosh™'(—2) = log(—2 + v/3) = log((2 £ v/3)e'™) =
In(2 4+ v/3) 4+ (7 + 27k), k € Z.
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Chapter 3. Sets, Limits and Continuity

3.1 Notation: Given a,b € C and r € R, let [a, b] denote the line segment from a to b
la,b] = {a+t(b—a)|t € R},
let S(a,r) denote the circle about a of radius r

S(a,r)={2€Cllz—a| =71},
and let D(a,r), D(a,r) and D*(a,r) denote the disc, the closed disc, and the punctured
disc, centred at a of radius r

D(a,r)={z€Cllz—a| <r}
D(a,r)={z€Cl|lz—a| <7}
D*(a,r)={2€Cl0<|z—a| <7}

We use the same notation for subsets of R™. In R?, for example, S(a,r) is a sphere and
D(a,r) is a ball.

3.2 Definition: Let £ C C (or more generally £ C R").

a) A point a € F is an interior point of F if 3r > 0 D(a,r) C E.

b) The interior of E, denoted by E, is the set of all interior points of E.

c) E is open if every point of F is an interior point, in other words if £ = E°.

d) A point a € C is a limit point of F if Vr > 0 D*(a,r) N E # 0.

e) The closure of E, denoted by E, is the union of E with the set of all its limit points.
f) E is closed if every limit point of E lies in E, in other words if F = E.

g) The boundary of E is the set 0F = E \ EV.

h) The complement of E is the set £¢ = {z € C|z ¢ E}.

3.3 Example: For a,b € R, the interval [a, b] is closed in R, [a,b]° = (a,b), [a,b] = [a, b]
and da, b] = {a,b}. For a,b € C, the segment [a, b] is closed in C, [a,b]® = 0, [a,b] = [a, b]
and 0la,b] = [a, b].

3.4 Example: In C, he disc D(a,r) and the punctured disc D*(a, r) are both open, while
the closed disc D(a,r) is closed. Their interiors are D(a,r)® = D(a,r)? = D(a,r) and

D*(a,r)® = D*(a,r). Their closures are all equal: D(a,r) = D(a,r) = D*(a,r) = D(a,r).
Their boundaries are dD(a,r) = dD(a,r) = S(a,r) and dD*(a,r) = S(a,r) U {0}.

3.5 Example: The annulus A = {z € C|r < |z — a| < R} is neither open nor closed.
Its interior is the open annulus A° = {z € C}r <l|z—al < R}, its closure is the closed
annulus A = {z € C|7" <l|z—al < R}, and its boundary is the union of the two circles
0A = S(a,r)US(a, R).

3.6 Example: Let £ = {1/n|n € Z*} (where Z* = Z \ {0}). Then E is neither open nor
closed: its interior is emplty E° = (), its only limit point is 0, its closure is £ = E'U {0},
and its boundary is equal to its closure OF = F.
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3.7 Theorem: Let E C C (or let E C R"). Then

a) E is open iff E€ is closed and E is closed iff E€ is open.
b) E is open and if U C E is open then U C E°.

c) E is closed and if E C K with K closed then E C K.

Proof: (I may include some proofs)
3.8 Theorem: Let {E,|a € A} be a (possibly infinite) family of sets in C (or in R™) and
let {E,,;|i =1,2,---n} be a finite sub-family. Then
a) ( ﬂAEa) = U (E.°) and ( UAEQ) = ) (E.)-
ac ac

acA acA

b) If the sets E, are open then | J F,, and | E,, are open.

If the sets E,, are closed then | E, and ()| E, are closed.

i=1 «
Proof: (I may include some proofs here later).

3.9 Definition: Let E, A and B be subsets of C (or of R").

a) F is bounded if 3r E C D(0,r).

b) E is convex if a,b € E = [a,b] C E.

c) We say that F is disconnected if it is possible to find disjoint open sets U and V with
ENU#0Pand ENV # 0 and E C UUYV. In this case we say that the sets U and V
separate E. If F is not disconnected then we say it is connected.

d) F is compact if every open cover of E admits a finite subcover, in other words, if

E c | U,, where the U, are open sets in C, then we have E C |J U,, for some «; € A.
acA i=1

3.10 Example: The segment [a,b] and the disc D(a,r) are both bounded. The line

{z € C||z—a| = |z —b|} and the half-plane {z € C||z —a| < |z —b|} are both unbounded.

3.11 Example: The sets [a,b], D(a,r) and D(a,r) are all convex. The punctured disc
D*(a,r) is not convex; for example if v = a — § and v = a + § then u,v € D*(a,r) but
[u,v] ¢ D*(a,r). Also, the half-annulus E = {z € C|1 < |z| < 2,Re(z) > 0} is not
convex; for example, take a and v to be % + 4.

3.12 Example: Each of the sets [a,b], D(a,r), D(a,r) and D*(a,r) is a connected set.
The union [0, 1]U[é, i+ 1] is not connected, because the two segments [0, 1] and [i, 1+ are
separated by U = {z|Im (z) < 1} and V = {z|Im (z) > 1} . The union D(—1,1) U D(1,1)
is not connected since the two discs D(—1,1) and D(1,1) are separated. On the other
hand, the union D(—1,1) U D(1,1) is connected.

3.13 Theorem: (The Heine-Borel Theorem) Let E C C (or E C R™). Then the following
are equivalent:

a) E is compact.

b) Every infinite subset of E has a limit point in E.

c¢) E is closed and bounded.

Proof: I may include the proof later.

3.14 Example: This theorem makes it easy to recognize compact sets. The segment [a, b]
and the closed disc D(a,r) are both compact (since they are closed and bounded). The
open disc D(a,r) is not compact, since it is not closed. The line {z € C||z —a| = |z — b|}
is not compact, since it is not bounded.
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3.15 Example: The set £ = {1/n|n € Z*} is not closed (since E # E) so it is not
compact. This means that we must be able to find an open cover with 110 finite subcover.

Indeed, notice that the distance between two neighbouring points in £'is -~ — S =_1

n+1 n(n+1)’
so if we let U, D(n, n(n+1)) then each point of F lies in exactly one of the sets U,.

Thus {U,|n € Z*} covers E, that is E C |J U,, but if we remove even one of these discs
nezx*
then the remaining discs will not cover E.

However, the set K = E = EU{0} is closed and bounded and hence compact, so any
open cover of K ought to have a finite subcover. Indeed, consider the cover {U,|n € Z}

where U,, = D(%, n(nJrl)) for n € Z* (as above) and Uy = D(0, +) where N is some

positive integer. Since L € Uy whenever |n| > N, we see that {U,||n] < N} is a finite
N
subcover, that is, E C |J U,
n=—N

3.16 Definition: Let f : U — C where U is an open set in C (or R™), and let a be a
limit point of U. We write

lim f(z) =b  or f(z) —basz—a

if for all € > 0 there exists § > 0 such that for all z € U, z € D*(a,d) = f(z) € D(b,¢) or,
in other words, such that f(U N D*(a,€)) C D(b,e). We write

lim f(z) = o0 or f(z) »ocasz—a

zZ—a

if for all R > 0 there exists § > 0 such that f(U N D*(a,§)) C D(0, R)°.

3.17 Theorem: Let f and g be maps from U to C where U is open in C, and let a be a
limit point of U.
a) If we write f(z) = u(z) + iv(z), where u,v : U — R, then lim f(z) exists if and only if

hm u(z) and hm v(z) both exist, and in this case, lim f(z) = lim u(z) 4+ i lim v(z).
b) Suppose hm f( ) p and lim g(z) = q, and let ¢ € C. Then

i) hmcf( )=cp

i) lim f(z) £g(2) =p+q

ii) Tim £(2)g(=) = pa

iv) lim f(2)/g(z) = p/q provided that q # 0

v) T [£(2)] = Ipl
The theorem also holds for functions with values in R"™, except for parts b) iii) and iv).
Proof: To prove part a), suppose first that lim f(z) exists, say lim f(z) = b = s + it
with s, € R. Note that u(z) — s = Re(f(z) — b) so we have |u(z) — s| < |f(z) — b|. So,
given € > 0 choose § > 0 such that 0 < |z — a| < d==|f(2) — b] < € and then we have
|u(z) — s| < |f(z) — b| < e. This shows that lim u(z) = s. Similarly lim v(z) = t.

Next, we suppose that lim u(z) and lim v(z) exist, say lim u(z) = s and lim v(z) =t
zZ—a zZ—a zZ—a zZ—a

and let b = s+it. By the triangle inequality we have |f(z) —b| < |u(z )—s| +|v(z)+t|. So,
given € > 0 we choose § > 0 such that 0 < [z —a| < = (|u(z) —s| < § and |v(z) —t] < §).
Then we have |f(z) — b| < |u(z) — s| + |v(2) — t| < e. This shows that lim f(z) =
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Part b) i)-iv) can be proven in the same way as the analogous results for real-valued
functions. For example, to prove part b) iii), we can use the equality f(2)g(z) — pq =
(f(2) = p)(g(z) —q) + (f(2) = p) g+ (9(2) — q) p. Given € > 0 we choose § > 0 so that
0 < |z—a| <= (If(2)—p| < /5, 19(2)—al < /5, [f(2)—p| la] < § and |g(2)—a| |p| < §).
Then we have |f(2)g(z) — pq| < [f(z) — pllg(2) —a| + [f(2) — plla] + |9(2) — qllp| <
VAV R,

The proof of part b) v) is left as an exercise.

22 —22+4+5 . .
3.18 Example: Let f(z) = 19 Find zllleQif(Z)-
L . (z—(1+2)(z—(1—-230)) . NN g
Solution: Z_l)llrzlL%f(z) = Zil{?_Zi = (1+20)) = Zillnjlr%(z — (1 —20)) = 4.

(We can prove the last equality from the definition of limit: given € > 0 choose d = € so
that for 0 < |z—(142i)| < 6 we have |f(z)—4i| = |(z—(1—-2i) —4i| = |z— (1+2i)| < I =¢).

3.19 Example: For each z € C* = C\ {0}, let 6(z) be the angle of z chosen so that
0 <6(z) <2m. Then 6 : C* — [0,27). Show that if @ > 0 the lim 0(z) does not exist.

z—a

Solution: Suppose (for a contradiction) that lim 6(z) does exist, say lim 6(z) = b. Let

€ = & and choose § > 0 so that z € D*(a,d)==[0(2) —b| < ¢ = . Since aj:ig € D*(a,9),

we have |6(a j:ig) — bl < e= 3. Since a +ig is in the first quadrant and a —i% is

in the second quadrant, we have 0 < f(a +i3) < Z and 3F < f(a —i3) < 27. Thus

=3 _—Z<|0a+i)—0a—il)| <|0(a+il)—b|+|0(a—il) b <Z+Z=m.

We have thus obtained a contradiction.

3.20 Definition: Let f : U — C where U is an open set in C (or R"), and let a € U. We
say that f is continuous at a if lim f(z) = f(a) or, in other words, f is continuous if for

all € > 0 there exists 6 > 0 such that f(D(a,d)) C D(f(a),e). We say that f is continous
in U if f is continuous at every point in U.

3.21 Theorem: Let f and g be maps from U to C with U open in C and let c € C.
a) If f(z) = u(z) +iv(z) with u,v : U — R then f is continuous at a if and only if both
u and v are continuous at a.
b) If f and g are both continuous at a then
i) cf is continuous at a
ii) f =+ g is continuous at a
iii) fg is continuous at a
iv) f/g is continuous at a, provided that g(a) # 0.
v) |f] is continuous at a.
c¢) If f is continuous at a and g is continuous at f(a) then g o f is continuous at a.
The theorem also holds for functions with values in R™ except for parts b)iii) and iv).

Proof: Parts a) and b) are proved as in theorem 3.17. For part c), suppose that f is
continuous at a and that g is continuous at b where b = f(a). Given € > 0 choose dy so that
z € D(b,dp) = g(z) € D(g(b),€). Then choose 6 > 0so that z € D(a,d) = f(2) € D(b,do).
We have z € D(a,d) = f(z) € D(b,60) = g(f(z)) € D(g(b),€e) = D(g(f(a),e¢). This shows
that g(f(2)) is continuous at a.

3.22 Example: Let U = C\ {z € Rlz > 0} = {re‘?r > 0,0 < 0 < 2r}. Let
0 :U — (0,27) be the angle function. Show that 6 is continuous in U.
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Solution: Write z = = + iy with z,y € R. For Im(z) > 0, the angle function is given
by the formula 0(x +iy) = cos™? (93/\/902 + yz). This formula expresses 6(x + i y) using
sums, products, quotients and composites of known continuous functions, and so it must
be continuous, by parts b) and c) of the above theorem. Thus 6(z) is continuous at all
points z with Im (z) > 0.

Similarly, for Re (z) < 0, 6(z) is given by the formula 6(z+iy) = m+tan~"' (y/z), and
for Im (z) < 0 we have 6(z + iy) = 27 — cos™! (z/y/2% + y?). These are both continuous
and so 0(z) is continuous for all z € U.

3.23 Note: If we choose 0(z) € [0,27) for all z € C*, then we have seen (in example
3.19) that for a > 0, lim 6(z) does not exist, so § : C* — [0, 27) is not continuous for all

z € C*. In fact it is impossible to choose 6(z) € R so that § : C* — R is continuous. As
in the above example, we must restrict the domain to make the angle function continuous.
Indeed, for any a € R, if we restrict the domain to U, = {re'®|r > 0,a < 0 < a + 27}
and choose 6(z) with o < 0(z) < a+ 27 then 0 : U, — (o, + 27) will be continuous.

3.24 Note: We have found formulas for the real and imaginary parts of the identity
f(2) = z, the exponential f(z) = e*, the trigonometric functions, and the hyperbolic
functions. These formulas reveal that they are all continuous in their domains. Also,
any branch of the logarithm logz = In|z| + i60(z) is continuous provided that 6(z) is
chosen to be continuous. The inverse trigonometric and inverse hyperbolic functions can
all be expressed in terms of the logarithm, and so they are also continuous provided that
6(z) is chosen to be continuous. Any complex function which can be expressed using sums,
products, quotients and composites of the above functions will be continuous in its domain.

3.25 Theorem: Let f:U — C where U is open in C (or in R").

a) f is continuous if and only if f~1(V') is open for every open set V C C.

b) If f is continuous and E C U is connected then f(F) is connected.

c¢) If f is continuous and K C U is compact then f(K) is compact.

d) If f is continuous and K C U is compact then |f(z)| attains its extreme values on K.

Proof: We prove part a). Suppose first that f is continuous and let V' C C be open. We
must show that f~!(V) is open, so given a € U we need to show there exists § > 0 such
that D(a,d) C U. Let a € f~1(V), which means that f(a) € V. Choose ¢ > 0 so that
D(f(a),e) C V. Then choose 6 > 0 so that f(D(a,d)) C D(f(a),e) C V so that we have
D(a,d) € f~1(V).

Next we suppose that f~1(V) is open for every open set V C C. We want to show
that f is continuous at every point a € U. Let a € U. Given € > 0, let V' = D(f(a),€).
Then a € f~1(V) and since V is open, f~1(V) is open, so we can choose § > 0 such
that D(a,d) C f~1(V). Then we will have f(D(a,8)) C D(f(a),€). This shows that f is
continuous.

To prove part b) we suppose that f is continuous and that E is connected, and (looking
for a contradiction) we shall suppose that f(F) is not connected. Say f(E) C VUW where
V and W are disjoint open sets which separate E. You may check that the open sets f~1(V)
and f~1(W) separate E giving a contradiction.

To prove part ¢), suppose that f is continuous and that K C U is compact. We wish
to show that f(K) is compact. Let {V,,} be an open cover of f(K). Since f is continuous,
each of the sets f~1(V,) will be open, and you can check that they cover K. Since K is
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compact, we can find a finite subcover, say K C f~1(V,,,)U---Uf~1(V,, ). You may check
that this implies that we have f(K) C V,, U---UV,, , so {V,} has a finite subcover.

Part d) follows from part c¢), because if f is continuous and K C U is compact then
| f| will also be continuous and so |f[(K) = {|f(2)||z € K} is a compact set in R. Any
closed and bounded set in R includes its extreme values.
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Chapter 4. Derivatives

4.1 Note: From now on, we shall always use the letter U to denote an open set.

4.2 Definition: Recall that for a function f: U C R — R we define

) -t 1) 1@

r—a r—a

provided the limit exists, and we say that f is differentiable at z = a and f’(a) is called
the (real) derivative of f at a. Equivalently, we see that f is differentiable at =z = a

if there exists a real number f’(a) such that lim J@) = J(a) f'(a)| = 0. This last
z—a| T —a
condition can be rewritten as lim % = 0, where R(z) = f(z) — (f(a) + f'(a)(z — a)).

In this way we obtain a definition which applies to functions f : U C R™ — R™.
A function f : U C R"™ — R™ is differentiable at = = a if there exists an m x n
R
matrix f’(a) such that lim |R(w) = 0, where R(z) = f(z) — (f(a) + f'(a)(z — a)). The

z—a |T —a
matrix f’(a) is called the (real) d|erivative of f at x = a. We also write Df(a) = f'(a).
In the case that f : U C C — C, we shall use the notation Df(a) for the real derivative of
f, and we shall reserve the notation f’(a) for the complex derivative which will be defined
soon. We say that f : U C R" — R™ is differentiable (in U) if it is differentiable at
every point a € U.
For amap f: U C R® — R, the j* partial derivative of f is given by

af

= 8—%(6&) =4'(0),

fo;(a)

if it exists, where g is the map from R to R given by g(t) = f(a + te;), with e; denoting
the j'" standard basis vector in R". Notice that if f : R — R then %(a) = f'(a).
We now recall (without proof) some theorems from vector calculus.

4.3 Theorem: Let f : U C R™ — R™, and let f; be the components of f so that
f(z) = (fl(x), : fm(x)) Then

a) If f is differentiable at x = a then the partial derivatives gﬂ{ J all exist and
8 i 9
g (@) gta) ... gi(a)
Df(a) = f'(a) = : : :
8 m 8 m 8 m
(@) Ge(a) - Gl

b) If f is C' in U, which means that the partial derivatives —gg: - all exist and are continuous
J
in U, then f is differentiable in U.
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4.4 Theorem: a) If f : U C R" — R is differentiable at a then it is continuous at a.
b)If f,g: U C R™ — R™ are both differentiable at x = a, and if ¢ € R then

i) (¢ f)'(a) = ¢ f'(a) and

i) (f + 9)(a) = () + ¢'(0).

iii) (The Product Rule) If m =1 then (fg)' (a) = f'(a)g(a) + f(a)g'(a).

iv) (The Quotient Rule) If m = 1 then (f/g)'(a) = (f'(a)g(a) — f(a)g'(a))/g*(a).
c) (The Chain Rule) If f : U € R™ — R™ is differentiable at a, and g : V C R™ — R' is
differentiable at f(a) then h(z) = g(f(z)) is differentiable at a and h'(a) = ¢'(f(a))f'(a).
¢) (The Inverse Function Theorem) If f : U C R®™ — R™ is C! in U and if the matrix
f'(a) is invertible, then we can make f invertible by restricting its domain, and if g = f~!
then g is also C* with ¢'(f(z)) = f'(x)~L.

1 (t) z1'(t)
4.5 Example: If f : R — R" is given by f(t) = then f'(t) = . This
T (t) x,' (1)
is called the tangent vector to the curve f(¢). In particular, if z2(t) = z(t) + iy(t) is a
map from R to C then 2/(t) = 2/ (¢t) + i y/(¢).

4.6 Example: If f: U C R" — R then f'(z) = (#L(a) £L(a) ... 3L(a)). We
define the gradient of f at a to be the transpose of f/(a) , and we write Vf f(x)T.
Given a point a € U and a vector v € R™, choose any curve a : R — U with «(0) = a and
a/(0) = v, and then set g(t) = f(a(t)). By the chain rule, we have ¢'(t) = f'(a(t))c/(t)
and so ¢'(0) = f'(a)v = Vf(a) - v. We call this the directional derivative D, f(a) of f
at a in the direction of v, so we have D, f(a) = f'(a)v =V f(a)-v

Notice that the gradient V f(a) is perpendicular to the level set f(x) = f(a). To see
this, choose any curve z(t) with x(0) = a and with f(z(¢)) = f(a) (so that z(t) lies in
the level set). Then by the chain rule we have f’(z(t))x’'(t) = 0, and setting t = 0 gives
f(a)z’(0) = 0 or equivalently V f(a) - 2’(a) = 0. Thus Vf(a) is perpendicular to z'(0).

4.7 Example: Given a differentiable map f : U ¢ R™ — R™, notice that the i*" row of
the matrix f’(a) is equal to f;'(a) = Vf(a)T, where f; is the i*" component of f. So the
i'" row is perpendicular to the level set f;(x) = fi(a).

We use the notation

Ofr
af Bacj
faj(a) = 5—=(a) = |
Ox; ..
8£Bj

for the j'" column of the matrix f’(a). Notice that this is equal to the tangent vector to
the curve g(t) = f(a + te;), where e; is the j™ standard basis vector.
In particular, if f: U € C — C is given by w(z) = u(z) +iv(z) with z = x + iy, then

D) = £') = (el o))

vz(a)  vy(a)

The columns f, = Zx and f, = <Zy ) are the tangent vectors to the curves f(a+t) and
y

x
f(a + it) respectively, and the rows v’ = (u, wu,) and v' = (v, wv,) are perpendicular
to the level curves u = u(a) and v = v(b) respectively.
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4.8 Example: Let f be the change of coordinate map (x,y) = f(r,0) = (rcosf,rsinf).

Then
Df(r,0) = f'(r,0) = (mr xg) = (COSO —Tsin@) :

Yr Yo sinf  rcosf
At (r6) = (2,7), we have (z.y) = f(2,T) = (v3,1) and f/(2,T) = <\§/22 \‘%)

You should draw a picture for yourself showing the images of the lines » = 0,1,2 and
6 = 0,2,% T (the images are circles and rays), and at the point (z,y) = (v/3,1) you

' 673792
should draw the tangent vectors f,. = (\_/?g) and fy = (&%) Also, draw a picture

showing the level curves z = 0,1,v/3 and y = 0,1, v/3 (they are multiples of r = secf and
r = cscf) and at the point (r,0) = (2, %) draw the gradient vectors x’ = (\/Tg —1) and
y=(1 V3)

The map f is not 1: 1 so it does not have an inverse, but since the matrix f/(2, %) is

invertible, we know that we can make f invertible by restricting its domain. If g = f~! near

the poit r,0) = (2. ), thenwebave (V3.1 = (0 ) =5 (5 van )

This can also be verified by finding a formula for g, for example if we restrict the domain
of ftor>0,—-% <0< Z then (r,0) = g(z,y) = (v/2? + y?,tan" ! (y/x)).

3 /f
] 2
2': f_,-f
] : 1] "
1] ' A
2 1 1 a1 2 3 0 2 3 1
1
] 1
2

4.9 Note: We now wish to interpret the real derivative Df of a map f: U C C — C,
which is a 2 x 2 matrix, in terms of complex numbers. Indeed any real 2 x 2 matrix A

corresponds to two complex numbers in the following two ways. Let A = (CCL b ), and

write z = x + 1y with z,y € R. Then

a(D)= (1) (0)

=(a+ic)r+ (b+id)y

= (ati) T+ (b+id) =
:%((a—f—d)—ki(c—b))z:%((a—d)+i(c+b))2

Thus we have A (i) = pxr + qy = uz + vZ where p and ¢ are the columns of A, that is

p=a+icand ¢ =b+id, and u and v are given by u = 3 ((a+d) +i(c—b)) = 3(p—iq)

and v =1((a—d)+i(c+b)) =3(p+iq). Note also that p=u+ v and ¢ =i (u — v).
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Conversely, given u = a + 10 and v = v + 19, with «, 3,7,0 € R, we have

uz = (a+iB)(z+iy) = (az—Py) +i(Br +ay) = (g _6> (;)

«

Y Y

. T\ _ L _(a B vy 9
801fA<y)—uz—f—vzthenAlsglvenbyA—(ﬁ a>+<5 _7).

4.10 Definition: Note 4.9 allows us to express the definition of differentiability in terms
of complex numbers. Indeed, if f: U C C — C and a € U then f is differentiable at a
R
<= there exists a 2 x 2 matrix Df(a) with real entries such that lim % 0
z—a |z —a

R(z) = f(z) = (f(a) + Df(a)(z — a)) <= there exist complex numbers f,(a) and fy(a)
such that lim [R(2) = 0, where R(z) = f(z) — (f(a) + fz(a)Re (z — a) + fy(a)Im (z — a))

z—a |z —al
3 |R(2)]
<= there exist complex numbers f.(a) and fz(a) such that lim

z—a |z — al
R(z) = f(z) = (f(a) + f:(a)(z — a) + fz(z —@)).

In this case we have

Uy U
o= (i %)
fo=uy +iv, = fo + f5
fy_uy""ivy_ i(f. — fz)
fz= (f:c —ify) = 1((“9{: +vy) i (vg _Uy))
Jz= §(fx+zfy) = 5((“96 _Uy)"'i(uy _Uw))
Also, if f, =a+if and fz =+ id with o, 3,7,6 € R then

o= (g _aﬂ> ! (} —:) |

vZ=(y+id)(x —iy) = (yr +0y) +i(6x —yy) = (Z _5 ) (x>

, Where

= 0, where

Igw = f(z) then othe}; notations for these include Dfa Dw, f, = 8f = w, = %—‘;’,
fy= Y=, = 32 f= Y = 0f —w.= 32 = bw, fo= % =f =ws = 32 = Bu
4.11 Example: Show that gz 1, gj, 5 =0, g; =1, and 8“ = & = 0, where a € C.

Solution: If f(z) = z, then we have f(z +iy) = u(z,y) + zv(x,y), where u(x,y) = x and
’U(I‘,y)zy So Df: (um uy) = (é (:3)7fm:um+lvx:]-v fy:uy‘f’ivy:ia

Uy Uy
fo=3f+a—ify)=1and fz=L(f, —if,) =0.
If f(z) =z, then we have u(z,y) = z and v(z,y) = —y. So Df = (1 _01>, fo=1,

0
fy=—1, f=0and fz =1.
If f(2) = a € C then u(z,y) = Re(a) and v(z,y) = Im (a). So Df = 0 and hence
fm:fy:sz:fE:O-
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4.12 Theorem: Let f : U C C — C be diflerentiable.
a) For a = x,y, z or Z we have
i) (¢f)a = fa
jj) (fj:g)a = fa j:foz
iii) (The Product Rule) (fg)a = fag + f9a
iv) (The Quotient Rule) (f/g9)a = (fag — f9a)/9”, when g # 0
b) Define f : U — C by f(z) = f(z). Then f, = fz and fz = f..
¢) (The Chain Rule) Suppose f : U — V C C and g : V — C are both differentiable, and
let h(z) = g(f(2)). Then h is differentiable, and if we write w = f(z) and q = g(w), then

(qz q;):<qw %) (wz wz)
az q? Q'u) qw EZ mz

Equivalently, we have @ = @G_w @8_@ and @ = @G_w @8—@

’ 0z Owdz 0w 0z 0z Owdz 0w 0z
Proof: We prove the product rule, and leave the rest of part a) as an exercise. We write
f =wu+ivand g = s+it where u, v, s and t are real-valued. Then fg = (us—vt)+i (ut+vs).

The product rule in theorem 4.4 applies to the functions u, v, s and ¢, so we have

(f9)e = (us —vt), + i (ut + vs),
= (ugs +usy — vyt — vty) + i (ugt + uty + vy8 + v8y)
= (ug +ivg)(s+it)+ (u+iv)(sy +ity)
= f29+ f9x

Similarly, (fg)y = fyg9 + fgy. Then, using this result, we have

(f9): = 3((f9)e —i(f9)y)
= $((fog + f9:) =i (fyg+ f9y))
=1(fe—if) g+ fi(g.—igy)

= fzg + fgz .
To prove part b), write f = u + iv with v and v real-valued. Then f = u — iv so
Df = ug ug and hence f, = u, —iv, = f, and Ty =, —iv, = f,. So we have
S —

f.=5(F.—if,)=5(fz —if,) =35(fa+if,) = fz and similarly, f5 = f..
To prove part ¢), write z =z + iy, f(z) =w=u+iv and g(w) = q=s+1it. Then

q> = %((Sm + ty) + ( (tz - Sy))
1 :
=3 ((Suum + 5y,Uz + tytly + tyvy) + 1 (s + tyUg — Syly — svvy)) )
On the other hand
GuWz + Wz = GuWz + quz
= 5 ((su+ 1) i (tu = 50)) § (e + ) +1 (0 — wy))
+ 5 ((su = to) T (tu + 50)) 5 ((ux —vy) =i (V2 +uy)) -
Expanding and simplifying this last expression shows that ¢, = q,w, 4+ ¢zw,. Similarly,
we can show that ¢z = q,wz + ¢z Ws.
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4.13 Example: Let f(2) = 22 + 32%. Find f, and f=.

Solution: We solve thls using two methods. First, by example 4.11 and theorem 4.12, we
can calculate and usmg all the same rules that we use to find partial derlvatlves of
real functions of two real variables. We have f, = 2z + 37 and fz = 3z.

Our second solution is to express f in terms of real variables, and then use definition
4.10. We have f(z) = f(x +iy) = (z +iy)* +3(z +iy)(z —iy) = (422 + 2¢%) + i (2zy),

and so Df = (Sx Ay Thus we have f, = 8z + ¢2y and f, = 4y + 22z, and so

2y 2x
fo=3(fa—ify) = 2Br+i2y —idy+2z) =5z —iy = 5= — i %% = 22 4 37, and
fr=5(fat+ify) = %(8x—|—22y+z4y—2x) =31 + 143y = 32.

4.14 Example: Let f(z) = %i—j); Find f.(1+4) and f=(1+1).

Solution: By the product and quotient rules, g_ﬁ _ (et et 3))((22:;2 mCRSIL AN
IR NI it RS
IPEPCES UETC I

4.15 Example: Let w = f(2) =iz + %z, let ¢ = g(w) = w? — w, and let h(z) = g(f(2)).
Find h,(1 + 2i) and hz(1 + 21).

Solution: We provide three solutions to this problem. Our first solution uses the chain
rule in theorem 4.12. We have

(he b= (o o) (£ 5 ) =20 1) (] L) = wic1 200,

—1

When z = 1+ 2i we have w = f(z) = i(1 4+ 2i) + (1 — 2) = —1 — ¢ and so we obtain
hy=2wi—1=2(-1—i)i—1=1-2iand h==2w+i=2(—1—)+i=—2—i.

Our second solution is to expand the composite g(f(z)) so that we can avoid using
the chain rule. We have h(z) = g(f(2)) = (iz+%)? — (—iz+2) = —22 +2i22+ 2 +iZ — 2.
Thus we have h, = =22+ 2iZ —1s0 h,(1+2i) = —2(1 +2i) +2i(1 —2i) —1 =1 —2{ and
we have hz = 2iz +2Z +iso hz = 2i(1 + 2i) +2(1 — 2i) +i = —2 —i.

The third solution is to express f, g and h in terms of real variables. Write z = z 41y,
w= f(z) =u+ivand ¢ = h(z) = s+it. Then f(z+iy) =i(z+iy)+ (r—1iy) =
(x—y)+i(z—y)sou=x—yandv=x—y, and g(u+iv) = (u+iv)? — (u—iv) =
(u? —v? —u) +1i (2uv — v) so s = u? — v? —u and t = 2uv + v. By the chain rule for real
variables,

Sz Sy _ [(2u—1 =2 1 -1\ (2u—2v—-1 —2u+2v+1
(t;r ty)_( 2v 2u+1)<1 —1)_<2u+2v—|—1 —2u—2@—1)
soh, = 3((2u—2v—1)+(—2u—2v—1))+% ((2u+2v+1)— (—2u+2v+1)) = (—2v—1)+i (2u)
and hz = 5 ((2u—2v—1)—(—2u—2v—1)) + % ((2u+2v+1)+(—2u+2v+1)) = 2u+i (2v+1).
When z = 1 + 2i, we have w = f(2) =i(14+2i)+ (1 —2i) = =1 — i, s0 u = v = —1 and
hence h,(1+2i) =(—2v—1)+i(2u) =1—2iand hz(1 +2i) =2u+i(2v+1) = -2 — 1.
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4.16 Definition: Let f: U C C — C. We define

) =t 12— @

z—a zZ—a

provided that the limit exists, we say that f is holomorphic at z = a and thet f’(a) is
the derivative of f at a. Equivalently, we say that f is holomorphic at z = a if there
exists a complex number f’(a) such that

i 2E g

z—a |z — al
where S(z) = f(z) — (f(a) + f'(a)(z — a)). We say that f is holomorphic in U if it is
holomorphic at every point in U.

4.17 Definition: For f: U C C — C we define

() — 1 1) (@)

z—a z

provided the limit exists, and if so we say that f is conjugate-holomorphic at z = a.
Equivalently, f is conjugate-holomorphic at a if there exists a complex number f*(a) such

tmxquV”:owmeﬂ@:f@ywﬂ@+fm@@—my

z—a ’Z—CL‘

4.18 Note: We have now used the notation f’(a) for two apparently different objects.
The real derivative f/(a) is a 2 x 2 matrix, while the complex derivative f’(a) is an element
of C, that is, is a 2 x 1 matrix. From now on we wish to make a distinction between these
two different derivatives, so we shall use the following convention: for f: U C C — C

Df (a) denotes the real derivative of f (if it exists)

f'(a) denotes the complex derivative of f (if it exists)

4.19 Theorem: a) Let f : U C C — C.
i) f'(a) exists <= Df(a) exists and fz(a) = 0. In this case f'(a) = f.(a).
ii) f*(a) exists <= Df(a) exists and f,(a) = 0. In this case f*(a) = fz(a).
b) Suppose that f : U C C — C is differentiable. Then
i) f is holomorphic <= fz =10
= Uy = vy and Uy = —V,

<= Df is of the form Df = (a

p
In this case, f' = fo=a+i0 =uUy +i0; = Uy —TUy = Vy — LUy = Vy + 1 V,.
ii) f is conjugate-holomorphic <= f, =0

_aﬁ> for some «, B € R.

= Uy = —Vy and uy = v,
<= Df is of the form Df = (g _67) for some 7,9 € R.
In this case, f* = fz =74+ 10 = Uy + 1V = Uy + 11Uy = —Vy + Uy = —Vy + 1 Vg

Proof: Compare definitions 4.16 and 4.17 to definition 4.10.
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4.20 Definition: The two differential equations v, = v, and u, = —v, are called the
Cauchy-Riemann equations.

4.21 Example: Let f(z) = 22 + 2|2|%. Determine where f is holomorphic and where it is
conjugate-holomorphic.

Solution: We have f(z) = 22 + 22%, so f. = 2z + 2z = 4Re(z), and fz = 2z. Thus
f is conjugate-holomorphic when f, = 4Re(z) = 0, that is along the y-axis, and f is
holomorphic when fz = z = 0, that is at the origin.

4.22 Theorem: a) If f : U C C — C is holomorphic (or conjugate-holomorphic) at a
then f is continuous at a.
b) If f,g: U C C — C are both be holomorphic at a, then
i) (cf)(a) = cf’ ( )
i) (f +9)'(a) = f'(a) £ ¢'(a)
iii) (fg9)'(a) = f'(a)g(a) + f(a)g'(a)
iv) (i) (a) = f (a)g(a)?J)”(a)g’(a)
Similzfr results hold when f and g are both conjugate-holomorphic.
¢) (The Chain Rule) Let f, g, h and k be maps from open sets in C to C with f and g
holomorphic and h and k conjugate-holomorphic. Then
i) go f is holomorphic with (go f)'(z) = ¢'(f(2))f'(2).
ii) ho f is conjugate-holomorphic with (ho f)*(z) = h*(f(z))
iii) f o h is conjugate-homorphic with (f o h)*(z) = f'(h(2))h*
iv) k o h is holomorphic with (ko h)'(z) = k*(h(z))h*(z).
d) (The Inverse Function Theorem) If f is holomorphic in U and f’(a) # 0 then we can
make f invertible by restricting its domain, and then the inverse function g = f~! will be
holomorphic near f(a) with ¢'(f(z)) = 1/f'(2).
A similar result holds when f is conjugate-holomorphic.

, provided g(a) # 0.

'(2).

Proof: Part a) holds since ;1_1)% (f(z) = f(a) = Zh_r)r(ll (w (z — a)) = f'(a)-0=0.

Part b) follows immediately from part a) of theorem 4.12.
Part c) follows almost immediately from part c¢) of theorem 4.12. For example, we
prove part (i ) Write w = f(z) and ¢ = g(w). Since f and g are holomorphic, we have

%i’ =0and 2 7= = 0. So by the chain rule oftheorem 4.12 , we have aq = g—i%—%%—g—%%—g =0,

_ Oq 0w | 9q Bw_ 9q 8w
which shows that g o f is holomorphic, and = 9w oz + 555 = Pu o5

Part d) is not easy to prove as it is stated It is hard to show that if f'(a) # 0 then
we can make f invertible by restricting its domain and it is hard to show that its inverse
will be holomorphic. (We may show this later). However, if we asume that g = f~! exists
and is holomorphic then we have g(f(z)) = z, and so by the chain rule, ¢'(f(2))f'(z) = 1.

4.23 Theorem: The maps 2", n € Z, the exponential map e®, the trigonometric fuctions
and the hyperbolic functions are all holomorphic in their domains. Also, any continuous
branch of the logarithm log z (with an open domain) is holomorphic. We have

i) (2") =n2z""t, wheren € Z.

ii) (e®) = e?

iii) (sinz)’ = cos z, (cosz)' = —sin z, (tan z)’ = sec? z.

iv) (sinh z)’ = cosh z, (cosh z)’ = sinh z, (tanh z)’ = sech®z.

1
v) (log z)) = = for any branch of log z.
2
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Proof: Part i) can be shown from the definition of the derivative. Let f(z) = 2", n € Z.
n __ .n
Then f/'(z) = lim Y 7%~ lim (W' w" e+ w4 ") =
w—z W — 2 w—z

Alternatively, part (i) could be proven by induction using the product rule from the base
case z' = 1.

To prove part (ii), let w = f(z) = €* and write z = x + iy and w = u + iv. Then

_ atiy _ @ o _ (U Uy _ e’ cosy —ersiny
f(z)=e e’ cosy +ie’siny, so Df v vy) <exsiny ¢* cosy , and we
see that f is holomorphic in C with f'(z) = e” cosy +ie®siny = e*.

We derive the formula for the derivative of sinz in two ways. One way is to let
f(z) = sinz and write z = z + iy and f(z) = wu(z) + iv(z). Then we have f(z) =
sinx coshy + i cosxsinh y, and Df = (uw Yy ) = ( cgsxcqshy Slnxsmhy) and so

Vg Uy —sinxsinhy cosx coshy
f is holomorphic in C and f/(z) = cosx coshy — isinz sinhy = cos(z).

An easier way is to apply part (ii) and the differentiation rules in theorem 4.22 b) to the
definition of sin z. Indeed (sinz) = - (e"*—e™) = L (ie”*+ie~ ) = L(e"*+e %) = cos 2.

The rest of the derivative formulas are left as an exercise.

4.24 Example: The two above theorems show that elementary complex functions can be
differentiated much like the real elementary functions. For example, let f(z) = (23e5"#)5,
then f/(z) = 5(23e5n#)4(322e5% 4 235112 cos 2).

4.25 Example: Let f(z) =sin (22 + (1 +4)z). Find f. and f.

Solution: We have f(z) = q(w(u(z))), where u(z) = 22 + (1 + i)z, w(u) = sinu and
g(w) = w. Note that u, = 2z, uz = (1+1), w, = cosu, wg =0, ¢, =0 and ¢z = 1. By
the chain rule, w, = wyu, + wg, = 2z cosu and also wz = wyuz + wguz = (1 + 1) cosu.
Using the chain rule again, we have ¢, = quw, + ¢zw, = W, = wz = (1 — i)cosu and also

4z = quWz+qzWz = Wz = W, = 2zcosu. Thus f, = (1—i)cosu = (1—1i)cos (22 +(1+ Z)E)
and fz = 2zcosu = 2z cos (22 + (1 +9)z).
An alternate solution is to note that for z = x + iy we have e = *~#¥ = ¢%(cosy —

isiny) = e?, and so from the definition of sin z we also have sin(Z) = sinz. Thus f(z) =
sin (2% + (1—1)z) and so f.(z) = (1—i) cos (z2+(1—1i)z) and fz(z) = 2z cos (22 + (1 —i)z).

4.26 Example: Let f(z) = 22 — 22+ 3. Then f’(z) = 2z — 2 and we have f(2) = 3 and
f'(2) = 2. Since f'(2) # 0, we can restrict the domain of f so that it is invertible. Let g
be the inverse function. Find ¢'(3).

1 1

Solution: By the inverse function theorem, we have ¢’(3)

PR
4.27 Note: To find the derivative of a branch of a multifunction, first express it in terms
of one (or more) branches of the logarithm, then take the derivative.

4.28 Example: Find a formula for the derivative of one branch of z*, where w € C.
Solution: Let z" = exp(wlog z), where log z is a branch of the logarithm. Then

w z%

wy/ log 2) & —
(z) = exp(wlog 2) — .

(Notice that this is similar to the familiar formula (%) = w 2¥~1; the familiar formula has
the disadvantage that it does not specify which branch of 2 ~! we should use).
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Chapter 5. Conformal Maps

5.1 Note: Later on we shall see that every holomorphic function is C*°, which means that
all partial derivatives of all orders exist (and are continuous). For this chapter we shall
assume that all functions are C2, which means that all the second order partial derivatives
of f (namely Uz, Upy, Uyz, Uyy, Viz, Vzy, Uye and vy, ) exist and are continuous. We shall
also use the fact that for C? functions, we always have Ugy = Uyz aNd Vgy = Vyq.

5.2 Definition: A map f: U C R®™ — R" is said to preserve orientation at x = a if
|Df(a)| > 0, and it reverses orientation at a if |Df(a)| < 0.

5.3 Note: Let f: U C C — C. If f is holomorphic at z = a and f'(a) # 0 then f
a =0\ _ 2
3 a ) = o + (° > 0. On the other

hand, if f is conjugate-holomorphic at a with f*(a) # 0 then f reverses orientation at a

since |Df(a)| = det <7 _57> =—(v*+46%) <0.

preserves orientation at a, since |Df(a)| = det (

J

5.4 Definition: A map f: U C R"™ — R" is called an isometry if it preserves distance,
that is if |f(z) — f(y)| = |z — y| for all z,y € R™. Using some linear algebra, one can show
that f is an isometry if and only if f is of the form f(x) = Az + b for some vector b € R"
and some orthogonal n x n matrix A (A is orthogonal means that AT A = I).

5.5 Note: Since the 2 x 2 orthogonal matrices are the matrices either of the form

cosf —sinf f tho £ cosf sinf
sinf cos@ or o ¢ form sinf —cosf

az+b
az+b

), we see that the isometries in R? are

the maps f of the form f(z) = { for some a,b € C with |a| = 1.

5.6 Definition: A map f: U C R™ — R" is called a similarity of scaling factor & > 0
if it scales distances by a factor of k, that is if |f(z) — f(y)| = k|z — y| for all x,y € R™. It
is not hard to see that f is a similarity of scaling factor k£ if and only if % f is an isometry.

5.7 Note: Amap f:U C C — C is a similarity of scaling factor £ > 0 if and only if f is

of the form f(z) = {“fiz
az

5.8 Note: Let f: U C R" — R™ be differentiable at a. Given a vector v € R™, choose a
curve «a(t) with a(0) = a and o/(0) = v. Then (f o @)’ (0) = Df(«(0))a’(0) = Df(a)v. So
we say that f sends the vector v at a to the vector w = Df (a)v at f(a).

for some a,b € C with |a| = k.

5.9 Definition: A map f: U C R™ — R"™ is called conformal at a if it preserves angles
between curves at a, or to be precise, f is conformal at a if

(Df v) - (Df w) v-w

|Df ol [Df vl [o] |wl

for all vectors v,w € R™. We say f is conformal in U if it is conformal at every a € U.
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5.10 Note: Using linear algebra, one can show that f is conformal at a if and only if
Df(a)T Df(a) = kI for some k > 0. We shall show only that the latter implies the former;
suppose that DfT Df = kI with k > 0. Then

(Df v) - (Df w) = (Df v)T (Df w) = "' Df T Df w = vk Tw = kvl'w =kv-w

and in particular |Df v| = \/(Df v) - (Df v) = Vk |v|, and similarly |Df w| = vk |w]|. Tt
follows that f is conformal; f behaves locally like a similarity of scaling factor v/k.

5.11 Example: The steriographic projection from the unit sphere, with the north
pole removed, to the complex plane is the map ¢ which sends the point (x,y,z) on the
sphere to the point of intersection (u,v) of the line through (x,y, z) and the plane z = 0.
Find a formula for ¢ and ¢!, and show that stereographic projection is conformal.

u

Solution: The line through (0,0,1) and (x,y, 2) is given by (0,0,1) + ¢t(x,y,z — 1), t € R.
The point of intersection of this line with the plane z = 0 occurs when 1+%(z—1) = 0, that
is when t = 1/(1—2). The point of intersection is (0,0, 1)+ = (z,y,2—1) = (%, ££,0),
so we have

(w0) = olene) = (1o 12 )

Given (u,v) on the other hand, the line through (0,0, 1) and (u,v) is given by a(t) =
(0,0,1) +t(u,v,—1) = (tu,tv,1 —t). The point of intersection with the unit sphere occurs
when |a(t)| = 1, so we need (tu)?+ (tv)? + (1 —t)? = 1, that is t?u® + t?v? — 2t +¢? = 0, or

t (tu? + tv? +t — 2) = 0. The point of intersection occurs when t = m, So we obtain
the formula
2u 2v u? 4+ 02 —1
_ -1 _ .
(2,y,2) = 7 (u,0) <u2+02+1’u2+02+1’u2+02+1

Now, we show that ¢! is conformal. We have

Ty Ty 9 —u? +0v2+1 —2uv
Dot =y w | = 5 5 5 —2uv u? —v? 41
Zu 2w (u? + 0% +1) 2u 2v

and a quick calculation yields

-1 —1y _ 4 1 0
(Dg™)(Dg )_(u2+1}2+1)2 (0 1)

Note that near the point (u,v), ¢! behaves like a similarity of scaling factor 2/(u?+v?+1).
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5.12 Theorem: Let f: U Cc C — C.
a) f is conformal at a if and only if either

f is holomorphic at a with f'(a) # 0, in which case f preserves orientation, or

f is conjugate-holomorhic at a with f*(a) # 0, in which case f reverses orientation.
b) If U is connected, then f is conformal in U if and only if either

f is homorphic in U with f'(z) # 0 for all z, so f preserves orientation, or

f is conjugate-holomorphic in U with f*(z) # 0 for all z, so f reverses orientation.

Proof: To prove part a), note that f is conformal at a if and ony if Df (a) is a positive scalar
multiple of an orthogonal matrix. Since the 2 x 2 orthogonal matrices are the matrices of

the form <cos€ —sin@) . (0059 sin 6

sinf  cosf sinf  — cos 9>, we see that f is conformal if and only if

B o

Part b) involves a subtle point: if f is conformal in U then how do we know that f
cannot be holomorphic at some points a € U and conjugate-holomorphic at other points?
It is for this reason that we must assume that U is connected. Since we have assumed that
all functions in this chapter are C? we know that u,, Uy, vy and v, are all continuous and
so |Df| = uzvy — uyv, is also continuous. At each point a € U we have |Df(a)| # 0, so
|Df| is a continuous map from U to R*. Since U is connected, we know that |Df|(U) is
also connected and lies in R*. This implies that either |Df(a)| > 0 for all a or |Df(a)| <0
for all a.

Df = <a _aﬁ) or Df = (7 6 ) for some a, 3 or v,6 € R not both equal to zero.

5.13 Note: If f : U € C — C is holomorphic at a with f(a) = b and f’'(a) = re'?,
where r > 0, then by the definition of the (complex) derivative, for z near a we have
f(z) 2 f(a) + f'(a)(z — a) = b+ re?(z — a). This shows that locally, f behaves like the
following similarity: translate by —a, rotate by 6, scale by r, then translate by b.

5.14 Example: Let f(z) = 22. Then f is holomorphic in C and f/(z) = 2z so f/'(z) # 0
in C*. Hence f(z) = 22 is conformal in C* and preserves orientation. Verify directly that
f preserves the oriented angle from «(t) =i+t to 5(t) =i+ (1 + 1) t.

Solution: We have «(0) = 5(0) =i, &/(0) =1 = ((1)) and #'(0) =1+i= (1), so the

angle from o/(0) to #'(0) is Z. The images are y(t) = f(a(t)) = (i+t)* = (t*—1)+i 2t (this
is the parabola u = 1v? — 1) and 6(t) = f(B(t)) = (i + (1 +i)t)? = —(1+2t) + i (2t + 2t?)
(check that this is the parabola v = fu? — 1). Note that v(0) = §(0) = —1, so the two

2 2
0) and we have

parabolas intersect at —1. We have ~/(¢t) = 2t + 2i so 7/(0) = 2i = (2

3 (t)=—-2+1i(4t+2)s0d(0)=—-2+42i= (_2). So the angle from +'(0) to 6’(0) is 7.

2

Notice also that o and 3 meet at i, and we have f(i) = —1 and f’(i) = 2i = 2¢°™/2,
So near z = 4, f can be approximated as follows: translate by —i, rotate by 7, scale by 2,
then translate by —1. Indeed, this is precisely what happens to the tangent vectors.
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5.15 Definition: Let u: U C C — C. The (2 dimensional) Laplacian is the differential
operator V2 given by
Viu = ug, + Uyy -

The map u is called harmonic in U if it is C? and satisfies Laplace’s equation
Viu=0.

5.16 Note: There are several functions from physics which satisfy Laplace’s equation.
Steady state temperature (in a homogeneous medium), electrostatic potential (in a vacc-
ume) and the velocity potential for a steady flow of fluid (irrotational and indecompressible)
al satisfy Laplace’s equation.

-1
5.17 Example: As an exercise, you should check that the map u(x,y, z) =
/IQ +y2 + 22
satisfies the 3 dimensional Laplace equation wug, + uyy + u,. = 0, but that the map

1
u represents the electic potential surrounding a point charge in R3, but the second map u
does not represent the potential which surrounds a long straight wire. On the other hand,
you can check that the map u(z,y) = In/x? + y? does satisfy the 2 dimensional Laplace
equation, and this map u does represent the potential surrounding a wire.

does not satisfy the 2 dimensional Laplace equation. The first map

5.18 Theorem: If f(z) = u(z) + iv(z) is holomorphic (or conjugate-holomorphic) in U
then u and v are both harmonic functions. When f = u + iv is holomorphic, we say that
v is the harmonic conjugate of u.

Proof: The Cauchy-Riemann equations u, = v, and u, = —v, imply that
Uy = (Ug)e = (Vy)o = Vya = Uy = (Vz)y = (—Uy)y = —Uyy
and likewise vyy = —Uyy = —Ugy = —Vyy.

5.19 Example: Let f(z) = e®. Verify that u is harmonic, where u = Re (f).

Solution: Since e*T*¥ = e®(cosy + i siny), we have u(x +iy) = e* cosy. So u; = €* cosy
J— X 3 — T o3 N X J—
and ug; = e cosy, while u, = —e®siny and uy, = —e* cosy = —Uy,.
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5.20 Example: Let f(z) = z3. Verify that u is harmonic, where u = Re (f).

Solution: We have f(z +iy) = (x +iy)® = (23 — 3zy?) + i (32%y — y3) so u = 23 — 3zy?.
We have u, = 32 — 3y? so Uz, = 62 and Uy = 322 — 62y and so Vyy = =6 = —Uyy.

5.21 Note: There is a partial converse to the above note (which we may prove in a later
chapter) which says that for certain sets U, for example when U is convex, if u is harmonic
in U then there exists a harmonic function v such that the map f = v+ v is holomorphic
in U. The following example shows how to find v.

5.22 Example: Let v = 222 + 32y — 2y?. Check that u is harmonic in C, and find a
harmonic conjugate v.

Solution: We have u, = 4z + 3y, g, = 4, uy = 3z — 4y and uyy = —4 = —Uy,, SO U
is harmonic. To find v such that u + i v is holomorphic, we need to find v such that the
Cauchy-Riemann equations v, = v, and u, = —v, are satisfied. To get v, = u, = 42 + 3y
we must take v = [4z + 3y dy = 4oy + %gf + ¢(z). Then we have v, = 4y + ¢/(z). To
get v, = —u, = 4y — 3z we need to have ¢’(z) = —3z, so we choose c(z) = —222. In this
way we obtain v = 4xy + %(gf —2?2). The function f = u+iv should be holomorphic, and

indeed you can check that f(z) = (2 —1i3)z%

5.23 Example: A long strip of heat conducting material is modelled by the set S =
{r+iyl0 <y < 1}. Find the steady state temperature u(z + iy) at each point in the
strip given that the bottom edge is held at a constant temperature of a° and the top edge
is held at b°. Describe the isotherms, that is the curves of constant temperature.

Solution: We must find a map u : S — R which is continuous on S and harmonic in S
such that u(z,0) = a and u(z,1) = b for all z. We can take

uz+iy)=a+(b—a)y.

It is easy to see that w is harmonic, indeed ug,, = uy, = 0. Also notice that u is the
imaginary part of the holomorphic map f(z) =ai+ (b — a)z.

The isotherm u = ¢ is the horizontal line ¢ = a + (b — a)y, or y = {=2.
5.24 Theorem: Ifu : U C C — R is harmonic and if f : V C C — C is holomorphic
then u o f is harmonic.

Proof: Write z +iy = f(s+it), u = u(x +iy), and v = wo f. The chain rule gives
Vs = UgTs + UyYs Vg = UgTp + UyYt -
Using the chain rule and the product rule, we obtain
Uss = (Upa®s + UzyYs)Ts + UsTss + (UyaTs + UyyYs)Ys + UyYss
Vit = (Uga Tt + Upy Yt )Tt + UsTer + Uy Te + Uyy Y)Yt + Uy Yt
Adding these, using the fact that u,, = u,, we obtain
Vgs +V4 = Umx<%2+5L'y2)+uyy(ysz+yt2)+ny(2$sys+2$tyt>+ux($ss FYet) +ty (Yss +Yir) -

Since f is holomorphic, the Cauchy-Riemann equations =5 = y; and z; = —y, imply that
(ys2 +y:2) = (252 +1,2) and that (225ys + 27y;) = 0 and that = and y are each harmonic
so that (zss + x¢) = 0 and (yss + yiz) = 0. So we are left with

Vss + Ut = (umx + Uyy)(ms2 + 'CC’!JZ) :

Finally, since u is harmonic, we have (uz, + u¢) = 0 and hence vgs + vy = 0.
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5.25 Note: We shall now consider problems of the following kind: given an open set
U C C, find a harmonic function u : U — R which satisfies some given condition on the
boundary QU this kind of problem is called a boundary value problem. We solved
an easy boundary value problem in example 5.23, in which the open set was the strip
S ={x+iy|0 <y < 1}. The above theorem allows us to use a solution to one boundary
value problem on a set U to obtain a solution to another problem on a set V' by mapping
the set U to the set V' using a holomorphic map.

5.26 Example: The upper half-plane H = {z + iy|y > 0} is a model for a large heat
conducting plate. Find the steady state temperature v(z) at each point in the plate if the
temperature along the bottom edge is held at a° for x > 0 and b° for x < 0. Also, describe
the isotherms.

Solution: Notice that we can map the strip S = {z +iy|0 < y < 1} (which appeared in
the example 5.23) to the half-plane H = {z +iy|y > 0} using the map f(z) = €™ *. The
bottom edge of S is mapped to the positive x-axis, and the top edge of S is mapped to the
negative z-axis. To map H back to S we use the inverse map g(z) = %log z, where log z
is the branch of the logarithm given by log z = In |z| + i0(z) where 0 < §(z) < 7.

From example 5.23, the map u(z) = Im (ai+ (b— a)z) is harmonic in the strip S with
u = a when y = 0 and v = b when y = 1. To solve our problem in H, we take v = u o g.

To be explicit, we take
b—a

™

b—a

v(z) = Im (m+ logz) —a+——20(2),

where 0 < §(z) < 7. The isotherm u = c is the ray ¢ = a + 222 0(z) or 0(z) = £&=2 .

a

5.27 Example: Find the steady state temperature u(z) inside a circular plate modelled
by the disc U = D(0, 1), given that the top half of the boundary is held at a® = 1° and the
bottom half is held at b° = 5°. In particular, find the temperature at the point %z Also
describe the isotherm u = 2.

1
Solution: The map f1(z) = G maps the disc D(0,1) to the disc D(2, 3), and it sends the

top half of the boundary of the first disc to the top half of the boundary of the second. The

1
map fo(z) = _ maps the disc D(, 1) to the half-plane Hy = {z +iy|z > 1}, and it maps

the top half of the boundary of the disc to the bottom half {1+iy|y < 0} of the boundary
of Hy. The map f3(z) = z—1 translates the half-plane H; to Hy = {x+iy|z > 0}. Finally
the map f4(z) = i z rotates Hy to the half-plane H = {z + iy|y > 0} sending the bottom
half of the boundary of Hy to the right half {x > 0} of the boundary of H. So we can use

our solution v(z) from the previous example to obtain the solution u = vo fyo f30 fao fi.

To be explicit, we have fo(f1(z)) = 2 and f3(fa(f1(2))) = (L - 1) = (14__2

142 14z
and fa(fs(f2(fi(2)))) =1 (1 -T-i

b— 1-— 4 1-—
u(z) =a+ a@ 7 i =14+—-0(: i ,
T 1+ 2z T 1+ 2

), so our solution is

where 0 < 6(i L‘é) < 7. Since 6(i L_Li) = 9(1;’2) + 5, we have
4 1—=z
_34+ 29
w) =3+ 20 (157
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1—%”<_
1+34/

where —5 < 9(%;?) < Z. In particular, the temperature at 1 i is u(34) =3+26(

3+26(321) =3+ dtan™! (- 3) = 1.82°,
To find the isotherm u = 2, we recall that the corresponding isotherm v = ¢ = 2 in
c—a 2—-1

example 5.26 was the ray 0(z) = {=¢ 7 = £=; m = 7. This ray is rotated by faNz) = —iz

to the ray 0(z) = —7, then translated by f3~t=z+1totheray §(z—1) = — 7, this ray is
the portion below the x-axis of the line whose nearest point to the origin is %(1 +1) and so

it is mapped by fo~'(z) = 1/z to the portion above the z-axis of the circle with diameter

0, 1%” = 1—1, that is the circle |z — %] = \/75, and finally this arc is translated and scaled
by the map f; '(z) = 2z — 1 to the portion above the z-axis of the circle |z + i| = v/2.

Thus the isotherm v = 2 is the arc |z +i| = /2, z € D(0,1).

We also remark that 6( ijrj) =Im (log( L‘_i)) = —2TIm (tanh™ ' 2).

fi(z) == fa(z) =1/ fa(fs3(2)) =i(2 = 1)

5.28 Example: Find the steady state temperature u(z) in the plate shaped like the semi-
infinite strip U = {x +iy| — 1 < = < 1,y > 0} given that the temperature along the
bottom edge and the right edge is held at a® = 10° and the temperature along the left
edge of the boundary is held at b° = 40°. Also, find the temperature at z = i.

U

Solution: The map fi(z) = 5z widens the strip U by a factor of 7, and then the map
f2(z) = sin z sends the strip to the half plane H = {x + iy|ly > 0}. The left edge of the
boundary of U is mapped to the portion of the real axis with x < —1. Lastly, the map
fa(z) = z+ 1 sends H to itself and it sends the portion of the real axis with z < —1
to the portion with x < 0. We can again use our solution v(z) from example 5.26 to
obtain the solution to this problem. We take u = uwo f3 0 fy 0 f;. To be explicit, we have

f3(f2(f1(2))) =1 +sin Zz and so

b—a 0(1+sin(%z)) =10+ % 0(1+sin(%z)),

u(z) =a+

T

where 0 < 0(1 4 sin(Z z)) < m. In particular, we have u(i) = 10 + 226(1 + sin(i 3)) =
10+ 290(1+isinh %) =10+ P tan~' (sinh §) = 21.1°

5.29 Example: Find the steady state temperature v(z) at each point on a plate modelled

by the half-plane H = {x + i y|y > 0} given that the temperature along the boundary is
held constant at a® for x > 1, b° for —1 < z < 1 and at ¢°® for x < —1.

Solution: We can use the fact that the sum of two harmonic maps will also be harmonic.
We use the solution from example 5.26 to get one harmonic map vy in H with v; = a along
the portion of the x-axis with x > 1 and v; = b along the portion with x < 1, and we get
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another harmonic map vy in H with vo = 0 along the portion of the z-axis with z > 1 and

vo = ¢ — b along the portion with z < —1. Then we add them to get v = v; + v2. To be
b— —b
(2~ 1) and va(2) = S 0(z + 1) and so
T

explicit, v1(z) = a +

b+ ),

v(z) =a+
7T 7T

where 0 < 6(z —1),0(z+1) <.

5.30 Example: Find the steady-state temperature u(z) in the semi-circular plate mod-

elled by U = {z +iy|z® + y*> < 1,y < 0} given that the temperature along the boundary

is held constant at a® = 5° when y = 0 and x > 0, and at b° = 10° when y = —v/1 — 22
1

and at ¢® = 20° when y = 0 and x < 0. In particular, find the temperature at z = —3 .

1
Solution: The map f; = — sends U to the region V' above the z-axis and outside the unit
z

circle V.= {z +iylz? +y?> > 1,5 > 0}. Then fo(z) = log 2z, the branch of the logarithm
with 0 < # < 7 maps V to the semi-infinite strip W = {z +iylz > 0,0 < y < 7}.
We rotate the strip by 90° using f3(z) = iz then shift it to the right by 7 using the
map f4(z) = 2z + § (so that its base is centred at the origin), and then we use the map
f5(z) = sin z to map the strip to the half-plane H = {x + iy|y > 0}. The portions of the
boundary which are to be held constant at a°, b° and ¢® are mapped to the portions of the
z-axis with z > 1, —1 < & < 1 and & < —1 respectively, so we can use our solution v(z)
from the previous example. Our solution is u = v o f5o0...0 f;. To be explicit, we have
fs(fa(f3(2))) = sin(iz + 3) = cos(iz) = coshz, and f5(fa(f3(f2(2)))) = cosh(logz) =

log 2 —logz Z—Fl l—|—Z 1 2
c e = 2Z,andso(f5o...of1)(z)=Z _ -tz

. Our solution is

2 2 2z
b— 1+ 22 —b (1422
u(z) =a+ Lo +2 1)+ 5% 2 +1
T 2z T 2z
5 1 2 10 1 2
—s4 2o )+ B (2 40
T 2z T 2z

In particular, u(—i/2) = 5+ 20 (23 1)+ L0 9(32 +1) =542 0(—1+i 3)+ L0 9(1+i 3) =

5+ %(W —tan~! %) + 17r—0tan_1 % =10+ %tan_l % = 11.0°.

hi(z)=1/z fa(2) = log 2
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5.31 Note: All of the above examples can be re-worded so that they are asking us to find
the electrostatic potential in a certain region given that the voltage along the boundary is
held constant. If u is the electrostatic potential in a region, then the electric field F is
defined by

E=—-Vu.
If f is holomorphic and u = Re (f) and v = Im (f), then we have Vu = u, +iu, = f. and
Vo =u,+ivy, = —uy+iuy =i(ug +iuy) =iVu=1f,.

5.32 Example: Find the electostatic potential and the electric field at each point inside
a long hollow metal cylinder, with unit radius, made up of two semi-cylindrical pieces
separated by thin strips of insulating material, with one piece held at a potential of 1 Volt,
and the other at 5 Volts. In particular, find the electrostatic potential and the electric field
at points along the centre of the cylinder.

¥

X
Solution: The cross-section of the cylinder is modelled by the unit disc U = D(0,1). As in

example 5.27, the electric potential is u(z) =3+ 26 (i;;) Note that u = Re (f), where

f(z)=3—12ilog (iz) The electric field is E = —Vu=—f, = 2§ %= (115)2 = ﬂ(18_i52).
-8

In particular, we have u(0) = 3 and E(0) = <.

T

5.33 Example: Find all solutions v(z) to Laplace’s equation in C* such that v(re’?) =
f(r) for some function f (the solution will model the electrostatic potential at each point

around a long charged rod).

Solution: The exponential function maps C onto C*. If v(z) is harmonic in C* then
u(z) = v(e*) will be harmonic in C. If v is of the form v(re??) = f(r) then we have
u(z +iy) = v(e®e®”) = f(e*). Since u is independent of y, Laplace’s equation becomes
Uz, = 0, and the only solutions are of the form u(z +iy) = ax + b = Re (az + b) for some
a,b € R. Thus we have v(z) = u(logz) = Re (alogz +b) = aln|z| +b.

5.34 Example: Find the electrostatic potential v(z) and the electric field E(z) at each
point inside a long grounded cylinder, of unit radius, which encloses a charged wire centred
inside the cylinder.

Solution: We look for a harmonic map v(z) defined on the punctured disc U = D*(0,1)
with v(z) = 0 when |z| = 1. From the previous example, we can take v(z) = aln|z|. The
constant a depends on the charge per unit length and on the choice of units. In fact

v(z) = —2kqln|z|,
where ¢ is the charge on the rod in coulombs per meter and k& = 9 x 10° NC@Q. Since
v = Re(f), where f(z) = —2kqlog(z), we have E(z) = —f, = 2kq/Z.
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5.35 Example: A charged wire at x = 0,y = 1 lies inside the region in space given by
y > 0, and the boundary of the region is grounded. Find the potential u(z) at each point
in the region and around the wire.

Solution: Let U be the punctured half-plane U = {z|Imz > 0,z # i}. The map fi(z) =
z+ i maps U to the set V = {z|Imz > 1,2z # 2i}, the map f3(z) = 1/z maps V to the
punctured disc W = D*(—%i, %), and the map f3(z) = 2z 4+ i maps W to the punctured
disc D*(0,1). So our solution is u = v o f3 o fy 0 fi where v(z) = —2kqIn|z| is the solution
from the previous example. Check that

z—1

u(z) = —2kqln

Z+1

5.36 Note: The velocity field F' of a flow (of perfect fluid) and the velocity potential v
are related (like the electric field and electric potential) by

F=-—-Vv.

5.37 Example: Find the velocity potential v(z) of the constant flow with velocity field
F(x 4 iy) = ¢ in the upper half plane H = {x 4+ iy|ly > 0}.

Solution: We must have F' = —Vv so we need ¢ = —(v, +1iv,), that is v, = —c and v, = 0.
Since v, = 0, v is independent of y, and since v, = —c we have
v=—cxz=Re(—cz).

We could add a constant to this solution.

5.38 Example: Use the previous example to find the velocity potential for the region
U={z+iylx? +y?> 1,y > 0} given that as z — oo the flow tends to the constant flow
F = k. Also, determine the speed of the flow near z = 7, that is, at the top of the bump.

Solution: As in example 5.32, the map f(z) = cosh(logz) = 1(z + 1/z) sends the region
U to the upper half-plane H = {z +iy|ly > 0}. We use the potential v from the previous
example, and we take u(z) = v(f(z)) = Reg(z), where g(z) = —5(z + 1/z). The velocity
field is F = —g; = £(1 — 1/z%). As z — 0o we have F(z) — ¢/2 so we must take ¢ = 2k.
Thus our solution is

v(z)=Re(—k(z+27") , F(z)=k(1-1/z%).

We have F'(i) = 2k, so the velocity at the top of the bump is twice the velocity at oo.
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Chapter 6. Integration

6.1 Definition: For a map « : [t1,%2] C R — C we define the integral of « to be

n

/tZa(w dt = Tim 3" a(es)(si — ter).

=1

where the limit denotes a limit of Riemann sums; it is taken over all choices of s; and ¢;
with t; = s9g <81 <...< 8, =t and s;_1 < ¢; < s; and (s; —s;-1) — 0 as n — oco. We

th t

also define / a(t)dt = — / a(t) dt. If a is piecewise continuous and bounded, then the
t t

limit will exist and be finite, and if we write a(t) = z(t) +iy(t), then

/tt a(t)dt:/:x(t)dt +i/t1t2y(t)dt.

0
6.2 Example: Let a(t) = e'! for t € R. For § € R, find / a(t) dt.
0

0

0 0 0 0 0
Solution:/ a(t) dt :/ cost+i sint dt = / Costdt+i/ sintdt = [Sint] —i—i[—cost}
0 0 0 0 0 0

=sinf +i (1 —cosf) =i—ie'?. Note that as 6 varies, this traces out a circle.

6.3 Theorem:
2) i) tzca(t)dt:c/2a(t)dt z’z’)/2a(t)+ﬂ(t) dt=/2a(t)dt+/t25(t)dt

t1 t1 t
to

b) a(t)dtJr/tB a(t)dt:/tgoz(t)dt

ty to t1

to
¢) (The Fundamental Theorem of Calculus) / o (t) dt = a(tz) — a(ty)
t1

tQ t2
/ a(t) dt‘ §/ la(t)| dt
tl tl
t(s2)

e) (Change of Parameter) Let t = t(s) be C'. Then / a(t(s))t'(s)ds = / a(t) dt

s1 t(s1)

d) (The Estimation Theorem)

Proof: All the parts except part d) follow immediately from the corresponding results for
real valued functions. For example, to prove the Fundamental Theorem of Calculus, write

a(t) = z(t) = iy(t) and we have / 2o/(t) dt = /Zx'(t) + 1y (t) dt = /Qx’(t) dt +

t1 t1 t1

to
[ i = ((t2) - o(00) +1 (5(t2) - y(0) = alt2) ~ altr).
t1

Part d) is easier to prove using Riemann sums. For any € > 0 we can choose a partition

t1 =59 < ...< s, =ty and the points ¢; so that

’/,:2 a(t) dt’ +e< ’ia(ci)(si - Si—l)‘ < i ’a(ci)}(si —38;-1) < /t2 lou(t)| dt — €.

t1
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to to to
Since € is arbitrary, we must have ‘ / a(t) dt‘ < / / |ae(t)| dt.
t1 ty t1

Alternatively, we can use the corresponding result for real valued functions as follows.

Write fttf f(t) dt in polar coordinates as fttf f(t)dt = ‘fttf f(t)dt|e’?. Then

/tt f(t)at =e—i9/: f(t)dt:/tg e 'O (t)dt = |Re /tQ (e_wf(t))dt‘ ,

tl tl
where the last equality holds since for r > 0 we have r = |Re (r)|, and

‘Re /t2 (e7F(t)) dt /t2 Re (e f(t)) dt g/j IRe (e'?£(t))] dtg/tj2|f(t)|dt,

t1 t1
since [Re (e'%f (2))] < [e“f (1) = [£(2)].
6.4 Definition: Let « : [t1,t2] C R — C. If « is continuous and ' is piecewise continuous

and bounded, then we call « a path. If, in addition, we have a(t1) = «a(t2) then « is called
a loop. The arclength of a path « : [t1,t3] — C is

L(a) = /t o) dt.

Since o is piecewise continuous and bounded, the arclength exists and is finite.

6.5 Example: Find the arclength of the path a(t) =t +it3, 0 <t < 1.
1 1 1 1
Solution: L(a) = / |’ ()| dt = / |12t + i 3t%| dt = / VA2 + 9t dt = / tvV4+9t2dt
0 , 1 (i 0 0

— — Vudu = | — -

g Vude [27u\/a]4 27
6.6 Definition: Given a path « : [t1,t2] C R — C and a piecewise continuous bounded
map f : Image (o) C C — C we define

/af:/af(z)dz = ’ fla(t)d/ (t) dt.

t1
This kind of integral is called a path integral.

6.7 Example: Let ¢ € C and let a be the line segment a(t) = a+(b—a)t,0 <t < 1. Then

1 1 1 1
/cdz = / ca(t)dt = / c(b—a)dt = / Re (¢ (b—a)) dt + i / Im (c(b—a))dt =
a 0 0 0 0
Re(c(b—a))+ilm(c(b—a)) =c(b—a).
6.8 Note: The complex path integral is related to real path integrals in the follow-
ing way. Write z = a(t) = z(t) + iy(t) and f(z) = u(z) + iv(z) with z,y,u,v € R.
t

Then /f(z)dz — 7 Ha@) @) dt = / (u(alt)) + i v(a(t) (2 (8) + iy (8)) dt =

tl tl

/ " u(a() (1) — v(al®))y' (1) dt+i / " o(al®)2 () + u(a(®)y' () dt = / (wdz —vdy) +

t1 t1 «

1 / (vdx + udy). This can easily be remembered by defining dz = dx + idy and then

writing /Oéf(Z)dz = /Q(uﬂv)(dxmdy) :/

« «

13 1

(13V13 —8).

(udw—vdy)+i/(vd:c+udy). In a

similar way we could define the path integral / f(2)dz, where dz = dx — idy

«
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6.9 Definition: For a path « : [t1,t2] — C and a point a € C \ Image («), we define the
winding number 7(«, a) of o about a as follows. We write a as a(t) = a + r(t)e'*®
where r(t) = |a(t) — a| and 0(t) is chosen continuously with 0 < 6(¢1) < 27 (it can be
shown that the map 6(¢) is uniquely determined), and then we set

_ O(t2) —0(t1)

77(047 CL) - T :

If o is a loop then we have a(t;) = a(ty) and so (1) = ¢?9(t2) and hence 6(t5) — O(t;)
will be a multiple of 27r. Thus 7(«,a) € Z.

6.10 Example: The loop which goes k times around the circle |z — a| = r can be given
parametrically by a(t) = a + r(t) e’?®) with r(t) = r, §(t) =t and 0 < t < 27k. We have
0(2rk) —60(0) 27k —0
77(047 a) = = = k.
2T 2T

6.11 Example: It is not hard to find the winding number 7n(«, a) from a picture of the
path a. For example, for @ and a as shown below, we can choose values t = s; (as shown)
for which the points «(s;) lie on the horizontal and vertical lines through a. From the
picture, we can see that 0(sg) = I, and then 0(t) increases (since we move counterclockwise
around a) with 0(s1) = 7, 0(s2) O(s3) = 2%, 0(s4) = 2w and 6(s5) = 5, and then 6(t)
reaches its maximum at 0(sg) = 5= and begins to decrease (since we now begin moving
clockwise around a) with 6(s7) = 0(ss) = 2m) and finally 6(sg) = ZX. Thus we have
6(s9) —0(s0) . T — %

(a,a) k
a,a) = = = —.
e o o 4

N—
gt
3

|

6.12 Example: If a is the pretzel curve a(t) = r(t)e!*® | where r(t) = (2 + cos 3t) and
0(t) = 2t with 0 < ¢ < 27 (as shown below), then the winding number of a about 0
is n(a,0) = 6(277;;0(0) = 47;;0 = 2. The winding number about other points is hard to
compute from the given equation of «, but is easy to find using a sketch of the curve. For

example we have n(a,2) = n(a,2e2™/3) = n(a,2¢**™/3) = 1 and n(a,4) = 0.
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6.13 Theorem: For the path a(t) = a+r(t)e’?®, with r(t) > 0 and t; <t < ty, we have

z—aQ t1 t1

/a dz = [har(t)r2 + 1 [G(t)]tQ =Inr(ty) —Inr(ty) +1 (9(152) — 9(?51)) .

In particular, when « is a loop we have r(t1) = r(t2) so

(o, a) = 1/ dz
M4 = o W Z—a

to .1 0 - 0,00 ta ./ to to to
Proof: / z _ / rel tirbe dt = / T dt—H'/ 0" dt = [ln r(t)} +i [9(15)] .
«@ t t r t1

_ 60
zZ—a ) Te ) t t

6.14 Definition: For a path «a : [t1,ts] — C we define the path o' : [t;, %3] — C by

a l(t) =at; +ty — 1),

so that o and a~! have the same image, but a~! traces the image in the oposite direction.
Also, for a path « : [t1,t2] — C and a path [ : [ta,t3] — C with a(tz) = B(t2), we define
axf: [t1,ts] — C by

a(t) for ty <t <ty

B(t) for to <t < ts

axs(t) = {

This path first traces out the image of « then traces out the image of .

6.15 Theorem:

i) [er=c[t i) [ura=[r+ [0

o [ r=[refs

¢) (The Fundamental Theorem of Calculus) Let « : [t1,t2] — U C C be a path in U, and
let f be holomorphic in U. Then / f(z)dz = f(altz)) — fla(t))

d) (The Estimation Theorem) Let L= L(«) be the length of the path « : [t1,t2] — C and
let M = max, | f(2)|- Then ‘/af(z) dz‘ < /:2 | fleu(t))a (t)| dt < ML.

e) (Change of Parameter) Let t = t(s) be monotonic and C'. Let 3(s) = a(t(s)). Then
/ f(z)dz = j:/ f(2)dz. We use + when t(s1) < t(s2) and we use — when t(s1) > t(s2).

B
In particular / f= —/ f.
« a~1

43



Proof: These all follow immediately from the theorem 6.3. For example to prove part e),
note that since (3(s) = a(t(s)) we have §'(s) = o/(t(s))t'(s) and so

S2 s2 t(s2)
= sNG'(s)ds = a(t(s)))a/ (t(s)t'(s)ds = a®))a (t)d
/ﬁ f / O / Sl () ) /M Fla(t)a!(t) dt

by part e) of the previous theorem. If ¢(s1) < t(s2) then the integral on the right is equal
t(s1)

to /{lf, but if ¢(s1) > t(s2) then we will have /Qf = /t(82) fla(t)d(t) dt.

6.16 Example: Let a be the path a(t) = (14 2¢)e!™ for 0 < ¢ < I. Find / 2" dz.

(e

Solution: We have «(0) = 1 and a(%) 2¢!7/3, 1If n # 1 then by the FTC we have
imw/3
1 2e
/ 2"dz = [ z”“} (2"“ tnt /3 _ ) If n = —1 then by theorem
o n+1 i
d 7/3 7
6.13 we have / @ _ [ln } [9 } = In2 +i§, where () = 1+ 2¢ and
o ?

0(t) = mt.

6.17 Note: Let U C C be open, and let a be a path which runs counterclockwise around
the boundary of a closed set £ C U. Recall that Green’s theorem (for real path integrals)
states that if u,v: U C C — R are C! maps, then

/udm-l—vdy://(vm—uy)da:dy.
a E

Let f: U — C be holomorphic, and let u = Re (f) and v = Im (f). If we suppose that u
and v are C!, then Green’s Theorem and the Cauchy-Riemann equations imply that

/Otf(z)dz:/Q(u—Hv)(daH—idy)

:/udx—vdy—l—i/vd:c+udy

://E(—vm—uy)da:dy+i//E(ux—Uy)d5‘7dy
=0

We shall now prove a series of theorems which generalize this result (which is known as
Cauchy’s Theorem) and which do not require the assumption that u and v are C!.
Indeed, we shall be able to show that every holomorphic map is C*°.
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6.18 Definition: Let f,g : U C C — C. If ¢/(z) = f(z) for all z € U then we write
g = [ f and we say that g is an antiderivative of f in U.

6.19 Example: Since complex functions have the same derivative formulas as real func-
tions, they have the same antiderivative formulas also. For example, we can use Integration
by Parts to get [ze*dz =ze* — [e*dz= (2 —1)e* +c.

6.20 Example: Let U, = {re'|r > 0,0 < < o+ 27}, and let f(z) = 1/z. Then the
antiderivatives of f in U, are the maps of the form g(z) = log z+c¢ where log z = |z|+i0(z)
with o < 0(z) < o + 2m. However, f(z) does not have an antiderivative in C* because
none of the maps g(z) can be extended continuously to C*.

6.21 Theorem: If a is a loop in U and if f has an antiderivative in U then / f=0.

Proof: Say « : [t1,t3] — U and say ¢’ = f in U. Then by the Fundamental Theorem of
Calculus, we have / f= / g = gla(ts)) — g(a(ty)) = 0 since a(t1) = a(ta).

l
6.22 Example: Let o be any loop in C* and let f(2) = > a, 2" where k and [ are

n=—=k

positive integers and a,, € C. Show that / f(z)dz =2min(a,0)a_;.

Solution: For n # —1, the map 2™ has an antiderivative in C*, namely n+r1 2"+ so for

n # —1 we have/z”dz:(). And so

(7

l l
o a2zt dz= Z an/ z"dz:a_l/z_ldz:a_127ri77(a,0).

a n=—k n——*k

6.23 Theorem: (Cauchy’s Theorem in a Triangle) Suppose that f : U C C — C is
holomorphic in U. Let A be a closed solid triangle in U and let o be a loop around the

boundary of the triangle. Then / f=0.

Proof: Let I = Uaf| and set Ip = I, Ag = A, ap = o and Ly = L(«). Divide A into

four congruent triangles Aoy, Ag2, Aoz and Agg, let ap1,...,aps be loops around these

triangles, and let Ip; = ’fao_ f’ for 7 = 1,2,3,4. Choose k so that Iy, is the largest of
J

these, and then set Iy = Ipk, A1 = Aok, a1 = agr and Ly = L(ay). Since the triangles
Ay; are half as big as Ag we have Ly = 2L;. Also, since Iy > Iy; for all j, we have

/aof’: é/awf gé /aojf‘zéfojgul.

Next we subdivide A; into four congruent triangles and repeat the procedure. In this
way we obtain a sequence of congruent triangles Ag D A; D ... with a loop aj around
each triangle, and we have Iy < 4I; < 421, < ... and Ly = 2L, = 22L, = ..., where

I = ‘fak f’ and Ly = L(ay). Let a be the (unique) point which lies in all of the Ay.
(The proof that the point a exists uses the fact that the triangles Ay are compact).

Iy =
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Now let € > 0. Since f is holomorphic at a, we can choose ¢ so that for |z —a| < § we
"(a) — M‘ < esothat |f(z) — (f(a) + f'(a)(z — a))| < €]z—al. Choose N so
that for n > N we have A,, C D(a, ), and note that for all z € A,, we have |z—a| < L,,. So
for z € A, we have [z—a| < § which implies | f(z) — (f(a) + f'(a)(z — a )} < €|z—a| < €L,
Since f(a)+ f'(a)(z — a) has an antiderivative, namely f(a) z + f’(a)(32% — az), we know
that fan f(a)+ f'(a)(z — a) dz = 0. Using the Estimation Theorem we obtain

have

Lo?
+ f(a)(z — a)) dz| < ML, <L, 2_64—°n,

where M,, = ma(x) (f(z) — (f(a) + f'(a)(z — a)). Thus I < 471, < eLo”. Since € was
z=a(t
arbitrary, we must have Iy = 0.
In the picture bGIOW, Al = A04, Ag = All and A3 = AQQ.

Ao

Aoz JAVE}
Ao f Ay

6.24 Theorem: (Cauchy’s Theorem in a Convex Region) Suppose that f : U C C — C
is holomorphic in U, where U is open and convex. Then f has an antiderivative in U.

Consequently, / f =0 for all loops o in U.

«

Proof: Choose any point a € U. For each z € U set g(z / f where « is the line

segment from a to z (that is a(t) =a+(z—a)t,0<t < 1) We claim that ¢'(z) = f(2)
for all z € U. Indeed, given h € C (small enough so that z +h € U) we let 5 be the
line segment from z to z + h and we let v be the line segment from z + h to a, so by the
definition of g we have g(z+h) = fv*l f=- fv f, and by Cauchy’s Theorem in a Triangle

Wehavefaf+fﬁf—|—fvf:0,andso
1) = CEEB =IO gy ([ sty [ w)dw)

h
- s [ smau

-5 [roa—; [ i) ]
-5 [ s ]

ax |f(z) = f(w)] .

As h — 0 we have w = 3(t) — z and so | f(z) — f(w)| — 0, since f is continuous.

IA

46



6.25 Definition: Let o, : [t1,t2] — U C C be paths with a(t;) = (1) = a and
a(ty) = B(t2) = b. A path-homotopy (or deformation of paths) from « to fin U is
a continuous map F' : [t1,t3] x [0,1] — U such that F(¢,0) = «(t) and F(t,1) = G(t) for
all t, and also F(t1,s) = a and F(ta,s) = b for all s. If such a homotopy exists, then we
say that « is (path)-homotopic to 5 in U and we write o = 3. Note that for each fixed
s, Fs(t) := F(t, s) is a continuous curve from a to b.

8

6.26 Example: In a convex set U we can find a path-homotopy between any two paths
a, B [ti,te] — U with a(t;) = ((t1) and a(tz) = B(t2). Indeed, we can take F(t,s) =
a(t) + s (B(t) — aft)).

6.27 Example: In C*, the maps o, 3 : [0,7] — C* given by a(t) = €'t and §(t) = e~ **
are not homotopic. This follows from the following version of Cauchy’s theorem.

6.28 Theorem: (Cauchy’s Theorem for Paths) If f is holomorphic in U and if « = (3 in

Uthen/af:/ﬁf.

Proof: Say «,f : [p,q] — U. Choose an path-homotopy F' : [p,q| x [0,1] — U from « to
B in U. Choose partitions p =ty < t1 < ...tx = qgand 0 = s1 < s9 < ...s = 1 with the
property that if [;; = {F(t,s)|ti-1 <t < t;,5;_1 < s < s;} then each [J;; is contained in
a convex set (a disc if you like) which is contained in U. (To prove that such partitions
can be found, you must use the fact that [p,¢] x [0,1] is compact). For each i and j, let
a; @ [ti—1,t;] — U be a segment of the path «, let 5; : [t;—1,t;] — U be a segment of 3,
let a; be the line segment from «(t;_1) to a(t;), let b; be the line segment from ((¢;_1) to
B(t;), and let 7;; be the loop around the polygon with vertices at F'(t;—1,55-1), F(ti,5;-1),
F(t;,sj) and F(t;—1, ;). Then by Cauchy’s Theorem for convex sets, we have

/aif:/aif ; /ﬁif:/bif and %f:()'

When we consider all of the paths a; !, b; and 7vij, every line segment occurs twice, once
in each direction, and so the path integrals all cancel with each other to give

0=;LWEM;+§%f
RIRIR,

=Af—Lf
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6.29 Example: Let a, 3: [0,7] — C* be given by a(t) = e't and 3(t) = e~*t. Show that
« and 3 are not homotopic in C*.

Solution: Let f(z) = 1/z. Then f is holomorphic in C* and we have [ f = im and
fﬁ f=—im. Since [ f# fﬁ f we know that « is not homotopic to (.

6.30 Definition: Let o, : [t1,t2] — U C C be loops in U. A loop-homotopy (or
deformation of loops) from « to § in U is a continuous map F : [t1,t3] x [0,1] — U such
that F'(t,0) = «a(t) and F(t,1) = p(t) for all t and F(t1,s) = F(te,s) for all s. If such a
homotopy exists then we say that « is (loop)-homotopic to § in U and we write o ~ 3.

6.31 Example: In a convex set U, any two loops are homotopic. Indeed, given loops
a, B : [t1,t2] — U we can take F(t,s) = a(t) + s (B(t) — a(t)).

6.32 Theorem: (Cauchy’s Theorem for Loops) If f is holomorphic in U and if o ~ f3
then faf = fﬁf

Proof: The proof is the same as the proof of Cauchy’s theorem for paths.

6.33 Example: Let o, 3 : [t1,12] — C* be loops. Show that if n(a,0) # n(3,0) then «
and [ are not homotopic in C*.

Solution: Let f(z) = 1/z. Then f is holomorphic and we have [ f = 2mwi n(e,0) and
fﬂ f=2min(p,0), so if n(c,0) # n(B,0) then a and B cannot be homotopic in C*.

6.34 Definition: A set U C C is called simply connected if any two loops «,f :
[t1,t2] — U are homotopic in U. Roughly speaking, a connected set will be simply con-
nected if it doesn’t have any holes in it.

6.35 Example: Any convex set is simply connected, but C* is not.
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6.36 Theorem: (Cauchy’s Theorem in a Simply Connected Region) If U is a simply

connected open set and if f is holomorphic in U then [ f =0 for any loop o in U.
«

Proof: Since U is simply connected, any loop « : [t1,t3] — U will be homotopic to the

constant loop e given by e(t) = «a(ty) for all ¢, so / f= /f (afa))e'(t)dt = 0

since €'(t) = 0.

6.37 Theorem: (Cauchy’s Integral Formulas) Let U be a convex open set, let f be
holomorphic in U and let « be a loop in U. Then for any point a € U \ Image (a) we have

a)2min(a,a) f /f

b) All the derivatives f™ (a) exist, and 2 i n(c, a) f(”)(a) = n!/ —( f(z)) —
o 2 —a)™

dz .
Proof: First we prove part a). For any € > 0, let o, denote the path a.(t) = a+e€(a(t) —a).
Note that « ~ «, in the set U\ {a}, indeed a homotopy is given by F(t,s) = a(t)+s(a(t)—

f(z) = fla)

a(t)). Also note that the map
z—a

is holomorphic in U \ {a}. So we have

‘/Z—a —2min(a,a) f(a)| =

Sy [ L))

) wzi—a nzZ—a
_ o) 1t .
gﬂilmjfa

f(z) — f(a) f(z) = f(a)

where M, = max . As e — 0 we have — f'(a) so M. — | f'(a)],

z=ae(t) zZ—a
and also L(ae) =€ L(a) — 0
Next we prove part b) using induction. Suppose that

zZ—a

omi (e, a) f™(a) = n!/ %dz

Then we have

. f(")(a+h)—f(")( )\ _n! f(2) [ s
2w n(a,a)( )— A /a (z— (a+h))"HT (2 —a)ntt d

-5 fse ( <aih>>n+1‘<z—i>n+l)dz
n+

St R e
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where A is the line segment from a to a + h. So we have

L=

) (g _ fn) .
2m.n(w)f ) =)y [ IO dz‘

h o — a)n—l—Q

- (/f JNe= >n+2d“’dz‘h/a<zf(%)dz‘
YA
O [ g~ g

= T’Af(z)/)\/deudwdz

where 7 is the line segment from a to w. Choose r > 0 so that D(a,2r) C U \ Image (a),
and let |h| < r. For w € Image (\) and u € Image (7) we have w between a and a + h, and

1
< —. By the
|z —u| = r

— 0 as |h| — 0.

/af(z) dz

Solution: We shall find the integral in several ways. First, we shall use partial fractions. To

Y

u between a and w, so u € D(a,r), and so we have |z — u] > r hence

(n+2)!
Id

estimation theorem, L <

L(a) max | ()] ] h] oo

6.38 Example: Let a(t) =2¢e'! for 0 <t < 27 and let f(2) =

1 1
write AL Z,+ — in the form -+ - weneed A(z—i)+B(z+1i) =2+1
2241 (z410)(z—1) z4+1 z—1
4+ 1 ,— 1
for all z. Setting z = i gives B(2i) =i+ 1so B = el . Setting z = —i gives

27 2
—i14+1 141 1 1 d
A(—2i) = —i+1so0 A= i; = —2'—2. Andsowehave/;—:ld ;Z/(lzj@

1—i [ d 14 1—i ] 1
2@ i _Zi: ‘Qf’ZQWin(a,—i) i n(a, i) = ;Z2772+TZZ7Ti=7T(i—

z
1) +7(i+1) =2mi.

Now we shall find the integral again by immitating the proof of Cauchy’s integral
formula. Notice that f is holomorphic except at z = +i. Let oy be the loop around the
top half of the circle, and let as be the loop around the bottom half, to be explicit, we
take as(t) = { 2¢it for0<t<m and an(t) — {1— 2¢for0<t<m

—3form <t<27m 2e¢'™ form <t <2
will have [ f = fal f —|— [, - Next we deform the paths a; and a into the circular paths

and then we

o1 and o9, where o1 (¢ —z—l—re andag():—z+re7’tf0r0<t<27r where 0 < r < 1.
1+i+ret i
We have /alf—/ f—/ flo1(t) o1/ (t)dt = /0 —1+2ire”+r2ei2t+1”e dt
27r1_|_7[ 27
—>/ dt =7(l —1i)asr — 0, andwehave/ / flo2(t)) oo’ (t) dt

27 271_
l—2+4re i
_/0 _2”ezt+r2622tzretdte/ _7r(z—1) as r — 0. So/f_27”
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Finally, we shall compute the mtegral a thlrd time usmg Cauchy’ s formula. Taking

F(z
ay and as as above, we have / / + D/ +79) / dz = 27TZF< ) =
z—1

1 .
27”z+ =7m(i+ 1), where F(z) = (z-l— 1)/(z +1), and/ / (2 Z)dz:

1 o z+z

G(z) 1-— :
dz =2miG(—i) =2mi =m(i—1), where G(z) = (2 +1)/(z —i). Again we

ay 21 —2@
obtain / f=2ri.
6.39 Example: Let a(t) =2¢'" for 0 <t < 27, and let f(2) = — — Find [ f.

Solution: Of the three methods we used above, only the third works here. Notice that f
is holomorphic except at z = +1. Let a; be the loop around the right half of the circle,
and let as be the loop around the left half, so we have fa f= fal f+ fa2 f. Deform

a1 and s to the circles oy and oo with o1(t) = 1 + re®® and o3(t) = —1 + re'’. Then

e® 1) F
we have / f = / /Z+ dz = / %dz =2miF(1) = 27rz'§ = i¢7me, and
[e%1 Qi -
—1) -1
/ / (2 dz = / G) dz = 2miG(-1) = omiS— = —ime~'. So the

z+1 z+1 -2

1
integral of f over « is equal to i 7 (e - - )
e

. 1
6.40 Example: Let a(t) =2€" for 0 <t < 27 and let f(z) = % Find / f.
23(z — o

Solution: We shall solve this integral using two methods. First we use partial fractions.

1 A B (C D E
To write f in the formﬁ = Z+;+Z—3+Z_1+ G_1)7 we need to have

A2%(2 =12+ B2(z —1)2+ C(2 = 1)2 + Dz3(z — 1) + E23 = 2 + 1 for all 2. Equating

coefficients gives fives 5 equations: A+ D =0, 2A+B—-D+FE =0, A—2B+C =0,

B —2C =1 and C = 1. Solving these gives A=5, B=3,C=1,D=—-5and E = 2. So
5 3 1 5 2 . .

Af :/Oé;+z_2+z_3_ po— + e dz = 2mi(5n(a,0) —5n(e, 1)) = 2mi(5—5) = 0.

Now we compute the integral again using Cauchy’s formulas. Notice that f is holo-

morphic except at z = 0 1. Let a1 be the loop around the portion of the circle which lies to

the right of the line y — 5 and let ap be the loop around the portion to the left of y = 5, so
(z+1)/z F(z 2mi
that [, f = [, f+f f. Wehave/ / / dz—/ %dz— =T F"(O)
Qo
1 —2z — 2 1
From F(z) = ﬁ, we calculate F'(z) = (zz_l)33 and F"(z) = ﬁ to get
1 3
F”(O)le,sowehave/ f=10mi. Also7/ f= Mdz:/ &dz:
9 1 1 ay 5 aq 3(2" - 1)2 ai (Z - 1)2
ﬂG’( 1). From G(z) = Z—; we find G'(z) = Z— to get G'(1) = —5, so we have
z z4

/ f = —10mi. Again we obtain / f=0.
s e
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6.41 Theorem: (Liouville’s Theorem) If f : C — C is holomorphic and bounded, then f
is constant.

Proof: Suppose that f is holomorphic in C with |f(z)| < M for all z. Let a and b be any
two distinct points in C. Let a(t) = a + r|b — ale® for 0 <t < 27, where r > 1. Then

L [0 10,

|f(a) = £(b)| =

2ni Jy,z—a z—b

a—>b
/f (z—a) z—b)d

271'
1 1
<—2 b—alM|b—
< o 2rrlb—al M |ryb—a|(r—1)\b—ay
M
= —0 asr — 0.
r—1

6.42 Theorem: (The Fundamental Theorem of Algebra) Every non-constant polynomial
has a root in C.

Proof: Suppose that p is a non-constant polynomial with no roots. Since p is a non-
constant polynomial, we have p(z) — oo as z — 0o, and so we can choose R large enough
that when |z| > R we have |p(z)| > 1 and so 1/|p(z)| < 1. Note that since p has no roots,
1/p is holomorphic in C. In particular, 1/p is continuous in D(0, R) and so it attains its
maximum value. Since 1/p is bounded in D(0, R) and |1/p| < 1 outside D(0, R), we know
that 1/p is bounded in C. By Liouville’s Theorem, 1/p must be a constant. But this would
imply that p is constant.
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Chapter 7. Power Series

7.1 Definition: A sequence of complex numbers is a function a: {k, k+1,k+2...} — C.
We usually write a, = a(n) and {a,|n > k} = a or simply {a,} = a. We say that the
sequence {a,} converges to a € C and write

lim a, =a or a,—a
n—oo

if for all € > 0 there exists N € Z such that n > N = a,, € D(a,¢). If the sequence
converges to some a € C, then we say it converges, otherwise we say it diverges. We
say that the sequence {a, } diverges to co, and write

lim a, = or a, — 00
n—oo

if for all R > 0 there exists N € Z such that n > N = a,, ¢ D(0, R).

7.2 Example: If a, = 1/n then a, — 0. If b, = 2+ (4(1+4))" then b, — 2. If
¢n = (14 14)™ then ¢, — oo. If d,, = i" then {d,,} diverges.

7.3 Theorem: Let {a,} and {b,} be sequences of complex numbers, and let ¢ € C.
a) Write a,, = x,, + iy, and a = x+1y. Then a,, — a if and only if (xz,, — = and y,, — y).
b) If a,, — a and b,, — b then
i) (cap) — ca
ii) (ap, £b,) —a+b
iii) (anby,) — ab
iv) (an/by) — a/b, provided that b # 0 (and hence b,, # 0 for large n)
v) lan| — |al
All parts (suitably modified) hold for sequences in R™ except parts a)iii) and iv).

Proof: We shall only show how to prove parts a) and b)iii) (the proofs of the other parts
are similar).

To prove part a), suppose first that a,, — a. Note that (z,, — ) = Re(a, — a) so
|z, — x| < |a, —a|. So given € > 0 we choose N € Z so that n > N = |a, — a| < ¢,
and then for n > N we have |z,, — z| < |a,, — a|] < e. This shows that z,, — x. Similarly,
we can show that y, — y. Next we suppose that x,, — x and that y, — y. By the
triangle inequality we have |a,, — a| < |z, — x| + |yn — y|. So given € > 0 we choose N € Z
so that n > N = (|z, — 2| < ieand |y, — y| < 2€). Then for n > N we will have
lan, —a| < |z, — x| + |y, — y| < €. This shows that a,, — a.

We shall now use part a), together with known results about sequences of real numbers,
to prove part b)iii). We write a,, = xp, +iyp, a = x+1iy, b, = up+iv, and b = u+iv. We
suppose that a,, — a and b, — b so that from part a) we have z,, — =z, y, — vy, up, — u
and v, — v. We have apb, = (T, + i yn)(un + i 0n) = (Tpln — Yntn) + 1 (TnVn + Ynln).
From our knowlege of sequences of real numbers, we know that (z,u, — ynv,) — Tu — yv
and that (z,v, + ynu,) — xv — yu, and so using part a) again, we see that a,b, =
(Tpty, — YnVn) + 1 (TpVn + Yntn) — (xu — yov) + i (xv + yu) = abd.
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[ee) n
7.4 Definition: We write > a,, to denote the sequence {s,} where s, = > a;. This
n=0 i=0
kind of sequence is called a series, and the finite sums s,, are called the partial sums.
We say the series Y a,, converges or diverges according to whether the sequence {s,}

oo
converges or diverges. We also write ) a, to denote the limit of {s,}, if it exists, and we
n=0

o0

call the limit the sum of the series. If s,, — s then we write »_ a, = s. The series > a,
n=0

is said to converge absolutely if the series ) |a,| converges.

7.5 Theorem: a)i) > ca, =c)_ ay, i) > (an +bp) =D an +> by
b) If > a,, converges then |a,| — 0.

c) If > |ay,| converges then Y a, converges and |Y_ an| < > |ay].

d) (The Ratio Test)

i) If lim |2

n—oo | Gy

i)Ilf 3N €Z st. n>N = ‘anH‘ > 1 then |a,| / 0 and so ) a,, diverges.

Qan
e) (The Root Test)
i) If lim 3/|an,| <1 then ) |ay| converges and so Y a,, converges, too.
n—oo

ii) If AN € Z s.t. n> N = {/|a,| > 1 then |a,| /4 0 and so ) a,, diverges.

) < 1 then Y |a,| converges.

An+1

Proof: We shall only prove the ratio test here. Suppose first that lim

n—oo | ap
dnt ) < r. Then we
Qn

have |ani1| < rlan], ani2 < rlayyi] < r?lan], lanis| < rlanie| < 73|an| and so on.

‘:p<1.

Choose r with p < r < 1. Choose N such that for n > N we have

Hence Y |an| <lao| + -+ + lany—1]| + lan| (1 +7 4+ 7% + 73 + ---) so it converges (by the
n=0

comparison test for series of positive real numbers).

On the other hand, if we suppose that there exists N € Z such that for n > N we
An+41

Qan

have ‘ ‘ > 1 the we have |ay| < lant1] < |ant2| < --- and so |a,| /0.

7.6 Example: Th R
xamp e sum n;O T )2

< 1 1

~(n—1) (n—1)2
o0

7.7 Definition: A power series centred at a € C is a series of the form Y ¢,(z —a)",

n=0
where ¢, € C. A power series is a series for each value of z € C. It will converge for

certain values of z and diverge for others.

converges by part c¢) since for n > 2 we have

1

In+i| >n—1so CFTE

5, and we know that converges.

oo

7.8 Example: The geometric series > 2™ = 1+ 2+ 22 + - - - is a power series centred at
=0

! 1 — zntl

: . For |z] < 1 we have 2" — 0 as

n
a=0. Its partial sums are given by s, = > 2" =
i=0

1 n 1
n — oo and so s, — T hence > 2" = T On the other hand, for |z| > 1 we have

o0
|2"] > 1 for all n so |2"| /» 0 and hence ) 2™ diverges.

n=0
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7.9 Theorem: Let ) c¢,(z —a)"™ be a power series.
n=0
a) There exists a number R with 0 < R < oo, called the radius of convergence of the
power series, such that
i) if |z — a] < R then ) ¢,(z — a)™ converges absolutely.
ii) if |z — a| > R then |c,(z — a)™| 4 0 and s0 Y ¢, (z — a)™ diverges.
b) The power series > nc,(z — a)"~! has the same radius of convergence.

¢) If R > 0 then the function f defined by f(z) = > ¢n(z —a)™ for z € D(a,R) is

n=0
holomorphic with f'(z) = 3 nea(z —a)* "t and [ f=c+ Y 2 ca(z —a)" T
n=1 n=0
™ (q
d) The function f (z) as above has derivatives of all orders and ¢, = ——, so we have
n!

fo) n
Z nv —a)".
e) If > b (z —a)" =Y cn(z—a)" for all z € D(a, R) then we have b,, = ¢,, for all n.

Proof: We shall give the proof in the case that a = 0.

[e@] o0
To prove part a), we shall show that if Y  c,w™ converges, where w € C then > ¢,z"
n=0 n=0

converges absolutely for all z with |z| < |w|. So we suppose that > ¢, w™ converges and

that |z| < |w|. Since ) ¢, w™ converges, we know that |c,w™| — 0 as n — oo and so we
zn

n_
CpW o

can choose M > 0 so that M > |c,w™| for all n. Then we have |c,z"| =

|Cn

z >, z
Since )—’ < 1, the series > M ’—’ converges and hence the
w e w

series Y |c,2"| converges too (by the comparison test for series of positive real terms).
n=0

The radius of convergence is R = max {|w||w € C,} ¢,w" converges}. If R = oo then
the series converges for all z.

Next we prove part b). Let R be the radius of convergence of the series ) ¢,2" and
let S be the radius of convergence of the series chnz”_l. First we show that R > S.
If S # 0 then let z be any point with |z| < S. Then by part a), the series Y |nc,2" !
converges, and so Y |c,z" 1] = %|n c, 2" 1| also converges by comparison, and hence
S lenz™ = |2| D2 |enz™ Y also converges. This implies that R > |z|. Since z was arbitrary,
we have R > S.

It is a bit harder to show that R < S. If R # 0 then let z be any point with

0 < |z] < R. Choose p > 0 with |z| < p < R. We have |nc,2" ! = %(|z\/p)n|cnp"|.

The series (of positive real terms) > n(|z|/ p)n converges by the Ratio Test, so we know
that n(]z|/p)n — 0 and hence we can choose M > 0 so that M > n(|z|/,0)n for all n. Then
we have |nc, 2" 1 < — |c,p"|. Since p < R we know that the series Y |c,p"| converges,

2|

so the series ) |—AZ4||cnp”| = % S~ lenp™| also converges, and hence the series Y [nc,2" !

also converges by comparison. Thus S > |z, and since z was arbitrary, S>R.
Now we prove part c). Let f(z) = Z cpz™ and let g(z) = Z ncpz" 1 for all
z € D(0, R). We claim that f'(2) = g(2). leenz € D(0, R) choose p > 0W1th |z| < p < R.
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Then for |w| < p we have

flw) = f(2) w" — 2 n-1
w— 2z —9()| = ;cn( w—z )

oo

= ch(w” P 4w P 2"
n=2

= Z cn(w—2)(w" 2+ 20" P+ +3uw" 2+ 4+ (n—1)2"77)
n=2
oo

<D leallw = 2| (Jw* 7 + 2w P2 4 -+ (n = 1)[2]"7?)

n=2

o0
< enllw —z[p" (1424 -+ (n—1))
n=2

w—z > _
:‘len(n—1)|cn|pn 2,
n=0

But notice that by part b), the series >~ ¢, 2", Y- ne,z" 1 and > n(n—1) ¢, 2" 2
the same radius of convergence R and so since p < R we know that > n(n — 1)
converges. Thus |w — z| § Y- n(n —1)|c,|p" 2 — 0 as w — z. This proves part c).

Part d) follows from part c). If f(2) = co + c12 + c22? + c32% + -+ then we have
f'(2) =c1+2coz+3c32% +4cyz 4+ f(2) =2-1ca+3-2c32+4-3c42° +5-4desz® + - - -
and f"(2) =3-2-1c3+4-3-2c42+5-4-3¢52° + -+ and so on, and we have f(0) = co,
f(0) = 1ec1, f(0) = 2leq, f7(0) = 3lcs and so on. Using induction you can show that
F(0) = nle,.

Finally, part e) follows immediately from part d).

7.10 Theorem: (Taylor’s Theorem) If f(z) is holomorphic in D(a, R) and0 < r < R < 00

then (n)
= @) 1[0
1) = D enlemar where ey = T = o [T e,

where o is the circle o(t) = a +re't with 0 <t < 2.

Proof: We give the proof in the case that a = 0. Fix z € D(0,R) and choose r with
|z| <r < R. Then by Cauchy’s integral formula,

f(z)=%/@dw
:27rz/f wl—z/w)
(el <>%>
1

all have
Cn|Pn_2

N-1
- fw) f(w Z/w
_ngoﬁ an+1z " dw —|—

N=1 1) (g
sz '() + Ry,

n=0 n
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where Ry = 5 / U z/w dw. Setting M = max |f(w)|, the estimation theorem
i J,

w=o(t)
: 1 M(|=|/ T)N
ives |Ry| < — ———~"2—
ves vl < 9 "6 )
7.11 Example: The elementary complex functions have the same derivative formulas as
their real counterparts, and so they have the same Taylor series centred at the origin (or
centred at any real number). For all z € C we have

27tr. Since |z| < r, we have Ry — 0 as N — o0

o0 Zn’
=) =
n=0
i 2n-+1 i Z2n
sinz = (=" cos z = (=)
— (2n +1)! — (2n)!
S 2n-+1 oo 2n
z z
sinh z = —_— cosh z =
nzzo (2n+1)! nzo (2n)!
For |z| < 1 we have
R DL R B i D
— 2z 1+ 2 1+ 22
n=0 n=0 n=0

When |z| < 1, the principal branch of logarithm and inverse tangent are given by

log(1 — 2) Z% log(1+2) = Z ”‘Hz
n=1

n=1
) o Z2n+1
tan™ = -1)"
)= 3 05

For |z| < 1 and for a € R, the principal branch of (1 + z)® is given by

a __ G a n __ a(a—l) 2 a(a—l)(a—2) 3
(14 2) —;(n)z =1l+az+ T + 3 25+

This last power series is called the Binomial series.

7.12 Note: We should point out two important differences between Taylor series of com-
plex functions and Taylor series of real functions. The first difference is that holomorphic
functions are always equal to their Taylor series. This is not the case for real C* func-

2
tions. The standard example is the real function f(z) = 8_71/96 ’ g:g . This function is
C> at x = 0, but all its derivatives vanish so its Taylor series is equal to 0. The second
difference we would like to mention is that a real function might be C*> in a large interval
while its Taylor series might converge only in a small interval, but notice that if a function
is holomorphic in a disc, then its Taylor series will converge in that disc. An example
which illustrates this difference is the real function f(z) = 1/(1 + x2). This function is
C> for all z, but its Taylor series only converges for || < 1. The reason for this is

that when we extend f to the complex numbers, so f(z) = 1/(1 + 22), then we find that

1
Z2) = ————
/) (z —1)(z+1)
equal to 1 because the disc D(0, 1) is the largest disc (centred at 0) which can be contained
in the domain of f(z).

so that f is holomorphic in C\ {£i}. The radius of convergence is
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7.13 Note: If f and g are both holomorphic at a then The product fg will also be
holomorphic at a. The coefficients of the Taylor series of fg at a are given by (fg)™ (a)/n!,
and so they can be computed, using the product rule, from the coefficients of the Taylor
series for f and for g. One can show that the Taylor series at a for fg is obtained from the
Taylor series at a of f and of g by multiplying the power series together as if they were
polynomials. We have

(2 an(z — a)”) (2 bz — a)”) _ i (:Oaibn_i> o

n=0

Also, if f and g are holomorphic at a and g(a) # 0, then we can solve the equation
hg = f for h to obtain the Taylor series of h = f/g centred at a from the Taylor series of
f and of g. This is equivalent to calculating f/g using long division as if the power series
were polynomials.

Also, if f is holomorphic at a and g is holomorphic at b = f(a) then the composite
go f is holomorphic at a and hence has a Taylor series centred at a. Using the chain rule,
one can show that the Taylor series for go f at a can be computed by composing the Taylor
series of g at b with that of f at a as if the power series were polynomials.

1
(1-2)*
Solution: We give several solutions. But first we note that since f(z) is holomorphic in
C\ {1}, we know that the Taylor series at 0 converges in D(0, 1).

For our first solution, we calculate the derivatives: f(z2) = (1—2)72, f'(z) = 2(1—2) 73,
f"(2) =3!(1 — 2)7*, and so on. So f(0) =1, f/(0) =2, f”(0) = 3 and so on. Thus

f/(o) f//(o) 2 f///(o)

7.14 Example: Find the Taylor series at 0 for f(z) =

f(z) = f(0)+ T z+ TR +ng+---=1+22+322+4z3+---
Our second solution uses the Binomial series:
FE =t =1 Rty (AN e CACHED
S 23 | |

Our third solution is to differentiate both sides of =1+2+4224 22+ to obtain

1—2z2

f(2)=0+1+22+32"+---

Our fourth solution is to mutiply the Taylor series for 1 by itself as if it was a poly-

nomial to obtain -
fR)=Q4+z+22+234+ )1 +z+22+23+.-)
=1+(1+Dz+0+14+D)2+ A +1+1+1)23 -
=1+22432"+42° -

7.15 Example: Find the Taylor series for f(z) =e*/(1 — z2).

Solution: We have f(z) = e* T = ( > %z")( > z”) = > (X 4)z". We can write
n=0 n=0 n=0 1=

out the first few terms: f(z) =1+2z+4 522+ §2% + 5224 + .-,

0
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7.16 Example: Find the first few terms of the Taylor series about 0 for f(z) = tan z.

sin z

Solution: We have tan z = . We can use long division:

COS 2

1.3 2.5 4 ...
2+ 327+ 527+

1— 1224+ 5720 4 ) z— 23+ e —
z—%z?’+ iz5—-~-

e

§Z3— 625—'_"'

%254_...

We find that f(z) = 2+ %23 + %z5 +---. We can also easily find the radius of convergence.
Since cosz = 0 <= z = § + 7wk for some k € Z, we know that f(z) is holomorphic for
z # 5 + 7k, so the radius of convergence is R = 7.

1
7.17 Example: Find the Taylor series centred at 2i for f(z) = —.
z

. 1 1 11 i1 i~ iz =20\
Solution: f(Z)—;—m_Z_l_i_zE_fi__51_1'(2521') __§T;< 2 )

o) ol

= Z - (%) (z — 2i)". The disc of convergence is D(2i,2).
n=0

7.18 Theorem: (The Identity Theorem) Let f and g be holomorphic in the disc D(a,r)

where 0 < r < co. Let {a,} be a sequence with a,, — a. If f(a,) = g(ay) for all n then

f(z) =g(z) for all z € D(a,r).

Proof: Suppose that f(a,) = g(ay,) for all n. Let h = f —g. Then h(a,) = 0 for all
n. Since h is continuous, h(a) = 0. Since its holomorphic it is equal to its Taylor series

h(z) = Y cn(z —a)™. We want to show that all the coefficients ¢,, are zero. Suppose not,
n=0

and say m is the smallest integer such that ¢,, # 0. Let k(z) = h(z)(z — a)~™ Then we
have k(2) = ¢+ Cma1(2—a)+cmaa(z—a)™ 2+ - so k(z) is holomorphic in D(a,r) and
k(a) = ¢ # 0. Since k(z) is continuous with k(a) # 0, we can find s > 0 such that k(z) # 0
for all z € D(a,s). But since (z —a)™ # 0 in D*(a, s) and since h(z) = k(z)(z — a)™, this
would imply that h(z) # 0 in D*(a,s). This gives us a contradiction since we assumed
that h(a,) = 0 for all n.

7.19 Note: We have studied power series. We are also interested in series of the form

[e%e) —1

Z cn(z—a)t = Z cn(z—a)”+ch(z—a)"c:Zc_nw"—i—ch(z—a)”.
n=0

n=-—oo n=-—oo n=0 n=1

where we have written w = 1/(z —a). If the first series has radius of convergence 1/R and
the second has radius of convergence S, then the first converges when |w| < 1/R, that is
when |z — a| > R, and the second converges for |z — a|] < S. They both converge in the
annulus A = {z € C|R < |z—a| < S}. The next theorem shows that every function which
is holomorphic in an annulus can be expressed as a series of this form.
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7.20 Theorem: (Laurent’s Theorem) Let 0 < R < p < S < oo and let a € C. Suppose
that f is holomorphic in the annulus A = {z € C|R < |z — a| < S}. Then for all z € A,

f(z) = Z cn(z—a)® where ¢, = 1,/(fo)>n+1 dz,

271

n=—oo

where o is the circle o(t) = a + pe't with 0 <t < 27. In particular, we have

27”/]" )dz .

Proof: To simplify notation, we take a = 0, so A = {z|R < |z| < S}. For z € A pick r and
s so that R < r < |z] < s < S. Again to simplify notation, suppose that Im (z) > 0. Let
a be the loop in A which follows the semicircle counterclockwise from s to —s, then the
line segment from —s to —r, then the semicircle clockwise from —r to r, and then the line
segment from r to s. Let 3 be the loop which follows the line segment from s to r, then
the semicircle clockwise from r to —r, then the line segment from —r to —s, and then the
semicircle counterclockwise from —s to s.

Since n(a, z) = 1 and n(B, z) = 0, Cauchy’s theorem tells us that / M dw = 2mi f(2)

and / f—) dw = 0. Also, since the integrals along the line segments cancel, we have
—z
/ fw d + / dw = / dw— / fw dw, where o, and o, are the circles
—z —z -z —z
) =re't and o4(t) = se't f0r0<t<27r So we have

/f
/f : 1——>
= 2ri / W dw+/ flw 2 05:1 dw)

ZQLM' Z f n+1 - dw +Z dw)
1
(5 —>z< [ 1810

1 < f(w) n
“m 2 ([arew):
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In the second last equlity, we replaced m by —n — 1, and we used the fact that each of the
loops o5 and o, is homotopic to ¢ in A. The interchange of summation and integration in
the third equality should be justified. We can justify it as follows. For any positive integer
N we have

/Us f<w>$g)(§>”dw=/% f<w>g(§<g>" +—1<f/§§)/z))dw
S LR PR

dw and the second

oo

As N — oo the first term tends to the infinite sum Z f(w)
n=0"7

term may be estimated using the Estimation Theorem:

wnJrl

(21/5)™
w) < max |/ )] (775

as N — oo since (|z]/s) < 1.

7.21 Example: Let f(z) = Note that f is holomorphic except at z = 0 and

2(z2 +4)
z = +2i. In particular, f is ho(lomorp)hic in the annulus A = {z]0 < |z| < 2} and in the
annulus B = {z]2 < |z| < oo} and also in the annulus C' = {z]0 < |z — 2i| < 2}. Find the
Laurent series of f(z) in A and in B and in C. Also, use the Laurent series to find the
path integrals [ f, fﬁ f and f,y f, where «, 3 and ~ are the circles a(t) = e'!, 3(t) = 3¢'t

and v = 2i + et for 0 <t < 2.

LR _ 1 1 _ 1 = n(%\2n _ = (_l)n 2n—1 .
Solution: We have f(Z) = E W = ERZ:O(—ZL) (5) = nzzo 4n—|—1 V4 . This
is the Laurent series for f in A. Since the coefficient of 2! in this series is c_; = %, we

1
have / f=2mic_1 = §7ri.
1 o
Also, we have f(z) = =3 W == Z ;(_1)71471 »=2n=3  Thig

is the Laurent series for f in B. Since the coefficient of 2~ ! is c_; = 0, we have / f=0.
B
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In the third annulus we write

1 1 1 1 1 1
f(z) = : == : —— —
2—2i 242z 2—2i(z—2i)+4 (z—2i)+2i

1 1 1 1 1

. . _2-_. —92i
z— 21 41 1—1—% 21 1—1—%

) —é Z_lzl. g(_l)n (Z;Z-%)nf:(_l)n (Z;ZQZ)R

n=0
I 1 &K (1) (=) ,
- __ —92)\"
8 z—2i z_:o ; (49)7 (2i)n—J (z = 2i)
Lo [~ ()" n1
-3 Z inon+j (2 = 20)
n=0 \j=0
I m " [ 1 .
DI DL KCED)
n=0 =0
1= in(2ntt —1
- _ ¢ ( )(Z—Z’L)nil
8 v 922n

1
This is the Laurent series in C. The coefficient of (z —2i)™!is c_; = —1 so / f= —Zm'.
gl

7.22 Note: It should be remarked that all three of the path integrals in the above example
are easy to compute using Cauchy’s integral formula. In the following example, however,
its easier to use the Laurent series to find the path integral.

7.23 Example: Let f(2) = —— e Since sinh z = 0 when z = kwi, k € Z we see that
z4 sinh z

f is holomorphic except at z = kmi. Find the first few terms of the Laurent series for f in
the annulus A = {2]0 < |z| < 7}, and hence find [ f where o is the circle o(t) = e'" with
0<t<2m.

_ 1 1 1 1 .
Solution: We have f(z) = = . We use long division:

24 sinh 2 ;2(14—%224_%2;44_...)

1— 3224 gzt + -
14 322+ g2t + -+ )1+ 0224 0244

1+ 2224 gt +-

1.2 1 4
_§Z — Elozél_{_...
STZ()ZE,—{_"'
7
We find that f(z) =275 — 2273 + sL271 + -+ Since c_; = 555, we have/f: r;;z
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7.24 Definition: Suppose that f is holomorphic in an open set U which contains the
punctured disc D*(a, R) and say the Laurent series of f in D*(a, R) is given by

oo

f)= ) anlz—a)".

n=—oo

If for all N € Z there exists n < N with a, # 0 then we say that f has an essential
singularity at a. Otherwise, let N be the smallest integer such that ay # 0. If N <0
then we say that f has a pole at a of order |N|. If N > 0 we say that f has a removable
singularity at a, and in this case we shall extend f so that it is holomorphic in the disc
D(a,r) by setting f(a) = ap. If N > 0 then we say that f has a zero at a of order N.
In any case, we define the residue of f at a to be Res(f,a) = a_;. If o is the circle
o(t)=a+re't for 0 <t < 2w where 0 < r < R then we have

1
Res(f,a) =a_1 = %/Uf(z) dz
7.25 Note: If f has a removable singularity at a, then of course we have lim f(z) = ao.
If f has a pole at a then its not hard to show that lim f(z) = co. If f h;;Cz;n essential
singularity at a, then the limit Zh_r)r}l f(z) does not e;(i_s)t?, and in fact there is a (dificult)
theorem called Picard’s Theorem which states that for all € > 0 the image f(D*(a,€)) is
either equal to C or to C\ {p} for some point p.

7.26 Note: Let U be an open set and let py, ps, - -+, pr be points in U. If f is holomorphic
in U\ {p1,p2, - pn} and if f has poles at each of the points p;, then we say that f is
meromorphic in U. In this case we can extend f to a holomorphic map f : U — C by
setting f(p;) = oo for each 1.

7.27 Theorem: (The Residue Theorem) Let U be an open set and let zy,za, -, 2y
be points in U. Let f be holomorphic in U \ {z1,22,--+,2n}. Let a be a loop in U \
{21, 22, -, 2z, } which is homotopic in U to a constant loop. Then

k
/ f(z)dz = QWiZn(a,zi) Res (f, z;) .

Proof: Choose R > 0 so that each puctured disc D*(zx, R) lies inside U \ {z1, 22, -, 2n }-
Inside each of these puctured discs, f will be equal to its Laurent series, and we write

f(z) = Z an(z — 2zi)" = pr(z) + hi(z) , where
- N
Pr = Z an(z —2zK)" and hy = Z an(z — zk)"
n=-—00 n=0

(pr is called the principal part of f, and hy is called the holomorphic part of f at
the point zx). We have Res (f, zx) = a_1 = Res (pg, zr). Notice that hy is holomorhic in
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the disc D(zg, R) (not just the punctured disc) and notice that py is holomorphic in all of
C\ {2z} and /pk(z) dz =2min(a, zx) a—1. Now we let

9(2) = f(z) = Y _pe(2).
k=1

Although f was only holomorphic in U \ {21 ..., 2,}, the map ¢ is holomorphic in all of

U, indeed in D*(zx, R) we have g(z) = f(2) — pr(z) — Zpl(z) = hi(z) — Zpl(z) Since
ik ik
« is homotopic to a constant loop in U, we have

0= [ gz)dz= [ f(z) = > _p(z)dz= [ f(z)dz— pr(2)dz
o= [ 1) =3 mtds= [ 133 |
:/ f(2) dz—Zsz'n(a,ak) Res (f,zr)) -
« k=1
7.28 Example: Let o be a loop in D(0, 3) with n(a,0) = 3, n(a, 5) = —1 and n(a, —5) =

1, and let f(z) = M. Find / f(z)d-=.

2CoS 2z
Solution: Notice that f is holomorphic in C except at 2 =0 and z = § + k7w, k € Z. In
particular, f is holomorphic in D(0,3) except at z = 0 and z = £%5. So by the Residue

Theorem, / f(z)dz = 2mi(3Res (f,0) — Res (f, g) + Res (f, —g))

1 F
By Cauchy’s Integral Formula, Res (f,0) = — / (2) dz = F(0) =1, where F(z) =
? g

T omi ), =
(z 4+ 1)e*/cosz and where o is a small circle centred at 0. Alternatively, we could have
found Res (f,0) by finding the coefficient of 2~ in the Laurent series for f in D*(0, %).
To find Res (f, §) we use a Laurent series. Near § we have (z+1) = (2 —5)+(1+75),
and €% = e*~T/2+7m/2 _ om/2p2-7/2 _ /2 O R L e’r/Q(l F(z=I)+. ._), and

nl 2
n—=

: 1 . S - = 2 25 )
—_ = = = — —_ — z — = = — —_ =2 — = s
2 (2-%)+5 1+2(:z-35) wm4 2 T 2
. = n 1 ™ n ]' 1 m™\2
and cosz = —sin(z—§) = — E (—1) (2n—|—1)'( —5) —( _E)(—l—l—g(z—g) +...)
n=0 2

1 1

so that by long division = = (—1—%(2’ %)2+) Multiplying these series
cosz  (z—75)
1 1

together gives f(z) = (z + 1)6'2; i (L+Z)+(z=-2)e?2Q+(z - %) +...)2
(1-2G=5)+.)e- 5 1+ 4= 5P +..) = A+ P2 - P+

Thus we have Res (f,Z) = 2(14 Z)e™/? = (1+ 2)
To find Res (f, —5) we use a Laurent series. Near —%5 we have (z+1) = (1—5)+(2+75),
1 1 —2
z (z4m/2)—m/2 — —7/2 1+ i _ T __2 1+ d
e“=e e c), —— — = ...), an
( " (z+3)-% 1-2(z+%) ( )
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cosz =sin(z+%5) = (z+35)+...s0 that = (2+%)"'+.... Multiplying these together
gives f(z) = (1 — Z)e ™/2(— 2)(z+3)7? +...so we have Res(f,—%):(l—%)e_”/2.
Finally, we obtain / f(z)dz=2mi(3— (1+ 2)e™/2 4+ (1 — 2)e~™/2)

«

dt.

, > cost
7.29 Example: Evaluate the real integral
|

iz

Solution: Let f(2) = — 1 and let o be the loop which follows the line segment a(t) =t
z

for —R < t < R and then the semicircle 3(t) = Re'! for 0 < t < 7. Notice that f
has poles at z = £¢ and that only the pole at z = i lies inside 0. By Cauchy’s Integral

et# —1
Formula we have/f dz-/ﬁd —2%@62— — " On the other hand we have
cost +i sint > cost > sint
We h ———dt dt+1i ——dt
Li=]rfs eave/f /_R il [T S [ 0L

1 1 e
T _iR(cost+isin t)ZReit
R d —dt - dt so by the Estimati
as R — oo, an /f /0 e 11 /0 e 11 so by the Estimation

( max e_RSint) R

0<t<m ™R .

Theorem '/ f(z)dz| < T < — 0 as R — oo. Comparing our
B

- R?Z -1 T R*-1

cost s
e

dt =

oo
t lues f btai
wo values or/afweo am/_oot2+1
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