
Chapter 1. Complex Numbers

1.1 Definition: A complex number is a vector in R2. The complex plane , denoted
by C, is the set of complex numbers:

C = R2 =
{(

x
y

) ∣∣∣∣x ∈ R, y ∈ R
}
.

In C we usually write 0 =
(

0
0

)
, 1 =

(
1
0

)
, i =

(
0
1

)
, x =

(
x
0

)
, iy = yi =

(
0
y

)
and

x+ iy = x+ yi =
(
x
y

)
.

1.2 Definition: If z = x + iy with x, y ∈ R then x is called the real part of z and y is
called the imaginary part of z, and we write

Re z = x , and Im z = y .

1.3 Definition: We define the sum of two complex numbers to be the usual vector sum:

(a+ ib) + (c+ id) =
(
a
b

)
+
(
c
d

)
=
(
a+ c
b+ d

)
= (a+ c) + i(b+ d) ,

where a, b ∈ R. We define the product of two complex numbers by setting i2 = −1 and
by requiring the product to be commutative and associative and distributive over the sum:

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc) .

1.4 Example: Let z = 2 + i and w = 1 + 3i. Find z + w and zw.

Solution: z+w = (2 + i) + (1 + 3i) = (2 + 1) + i(1 + 3) = 3 + 4i, and zw = (2 + i)(1 + 3i) =
2 + 6i+ i− 3 = −1 + 7i.

1.5 Example: Show that every non-zero complex number has a unique inverse z−1 and
find a formula for the inverse.

Solution: We let z = a+ib, a, b ∈ R, and we solve (a+ib)(x+iy) = 1 to find z−1 = x+iy:

(a + ib)(x + iy) = 1 ⇐⇒ (ax − by) + i(ay + bx) = 1 ⇐⇒
(
ax− by
bx+ ay

)
=
(

1
0

)
⇐⇒(

a −b
b a

)(
x
y

)
=
(

1
0

)
⇐⇒

(
x
y

)
=
(
a −b
b a

)−1( 1
0

)
=

1
a2 + b2

(
a b
−b a

)(
1
0

)
=

1
a2 + b2

(
a
−b

)
⇐⇒ x+ iy =

1
a2 + b2

(a− ib). Thus

(a+ ib)−1 =
a

a2 + b2
− i b

a2 + b2
.

1.6 Notation: For z, w ∈ C we use the following obvious notation:

−z = −1z , w − z = w + (−z) , 1
z

= z−1 and
w

z
= wz−1.

1.7 Example: Find
(4− i)− (1− 2i)

1 + 2i
.
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Solution:
(4− i)− (1− 2i)

1 + 2i
=

3 + i

1 + 2i
= (3 + i)(1 + 2i)−1 = (3 + i)( 1

5 −
2
5 i) = 1− i.

1.8 Note: The set of complex numbers is a field under the operations of addition and
multiplication. This means that for all u, v and w in C we have

u+ v = v + u

(u+ v) + w = u+ (v + w)
0 + u = u

u+ (−u) = 0
uv = vu

(uv)w = u(vw)
1u = u

uu−1 = 1 if u 6= 0
u(v + w) = uv + uw

1.9 Definition: If z = x+ iy with x, y ∈ R then we define the conjugate of z to be

z = x− iy .

1.10 Definition: If z = x+ iy with x, y ∈ R then we define the length (or magnitude)
of z to be

|z| =
√
x2 + y2 .

Given two complex numbers z and w, we define the distance between z and w to be

d(z, w) = |z − w| .

1.11 Note: For z and w in C the following identities are all easy to verify.

z = z

z + z = 2Re z , z − z = 2iIm z

zz = |z|2 , |z| = |z|
z + w = z + w , zw = z w , |zw| = |z||w|

1.12 Definition: If z 6= 0, we define the angle (or argument) of z to be the angle θ(z)
from 1 counterclockwise to z. In other words, θ(z) is the angle such that

z = |z|
(

cos θ(z) + i sin θ(z)
)
.

1.13 Note: We can think of the angle θ(z) in several different ways. We can require, for
example, that 0 ≤ θ(z) < 2π so that the angle is uniquely determined. Or we can allow
θ(z) to be any real number, in which case the angle will be unique up to a multiple of 2π.
Then again, we can think of θ(z) as an infinite set of real numbers; θ(z) = {θ+2πk|k ∈ z}.
Perhaps best of all, we can think of θ(z) as an element of R/2π, the set of real numbers
modulo 2π (If α = β + 2π then α 6= β ∈ R but α = β ∈ R/2π).
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1.14 Notation: For θ ∈ R (or for θ ∈ R/2π) we shall write

eiθ = cos θ + i sin θ .

1.15 Note: If z 6= 0 and we have x = Re (z), y = Im (z), r = |z| and θ = θ(z) then

x = r cos θ , y = r sin θ

r =
√
x2 + y2 , tan θ =

y

x
, if x 6= 0

z = reiθ , z = r e−i θ , z−1 =
1
r
e−i θ

We say that x+ i y is the cartesian form of z and rei θ is the polar form.

1.16 Example: Let z = −3− 4i. Express z in polar form.

Solution: We have |z| = 5 and tan θ(z) = 4
3 . Since θ(z) is in the third quadrant, we have

θ(z) = π + tan−1 4
3 . So z = 5ei(π+tan−1(4/3)).

1.17 Example: Let z = 10ei tan−1 3. Express z in cartesian form.

Solution: z = 10
(

cos(tan−1 3) + i sin(tan−1 3)
)

= 10
(

1√
10

+ i 3√
10

)
=
√

10 + 3
√

10 i.

1.18 Example: Find a formula for multiplication in polar coordinates.

Solution: For z = reiα and w = eiβ we have zw = rs(cosα + i sinα)(cosβ + i sinβ) =(
(cosα cosβ− sinα sinβ) + i(sinα cosβ+ cosα sinβ)

)
= rs

(
cos(α+β) + i sin(α+β)

)
and

so we obtain the formula
reiαseiβ = rs ei(α+β) .

1.19 Note: An immediate consequence of the above example is that

(r ei θ)n = rnei nθ

for r, θ ∈ R and for n ∈ Z. This result is known as De Moivre’s Law.

1.20 Example: Find (1 + i)10.

Solution: This can be done in cartesian coordinates using the binomial theorem (which
holds for complex numbers), but it is easier in polar coordinates. We have 1+ i =

√
2ei π/4

so (1 + i)10 = (
√

2ei π/4)10 = (
√

2)10ei 10π/4 = 32ei π/2 = 32i.

1.21 Example: Find a formula for the nth roots of a complex number. In other words,
given z = reiθ, solve wn = z.

Solution: Let w = seiα. We have wn = z ⇐⇒ (seiα)n = reiθ ⇐⇒ snei nα = reiθ ⇐⇒

sn = r and nα = θ + 2πk for some k ∈ Z ⇐⇒ s = n
√
r and α =

θ + 2πk
n

for some k ∈ Z.
Notice that when z 6= 0 there are exactly n solutions obtained by taking 0 ≤ k < n. So we
obtain the formula

(r ei θ)1/n = n
√
r ei (θ+2πk)/n , k ∈ {0, 1, . . . , n− 1} .

In particular, (r ei θ)1/2 = ±
√
r ei θ/2. For 0 < a ∈ R we have z2 = a ⇐⇒ z = ±

√
a, and

for 0 > a ∈ R we have z2 = a ⇐⇒ z = ±
√
|a| i.
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1.22 Note: For 0 6= w ∈ C, we can think of w1/n as any one of the n solutions to zn = w,
or we can think of it as the set of all n solutions. Consider the following “proof” that 1=-1:

1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i2 = −1 .

1.23 Note: It is not hard to show that the quadratic formula works for complex numbers;
indeed, for a, b, c ∈ C with a 6= 0 we have az2 + bz + c = 0 ⇐⇒ z2 + b

a z + c
a = 0 ⇐⇒

(z − b
2a )2 = b2

4a2 − c
a = b2−4ac

4a2 . Thus az2 + bz + c = 0 if and only if

z =
−b±

√
b2 − 4ac

2a
,

where
√
b2 − 4ac denotes either one of the two square roots when b2 6= 4ac.

1.24 Example: Let f(z) = z4 + 2z2 + 4. Factor f over the complex numbers.

Solution: By the quadratic formula, f(z) = 0 when z2 = −1±
√

3 i or in polar coordinates
z = 2e±i 2π/3. Thus the roots of f are z = ±

√
2e±i π/3, and so f factors as

z4 + 2z2 + 4 =
(
z −
√

2ei π/3
)(
z −
√

2e−i π/3
)(
z +
√

2ei π/3
)(
z +
√

2e−i π/3
)
.

1.25 Note: We do not have inequalities between complex numbers. We can only write
a < b or a ≤ b in the case that a and b are both real numbers. But there are several
inequalities between real numbers which concern complex numbers. For z ∈ C and w ∈ C,

|Re (z)| ≤ |z| , |Im (z)| ≤ |z|
|z + w| ≤ |z|+ |w| , this is called the triangle inequality

|z + w| ≥
∣∣|z| − |w|∣∣

The first two inequalities follow from the fact that |z|2 = |Re (z)|2 + |Im (z)|2. We can then
prove the triangle inequality as follows: |z+w|2 = (z+w)(z+w) = |z|2+|w|2+(wz+zw) =
|z|2 + |w|2 + 2Re (zw) ≤ |z|2 + |w|2 + 2|zw| = |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2. The last
inequality follows from the triangle inequality since |z| = |z + w − w| ≤ |z + w|+ |w| and
|w| = |z + w − z| ≤ |z + w| + |z|. (Alternatively, the last two inequalities can be proven
using the Law of Cosines).

1.26 Example: Given complex numbers a and b, describe the set
{
z ∈ C

∣∣|z−a| < |z−b|} .
Solution: Geometrically, this is the set of all z such that z is closer to a than to b, so it is
the half-plane which contains a and lies on one side of the perpendicular bisector of the
line segment ab.

1.27 Example: Given a complex number a, describe the set
{
z ∈ C

∣∣1 < |z − a| < 2
}
.

Solution:
{
z|
∣∣z − a| = 1

}
is the circle centred at a of radius 1 and

{
z|
∣∣z − a| = 2

}
is the

circle centred at a of radius 2, and
{
z ∈ C

∣∣1 < |z − a| < 2
}

is the region between these
two circles. Such a region is called an annulus.
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1.28 Note: Historically, complex numbers arose in the study of cubic equations. An
equation of the form ax3 + bx2 + cx+ d = 0, where a, b, c, d ∈ C with a 6= 0 can be solved
as follows. First, divide by a to obtain an equation of the form x3 + Bx2 + Cx + D = 0.
Next, make the substitution y = x+ B

3 and rewrite the equation in the form y3+py+q = 0.
To solve this, look for a solution of the form y = z + r z−1. We need 0 = y3 + py + q =
(z3 + 3rz+ 3r2z−1 + r3z−3) + p(z+ rz−1) + q = z3 + (3r+ p)z+ q+ r(3r+ p)z−1 + r3z−3.
Choose r = −p/3 so that this simplifies to z3 + q − p3

27z
−3 = 0. Finally, we multiply by z3

to obtain z6 + qz3 − p3

27 , which we can solve for z3 using the quadratic formula.

1.29 Example: Let f(x) = x3 + 3x2 + 4x + 1. Note that f ′(x) = 3x2 + 6x + 4 =
3(x + 1)2 + 1 > 0, so f is increasing and hence has exactly one real root. Find the real
root of f .

Solution: Let y = x+1. Then x3+3x2+4x+1 = (y−1)3+3(y−1)2+4(y−1)+1 = y3+y−1.
Try y = z + rz−1 with r = − 1

3 , so we have y3 + y − 1 = (z − 1
3z
−1)3 + (z − 1

3z
−1)− 1 =

z3 − 1 − 1
27z
−3. We solve z6 − z3 − 1

27 = 0 using the quadratic formula, and obtain

z3 = 1±
√

31
27

2 . If z =
3
√

1+
√

31
27

2 then r z−1 = − 1
3

3

√
2

1+
√

31
27

= − 1
3

3

√
2(1−
√

31
27 )

1− 31
27

=
3
√

1−
√

31
27

2 .

Similarly, if z =
3
√

1−
√

31
27

2 then r z−1 =
3
√

1+
√

31
27

2 . In either case we have y = z + rz−1 =
3
√

1+
√

31
27

2 +
3
√

1−
√

31
27

2 , and x = y − 1 =
3
√√

31
27+1

2 − 3
√√

31
27−1

2 − 1. (Notice that we didn’t
use complex numbers in this example).

1.30 Example: Find the three real roots of f(x) = x3 − 3x+ 1.

Solution: Try x = z + rz−1 with r = 1 so that f(x) = (z + z−1)3 − 3(z + z−1) + 1 =
z3 + 1 + z−3. Multiply by z3 and solve z6 + z3 + 1 = 0 to get z3 = −1±

√
3 i

2 = e±i 2π/3. If
z3 = ei 2π/3 then z = ei 2π/9, ei 8π/9 or ei 14π/9 and so x = z + z−1 = z + z = 2Re (z) =
2 cos( 2π

9 ), 2 cos( 8π
9 ) or 2 cos( 14π

9 ). If z3 = e−i 2π/3 then we obtain the same values for x.
Thus the three real roots are 2 cos(40◦), −2 cos(20◦) and 2 cos(80◦). (Notice that in this
example we used complex numbers to solve a problem involving real variables!)
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Chapter 2. Complex Functions

2.1 Note: A map f : R→ R (or f : I → R where I is an interval in R) may be visualized
by drawing a picture of its graph, which is a curve in R2:

Graph (f) =
{(

x
y

) ∣∣∣∣y = f(x)
}
.

2.2 Note: A map f : R → C (or a map f : I → C where I is an interval in R) may be
visualized by drawing its image, which is a curve in C:

Image (f) = {f(t) ∈ C|t ∈ R} .

2.3 Example: The line segment from a ∈ C to b ∈ C is the image of the map

z(t) = a+ t(b− a) , 0 ≤ t < 1 .

2.4 Example: The circle centred at a ∈ C with radius r > 0 is the image of the map

z(t) = a+ r cos t+ i r sin t = a+ r ei t .

2.5 Example: Describe the image of the map z(t) = (1 + i t)2 .

Solution: We can sketch the image of any map z(t) simply by plotting points. Try plotting
the points z(t) for t = −2,−1, 0, 1, 2. For this particular map, we can eliminate the
parameter t to describe the image: z(t) = (1 + i t)2 = (1− t2) + i (2t) so we have x = 1− t2
and y = 2t, and so x = 1− 1

4y
2. This shows that the image is the parabola x = 1− 1

4y
2.

2.6 Example: Describe the image of the map z(t) = sin(2t)ei t.

Solution: Since z(t) is given in polar coordinates, it is easier to sketch this curve on a polar
grid (the cartesian grid consists of vertical lines x = const. and horizontal lines y = const.,
while the polar grid consists of cirles r = const. and rays θ = const.) Sketch the curve on a
polar grid which includes the rays θ = π

12k, and you will see that the curve is a four-leafed
rose: it consists of one loop in each of the four quadrants.
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2.7 Note: To visualize a map f : C → R (or a map f : U → R where U ⊂ C) we
can draw the level curves (also called contour lines). These are the inverse images of
constant values of u ∈ R , and they are curves in C:

f−1(u) = {z ∈ C|f(z) = u} .

We can use the level curves of f to help draw its graph, which is a surface in R3:

Graph (f) =


x
y
u

 ∈ R3

∣∣∣∣∣u = f(x+ iy)


2.8 Example: Describe the level curves and the graph of the map u = f(z) = Re (z).

Solution: We have f−1(u) = {u + i y | y ∈ R}, which is the line x = u. And we have

Graph (f) =


x
y
u

∣∣∣∣∣u = x

, which is the plane through

 0
0
0

 perpendicular to

 1
0
−1

.

2.9 Example: Describe the level curves and the graph of u = f(z) = |z|2.

Solution: We have f−1(u) = {x + i y |x2 + y2 = u} which, for u > 0, is the circle about

the origin of radius
√
u . Also, Graph (f) =

{x
y
u

∣∣∣∣∣u = x2 + y2

}
, which is a paraboloid.
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2.10 Example: Sketch the level curves of u = f(z) = Re (1/z).

Solution: We have u(x+ i y) =
x

x2 + y2
. When u = 0 we have x = 0, and when u 6= 0 we

have
x

x2 + y2
= u ⇐⇒ x = ux2 + u y2 ⇐⇒ x2 − x

u + y2 = 0 ⇐⇒ (x− 1
2u )2 + y2 = 1

4u2

so the level curve u =constant is the circle centred at ( 1
2u , 0) with radius 1

2u . These circles
all go through the origin. If you sketch several of them you will see that they form the
pattern which is made by the electric field of a dipole (a small bar magnet).

2.11 Note: To visualize a map f : C → C (or a map f : U → C where U ⊂ C) we can
sketch the images of various curves in the domain (if z = x+ i y then we usually draw the
images of the lines x = const. and y = const. while if z = r ei θ then we draw the images of
the circles r = const. and the rays θ = const.). Alternatively, we could draw the inverse
images of various curves in the range (if w = f(z) with w = u+ i v then we might draw
the inverse images of the lines u = const. and v = const.)

2.12 Example: Give a geometric description of the map w(z) = a z+ b where a ∈ C and
b ∈ C. Sketch the images of the lines x = −1, 0, 1 and y = −1, 0, 1 when z = x + i y and
a = 1 + 2i and b = 4 + 3i.

Solution: If a = rei α and z = s ei β then a z = (r s)ei(α+β), so multiplying z by a has
the effect of scaling z by a factor of r = |a| and rotating the result about the origin by
the angle α = θ(a). Adding b is the same as translating by b. This geometric description
shows that the three vertical lines x = −1, 0, 1 will be sent to the three lines which are
parallel to a i = −2 + i and which pass through the points w(−1) = 3 + i, w(0) = 4 + 3i
and w(1) = 5 + 5i, respectively, and the three horizontal lines y = −1, 0, 1 are sent
to the three lines parallel to a = 1 + 2i through w(−i) = 6 + 2i, w(0) = 4 + 3i and
w(i) = 2 + 4i, respectively. This can also be shown algebraically. For example, the
vertical line x = c is given parametrically by z(t) = c + i t, t ∈ R, and it is sent to
w(z(t)) = a(c+ i t) + b = ac+ b+ i at = w(c) + at, which is the line through w(c) parallel
to i a.
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2.13 Example: Let w(z) = z4. Describe the images of the circles r = const. and the rays
θ = const. where z = r ei θ. Also, sketch the image of the line x = 1, where z = x+ i y.

Solution: We have w = (r ei θ)4 = r4ei 4θ, so if w = s ei φ then we have s = r4 and φ = 4θ.
Thus the circle r = c is mapped to the circle s = c4 and the ray θ = α is mapped to the
ray φ = 4α. The line x = 1 is given parametrically by z = 1 + i t and it is mapped to
the curve w(t) = (1 + i t)4 = 1 + 4t i − 6t2 − 4t3 i + t4 = (1 − 6t2 + t4) + i (4t − 4t3), so
its image is the curve given parametrically by u(t) = 1 − 6t2 + t4 and v(t) = 4t − 4t3.
The u-intercepts occur when v = 0, that is when t = 0,±1 and the v-intercepts occur
when u = 0, that is when t2 = 3 ± 2

√
2. Also, We have u′(t) = −12t + 4t3 = 4t(t2 − 3)

and v′(t) = 4 − 12t2 = 4(1 − 3t2), and so the curve is vertical when u′(t) = 0, that
is when t = 0,±

√
3 and it is horizontal when v′(t) = 0, that is when t = ±1/

√
3. To

sketch the curve, plot the points when t = 0,±1/
√

3,±1,±
√

3,±2, and perhaps also when
t = ±

√
3± 2

√
2.

2.14 Example: Let w(z) =
1
z

. Describe the images of the circles r = const. and the rays
θ = const., and then describe the images of the lines x = const. and y = const.

Solution: If z = r ei θ and w = s ei φ then we have w =
1

r e−i θ
=

1
r
ei θ so that s =

1
r

and φ = θ. This map is known as the inversion in the unit circle: the circle r = c is
mapped to the circle s = 1/c while the ray θ = α is mapped to itself. If z = x + i y
and w = u + i v then the vertical line x = c is given parametrically by z(t) = c + i t

and it is sent to w(z(t)) =
c+ i t

c2 + t2
, so its image is the curve we have u(t) =

c

c2 + t2
and

v(t) =
t

c2 + t2
. When c = 0 we have u = 0 and v = t/t2 = 1/t, so the line x = 0 (excluding

the origin) is mapped to the line u = 0 (excludind the origin). When c 6= 0, we can use the
expression for u(t) to solve for t to get t2 = (c − u c2)/u and then we can substitute this
into the expression v2(t) = t2/(c2 + t2)2 and simplify to get v2 = 1

cu− u
2 or equivalently

(u− 1
2c )

2 + v2 = ( 1
2c )

2. Thus the image of the line x = c, c 6= 0 is the circle centred at 1
2c

with radius 1
2c , excluding the origin. Similarly, the image of the horizontal line y = c is

the circle centred at 1
2c i with radius 1

2c , excluding the origin.
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2.15 Definition: We define the exponential function by

ex+i y = exei y = ex cos y + i ex sin y .

We also write exp(z) = ez.

2.16 Note: It is not hard to check that the exponential function has the following prop-
erties for all complex numbers z and w:

e0 = 1
e−z = 1/ez , enz = (ez)n, n ∈ Z

ez+w = ezew , ez−w = ez/ew

ez = ew ⇐⇒ w = z + i 2πk for some k ∈ Z

2.17 Example: Let w(z) = ez. Describe the images of the lines x = const. and y = const.
where z = x+ i y.

Solution: We have w = exei y, so if w = r ei θ then we have r = ex and θ = y. So the
vertical line x = c is mapped to the circle r = ec, and the horizontal line y = c is mapped
to the ray θ = c. Notice that the domain of ez is all of C while the range is C \ {0}. Also
notice that if the domain of ez is restricted to the horizontal strip α < y < α + 2π, then
it is 1:1 and its range is the plane C with the ray θ = α removed.

2.18 Definition: We define the trigonometric functions by

sin z =
ei z − e−i z

2i
, cos z =

ei z + e−i z

2
, tan z =

sin z
cos z

and sec z = 1/ cos z, csc z = 1/ sin z and cot z = cos z/ sin z. We define the hyperbolic
functions by

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
, tanh z =

sinh z
cosh z

and coth z = cosh z/ sinh z.

10



2.19 Note: It is not hard to verify the following properties, where z, w ∈ C:

sin(z + 2π) = sin z , cos(z + 2π) = cos z
sin(−z) = − sin z , cos(−z) = cos z

sin2 z + cos2 z = 1
sin(z + w) = sin z cosw + cos z sinw , sin(2z) = 2 sin z cos z

cos(z + w) = cos z cosw − sin z sinw , cos(2z) = cos2 z − sin2 z

sinh(−z) = − sinh z , cosh(−z) = cosh z

cosh2 z − sinh2 z = 1
sinh(z + w) = sinh z coshw + cosh z sinhw , sinh(2z) = 2 sinh z cosh z

cosh(z + w) = cosh z coshw + sinh z sinhw , cosh(2z) = cosh2 z + sinh2 z

In fact all of the trigonometric identities and hyperbolic identies which hold for real num-
bers also hold for complex numbers. Here are some more properties:

sinh(z + i 2π) = sinh z , cosh(z + i 2π) = cosh z
sinh(i z) = i sin z , cosh(i z) = cos z
sin(i z) = i sinh z , cos(i z) = cosh z

sin(x+ i y) = sinx cosh y + i cosx sinh y , | sin(x+ i y)|2 = sin2 x+ sinh2 y

cos(x+ i y) = cosx cosh y − i sinx sinh y , | cos(x+ i y)|2 = cos2 x+ sinh2 y

sinh(x+ i y) = sinhx cos y + i coshx sin y , | sinh(x+ i y)|2 = sinh2 x+ sin2 y

cosh(x+ i y) = coshx cos y + i sinhx sin y , | cosh(x+ i y)|2 = sinh2 x+ cos2 y

2.20 Example: Find sin(π6 + i ln 2).

Solution: sin(π6 +i ln 2) = sin(π6 ) cosh(ln 2)+i cos(π6 ) sinh(ln 2) =
1
2

5
4

+i
√

3
2

3
4

=
5 + 3

√
3 i

8
2.21 Example: Solve cosh z = −2.

Solution: If z = x + i y then we have cosh z = coshx cos y + i sinhx sin y, so we have
cosh z = −2 when coshx cos y = −2 and sinhx sin y = 0. We cannot have sinhx = 0, since
if sinhx = 0 then x = 0 so coshx cos y = cos y 6= −2. So we must have sin y = 0 and so
y = kπ for some k ∈ Z and we have cos y = ±1. To have coshx cos y = −2, we must have
cos y = −1 and coshx = 2 (since coshx is always positive). We can solve coshx = 2 as
follows: coshx = 2 ⇐⇒ ex + e−x = 4 ⇐⇒ (ex)2 − 4ex + 1 = 0 ⇐⇒ ex = 2±

√
3 so we

have x = ln(2±
√

3) or equivalently x = ± ln(2+
√

3). Thus z = ± ln(2+
√

3)+ i (π+2πk)
for some k ∈ Z.

2.22 Example: Let w(z) = sin z. Describe the images of the lines x = const. and
y = const. where z = x+ i y.

Solution: The vertical line x = c is given parametrically by z(t) = c+ i t and it is mapped
to the curve w(t) = sin(c + i t) = sin c cosh t + i cos c sinh t. If w = u + i v then we have
u(t) = sin c cosh t and v(t) = cos c sinh t. Using the identity cosh2 t− sinh2 t = 1 we obtain
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u2

sin2 c
− v2

cos2 c
= 1, provided that t 6= π

2 k, k ∈ Z. This is the equation of a hyperbola.

The image of the line x = c will be one of the two branches of this hyperbola; when sin c
is positive u(t) is also positive and the image is the branch on the right; when sin c is
negative, the image is the branch on the left. When sin c = 0 (so that c = πk), the image
is the line u = 0, that is, the v-axis. When cos c = 0, the image lies on the line v = 0 (the
u-axis) and it is either the interval [1,∞) (when sin c = 1) or else the interval (−∞,−1]
(when sin c = −1).

The horizontal line y = c is given parametrically by z(t) = t+ i c and it is mapped to
w(t) = sin t cosh c+ i cos t sinh c so we have u(t) = sin t cosh c and v(t) = cos t sinh t. Since

sin2 t+ cos2 t = 1 we have
u2

cosh2 c
+

v2

sinh2 c
= 1. The line y = c is mapped to this ellipse,

unless c = 2πk i in which case the image can be seen to be the line segment [−1, 1] on the
u-axis.

If you sketch a few of these hyperbolas and ellipses, you will get a nice picture of two
orthogonal families of curves. You will see that the domain and the range of sin z are both
C. When the domain of sin z is restricted to the vertical strip −π2 < x < π

2 , it becomes
1:1 and its image is the plane C with the two intervals (−∞,−1] and [1,∞) removed.

2.23 Note: If a map f : U → f(U) is 1:1 then it has an inverse function, f−1, given by

f(z) = w ⇐⇒ f−1(w) = z

or equivalently by
f(f−1(w)) = w , f−1(f(z)) = z

If a map f is not 1:1, then sometimes we can restrict its domain so that it becomes 1:1.
An alternate approach is to allow f−1 to take on more that a single value and to define
f−1(w) = {z ∈ U |f(z) = w}. (If the inverse function is not single-valued, then it is not
really a function at all, but rather a multi-function). We shall be using both of these
approaches, and we shall not always specify which approach we are taking.

2.24 Example: In real variable calculus, to define sin−1 x it is customary to restrict the
domain of sinx to −π2 ≤ x ≤

π
2 so that it becomes 1:1. If we thought instead of sin−1 x as

a multi-function then for example we would have sin−1( 1
2 ) = {π6 + 2πk, 5π

6 + 2πk, k ∈ Z}.

2.25 Example: The change-of-coordinate map f(r, θ) = (r cos θ, r sin θ) is not 1:1. We
can make it 1:1 by restricting the domain to {(r, θ)|r > 0, 0 < θ < 2π}. If we make this
restriction then the inverse function is given by f−1(x, y) = (r, θ) where r = |x + i y| and
θ = θ(x + i y) where 0 < θ(x + i y) < 2π. Alternatively, if we think of f−1 as a multi-
function, then f−1(x, y) = (r, θ) where r = |x + i y| and θ = θ(x + i y) where this time
θ(x+ i y) denotes the set {θ ∈ R|r ei θ = x+ i y}.
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2.26 Definition: The inverse of the exponential function ez is the logarithmic function,
denoted by log z.

2.27 Example: Find a formula for log z.

Solution: Let z = r ei θ and w = u+ i v. Then w = log z ⇐⇒ ew = z ⇐⇒ euei v = r ei θ,
which happens whn eu = r and v = θ + 2πk for some k ∈ Z. Thus

log
(
r ei θ

)
= ln r + i(θ + 2πk), k ∈ Z

This is the formula for the multi-valued logarithm. If we pick one particular value of k, the
resulting function is called a branch of the logarithm. If we restrict the domain of ez to
make it 1:1, then the inverse function is the branch with k = 0, that is log(r ei θ) = ln r+i θ.
This is called the principal branch of the logarithm.

2.28 Example: Find log(1− i)

Solution: log(1− i) = log(
√

2e−i π/4) = ln
√

2 + i (−π4 + 2πk), k ∈ Z.

2.29 Note: For the multi-valued logarithm, you should convince yourself that the follow-
ing formulas make sense and they all hold:

elog z = z

log(z w) = log z + logw
log(z/w) = log z − logw

2.30 Definition: We can use the logarithm to define complex exponents: given a ∈ C
we define

za = exp(a log z) .

2.31 Example: Find i−2i.

Solution: i−2i = exp(−2i log i) = exp(−2i (i (π2 + 2πk)) = exp(π + 4πk), k ∈ Z.

2.32 Example: Find the principal branch of z2/3.

Solution: Write z = r ei θ. Then z2/3 = exp( 2
3 log z) = exp(2

3 (ln r+ i θ)) = r2/3 exp(i 2θ/3).

2.33 Note: Check that

zn = exp(n log z) is single valued for n ∈ Z

z1/n = exp(
1
n

log z) takes n values for n ∈ Z

z−a = (za)−1

2.34 Definition: The inverse trigonometric functions are denoted by sin−1 z, cos−1 z,
tan−1 z and so on. The inverse hyperbolic functions are denoted by sinh−1 z, cosh−1 z,
tanh−1 z and so on.
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2.35 Note: Since the trigonometric and the hyperbolic functions are defined using the
exponential function, their inverses can be expressed in terms of the logarithmic function:

sin−1 z = −i log
(
i z + (1− z2)1/2

)
cos−1 z = −i log

(
z + (z2 − 1)1/2

)
tan−1 z =

i

2
log

i+ z

i− z
sinh−1 z = log

(
z + (z2 + 1)1/2

)
cosh−1 z = log

(
z + (z2 − 1)1/2

)
tanh−1 z =

1
2

log
1 + z

1− z

where the square roots are double valued. Let us derive the formula for sin−1 z. We have
w = sin−1 z ⇐⇒ z = sinw ⇐⇒ z = (eiw − e−iw)/2i ⇐⇒ (eiw)2 − 2iz(eiw) − 1 = 0
⇐⇒ eiw = iz ±

√
1− z2 so we obtain iw = log(iz ±

√
1− z2), as required.

2.36 Example: Find cosh−1(−2).

Solution: Actually, we already did this in example 2.21, but we’ll do it again using the
above logarithmic formula: we have cosh−1(−2) = log(−2 ±

√
3) = log((2 ±

√
3)ei π) =

ln(2±
√

3) + i (π + 2πk), k ∈ Z.
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Chapter 3. Sets, Limits and Continuity

3.1 Notation: Given a, b ∈ C and r ∈ R, let [a, b] denote the line segment from a to b

[a, b] = {a+ t(b− a)|t ∈ R} ,

let S(a, r) denote the circle about a of radius r

S(a, r) =
{
z ∈ C

∣∣|z − a| = r
}
,

and let D(a, r), D(a, r) and D∗(a, r) denote the disc, the closed disc, and the punctured
disc, centred at a of radius r

D(a, r) =
{
z ∈ C

∣∣|z − a| < r
}

D(a, r) =
{
z ∈ C

∣∣|z − a| ≤ r}
D∗(a, r) =

{
z ∈ C

∣∣0 < |z − a| < r
}

We use the same notation for subsets of Rn. In R3, for example, S(a, r) is a sphere and
D(a, r) is a ball.

3.2 Definition: Let E ⊂ C (or more generally E ⊂ Rn).
a) A point a ∈ E is an interior point of E if ∃r > 0 D(a, r) ⊂ E.
b) The interior of E, denoted by E0, is the set of all interior points of E.
c) E is open if every point of E is an interior point, in other words if E = E0.
d) A point a ∈ C is a limit point of E if ∀r > 0 D∗(a, r) ∩ E 6= ∅.
e) The closure of E, denoted by E, is the union of E with the set of all its limit points.
f) E is closed if every limit point of E lies in E, in other words if E = E.
g) The boundary of E is the set ∂E = E \ E0.
h) The complement of E is the set Ec = {z ∈ C|z /∈ E}.

3.3 Example: For a, b ∈ R, the interval [a, b] is closed in R, [a, b]0 = (a, b), [a, b] = [a, b]
and ∂[a, b] = {a, b}. For a, b ∈ C, the segment [a, b] is closed in C, [a, b]0 = ∅, [a, b] = [a, b]
and ∂[a, b] = [a, b].

3.4 Example: In C, he disc D(a, r) and the punctured disc D∗(a, r) are both open, while
the closed disc D(a, r) is closed. Their interiors are D(a, r)0 = D(a, r)0 = D(a, r) and
D∗(a, r)0 = D∗(a, r). Their closures are all equal: D(a, r) = D(a, r) = D∗(a, r) = D(a, r).
Their boundaries are ∂D(a, r) = ∂D(a, r) = S(a, r) and ∂D∗(a, r) = S(a, r) ∪ {0}.

3.5 Example: The annulus A =
{
z ∈ C

∣∣r < |z − a| ≤ R
}

is neither open nor closed.
Its interior is the open annulus A0 =

{
z ∈ C

∣∣r < |z − a| < R
}

, its closure is the closed
annulus A =

{
z ∈ C

∣∣r ≤ |z − a| ≤ R
}

, and its boundary is the union of the two circles
∂A = S(a, r) ∪ S(a,R).

3.6 Example: Let E = {1/n|n ∈ Z∗} (where Z∗ = Z \ {0}). Then E is neither open nor
closed: its interior is emplty E0 = ∅, its only limit point is 0, its closure is E = E ∪ {0},
and its boundary is equal to its closure ∂E = E.
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3.7 Theorem: Let E ⊂ C (or let E ⊂ Rn). Then
a) E is open iff Ec is closed and E is closed iff Ec is open.
b) E0 is open and if U ⊂ E is open then U ⊂ E0.
c) E is closed and if E ⊂ K with K closed then E ⊂ K.

Proof: (I may include some proofs)

3.8 Theorem: Let {Eα|α ∈ A} be a (possibly infinite) family of sets in C (or in Rn) and
let {Eαi |i = 1, 2, · · ·n} be a finite sub-family. Then
a)
( ⋂
α∈A

Eα
)c =

⋃
α∈A

(Eαc) and
( ⋃
α∈A

Eα
)c =

⋂
α∈A

(Eαc).

b) If the sets Eα are open then
⋃
α
Eα and

n⋂
i

Eαi are open.

If the sets Eα are closed then
n⋃
i=1

Eα and
⋂
α
Eα are closed.

Proof: (I may include some proofs here later).

3.9 Definition: Let E, A and B be subsets of C (or of Rn).
a) E is bounded if ∃r E ⊂ D(0, r).
b) E is convex if a, b ∈ E ⇒ [a, b] ⊂ E.
c) We say that E is disconnected if it is possible to find disjoint open sets U and V with
E ∩ U 6= ∅ and E ∩ V 6= ∅ and E ⊂ U ∪ V . In this case we say that the sets U and V
separate E. If E is not disconnected then we say it is connected.
d) E is compact if every open cover of E admits a finite subcover, in other words, if

E ⊂
⋃
α∈A

Uα, where the Uα are open sets in C, then we have E ⊂
n⋃
i=1

Uαi for some αi ∈ A.

3.10 Example: The segment [a, b] and the disc D(a, r) are both bounded. The line{
z ∈ C

∣∣|z−a| = |z− b|} and the half-plane
{
z ∈ C

∣∣|z−a| < |z− b|} are both unbounded.

3.11 Example: The sets [a, b], D(a, r) and D(a, r) are all convex. The punctured disc
D∗(a, r) is not convex; for example if u = a − r

2 and v = a + r
2 then u, v ∈ D∗(a, r) but

[u, v] 6⊂ D∗(a, r). Also, the half-annulus E =
{
z ∈ C

∣∣1 < |z| < 2,Re (z) > 0
}

is not
convex; for example, take a and v to be 1

2 ± i.

3.12 Example: Each of the sets [a, b], D(a, r), D(a, r) and D∗(a, r) is a connected set.
The union [0, 1]∪ [i, i+1] is not connected, because the two segments [0, 1] and [i, 1+ i] are
separated by U = {z|Im (z) < 1

2} and V = {z|Im (z) > 1
2} . The union D(−1, 1) ∪D(1, 1)

is not connected since the two discs D(−1, 1) and D(1, 1) are separated. On the other
hand, the union D(−1, 1) ∪D(1, 1) is connected.

3.13 Theorem: (The Heine-Borel Theorem) Let E ⊂ C (or E ⊂ Rn). Then the following
are equivalent:

a) E is compact.
b) Every infinite subset of E has a limit point in E.
c) E is closed and bounded.

Proof: I may include the proof later.

3.14 Example: This theorem makes it easy to recognize compact sets. The segment [a, b]
and the closed disc D(a, r) are both compact (since they are closed and bounded). The
open disc D(a, r) is not compact, since it is not closed. The line

{
z ∈ C

∣∣|z − a| = |z − b|}
is not compact, since it is not bounded.
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3.15 Example: The set E = {1/n|n ∈ Z∗} is not closed (since E 6= E) so it is not
compact. This means that we must be able to find an open cover with no finite subcover.
Indeed, notice that the distance between two neighbouring points in E is 1

n−
1

n+1 = 1
n(n+1) ,

so if we let Un = D
(

1
n ,

1
n(n+1)

)
then each point of E lies in exactly one of the sets Un.

Thus {Un|n ∈ Z∗} covers E, that is E ⊂
⋃

n∈Z∗
Un, but if we remove even one of these discs

then the remaining discs will not cover E.
However, the set K = E = E ∪ {0} is closed and bounded and hence compact, so any

open cover of K ought to have a finite subcover. Indeed, consider the cover {Un|n ∈ Z}
where Un = D

(
1
n ,

1
n(n+1)

)
for n ∈ Z∗ (as above) and U0 = D(0, 1

N ) where N is some
positive integer. Since 1

n ∈ U0 whenever |n| > N , we see that
{
Un
∣∣|n| < N

}
is a finite

subcover, that is, E ⊂
N⋃

n=−N
Un

3.16 Definition: Let f : U → C where U is an open set in C (or Rn), and let a be a
limit point of U . We write

lim
z→a

f(z) = b or f(z)→ b as z → a

if for all ε > 0 there exists δ > 0 such that for all z ∈ U , z ∈ D∗(a, δ)⇒ f(z) ∈ D(b, ε) or,
in other words, such that f(U ∩D∗(a, ε)) ⊂ D(b, ε). We write

lim
z→a

f(z) =∞ or f(z)→∞ as z → a

if for all R > 0 there exists δ > 0 such that f(U ∩D∗(a, δ)) ⊂ D(0, R)c.

3.17 Theorem: Let f and g be maps from U to C where U is open in C, and let a be a
limit point of U .
a) If we write f(z) = u(z) + i v(z), where u, v : U → R, then lim

z→a
f(z) exists if and only if

lim
z→a

u(z) and lim
z→a

v(z) both exist, and in this case, lim
z→a

f(z) = lim
z→a

u(z) + i lim
z→a

v(z).

b) Suppose lim
z→a

f(z) = p and lim
z→a

g(z) = q, and let c ∈ C. Then

i) lim
z→a

c f(z) = c p

ii) lim
z→a

f(z)± g(z) = p± q
iii) lim

z→a
f(z)g(z) = p q

iv) lim
z→a

f(z)/g(z) = p/q provided that q 6= 0

v) lim
z→a
|f(z)| = |p|.

The theorem also holds for functions with values in Rn, except for parts b) iii) and iv).

Proof: To prove part a), suppose first that lim
z→a

f(z) exists, say lim
z→a

f(z) = b = s + i t

with s, t ∈ R. Note that u(z) − s = Re (f(z) − b) so we have |u(z) − s| ≤ |f(z) − b|. So,
given ε > 0 choose δ > 0 such that 0 < |z − a| < δ=⇒|f(z) − b| < ε and then we have
|u(z)− s| ≤ |f(z)− b| < ε. This shows that lim

z→a
u(z) = s. Similarly lim

z→a
v(z) = t.

Next, we suppose that lim
z→a

u(z) and lim
z→a

v(z) exist, say lim
z→a

u(z) = s and lim
z→a

v(z) = t

and let b = s+ i t. By the triangle inequality we have |f(z)−b| ≤ |u(z)−s|+ |v(z)+ t|. So,
given ε > 0 we choose δ > 0 such that 0 < |z−a| < δ=⇒

(
|u(z)−s| < ε

2 and |v(z)−t| < ε
2

)
.

Then we have |f(z)− b| ≤ |u(z)− s|+ |v(z)− t| < ε. This shows that lim
z→a

f(z) = b.
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Part b) i)-iv) can be proven in the same way as the analogous results for real-valued
functions. For example, to prove part b) iii), we can use the equality f(z)g(z) − pq =
(f(z) − p)(g(z) − q) + (f(z) − p) q + (g(z) − q) p. Given ε > 0 we choose δ > 0 so that
0 < |z−a| < δ=⇒

(
|f(z)−p| <

√
ε
3 , |g(z)−q| <

√
ε
3 , |f(z)−p| |q| < ε

3 and |g(z)−q| |p| < ε
3

)
.

Then we have |f(z)g(z) − pq| ≤ |f(z) − p| |g(z) − q| + |f(z) − p| |q| + |g(z) − q| |p| <√
ε
3

√
ε
3 + ε

3 + ε
3 = ε.

The proof of part b) v) is left as an exercise.

3.18 Example: Let f(z) =
z2 − 2z + 5
z − 1− 2i

. Find lim
z→1+2i

f(z).

Solution: lim
z→1+2i

f(z) = lim
z→1+2i

(z − (1 + 2i))(z − (1− 2i))
(z − (1 + 2i))

= lim
z→1+2i

(z − (1 − 2i)) = 4i.

(We can prove the last equality from the definition of limit: given ε > 0 choose δ = ε so
that for 0 < |z−(1+2i)| < δ we have |f(z)−4i| = |(z−(1−2i)−4i| = |z−(1+2i)| < δ = ε).

3.19 Example: For each z ∈ C∗ = C \ {0}, let θ(z) be the angle of z chosen so that
0 ≤ θ(z) < 2π. Then θ : C∗ → [0, 2π). Show that if a ≥ 0 the lim

z→a
θ(z) does not exist.

Solution: Suppose (for a contradiction) that lim
z→a

θ(z) does exist, say lim
z→a

θ(z) = b. Let

ε = π
2 and choose δ > 0 so that z ∈ D∗(a, δ)=⇒|θ(z)−b| < ε = π

2 . Since a± i δ2 ∈ D
∗(a, δ),

we have |θ(a ± i δ2 ) − b| < ε = π
2 . Since a + i δ2 is in the first quadrant and a − i δ2 is

in the second quadrant, we have 0 < θ(a + i δ2 ) ≤ π
2 and 3π

2 ≤ θ(a − i δ2 ) < 2π. Thus
π = 3π

2 −
π
2 ≤

∣∣θ(a + i δ2 ) − θ(a − i δ2 )
∣∣ ≤ ∣∣θ(a + i δ2 ) − b

∣∣ +
∣∣θ(a − i δ2 ) − b

∣∣ < π
2 + π

2 = π.
We have thus obtained a contradiction.

3.20 Definition: Let f : U → C where U is an open set in C (or Rn), and let a ∈ U . We
say that f is continuous at a if lim

z→a
f(z) = f(a) or, in other words, f is continuous if for

all ε > 0 there exists δ > 0 such that f(D(a, δ)) ⊂ D(f(a), ε). We say that f is continous
in U if f is continuous at every point in U .

3.21 Theorem: Let f and g be maps from U to C with U open in C and let c ∈ C.
a) If f(z) = u(z) + i v(z) with u, v : U → R then f is continuous at a if and only if both

u and v are continuous at a.
b) If f and g are both continuous at a then

i) cf is continuous at a
ii) f ± g is continuous at a
iii) fg is continuous at a
iv) f/g is continuous at a, provided that g(a) 6= 0.
v) |f | is continuous at a.

c) If f is continuous at a and g is continuous at f(a) then g ◦ f is continuous at a.
The theorem also holds for functions with values in Rn except for parts b)iii) and iv).

Proof: Parts a) and b) are proved as in theorem 3.17. For part c), suppose that f is
continuous at a and that g is continuous at b where b = f(a). Given ε > 0 choose δ0 so that
z ∈ D(b, δ0)⇒ g(z) ∈ D(g(b), ε). Then choose δ > 0 so that z ∈ D(a, δ)⇒ f(z) ∈ D(b, δ0).
We have z ∈ D(a, δ)⇒ f(z) ∈ D(b, δ0)⇒ g(f(z)) ∈ D(g(b), ε) = D(g(f(a), ε). This shows
that g(f(z)) is continuous at a.

3.22 Example: Let U = C \ {x ∈ R|x ≥ 0} = {r ei θ|r > 0, 0 < θ < 2π}. Let
θ : U → (0, 2π) be the angle function. Show that θ is continuous in U .
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Solution: Write z = x + i y with x, y ∈ R. For Im (z) > 0, the angle function is given
by the formula θ(x + i y) = cos−1

(
x/
√
x2 + y2

)
. This formula expresses θ(x + i y) using

sums, products, quotients and composites of known continuous functions, and so it must
be continuous, by parts b) and c) of the above theorem. Thus θ(z) is continuous at all
points z with Im (z) > 0.

Similarly, for Re (z) < 0, θ(z) is given by the formula θ(x+i y) = π+tan−1
(
y/x

)
, and

for Im (z) < 0 we have θ(x+ i y) = 2π − cos−1
(
x/
√
x2 + y2

)
. These are both continuous

and so θ(z) is continuous for all z ∈ U .

3.23 Note: If we choose θ(z) ∈ [0, 2π) for all z ∈ C∗, then we have seen (in example
3.19) that for a > 0, lim

z→a
θ(z) does not exist, so θ : C∗ → [0, 2π) is not continuous for all

z ∈ C∗. In fact it is impossible to choose θ(z) ∈ R so that θ : C∗ → R is continuous. As
in the above example, we must restrict the domain to make the angle function continuous.
Indeed, for any α ∈ R, if we restrict the domain to Uα = {r ei θ|r > 0, α < θ < α + 2π}
and choose θ(z) with α < θ(z) < α+ 2π then θ : Uα → (α, α+ 2π) will be continuous.

3.24 Note: We have found formulas for the real and imaginary parts of the identity
f(z) = z, the exponential f(z) = ez, the trigonometric functions, and the hyperbolic
functions. These formulas reveal that they are all continuous in their domains. Also,
any branch of the logarithm log z = ln |z| + i θ(z) is continuous provided that θ(z) is
chosen to be continuous. The inverse trigonometric and inverse hyperbolic functions can
all be expressed in terms of the logarithm, and so they are also continuous provided that
θ(z) is chosen to be continuous. Any complex function which can be expressed using sums,
products, quotients and composites of the above functions will be continuous in its domain.

3.25 Theorem: Let f : U → C where U is open in C (or in Rn).

a) f is continuous if and only if f−1(V ) is open for every open set V ⊂ C.

b) If f is continuous and E ⊂ U is connected then f(E) is connected.

c) If f is continuous and K ⊂ U is compact then f(K) is compact.

d) If f is continuous and K ⊂ U is compact then |f(x)| attains its extreme values on K.

Proof: We prove part a). Suppose first that f is continuous and let V ⊂ C be open. We
must show that f−1(V ) is open, so given a ∈ U we need to show there exists δ > 0 such
that D(a, δ) ⊂ U . Let a ∈ f−1(V ), which means that f(a) ∈ V . Choose ε > 0 so that
D(f(a), ε) ⊂ V . Then choose δ > 0 so that f(D(a, δ)) ⊂ D(f(a), ε) ⊂ V so that we have
D(a, δ) ∈ f−1(V ).

Next we suppose that f−1(V ) is open for every open set V ⊂ C. We want to show
that f is continuous at every point a ∈ U . Let a ∈ U . Given ε > 0, let V = D(f(a), ε).
Then a ∈ f−1(V ) and since V is open, f−1(V ) is open, so we can choose δ > 0 such
that D(a, δ) ⊂ f−1(V ). Then we will have f(D(a, δ)) ⊂ D(f(a), ε). This shows that f is
continuous.

To prove part b) we suppose that f is continuous and that E is connected, and (looking
for a contradiction) we shall suppose that f(E) is not connected. Say f(E) ⊂ V ∪W where
V andW are disjoint open sets which separate E. You may check that the open sets f−1(V )
and f−1(W ) separate E giving a contradiction.

To prove part c), suppose that f is continuous and that K ⊂ U is compact. We wish
to show that f(K) is compact. Let {Vα} be an open cover of f(K). Since f is continuous,
each of the sets f−1(Vα) will be open, and you can check that they cover K. Since K is
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compact, we can find a finite subcover, say K ⊂ f−1(Vα1)∪· · ·∪f−1(Vαn). You may check
that this implies that we have f(K) ⊂ Vα1 ∪ · · · ∪ Vαn , so {Vα} has a finite subcover.

Part d) follows from part c), because if f is continuous and K ⊂ U is compact then
|f | will also be continuous and so |f |(K) =

{
|f(z)|

∣∣z ∈ K} is a compact set in R. Any
closed and bounded set in R includes its extreme values.
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Chapter 4. Derivatives

4.1 Note: From now on, we shall always use the letter U to denote an open set.

4.2 Definition: Recall that for a function f : U ⊂ R→ R we define

f ′(a) = lim
x→a

f(x)− f(a)
x− a

provided the limit exists, and we say that f is differentiable at x = a and f ′(a) is called
the (real) derivative of f at a. Equivalently, we see that f is differentiable at x = a

if there exists a real number f ′(a) such that lim
x→a

∣∣∣∣f(x)− f(a)
x− a

− f ′(a)
∣∣∣∣ = 0. This last

condition can be rewritten as lim
x→a

|R(x)|
|x− a|

= 0, where R(x) = f(x)−
(
f(a) + f ′(a)(x− a)

)
.

In this way we obtain a definition which applies to functions f : U ⊂ Rn → Rm.
A function f : U ⊂ Rn → Rm is differentiable at x = a if there exists an m × n

matrix f ′(a) such that lim
x→a

|R(x)|
|x− a|

= 0, where R(x) = f(x)−
(
f(a) + f ′(a)(x− a)

)
. The

matrix f ′(a) is called the (real) derivative of f at x = a. We also write Df(a) = f ′(a).
In the case that f : U ⊂ C→ C, we shall use the notation Df(a) for the real derivative of
f , and we shall reserve the notation f ′(a) for the complex derivative which will be defined
soon. We say that f : U ⊂ Rn → Rm is differentiable (in U) if it is differentiable at
every point a ∈ U .

For a map f : U ⊂ Rn → R, the jth partial derivative of f is given by

fxj (a) =
∂f

∂xj
(a) = g′(0) ,

if it exists, where g is the map from R to R given by g(t) = f(a+ t ej), with ej denoting
the jth standard basis vector in Rn. Notice that if f : R→ R then ∂f

∂x (a) = f ′(a).
We now recall (without proof) some theorems from vector calculus.

4.3 Theorem: Let f : U ⊂ Rn → Rm, and let fi be the components of f so that
f(x) =

(
f1(x), · · · fm(x)

)
. Then

a) If f is differentiable at x = a then the partial derivatives ∂fi
∂xj

all exist and

Df(a) = f ′(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
...

...
...

∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)


b) If f is C1 in U , which means that the partial derivatives ∂fi

∂xj
all exist and are continuous

in U , then f is differentiable in U .
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4.4 Theorem: a) If f : U ⊂ Rn → Rm is differentiable at a then it is continuous at a.
b) If f, g : U ⊂ Rn → Rm are both differentiable at x = a, and if c ∈ R then

i) (c f)′(a) = c f ′(a) and
ii) (f ± g)′(a) = f ′(a)± g′(a).
iii) (The Product Rule) If m = 1 then (fg)′(a) = f ′(a)g(a) + f(a)g′(a).
iv) (The Quotient Rule) If m = 1 then (f/g)′(a) =

(
f ′(a)g(a)− f(a)g′(a)

)
/g2(a).

c) (The Chain Rule) If f : U ⊂ Rn → Rm is differentiable at a, and g : V ⊂ Rm → Rl is
differentiable at f(a) then h(x) = g(f(x)) is differentiable at a and h′(a) = g′(f(a))f ′(a).
c) (The Inverse Function Theorem) If f : U ⊂ Rn → Rm is C1 in U and if the matrix
f ′(a) is invertible, then we can make f invertible by restricting its domain, and if g = f−1

then g is also C1 with g′(f(x)) = f ′(x)−1.

4.5 Example: If f : R→ Rn is given by f(t) =

 x1(t)
...

xn(t)

 then f ′(t) =

 x1
′(t)
...

xn
′(t)

. This

is called the tangent vector to the curve f(t). In particular, if z(t) = x(t) + i y(t) is a
map from R to C then z′(t) = x′(t) + i y′(t).

4.6 Example: If f : U ⊂ Rn → R then f ′(x) = ( ∂f
∂x1

(a) ∂f
∂x2

(a) . . . ∂f
∂xn

(a) ). We
define the gradient of f at a to be the transpose of f ′(a) , and we write ∇f = f ′(x)T .
Given a point a ∈ U and a vector v ∈ Rn, choose any curve α : R→ U with α(0) = a and
α′(0) = v, and then set g(t) = f(α(t)). By the chain rule, we have g′(t) = f ′(α(t))α′(t)
and so g′(0) = f ′(a)v = ∇f(a) · v. We call this the directional derivative Dvf(a) of f
at a in the direction of v, so we have Dvf(a) = f ′(a)v = ∇f(a) · v.

Notice that the gradient ∇f(a) is perpendicular to the level set f(x) = f(a). To see
this, choose any curve x(t) with x(0) = a and with f(x(t)) = f(a) (so that x(t) lies in
the level set). Then by the chain rule we have f ′(x(t))x′(t) = 0, and setting t = 0 gives
f ′(a)x′(0) = 0 or equivalently ∇f(a) · x′(a) = 0. Thus ∇f(a) is perpendicular to x′(0).

4.7 Example: Given a differentiable map f : U ⊂ Rn → Rm, notice that the ith row of
the matrix f ′(a) is equal to fi′(a) = ∇f(a)T , where fi is the ith component of f . So the
ith row is perpendicular to the level set fi(x) = fi(a).

We use the notation

fxj (a) =
∂f

∂xj
(a) =


∂f1
∂xj

...
∂fm
∂xj


for the jth column of the matrix f ′(a). Notice that this is equal to the tangent vector to
the curve g(t) = f(a+ t ej), where ej is the jth standard basis vector.

In particular, if f : U ⊂ C→ C is given by w(z) = u(z) + i v(z) with z = x+ i y, then

Df(a) = f ′(a) =
(
ux(a) uy(a)
vx(a) vy(a)

)
.

The columns fx =
(
ux
vx

)
and fy =

(
uy
vy

)
are the tangent vectors to the curves f(a+t) and

f(a + i t) respectively, and the rows u′ = (ux uy ) and v′ = ( vx vy ) are perpendicular
to the level curves u = u(a) and v = v(b) respectively.
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4.8 Example: Let f be the change of coordinate map (x, y) = f(r, θ) = (r cos θ, r sin θ).
Then

Df(r, θ) = f ′(r, θ) =
(
xr xθ
yr yθ

)
=
(

cos θ −r sin θ
sin θ r cos θ

)
.

At (r, θ) = (2, π6 ), we have (x, y) = f(2, π6 ) = (
√

3, 1) and f ′(2, π6 ) =
(√

3/2 −1
1/2

√
3

)
.

You should draw a picture for yourself showing the images of the lines r = 0, 1, 2 and
θ = 0, π6 ,

π
3 ,

π
2 (the images are circles and rays), and at the point (x, y) = (

√
3, 1) you

should draw the tangent vectors fr =
(√

3/2
−1/2

)
and fθ =

(
−1√

3

)
. Also, draw a picture

showing the level curves x = 0, 1,
√

3 and y = 0, 1,
√

3 (they are multiples of r = sec θ and
r = csc θ) and at the point (r, θ) = (2, π6 ) draw the gradient vectors x′ =

( √
3

2 −1
)

and
y′ = ( 1

2

√
3 ).

The map f is not 1 : 1 so it does not have an inverse, but since the matrix f ′(2, π6 ) is
invertible, we know that we can make f invertible by restricting its domain. If g = f−1 near

the point (r, θ) = (2, π3 ), then we have g′(
√

3, 1) =
(√

3/2 −1
1/2

√
3

)−1

=
1
2

( √
3 1

−1/2
√

3/2

)
.

This can also be verified by finding a formula for g, for example if we restrict the domain
of f to r > 0, −π2 < θ < π

2 then (r, θ) = g(x, y) =
(√

x2 + y2 , tan−1(y/x)
)
.

4.9 Note: We now wish to interpret the real derivative Df of a map f : U ⊂ C → C,
which is a 2 × 2 matrix, in terms of complex numbers. Indeed any real 2 × 2 matrix A

corresponds to two complex numbers in the following two ways. Let A =
(
a b
c d

)
, and

write z = x+ i y with x, y ∈ R. Then

A

(
x
y

)
=
(
a
c

)
x+

(
b
d

)
y

= (a+ i c)x+ (b+ i d)y

= (a+ ic)
z + z

2
+ (b+ i d)

z − z
2i

=
1
2
(
(a+ d) + i (c− b)

)
z =

1
2
(
(a− d) + i (c+ b)

)
z

.

Thus we have A
(
x
y

)
= px + qy = uz + vz where p and q are the columns of A, that is

p = a+ i c and q = b+ i d, and u and v are given by u = 1
2

(
(a+ d) + i (c− b)

)
= 1

2 (p− i q)
and v = 1

2

(
(a− d) + i (c+ b)

)
= 1

2 (p+ i q). Note also that p = u+ v and q = i (u− v).
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Conversely, given u = α+ i β and v = γ + i δ, with α, β, γ, δ ∈ R, we have

u z = (α+ i β)(x+ i y) = (αx− βy) + i (βx+ αy) =
(
α −β
β α

)(
x
y

)
vz = (γ + i δ)(x− i y) = (γx+ δy) + i (δx− γy) =

(
γ δ
δ −γ

)(
x
y

)

so if A
(
x
y

)
= u z + v z then A is given by A =

(
α −β
β α

)
+
(
γ δ
δ −γ

)
.

4.10 Definition: Note 4.9 allows us to express the definition of differentiability in terms
of complex numbers. Indeed, if f : U ⊂ C → C and a ∈ U then f is differentiable at a

⇐⇒ there exists a 2× 2 matrix Df(a) with real entries such that lim
z→a

|R(z)|
|z − a|

= 0, where

R(z) = f(z)−
(
f(a) +Df(a)(z − a)

)
⇐⇒ there exist complex numbers fx(a) and fy(a)

such that lim
z→a

|R(z)|
|z − a|

= 0, where R(z) = f(z)−
(
f(a) + fx(a)Re (z− a) + fy(a)Im (z− a)

)
⇐⇒ there exist complex numbers fz(a) and fz(a) such that lim

z→a

|R(z)|
|z − a|

= 0, where

R(z) = f(z)−
(
f(a) + fz(a)(z − a) + fz(z − a)

)
.

In this case we have

Df =
(
ux uy
vx vy

)
fx = ux + i vx = fz + fz

fy = uy + i vy = i (fz − fz)

fz =
1
2

(fx − i fy) =
1
2
(
(ux + vy) + i (vx − uy)

)
fz =

1
2

(fx + i fy) =
1
2
(
(ux − vy) + i (uy − vx)

)
.

Also, if fz = α+ i β and fz = γ + i δ with α, β, γ, δ ∈ R then

Df =
(
α −β
β α

)
+
(
γ δ
δ −γ

)
.

If w = f(z) then other notations for these include Df = Dw, fx = ∂f
∂x = wx = ∂w

∂x ,
fy = ∂f

∂y = wy = ∂w
∂y , fz = ∂f

∂z = ∂f = wz = ∂w
∂z = ∂w, fz = ∂f

∂z = ∂f = wz = ∂w
∂z = ∂w.

4.11 Example: Show that ∂z
∂z = 1, ∂z∂z , ∂z

∂z = 0, ∂z∂z = 1, and ∂a
∂z = ∂a

∂z = 0, where a ∈ C.

Solution: If f(z) = z, then we have f(x+ i y) = u(x, y) + i v(x, y), where u(x, y) = x and

v(x, y) = y. So Df =
(
ux uy
vx vy

)
=
(

1 0
0 1

)
, fx = ux + i vx = 1, fy = uy + i vy = i,

fz = 1
2 (f + x− i fy) = 1 and fz = 1

2 (fx − i fy) = 0.

If f(z) = z, then we have u(x, y) = x and v(x, y) = −y. So Df =
(

1 0
0 −1

)
, fx = 1,

fy = −i, fz = 0 and fz = 1.
If f(z) = a ∈ C then u(x, y) = Re (a) and v(x, y) = Im (a). So Df = 0 and hence

fx = fy = fzz = fz = 0.
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4.12 Theorem: Let f : U ⊂ C→ C be differentiable.
a) For α = x, y, z or z we have

i) (cf)α = c fα
ii) (f ± g)α = fα ± fα
iii) (The Product Rule) (fg)α = fαg + fgα
iv) (The Quotient Rule) (f/g)α = (fαg − fgα)/g2, when g 6= 0

b) Define f : U → C by f(z) = f(z). Then fz = fz and fz = fz.
c) (The Chain Rule) Suppose f : U → V ⊂ C and g : V → C are both differentiable, and
let h(z) = g(f(z)). Then h is differentiable, and if we write w = f(z) and q = g(w), then(

qz qz
qz qz

)
=
(
qw qw
qw qw

)(
wz wz
wz wz

)
.

Equivalently, we have
∂q

∂z
=

∂q

∂w

∂w

∂z
+
∂q

∂w

∂w

∂z
and

∂q

∂z
=

∂q

∂w

∂w

∂z
+
∂q

∂w

∂w

∂z
.

Proof: We prove the product rule, and leave the rest of part a) as an exercise. We write
f = u+i v and g = s+i t where u, v, s and t are real-valued. Then fg = (us−vt)+i (ut+vs).
The product rule in theorem 4.4 applies to the functions u, v, s and t, so we have

(fg)x = (us− vt)x + i (ut+ vs)x
= (uxs+ usx − vxt− vtx) + i (uxt+ utx + vxs+ vsx)
= (ux + i vx)(s+ i t) + (u+ i v)(sx + i tx)
= fxg + fgx

Similarly, (fg)y = fyg + fgy. Then, using this result, we have

(fg)z = 1
2

(
(fg)x − i (fg)y

)
= 1

2

(
(fxg + fgx)− i (fyg + fgy)

)
= 1

2 (fx − i fy) g + f 1
2 (gx − i gy)

= fzg + fgz .

To prove part b), write f = u + i v with u and v real-valued. Then f = u − i v so

Df =
(
ux uy
−vx −vy

)
and hence fx = ux − i vx = fx and fy = uy − i vy = fy. So we have

fz = 1
2 (fx − i fy) = 1

2 (fx − i fy) = 1
2 (fx + i fy) = fz, and similarly, fz = fz.

To prove part c), write z = x+ i y, f(z) = w = u+ i v and g(w) = q = s+ i t. Then

qz = 1
2

(
(sx + ty) + i (tx − sy)

)
=

1
2
(
(suux + svvx + tuuy + tvvy) + i (tuux + tvvx − suuy − svvy)

)
.

On the other hand

qwwz + qwwz = qwwz + qwwz

= 1
2

(
(su + tv) + i (tu − sv)

)
1
2

(
(ux + vy) + i (vx − uy)

)
+ 1

2

(
(su − tv) + i (tu + sv)

)
1
2

(
(ux − vy)− i (vx + uy)

)
.

Expanding and simplifying this last expression shows that qz = qwwz + qwwz. Similarly,
we can show that qz = qwwz + qwwz.
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4.13 Example: Let f(z) = z2 + 3zz. Find fz and fz.

Solution: We solve this using two methods. First, by example 4.11 and theorem 4.12, we
can calculate ∂f

∂z and ∂f
∂z using all the same rules that we use to find partial derivatives of

real functions of two real variables. We have fz = 2z + 3z and fz = 3z.
Our second solution is to express f in terms of real variables, and then use definition

4.10. We have f(z) = f(x+ i y) = (x+ i y)2 + 3(x+ i y)(x− i y) = (4x2 + 2y2) + i (2xy),

and so Df =
(

8x 4y
2y 2x

)
. Thus we have fx = 8x + i 2y and fy = 4y + i 2x, and so

fz = 1
2 (fx − i fy) = 1

2 (8x + i 2y − i 4y + 2x) = 5x − i y = 5 z+z2 − i
z−z
2i = 2z + 3z, and

fz = 1
2 (fx + i fy) = 1

2 (8x+ i 2y + i 4y − 2x) = 3x+ i 3y = 3z.

4.14 Example: Let f(z) =
(z + z)z
2 + zz

. Find fz(1 + i) and fz(1 + i).

Solution: By the product and quotient rules,
∂f

∂z
=

(z + (z + z))(2 + zz)− (z + z)zz
(2 + zz)2

, so

∂f

∂z
(1 + i) =

(3 + i)(4)− (2)(2)
(4)2

=
2 + i

4
. Also, we have

∂f

∂z
=

(z)(2 + zz)− (z + z)z2

(2 + zz)2
and

so
∂f

∂z
(1 + i) =

(1 + i)(4)− (2)(2i)
(4)2

=
1
4

.

4.15 Example: Let w = f(z) = iz + z, let q = g(w) = w2 − w, and let h(z) = g(f(z)).
Find hz(1 + 2i) and hz(1 + 2i).

Solution: We provide three solutions to this problem. Our first solution uses the chain
rule in theorem 4.12. We have

(hz hz ) = ( gw gw )
(
fz fz
fz fz

)
= ( 2w −1 )

(
i 1
1 −i

)
= ( 2wi− 1 2w + i ) .

When z = 1 + 2i we have w = f(z) = i(1 + 2i) + (1 − 2i) = −1 − i and so we obtain
hz = 2wi− 1 = 2(−1− i) i− 1 = 1− 2i and hz = 2w + i = 2(−1− i) + i = −2− i.

Our second solution is to expand the composite g(f(z)) so that we can avoid using
the chain rule. We have h(z) = g(f(z)) = (iz+ z)2− (−iz+ z) = −z2 + 2izz+ z2 + i z− z.
Thus we have hz = −2z + 2iz − 1 so hz(1 + 2i) = −2(1 + 2i) + 2i(1− 2i)− 1 = 1− 2i and
we have hz = 2iz + 2z + i so hz = 2i(1 + 2i) + 2(1− 2i) + i = −2− i.

The third solution is to express f , g and h in terms of real variables. Write z = x+ i y,
w = f(z) = u + i v and q = h(z) = s + i t. Then f(x + i y) = i(x + i y) + (x − i y) =
(x − y) + i (x − y) so u = x − y and v = x − y, and g(u + i v) = (u + i v)2 − (u − i v) =
(u2 − v2 − u) + i (2uv − v) so s = u2 − v2 − u and t = 2uv + v. By the chain rule for real
variables,(

sx sy
tx ty

)
=
(

2u− 1 −2v
2v 2u+ 1

)(
1 −1
1 −1

)
=
(

2u− 2v − 1 −2u+ 2v + 1
2u+ 2v + 1 −2u− 2v − 1

)
so hz = 1

2

(
(2u−2v−1)+(−2u−2v−1)

)
+ i

2

(
(2u+2v+1)−(−2u+2v+1)

)
= (−2v−1)+i (2u)

and hz = 1
2

(
(2u−2v−1)−(−2u−2v−1)

)
+ i

2

(
(2u+2v+1)+(−2u+2v+1)

)
= 2u+i (2v+1).

When z = 1 + 2i, we have w = f(z) = i(1 + 2i) + (1 − 2i) = −1 − i, so u = v = −1 and
hence hz(1 + 2i) = (−2v − 1) + i (2u) = 1− 2i and hz(1 + 2i) = 2u+ i (2v + 1) = −2− i.
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4.16 Definition: Let f : U ⊂ C→ C. We define

f ′(a) = lim
z→a

f(z)− f(a)
z − a

provided that the limit exists, we say that f is holomorphic at z = a and thet f ′(a) is
the derivative of f at a. Equivalently, we say that f is holomorphic at z = a if there
exists a complex number f ′(a) such that

lim
z→a

|S(z)|
|z − a|

= 0 ,

where S(z) = f(z) −
(
f(a) + f ′(a)(z − a)

)
. We say that f is holomorphic in U if it is

holomorphic at every point in U .

4.17 Definition: For f : U ⊂ C→ C we define

f×(a) = lim
z→a

f(z)− f(a)
z − a

provided the limit exists, and if so we say that f is conjugate-holomorphic at z = a.
Equivalently, f is conjugate-holomorphic at a if there exists a complex number f×(a) such

that lim
z→a

|T (z)|
|z − a|

= 0 where T (z) = f(z)−
(
f(a) + f×(a)(z − a)

)
.

4.18 Note: We have now used the notation f ′(a) for two apparently different objects.
The real derivative f ′(a) is a 2×2 matrix, while the complex derivative f ′(a) is an element
of C, that is, is a 2× 1 matrix. From now on we wish to make a distinction between these
two different derivatives, so we shall use the following convention: for f : U ⊂ C→ C

Df(a) denotes the real derivative of f (if it exists)
f ′(a) denotes the complex derivative of f (if it exists)

4.19 Theorem: a) Let f : U ⊂ C→ C.
i) f ′(a) exists ⇐⇒ Df(a) exists and fz(a) = 0. In this case f ′(a) = fz(a).
ii) f×(a) exists ⇐⇒ Df(a) exists and fz(a) = 0. In this case f×(a) = fz(a).

b) Suppose that f : U ⊂ C→ C is differentiable. Then
i) f is holomorphic ⇐⇒ fz = 0

⇐⇒ ux = vy and uy = −vx
⇐⇒ Df is of the form Df =

(
α −β
β α

)
for some α, β ∈ R.

In this case, f ′ = fz = α+ i β = ux + i vx = ux − i uy = vy − i uy = vy + i vx.
ii) f is conjugate-holomorphic ⇐⇒ fz = 0

⇐⇒ ux = −vy and uy = vx

⇐⇒ Df is of the form Df =
(
γ δ
δ −γ

)
for some γ, δ ∈ R.

In this case, f× = fz = γ + i δ = ux + i vx = ux + i uy = −vy + i uy = −vy + i vx.

Proof: Compare definitions 4.16 and 4.17 to definition 4.10.
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4.20 Definition: The two differential equations ux = vy and uy = −vx are called the
Cauchy-Riemann equations.

4.21 Example: Let f(z) = z2 + 2|z|2. Determine where f is holomorphic and where it is
conjugate-holomorphic.

Solution: We have f(z) = z2 + 2zz, so fz = 2z + 2z = 4Re (z), and fz = 2z. Thus
f is conjugate-holomorphic when fz = 4Re (z) = 0, that is along the y-axis, and f is
holomorphic when fz = z = 0, that is at the origin.

4.22 Theorem: a) If f : U ⊂ C → C is holomorphic (or conjugate-holomorphic) at a
then f is continuous at a.
b) If f, g : U ⊂ C→ C are both be holomorphic at a, then

i) (cf)′(a) = c f ′(a)
ii) (f ± g)′(a) = f ′(a)± g′(a)
iii) (fg)′(a) = f ′(a)g(a) + f(a)g′(a)

iv)

(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)
g2(a)

, provided g(a) 6= 0.

Similar results hold when f and g are both conjugate-holomorphic.
c) (The Chain Rule) Let f , g, h and k be maps from open sets in C to C with f and g
holomorphic and h and k conjugate-holomorphic. Then

i) g ◦ f is holomorphic with (g ◦ f)′(z) = g′(f(z))f ′(z).
ii) h ◦ f is conjugate-holomorphic with (h ◦ f)×(z) = h×(f(z))f ′(z).
iii) f ◦ h is conjugate-homorphic with (f ◦ h)×(z) = f ′(h(z))h×(z).
iv) k ◦ h is holomorphic with (k ◦ h)′(z) = k×(h(z))h×(z).

d) (The Inverse Function Theorem) If f is holomorphic in U and f ′(a) 6= 0 then we can
make f invertible by restricting its domain, and then the inverse function g = f−1 will be
holomorphic near f(a) with g′(f(z)) = 1/f ′(z).

A similar result holds when f is conjugate-holomorphic.

Proof: Part a) holds since lim
z→a

(
f(z)− f(a)

)
= lim
z→a

(
f(z)− f(a)

z − a
(z − a)

)
= f ′(a) · 0 = 0.

Part b) follows immediately from part a) of theorem 4.12.
Part c) follows almost immediately from part c) of theorem 4.12. For example, we

prove part (i). Write w = f(z) and q = g(w). Since f and g are holomorphic, we have
∂w
∂z = 0 and ∂q

∂w = 0. So by the chain rule of theorem 4.12 , we have ∂q
∂z = ∂q

∂w
∂w
∂z + ∂q

∂w
∂w
∂z = 0,

which shows that g ◦ f is holomorphic, and ∂q
∂z = ∂q

∂w
∂w
∂z + ∂q

∂w
∂w
∂z = ∂q

∂w
∂w
∂z .

Part d) is not easy to prove as it is stated. It is hard to show that if f ′(a) 6= 0 then
we can make f invertible by restricting its domain and it is hard to show that its inverse
will be holomorphic. (We may show this later). However, if we asume that g = f−1 exists
and is holomorphic then we have g(f(z)) = z, and so by the chain rule, g′(f(z))f ′(z) = 1.

4.23 Theorem: The maps zn, n ∈ Z, the exponential map ez, the trigonometric fuctions
and the hyperbolic functions are all holomorphic in their domains. Also, any continuous
branch of the logarithm log z (with an open domain) is holomorphic. We have

i) (zn)′ = n zn−1, where n ∈ Z.
ii) (ez)′ = ez

iii) (sin z)′ = cos z, (cos z)′ = − sin z, (tan z)′ = sec2 z.
iv) (sinh z)′ = cosh z, (cosh z)′ = sinh z, (tanh z)′ = sech2z.

v) (log z)′ =
1
z

for any branch of log z.
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Proof: Part i) can be shown from the definition of the derivative. Let f(z) = zn, n ∈ Z.

Then f ′(z) = lim
w→z

wn − zn

w − z
= lim

w→z

(
wn−1 + wn−2z + · · · + w zn−2 + zn−1

)
= n zn−1.

Alternatively, part (i) could be proven by induction using the product rule from the base
case z′ = 1.

To prove part (ii), let w = f(z) = ez and write z = x + i y and w = u + i v. Then

f(z) = ex+i y = ex cos y + i ex sin y, so Df =
(
ux uy
vx vy

)
=
(
ex cos y −ex sin y
ex sin y ex cos y

)
, and we

see that f is holomorphic in C with f ′(z) = ex cos y + i ex sin y = ez.
We derive the formula for the derivative of sin z in two ways. One way is to let

f(z) = sin z and write z = x + i y and f(z) = u(z) + i v(z). Then we have f(z) =

sinx cosh y + i cosx sinh y, and Df =
(
ux uy
vx vy

)
=
(

cosx cosh y sinx sinh y
− sinx sinh y cosx cosh y

)
and so

f is holomorphic in C and f ′(z) = cosx cosh y − i sinx sinh y = cos(z).
An easier way is to apply part (ii) and the differentiation rules in theorem 4.22 b) to the

definition of sin z. Indeed (sin z)′ = 1
2i (e

iz−e−iz)′ = 1
2i (ie

iz+ie−iz) = 1
2 (eiz+e−iz) = cos z.

The rest of the derivative formulas are left as an exercise.

4.24 Example: The two above theorems show that elementary complex functions can be
differentiated much like the real elementary functions. For example, let f(z) = (z3esin z)5,
then f ′(z) = 5(z3esin z)4(3z2esin z + z3esin z cos z).

4.25 Example: Let f(z) = sin
(
z2 + (1 + i)z

)
. Find fz and fz.

Solution: We have f(z) = q(w(u(z))), where u(z) = z2 + (1 + i)z, w(u) = sinu and
q(w) = w. Note that uz = 2z, uz = (1 + i), wu = cosu, wu = 0, qw = 0 and qw = 1. By
the chain rule, wz = wuuz + wuuz = 2z cosu and also wz = wuuz + wuuz = (1 + i) cosu.
Using the chain rule again, we have qz = qwwz + qwwz = wz = wz = (1− i)cosu and also
qz = qwwz+qwwz = wz = wz = 2z cosu. Thus fz = (1−i)cosu = (1−i)cos

(
z2 + (1 + i)z

)
and fz = 2z cosu = 2z cos

(
z2 + (1 + i)z

)
.

An alternate solution is to note that for z = x+ i y we have ez = ex−i y = ex(cos y −
i sin y) = ez, and so from the definition of sin z we also have sin(z) = sin z. Thus f(z) =
sin
(
z2 +(1−i)z

)
and so fz(z) = (1−i) cos

(
z2 +(1−i)z

)
and fz(z) = 2z cos

(
z2 +(1−i)z

)
.

4.26 Example: Let f(z) = z2 − 2z + 3. Then f ′(z) = 2z − 2 and we have f(2) = 3 and
f ′(2) = 2. Since f ′(2) 6= 0, we can restrict the domain of f so that it is invertible. Let g
be the inverse function. Find g′(3).

Solution: By the inverse function theorem, we have g′(3) =
1

f ′(2)
=

1
2

.

4.27 Note: To find the derivative of a branch of a multifunction, first express it in terms
of one (or more) branches of the logarithm, then take the derivative.

4.28 Example: Find a formula for the derivative of one branch of zw, where w ∈ C.

Solution: Let zw = exp(w log z), where log z is a branch of the logarithm. Then

(zw)′ = exp(w log z)
w

z
=
w zw

z
.

(Notice that this is similar to the familiar formula (zw) = w zw−1; the familiar formula has
the disadvantage that it does not specify which branch of zw−1 we should use).
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Chapter 5. Conformal Maps

5.1 Note: Later on we shall see that every holomorphic function is C∞, which means that
all partial derivatives of all orders exist (and are continuous). For this chapter we shall
assume that all functions are C2, which means that all the second order partial derivatives
of f (namely uxx, uxy, uyx, uyy, vxx, vxy, vyx and vyy) exist and are continuous. We shall
also use the fact that for C2 functions, we always have uxy = uyx and vxy = vyx.

5.2 Definition: A map f : U ⊂ Rn → Rn is said to preserve orientation at x = a if
|Df(a)| > 0, and it reverses orientation at a if |Df(a)| < 0.

5.3 Note: Let f : U ⊂ C → C. If f is holomorphic at z = a and f ′(a) 6= 0 then f

preserves orientation at a, since |Df(a)| = det
(
α −β
β α

)
= α2 + β2 > 0. On the other

hand, if f is conjugate-holomorphic at a with f×(a) 6= 0 then f reverses orientation at a

since |Df(a)| = det
(
γ δ
δ −γ

)
= −(γ2 + δ2) < 0.

5.4 Definition: A map f : U ⊂ Rn → Rn is called an isometry if it preserves distance,
that is if |f(x)− f(y)| = |x− y| for all x, y ∈ Rn. Using some linear algebra, one can show
that f is an isometry if and only if f is of the form f(x) = Ax+ b for some vector b ∈ Rn

and some orthogonal n× n matrix A (A is orthogonal means that ATA = I).

5.5 Note: Since the 2 × 2 orthogonal matrices are the matrices either of the form(
cos θ − sin θ
sin θ cos θ

)
or of the form

(
cos θ sin θ
sin θ − cos θ

)
, we see that the isometries in R2 are

the maps f of the form f(z) =
{
az + b

az + b
for some a, b ∈ C with |a| = 1.

5.6 Definition: A map f : U ⊂ Rn → Rn is called a similarity of scaling factor k > 0
if it scales distances by a factor of k, that is if |f(x)− f(y)| = k|x− y| for all x, y ∈ Rn. It
is not hard to see that f is a similarity of scaling factor k if and only if 1

kf is an isometry.

5.7 Note: A map f : U ⊂ C→ C is a similarity of scaling factor k > 0 if and only if f is

of the form f(z) =
{
az + b

az + b
for some a, b ∈ C with |a| = k.

5.8 Note: Let f : U ⊂ Rn → Rm be differentiable at a. Given a vector v ∈ Rn, choose a
curve α(t) with α(0) = a and α′(0) = v. Then (f ◦ α)′(0) = Df(α(0))α′(0) = Df(a)v. So
we say that f sends the vector v at a to the vector w = Df(a)v at f(a).

5.9 Definition: A map f : U ⊂ Rn → Rm is called conformal at a if it preserves angles
between curves at a, or to be precise, f is conformal at a if

(Df v) · (Df w)
|Df v| |Df v|

=
v · w
|v| |w|

for all vectors v, w ∈ Rn. We say f is conformal in U if it is conformal at every a ∈ U .
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5.10 Note: Using linear algebra, one can show that f is conformal at a if and only if
Df(a)TDf(a) = k I for some k > 0. We shall show only that the latter implies the former;
suppose that DfTDf = k I with k > 0. Then

(Df v) · (Df w) = (Df v)T (Df w) = vTDfTDf w = vT k I w = k vTw = k v · w
and in particular |Df v| =

√
(Df v) · (Df v) =

√
k |v|, and similarly |Df w| =

√
k |w|. It

follows that f is conformal; f behaves locally like a similarity of scaling factor
√
k.

5.11 Example: The steriographic projection from the unit sphere, with the north
pole removed, to the complex plane is the map φ which sends the point (x, y, z) on the
sphere to the point of intersection (u, v) of the line through (x, y, z) and the plane z = 0.
Find a formula for φ and φ−1, and show that stereographic projection is conformal.

Solution: The line through (0, 0, 1) and (x, y, z) is given by (0, 0, 1) + t(x, y, z − 1), t ∈ R.
The point of intersection of this line with the plane z = 0 occurs when 1+t(z−1) = 0, that
is when t = 1/(1−z). The point of intersection is (0, 0, 1)+ 1

1−z (x, y, z−1) = ( x
1−z ,

y
1−z , 0),

so we have

(u, v) = φ(x, y, z) =
(

x

1− z
,

y

1− z

)
.

Given (u, v) on the other hand, the line through (0, 0, 1) and (u, v) is given by α(t) =
(0, 0, 1) + t(u, v,−1) = (tu, tv, 1− t). The point of intersection with the unit sphere occurs
when |α(t)| = 1, so we need (tu)2 + (tv)2 + (1− t)2 = 1, that is t2u2 + t2v2−2t+ t2 = 0, or
t (tu2 + tv2 + t− 2) = 0. The point of intersection occurs when t = 2

u2+v2+1 , so we obtain
the formula

(x, y, z) = φ−1(u, v) =
(

2u
u2 + v2 + 1

,
2v

u2 + v2 + 1
,
u2 + v2 − 1
u2 + v2 + 1

)
.

Now, we show that φ−1 is conformal. We have

Dφ−1 =

xu xv
yu yv
zu zv

 =
2

(u2 + v2 + 1)2

−u2 + v2 + 1 −2uv
−2uv u2 − v2 + 1

2u 2v


and a quick calculation yields

(Dφ−1)T (Dφ−1) =
4

(u2 + v2 + 1)2

(
1 0
0 1

)
Note that near the point (u, v), φ−1 behaves like a similarity of scaling factor 2/(u2+v2+1).
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5.12 Theorem: Let f : U ⊂ C→ C.

a) f is conformal at a if and only if either

f is holomorphic at a with f ′(a) 6= 0, in which case f preserves orientation, or

f is conjugate-holomorhic at a with f×(a) 6= 0, in which case f reverses orientation.

b) If U is connected, then f is conformal in U if and only if either

f is homorphic in U with f ′(z) 6= 0 for all z, so f preserves orientation, or

f is conjugate-holomorphic in U with f×(z) 6= 0 for all z, so f reverses orientation.

Proof: To prove part a), note that f is conformal at a if and ony if Df(a) is a positive scalar
multiple of an orthogonal matrix. Since the 2× 2 orthogonal matrices are the matrices of

the form
(

cos θ − sin θ
sin θ cos θ

)
or
(

cos θ sin θ
sin θ − cos θ

)
, we see that f is conformal if and only if

Df =
(
α −β
β α

)
or Df =

(
γ δ
δ −γ

)
for some α, β or γ, δ ∈ R not both equal to zero.

Part b) involves a subtle point: if f is conformal in U then how do we know that f
cannot be holomorphic at some points a ∈ U and conjugate-holomorphic at other points?
It is for this reason that we must assume that U is connected. Since we have assumed that
all functions in this chapter are C2 we know that ux, uy, vx and vy are all continuous and
so |Df | = uxvy − uyvx is also continuous. At each point a ∈ U we have |Df(a)| 6= 0, so
|Df | is a continuous map from U to R∗. Since U is connected, we know that |Df |(U) is
also connected and lies in R∗. This implies that either |Df(a)| > 0 for all a or |Df(a)| < 0
for all a.

5.13 Note: If f : U ⊂ C → C is holomorphic at a with f(a) = b and f ′(a) = r ei θ,
where r > 0, then by the definition of the (complex) derivative, for z near a we have
f(z) ∼= f(a) + f ′(a)(z − a) = b + reiθ(z − a). This shows that locally, f behaves like the
following similarity: translate by −a, rotate by θ, scale by r, then translate by b.

5.14 Example: Let f(z) = z2. Then f is holomorphic in C and f ′(z) = 2z so f ′(z) 6= 0
in C∗. Hence f(z) = z2 is conformal in C∗ and preserves orientation. Verify directly that
f preserves the oriented angle from α(t) = i+ t to β(t) = i+ (1 + i) t.

Solution: We have α(0) = β(0) = i, α′(0) = 1 =
(

1
0

)
and β′(0) = 1 + i =

(
1
1

)
, so the

angle from α′(0) to β′(0) is π
4 . The images are γ(t) = f(α(t)) = (i+t)2 = (t2−1)+i 2t (this

is the parabola u = 1
4v

2 − 1) and δ(t) = f(β(t)) = (i+ (1 + i)t)2 = −(1 + 2t) + i (2t+ 2t2)
(check that this is the parabola v = 1

2u
2 − 1

2 ). Note that γ(0) = δ(0) = −1, so the two

parabolas intersect at −1. We have γ′(t) = 2t + 2i so γ′(0) = 2i =
(

0
2

)
and we have

δ′(t) = −2 + i (4t+ 2) so δ′(0) = −2 + 2i =
(
−2
2

)
. So the angle from γ′(0) to δ′(0) is π

4 .

Notice also that α and β meet at i, and we have f(i) = −1 and f ′(i) = 2i = 2ei π/2.
So near z = i, f can be approximated as follows: translate by −i, rotate by π

2 , scale by 2,
then translate by −1. Indeed, this is precisely what happens to the tangent vectors.
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5.15 Definition: Let u : U ⊂ C→ C. The (2 dimensional) Laplacian is the differential
operator ∇2 given by

∇2u = uxx + uyy .

The map u is called harmonic in U if it is C2 and satisfies Laplace’s equation

∇2u = 0 .

5.16 Note: There are several functions from physics which satisfy Laplace’s equation.
Steady state temperature (in a homogeneous medium), electrostatic potential (in a vacc-
ume) and the velocity potential for a steady flow of fluid (irrotational and indecompressible)
al satisfy Laplace’s equation.

5.17 Example: As an exercise, you should check that the map u(x, y, z) =
−1√

x2 + y2 + z2

satisfies the 3 dimensional Laplace equation uxx + uyy + uzz = 0, but that the map

u(x, y) = − 1√
x2 + y2

does not satisfy the 2 dimensional Laplace equation. The first map

u represents the electic potential surrounding a point charge in R3, but the second map u
does not represent the potential which surrounds a long straight wire. On the other hand,
you can check that the map u(x, y) = ln

√
x2 + y2 does satisfy the 2 dimensional Laplace

equation, and this map u does represent the potential surrounding a wire.

5.18 Theorem: If f(z) = u(z) + i v(z) is holomorphic (or conjugate-holomorphic) in U
then u and v are both harmonic functions. When f = u+ i v is holomorphic, we say that
v is the harmonic conjugate of u.

Proof: The Cauchy-Riemann equations ux = vy and uy = −vx imply that

uxx = (ux)x = (vy)x = vyx = vxy = (vx)y = (−uy)y = −uyy

and likewise vxx = −uyx = −uxy = −vyy.

5.19 Example: Let f(z) = ez. Verify that u is harmonic, where u = Re (f).

Solution: Since ex+i y = ex(cos y + i siny), we have u(x+ i y) = ex cos y. So ux = ex cos y
and uxx = ex cos y, while uy = −ex sin y and uyy = −ex cos y = −uxx.
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5.20 Example: Let f(z) = z3. Verify that u is harmonic, where u = Re (f).

Solution: We have f(x+ i y) = (x+ i y)3 = (x3 − 3xy2) + i (3x2y − y3) so u = x3 − 3xy2.
We have ux = 3x2 − 3y2 so uxx = 6x and uy = 3x2 − 6xy and so vyy = −6x = −uxx.

5.21 Note: There is a partial converse to the above note (which we may prove in a later
chapter) which says that for certain sets U , for example when U is convex, if u is harmonic
in U then there exists a harmonic function v such that the map f = u+ i v is holomorphic
in U . The following example shows how to find v.

5.22 Example: Let u = 2x2 + 3xy − 2y2. Check that u is harmonic in C, and find a
harmonic conjugate v.

Solution: We have ux = 4x + 3y, uxx = 4, uy = 3x − 4y and uyy = −4 = −uxx, so u
is harmonic. To find v such that u + i v is holomorphic, we need to find v such that the
Cauchy-Riemann equations ux = vy and uy = −vx are satisfied. To get vy = ux = 4x+ 3y
we must take v =

∫
4x + 3y dy = 4xy + 3

2y
2 + c(x). Then we have vx = 4y + c′(x). To

get vx = −uy = 4y − 3x we need to have c′(x) = −3x, so we choose c(x) = − 3
2x

2. In this
way we obtain v = 4xy+ 3

2 (y2−x2). The function f = u+ i v should be holomorphic, and
indeed you can check that f(z) = (2− i 3

2 )z2.

5.23 Example: A long strip of heat conducting material is modelled by the set S =
{x + i y|0 < y < 1}. Find the steady state temperature u(x + i y) at each point in the
strip given that the bottom edge is held at a constant temperature of a◦ and the top edge
is held at b◦. Describe the isotherms, that is the curves of constant temperature.

Solution: We must find a map u : S → R which is continuous on S and harmonic in S
such that u(x, 0) = a and u(x, 1) = b for all x. We can take

u(x+ i y) = a+ (b− a)y .

It is easy to see that u is harmonic, indeed uxx = uyy = 0. Also notice that u is the
imaginary part of the holomorphic map f(z) = a i+ (b− a)z.

The isotherm u = c is the horizontal line c = a+ (b− a)y, or y = c−a
b−a .

5.24 Theorem: If u : U ⊂ C → R is harmonic and if f : V ⊂ C → C is holomorphic
then u ◦ f is harmonic.

Proof: Write x+ i y = f(s+ i t), u = u(x+ i y), and v = u ◦ f . The chain rule gives

vs = uxxs + uyys vt = uxxt + uyyt .

Using the chain rule and the product rule, we obtain

vss = (uxxxs + uxyys)xs + uxxss + (uyxxs + uyyys)ys + uyyss

vtt = (uxxxt + uxyyt)xt + uxxtt + (uyxxt + uyyyt)yt + uyytt

Adding these, using the fact that uxy = uyx we obtain

vss+vtt = uxx(xs2+xy2)+uyy(ys2+yt2)+uxy(2xsys+2xtyt)+ux(xss+ytt)+uy(yss+ytt) .

Since f is holomorphic, the Cauchy-Riemann equations xs = yt and xt = −ys imply that
(ys2 + yt

2) = (xs2 +xt
2) and that (2xsys + 2xtyt) = 0 and that x and y are each harmonic

so that (xss + xtt) = 0 and (yss + ytt) = 0. So we are left with

vss + vtt = (uxx + uyy)(xs2 + xy
2) .

Finally, since u is harmonic, we have (uxx + utt) = 0 and hence vss + vtt = 0.
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5.25 Note: We shall now consider problems of the following kind: given an open set
U ⊂ C, find a harmonic function u : U → R which satisfies some given condition on the
boundary ∂U ; this kind of problem is called a boundary value problem. We solved
an easy boundary value problem in example 5.23, in which the open set was the strip
S = {x+ i y|0 < y < 1}. The above theorem allows us to use a solution to one boundary
value problem on a set U to obtain a solution to another problem on a set V by mapping
the set U to the set V using a holomorphic map.

5.26 Example: The upper half-plane H = {x + i y|y > 0} is a model for a large heat
conducting plate. Find the steady state temperature v(z) at each point in the plate if the
temperature along the bottom edge is held at a◦ for x > 0 and b◦ for x < 0. Also, describe
the isotherms.

Solution: Notice that we can map the strip S = {x + i y|0 < y < 1} (which appeared in
the example 5.23) to the half-plane H = {x + i y|y > 0} using the map f(z) = eπ z. The
bottom edge of S is mapped to the positive x-axis, and the top edge of S is mapped to the
negative x-axis. To map H back to S we use the inverse map g(z) = 1

π log z, where log z
is the branch of the logarithm given by log z = ln |z|+ iθ(z) where 0 ≤ θ(z) ≤ π.

From example 5.23, the map u(z) = Im (a i+ (b−a)z) is harmonic in the strip S with
u = a when y = 0 and u = b when y = 1. To solve our problem in H, we take v = u ◦ g.
To be explicit, we take

v(z) = Im
(
a i+

b− a
π

log z
)

= a+
b− a
π

θ(z) ,

where 0 ≤ θ(z) ≤ π. The isotherm u = c is the ray c = a+ b−a
π θ(z) or θ(z) = c−a

b−a π.

5.27 Example: Find the steady state temperature u(z) inside a circular plate modelled
by the disc U = D(0, 1), given that the top half of the boundary is held at a◦ = 1◦ and the
bottom half is held at b◦ = 5◦. In particular, find the temperature at the point 1

2 i. Also
describe the isotherm u = 2.

Solution: The map f1(z) =
z + 1

2
maps the discD(0, 1) to the discD( 1

2 ,
1
2 ), and it sends the

top half of the boundary of the first disc to the top half of the boundary of the second. The

map f2(z) =
1
z

maps the disc D( 1
2 ,

1
2 ) to the half-plane H1 = {x+ i y|x > 1}, and it maps

the top half of the boundary of the disc to the bottom half {1 + i y|y < 0} of the boundary
of H1. The map f3(z) = z−1 translates the half-plane H1 to H0 = {x+i y|x > 0}. Finally
the map f4(z) = i z rotates H0 to the half-plane H = {x+ i y|y > 0} sending the bottom
half of the boundary of H0 to the right half {x > 0} of the boundary of H. So we can use
our solution v(z) from the previous example to obtain the solution u = v ◦ f4 ◦ f3 ◦ f2 ◦ f1.

To be explicit, we have f2(f1(z)) =
2

1 + z
and f3(f2(f1(z))) =

(
2

1 + z
− 1
)

=
(

1− z
1 + z

)
and f4(f3(f2(f1(z)))) = i

(
1− z
1 + z

)
, so our solution is

u(z) = a+
b− a
π

θ

(
i

1− z
1 + z

)
= 1 +

4
π
θ

(
i

1− z
1 + z

)
,

where 0 ≤ θ
(
i 1−z

1+z

)
≤ π. Since θ(i 1−z

1+z ) = θ( 1−z
1+z ) + π

2 , we have

u(z) = 3 +
4
π
θ

(
1− z
1 + z

)
,
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where −π2 ≤ θ
(

1−z
1+z

)
≤ π

2 . In particular, the temperature at 1
2 i is u( 1

2 i) = 3+ 4
π θ
( 1− 1

2 i

1+ 1
2 i

)
=

3 + 4
π θ
(

3−4i
5

)
= 3 + 4

π tan−1
(
− 4

3

) ∼= 1.82◦.
To find the isotherm u = 2, we recall that the corresponding isotherm v = c = 2 in

example 5.26 was the ray θ(z) = c−a
b−a π = 2−1

5−1 π = π
4 . This ray is rotated by f4−1(z) = −iz

to the ray θ(z) = −π4 , then translated by f3−1 = z+1 to the ray θ(z−1) = −π4 , this ray is
the portion below the x-axis of the line whose nearest point to the origin is 1

2 (1 + i) and so
it is mapped by f2−1(z) = 1/z to the portion above the x-axis of the circle with diameter
0, 2

1+i = 1− i, that is the circle |z− 1−i
2 | =

√
2

2 , and finally this arc is translated and scaled
by the map f1

−1(z) = 2z − 1 to the portion above the x-axis of the circle |z + i| =
√

2.
Thus the isotherm u = 2 is the arc |z + i| =

√
2, z ∈ D(0, 1).

We also remark that θ( 1−z
1+z ) = Im

(
log( 1−z

1+z )
)

= −2 Im (tanh−1 z).

f1(z) = z+1
2 f2(z) = 1/z f4(f3(z)) = i(z − 1)

5.28 Example: Find the steady state temperature u(z) in the plate shaped like the semi-
infinite strip U = {x + i y| − 1 < x < 1, y > 0} given that the temperature along the
bottom edge and the right edge is held at a◦ = 10◦ and the temperature along the left
edge of the boundary is held at b◦ = 40◦. Also, find the temperature at z = i.

Solution: The map f1(z) = π
2 z widens the strip U by a factor of π

2 , and then the map
f2(z) = sin z sends the strip to the half plane H = {x + i y|y > 0}. The left edge of the
boundary of U is mapped to the portion of the real axis with x < −1. Lastly, the map
f3(z) = z + 1 sends H to itself and it sends the portion of the real axis with x < −1
to the portion with x < 0. We can again use our solution v(z) from example 5.26 to
obtain the solution to this problem. We take u = u ◦ f3 ◦ f2 ◦ f1. To be explicit, we have
f3(f2(f1(z))) = 1 + sin π

2 z and so

u(z) = a+
b− a
π

θ
(
1 + sin(π2 z)

)
= 10 +

30
π
θ
(
1 + sin(π2 z)

)
,

where 0 ≤ θ
(
1 + sin(π2 z)

)
≤ π. In particular, we have u(i) = 10 + 30

π θ
(
1 + sin(i π2 )

)
=

10 + 30
π θ
(
1 + i sinh π

2

)
= 10 + 30

π tan−1
(

sinh π
2

) ∼= 21.1◦

5.29 Example: Find the steady state temperature v(z) at each point on a plate modelled
by the half-plane H = {x + i y|y > 0} given that the temperature along the boundary is
held constant at a◦ for x > 1, b◦ for −1 < x < 1 and at c◦ for x < −1.

Solution: We can use the fact that the sum of two harmonic maps will also be harmonic.
We use the solution from example 5.26 to get one harmonic map v1 in H with v1 = a along
the portion of the x-axis with x > 1 and v1 = b along the portion with x < 1, and we get
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another harmonic map v2 in H with v2 = 0 along the portion of the x-axis with x > 1 and
v2 = c − b along the portion with x < −1. Then we add them to get v = v1 + v2. To be

explicit, v1(z) = a+
b− a
π

θ(z − 1) and v2(z) =
c− b
π

θ(z + 1) and so

v(z) = a+
b− a
π

θ(z − 1) +
c− b
π

θ(z + 1) ,

where 0 ≤ θ(z − 1), θ(z + 1) ≤ π.

5.30 Example: Find the steady-state temperature u(z) in the semi-circular plate mod-
elled by U = {x+ i y|x2 + y2 < 1, y < 0} given that the temperature along the boundary
is held constant at a◦ = 5◦ when y = 0 and x > 0, and at b◦ = 10◦ when y = −

√
1− x2

and at c◦ = 20◦ when y = 0 and x < 0. In particular, find the temperature at z = − 1
2 i.

Solution: The map f1 =
1
z

sends U to the region V above the x-axis and outside the unit

circle V = {x + i y|x2 + y2 > 1, y > 0}. Then f2(z) = log z, the branch of the logarithm
with 0 ≤ θ ≤ π maps V to the semi-infinite strip W = {x + i y|x > 0, 0 < y < π}.
We rotate the strip by 90◦ using f3(z) = i z then shift it to the right by π

2 using the
map f4(z) = z + π

2 (so that its base is centred at the origin), and then we use the map
f5(z) = sin z to map the strip to the half-plane H = {x+ i y|y > 0}. The portions of the
boundary which are to be held constant at a◦, b◦ and c◦ are mapped to the portions of the
x-axis with x > 1, −1 < x < 1 and x < −1 respectively, so we can use our solution v(z)
from the previous example. Our solution is u = v ◦ f5 ◦ . . . ◦ f1. To be explicit, we have
f5(f4(f3(z))) = sin(i z + π

2 ) = cos(i z) = cosh z, and f5(f4(f3(f2(z)))) = cosh(log z) =
elog z + e− log z

2
=
z + 1

z

2
, and so (f5 ◦ . . . ◦ f1)(z) =

1
z + z

2
=

1 + z2

2z
. Our solution is

u(z) = a+
b− a
π

θ

(
1 + z2

2z
− 1
)

+
c− b
π

θ

(
1 + z2

2z
+ 1
)

= 5 +
5
π
θ

(
1 + z2

2z
− 1
)

+
10
π
θ

(
1 + z2

2z
+ 1
)
.

In particular, u(−i/2) = 5+ 5
π θ
( 3/4
−i −1

)
+ 10

π θ
( 3/4
−i +1

)
= 5+ 5

π θ
(
−1+i 3

4

)
+ 10

π θ(1+i 3
4

)
=

5 + 5
π

(
π − tan−1 3

4

)
+ 10

π tan−1 3
4 = 10 + 5

π tan−1 3
4
∼= 11.0◦.

f1(z) = 1/z f2(z) = log z f4(f3(z)) = iz + π
2
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5.31 Note: All of the above examples can be re-worded so that they are asking us to find
the electrostatic potential in a certain region given that the voltage along the boundary is
held constant. If u is the electrostatic potential in a region, then the electric field E is
defined by

E = −∇u .

If f is holomorphic and u = Re (f) and v = Im (f), then we have ∇u = ux + i uy = fz and
∇v = vx + i vy = −uy + i ux = i(ux + i uy) = i∇u = i fz.

5.32 Example: Find the electostatic potential and the electric field at each point inside
a long hollow metal cylinder, with unit radius, made up of two semi-cylindrical pieces
separated by thin strips of insulating material, with one piece held at a potential of 1 Volt,
and the other at 5 Volts. In particular, find the electrostatic potential and the electric field
at points along the centre of the cylinder.

Solution: The cross-section of the cylinder is modelled by the unit disc U = D(0, 1). As in
example 5.27, the electric potential is u(z) = 3 + 4

π θ
(

1−z
1+z

)
. Note that u = Re (f), where

f(z) = 3− 4
π i log

(
1−z
1+z

)
. The electric field is E = −∇u = −fz = 4

π i
1+z
1−z

−2
(1+z)2 = 8 i

π(1−z2) .
In particular, we have u(0) = 3 and E(0) = 8

π i.

5.33 Example: Find all solutions v(z) to Laplace’s equation in C∗ such that v(r ei θ) =
f(r) for some function f (the solution will model the electrostatic potential at each point
around a long charged rod).

Solution: The exponential function maps C onto C∗. If v(z) is harmonic in C∗ then
u(z) = v(ez) will be harmonic in C. If v is of the form v(r ei θ) = f(r) then we have
u(x + i y) = v(exeiy) = f(ex). Since u is independent of y, Laplace’s equation becomes
uxx = 0, and the only solutions are of the form u(x+ i y) = ax+ b = Re (az + b) for some
a, b ∈ R. Thus we have v(z) = u(log z) = Re (a log z + b) = a ln |z|+ b.

5.34 Example: Find the electrostatic potential v(z) and the electric field E(z) at each
point inside a long grounded cylinder, of unit radius, which encloses a charged wire centred
inside the cylinder.

Solution: We look for a harmonic map v(z) defined on the punctured disc U = D∗(0, 1)
with v(z) = 0 when |z| = 1. From the previous example, we can take v(z) = a ln |z|. The
constant a depends on the charge per unit length and on the choice of units. In fact

v(z) = −2kq ln |z| ,

where q is the charge on the rod in coulombs per meter and k ∼= 9 × 109 N m2

C2 . Since
v = Re (f), where f(z) = −2kq log(z), we have E(z) = −fz = 2kq/z.
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5.35 Example: A charged wire at x = 0, y = 1 lies inside the region in space given by
y > 0, and the boundary of the region is grounded. Find the potential u(z) at each point
in the region and around the wire.

Solution: Let U be the punctured half-plane U = {z|Im z > 0, z 6= i}. The map f1(z) =
z + i maps U to the set V = {z|Im z > 1, z 6= 2i}, the map f2(z) = 1/z maps V to the
punctured disc W = D∗(− 1

2 i,
1
2 ), and the map f3(z) = 2z + i maps W to the punctured

disc D∗(0, 1). So our solution is u = v ◦ f3 ◦ f2 ◦ f1 where v(z) = −2kq ln |z| is the solution
from the previous example. Check that

u(z) = −2kq ln
∣∣∣∣z − iz + i

∣∣∣∣ .
f1(z) = z + i f2(z) = 1/z f3(z) = 2z + i

5.36 Note: The velocity field F of a flow (of perfect fluid) and the velocity potential v
are related (like the electric field and electric potential) by

F = −∇v .

5.37 Example: Find the velocity potential v(z) of the constant flow with velocity field
F (x+ i y) = c in the upper half plane H = {x+ i y|y > 0}.

Solution: We must have F = −∇v so we need c = −(vx+i vy), that is vx = −c and vy = 0.
Since vy = 0, v is independent of y, and since vx = −c we have

v = −c x = Re (−c z) .

We could add a constant to this solution.

5.38 Example: Use the previous example to find the velocity potential for the region
U = {x+ i y|x2 + y2 > 1, y > 0} given that as z →∞ the flow tends to the constant flow
F = k. Also, determine the speed of the flow near z = i, that is, at the top of the bump.

Solution: As in example 5.32, the map f(z) = cosh(log z) = 1
2 (z + 1/z) sends the region

U to the upper half-plane H = {x+ i y|y > 0}. We use the potential v from the previous
example, and we take u(z) = v(f(z)) = Re g(z), where g(z) = − c

2 (z + 1/z). The velocity
field is F = −gz = c

2 (1− 1/z2). As z → ∞ we have F (z) → c/2 so we must take c = 2k.
Thus our solution is

v(z) = Re
(
− k(z + z−1)

)
, F (z) = k(1− 1/z2) .

We have F (i) = 2k, so the velocity at the top of the bump is twice the velocity at ∞.
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Chapter 6. Integration

6.1 Definition: For a map α : [t1, t2] ⊂ R→ C we define the integral of α to be∫ t2

t1

α(t) dt = lim
n→∞

n∑
i=1

α(ci)(si − ts−1) ,

where the limit denotes a limit of Riemann sums; it is taken over all choices of si and ci
with t1 = s0 < s1 < . . . < sn = t2 and si−1 ≤ ci ≤ si and (si − si−1)→ 0 as n→∞. We

also define
∫ t1

t2

α(t) dt = −
∫ t2

t1

α(t) dt. If α is piecewise continuous and bounded, then the

limit will exist and be finite, and if we write α(t) = x(t) + i y(t), then∫ t2

t1

α(t) dt =
∫ t2

t1

x(t) dt + i

∫ t2

t1

y(t) dt .

6.2 Example: Let α(t) = ei t for t ∈ R. For θ ∈ R, find
∫ θ

0

α(t) dt.

Solution:
∫ θ

0

α(t) dt =
∫ θ

0

cos t+i sin t dt =
∫ θ

0

cos t dt+i
∫ θ

0

sin t dt =
[

sin t
]θ
0
+i
[
−cos t

]θ
0

= sin θ + i (1− cos θ) = i− i ei θ. Note that as θ varies, this traces out a circle.

6.3 Theorem:

a) i)

∫ t2

t1

c α(t) dt = c

∫ t2

t1

α(t) dt ii)
∫ t2

t1

α(t) + β(t) dt =
∫ t2

t1

α(t) dt+
∫ t2

t1

β(t) dt

b)

∫ t2

t1

α(t) dt+
∫ t3

t2

α(t) dt =
∫ t3

t1

α(t) dt

c) (The Fundamental Theorem of Calculus)

∫ t2

t1

α′(t) dt = α(t2)− α(t1)

d) (The Estimation Theorem)

∣∣∣∣∫ t2

t1

α(t) dt
∣∣∣∣ ≤ ∫ t2

t1

|α(t)| dt

e) (Change of Parameter) Let t = t(s) be C1. Then

∫ s2

s1

α(t(s))t′(s) ds =
∫ t(s2)

t(s1)

α(t) dt

Proof: All the parts except part d) follow immediately from the corresponding results for
real valued functions. For example, to prove the Fundamental Theorem of Calculus, write

α(t) = x(t) = i y(t) and we have
∫ t2

t1

α′(t) dt =
∫ t2

t1

x′(t) + i y′(t) dt =
∫ t2

t1

x′(t) dt +

i

∫ t2

t1

y′(t) dt =
(
x(t2)− x(t1)

)
+ i
(
y(t2)− y(t1)

)
= α(t2)− α(t1).

Part d) is easier to prove using Riemann sums. For any ε > 0 we can choose a partition
t1 = s0 < . . . < sn = t2 and the points ci so that∣∣∣ ∫ t2

t1

α(t) dt
∣∣∣+ ε ≤

∣∣∣ n∑
i=1

α(ci)(si − si−1)
∣∣∣ ≤ n∑

i=n

∣∣α(ci)
∣∣(si − si−1) ≤

∫ t2

t1

|α(t)| dt− ε .
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Since ε is arbitrary, we must have
∣∣∣ ∫ t2

t1

α(t) dt
∣∣∣ ≤ ∫ t2

t1

∫ t2

t1

|α(t)| dt.

Alternatively, we can use the corresponding result for real valued functions as follows.
Write

∫ t2
t1
f(t) dt in polar coordinates as

∫ t2
t1
f(t) dt =

∣∣ ∫ t2
t1
f(t) dt

∣∣ei θ. Then∣∣∣∣∫ t2

t1

f(t) dt
∣∣∣∣ = e−i θ

∫ t2

t1

f(t) dt =
∫ t2

t1

e−i θf(t) dt =
∣∣∣∣Re

∫ t2

t1

(
e−iθf(t)

)
dt

∣∣∣∣ ,
where the last equality holds since for r ≥ 0 we have r = |Re (r)|, and∣∣∣∣Re

∫ t2

t1

(
e−iθf(t)

)
dt

∣∣∣∣ =
∣∣∣∣∫ t2

t1

Re
(
e−iθf(t)

)
dt

∣∣∣∣ ≤ ∫ t2

t1

∣∣Re
(
ei θf(t)

)∣∣ dt ≤ ∫ t2

t1

∣∣f(t)
∣∣ dt ,

since |Re (ei θf(t))| ≤ |eiθf(t)| = |f(t)|.
6.4 Definition: Let α : [t1, t2] ⊂ R→ C. If α is continuous and α′ is piecewise continuous
and bounded, then we call α a path. If, in addition, we have α(t1) = α(t2) then α is called
a loop. The arclength of a path α : [t1, t2]→ C is

L(α) =
∫ t2

t1

|α′(t)| dt .

Since α′ is piecewise continuous and bounded, the arclength exists and is finite.

6.5 Example: Find the arclength of the path α(t) = t2 + i t3, 0 ≤ t ≤ 1.

Solution: L(α) =
∫ 1

0

|α′(t)| dt =
∫ 1

0

|2t + i 3t2| dt =
∫ 1

0

√
4t2 + 9t4 dt =

∫ 1

0

t
√

4 + 9t2 dt

=
∫ 13

4

1
18
√
u du =

[
1
27
u
√
u

]13
4

=
1
27
(
13
√

13− 8
)
.

6.6 Definition: Given a path α : [t1, t2] ⊂ R → C and a piecewise continuous bounded
map f : Image (α) ⊂ C→ C we define∫

α

f =
∫
α

f(z) dz :=
∫ t2

t1

f(α(t))α′(t) dt .

This kind of integral is called a path integral.

6.7 Example: Let c ∈ C and let α be the line segment α(t) = a+(b−a) t, 0 ≤ t ≤ 1. Then∫
α

c dz =
∫ 1

0

c α′(t) dt =
∫ 1

0

c (b − a) dt =
∫ 1

0

Re
(
c (b − a)

)
dt + i

∫ 1

0

Im
(
c (b − a)

)
dt =

Re
(
c (b− a)

)
+ i Im

(
c (b− a)

)
= c (b− a).

6.8 Note: The complex path integral is related to real path integrals in the follow-
ing way. Write z = α(t) = x(t) + i y(t) and f(z) = u(z) + i v(z) with x, y, u, v ∈ R.

Then
∫
α

f(z) dz =
∫ t2

t1

f(α(t))α′(t) dt =
∫ t2

t1

(
u(α(t)) + i v(α(t))

)(
x′(t) + i y′(t)

)
dt =∫ t2

t1

u(α(t))x′(t)− v(α(t))y′(t) dt+ i

∫ t2

t1

v(α(t))x′(t) +u(α(t))y′(t) dt =
∫
α

(u dx− v dy) +

i

∫
α

(v dx + u dy) . This can easily be remembered by defining dz = dx + i dy and then

writing
∫
α

f(z) dz =
∫
α

(u + i v)(dx + i dy) =
∫
α

(u dx − v dy) + i

∫
α

(v dx + u dy). In a

similar way we could define the path integral
∫
α

f(z) dz, where dz = dx− i dy
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6.9 Definition: For a path α : [t1, t2]→ C and a point a ∈ C \ Image (α), we define the
winding number η(α, a) of α about a as follows. We write α as α(t) = a + r(t)ei θ(t)

where r(t) = |α(t) − a| and θ(t) is chosen continuously with 0 ≤ θ(t1) < 2π (it can be
shown that the map θ(t) is uniquely determined), and then we set

η(α, a) =
θ(t2)− θ(t1)

2π
.

If α is a loop then we have α(t1) = α(t2) and so ei θ(t1) = ei θ(t2) and hence θ(t2) − θ(t1)
will be a multiple of 2π. Thus η(α, a) ∈ Z.

6.10 Example: The loop which goes k times around the circle |z − a| = r can be given
parametrically by α(t) = a+ r(t) ei θ(t) with r(t) = r, θ(t) = t and 0 ≤ t ≤ 2πk. We have

η(α, a) =
θ(2πk)− θ(0)

2π
=

2πk − 0
2π

= k.

6.11 Example: It is not hard to find the winding number η(α, a) from a picture of the
path α. For example, for α and a as shown below, we can choose values t = si (as shown)
for which the points α(si) lie on the horizontal and vertical lines through a. From the
picture, we can see that θ(s0) ∼= π

4 , and then θ(t) increases (since we move counterclockwise
around a) with θ(s1) = π

4 , θ(s2) = π, θ(s3) = 3π
2 , θ(s4) = 2π and θ(s5) = 5π

2 , and then θ(t)
reaches its maximum at θ(s6) ∼= 11π

4 and begins to decrease (since we now begin moving
clockwise around a) with θ(s7) = 5π

2 , θ(s8) = 2π) and finally θ(s9) ∼= 7π
4 . Thus we have

η(α, a) =
θ(s9)− θ(s0)

2π
∼=

7π
4 −

π
4

2π
=

3
4

.

y

a

x

6.12 Example: If α is the pretzel curve α(t) = r(t)ei θ(t), where r(t) = (2 + cos 3t) and
θ(t) = 2t with 0 ≤ t ≤ 2π (as shown below), then the winding number of α about 0
is η(α, 0) = θ(2π)−θ(0)

2π = 4π−0
2π = 2. The winding number about other points is hard to

compute from the given equation of α, but is easy to find using a sketch of the curve. For
example we have η(α, 2) = η(α, 2ei 2π/3) = η(α, 2ei 4π/3) = 1 and η(α, 4) = 0.
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6.13 Theorem: For the path α(t) = a+ r(t)ei θ(t), with r(t) > 0 and t1 ≤ t ≤ t2, we have∫
α

dz

z − a
=
[

ln r(t)
]t2
t1

+ i
[
θ(t)

]t2
t1

= ln r(t2)− ln r(t1) + i
(
θ(t2)− θ(t1)

)
.

In particular, when α is a loop we have r(t1) = r(t2) so

η(α, a) =
1

2πi

∫
α

dz

z − a

Proof:
∫
α

dz

z − a
=
∫ t2

t1

r′ei θ + i r θ′ei θ

r ei θ
dt =

∫ t2

t1

r′

r
dt+i

∫ t2

t1

θ′ dt =
[

ln r(t)
]t2
t1

+i
[
θ(t)

]t2
t1

.

6.14 Definition: For a path α : [t1, t2]→ C we define the path α−1 : [t1, t2]→ C by

α−1(t) = α(t1 + t2 − t) ,

so that α and α−1 have the same image, but α−1 traces the image in the oposite direction.
Also, for a path α : [t1, t2] → C and a path β : [t2, t3] → C with α(t2) = β(t2), we define
α ∗ β : [t1, t3]→ C by

α ∗ β(t) =
{
α(t) for t1 ≤ t ≤ t2
β(t) for t2 ≤ t ≤ t3

This path first traces out the image of α then traces out the image of β.

6.15 Theorem:
a) i)

∫
α

c f = c

∫
α

f ii)

∫
α

(f + g) =
∫
α

f +
∫
α

g

b)

∫
α∗β

f =
∫
α

f +
∫
β

f

c) (The Fundamental Theorem of Calculus) Let α : [t1, t2]→ U ⊂ C be a path in U , and

let f be holomorphic in U . Then

∫
α

f ′(z) dz = f(α(t2))− f(α(t1))

d) (The Estimation Theorem) Let L = L(α) be the length of the path α : [t1, t2]→ C and

let M = max
z=α(t)

∣∣f(z)
∣∣. Then

∣∣∣ ∫
α

f(z) dz
∣∣∣ ≤ ∫ t2

t1

∣∣f(α(t))α′(t)
∣∣ dt ≤ML.

e) (Change of Parameter) Let t = t(s) be monotonic and C1. Let β(s) = α(t(s)). Then∫
β

f(z) dz = ±
∫
α

f(z) dz. We use + when t(s1) < t(s2) and we use − when t(s1) > t(s2).

In particular

∫
α

f = −
∫
α−1

f .
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Proof: These all follow immediately from the theorem 6.3. For example to prove part e),
note that since β(s) = α(t(s)) we have β′(s) = α′(t(s))t′(s) and so∫

β

f =
∫ s2

s1

f(β(s))β′(s) ds =
∫ s2

s1

f(α(t(s)))α′(t(s))t′(s) ds =
∫ t(s2)

t(s1)

f(α(t))α′(t) dt

by part e) of the previous theorem. If t(s1) < t(s2) then the integral on the right is equal

to
∫
α

f , but if t(s1) > t(s2) then we will have
∫
α

f =
∫ t(s1)

t(s2)

f(α(t))α′(t) dt.

6.16 Example: Let α be the path α(t) =
(
1 + 3

7 t
)
ei πt for 0 ≤ t ≤ 7

3 . Find
∫
α

zn dz.

Solution: We have α(0) = 1 and α
(

7
3

)
= 2ei π/3. If n 6= 1 then by the FTC we have∫

α

zn dz =
[

1
n+ 1

zn+1

]2eiπ/3
1

=
1

n+ 1

(
2n+1ei (n+1)π/3 − 1

)
. If n = −1 then by theorem

6.13 we have
∫
α

dz

z
=
[

ln(r(t))
]7/3
0

+ i
[
θ(t)

]7/3
0

= ln 2 + i
7π
3

, where r(t) = 1 + 3
7 t and

θ(t) = π t.

6.17 Note: Let U ⊂ C be open, and let α be a path which runs counterclockwise around
the boundary of a closed set E ⊂ U . Recall that Green’s theorem (for real path integrals)
states that if u, v : U ⊂ C→ R are C1 maps, then∫

α

u dx+ v dy =
∫ ∫

E

(vx − uy) dx dy .

Let f : U → C be holomorphic, and let u = Re (f) and v = Im (f). If we suppose that u
and v are C1, then Green’s Theorem and the Cauchy-Riemann equations imply that∫

α

f(z) dz =
∫
α

(u+ i v)(dx+ i dy)

=
∫
α

u dx− v dy + i

∫
α

v dx+ u dy

=
∫ ∫

E

(−vx − uy)dx dy + i

∫ ∫
E

(ux − vy)dx dy

= 0 .

We shall now prove a series of theorems which generalize this result (which is known as
Cauchy’s Theorem) and which do not require the assumption that u and v are C1.
Indeed, we shall be able to show that every holomorphic map is C∞.
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6.18 Definition: Let f, g : U ⊂ C → C. If g′(z) = f(z) for all z ∈ U then we write
g =

∫
f and we say that g is an antiderivative of f in U .

6.19 Example: Since complex functions have the same derivative formulas as real func-
tions, they have the same antiderivative formulas also. For example, we can use Integration
by Parts to get

∫
z ez dz = z ez −

∫
ez dz = (z − 1) ez + c.

6.20 Example: Let Uα =
{
r ei θ|r > 0, α < θ < α + 2π

}
, and let f(z) = 1/z. Then the

antiderivatives of f in Uα are the maps of the form g(z) = log z+c where log z = |z|+i θ(z)
with α < θ(z) < α + 2π. However, f(z) does not have an antiderivative in C∗ because
none of the maps g(z) can be extended continuously to C∗.

6.21 Theorem: If α is a loop in U and if f has an antiderivative in U then

∫
α

f = 0.

Proof: Say α : [t1, t2] → U and say g′ = f in U . Then by the Fundamental Theorem of

Calculus, we have
∫
α

f =
∫
α

g′ = g(α(t2))− g(α(t1)) = 0 since α(t1) = α(t2).

6.22 Example: Let α be any loop in C∗ and let f(z) =
l∑

n=−k
an z

n where k and l are

positive integers and an ∈ C. Show that
∫
α

f(z) dz = 2π i η(α, 0) a−1.

Solution: For n 6= −1, the map zn has an antiderivative in C∗, namely 1
n+1 z

n+1, so for

n 6= −1 we have
∫
α

zn dz = 0. And so

∫
α

l∑
n=−k

an z
n dz =

l∑
n=−k

an

∫
α

zn dz = a−1

∫
α

z−1 dz = a−12π i η(α, 0) .

6.23 Theorem: (Cauchy’s Theorem in a Triangle) Suppose that f : U ⊂ C → C is
holomorphic in U . Let ∆ be a closed solid triangle in U and let α be a loop around the

boundary of the triangle. Then

∫
α

f = 0.

Proof: Let I =
∣∣∫
α
f
∣∣ and set I0 = I, ∆0 = ∆, α0 = α and L0 = L(α). Divide ∆ into

four congruent triangles ∆01, ∆02, ∆03 and ∆04, let α01, . . . , α04 be loops around these
triangles, and let I0j =

∣∣∣∫α0j
f
∣∣∣ for j = 1, 2, 3, 4. Choose k so that I0k is the largest of

these, and then set I1 = I0k, ∆1 = ∆0k, α1 = α0k and L1 = L(α1). Since the triangles
∆0j are half as big as ∆0 we have L0 = 2L1. Also, since I1 ≥ I0j for all j, we have

I0 =
∣∣∣∣∫
α0

f

∣∣∣∣ =

∣∣∣∣∣∣
4∑
j=1

∫
α0j

f

∣∣∣∣∣∣ ≤
4∑
j=1

∣∣∣∣∣
∫
α0j

f

∣∣∣∣∣ =
n∑
j=1

I0j ≤ 4I1 .

Next we subdivide ∆1 into four congruent triangles and repeat the procedure. In this
way we obtain a sequence of congruent triangles ∆0 ⊃ ∆1 ⊃ . . . with a loop αk around
each triangle, and we have I0 ≤ 4I1 ≤ 42I2 ≤ . . . and L0 = 2L1 = 22L2 = . . ., where
Ik =

∣∣∣∫αk f ∣∣∣ and Lk = L(αk). Let a be the (unique) point which lies in all of the ∆k.
(The proof that the point a exists uses the fact that the triangles ∆k are compact).
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Now let ε > 0. Since f is holomorphic at a, we can choose δ so that for |z− a| < δ we
have

∣∣∣f ′(a)− f(z)−f(a)
z−a

∣∣∣ < ε so that
∣∣f(z)−

(
f(a) + f ′(a)(z − a)

)∣∣ < ε|z−a|. Choose N so
that for n ≥ N we have ∆n ⊂ D(a, δ), and note that for all z ∈ ∆n we have |z−a| ≤ Ln. So
for z ∈ ∆n we have |z−a| < δ which implies

∣∣f(z)−
(
f(a) + f ′(a)(z − a)

)∣∣ < ε|z−a| < εLn.
Since f(a) + f ′(a)(z − a) has an antiderivative, namely f(a) z + f ′(a)( 1

2z
2 − az), we know

that
∫
αn
f(a) + f ′(a)(z − a) dz = 0. Using the Estimation Theorem we obtain

In =
∣∣∣∣∫
αn

f(z) dz
∣∣∣∣ =

∣∣∣∣∫
αn

f(z)−
(
f(a) + f ′(a)(z − a)

)
dz

∣∣∣∣ ≤MnLn ≤ ε Ln2 = ε
L0

2

4n
,

where Mn = max
z=α(t)

(
f(z) − (f(a) + f ′(a)(z − a)

)
. Thus I0 ≤ 4nIn ≤ εL0

2. Since ε was

arbitrary, we must have I0 = 0.
In the picture below, ∆1 = ∆04, ∆2 = ∆11 and ∆3 = ∆22.

∆0

∆01

∆03

∆02

∆12

∆13
∆14

6.24 Theorem: (Cauchy’s Theorem in a Convex Region) Suppose that f : U ⊂ C → C
is holomorphic in U , where U is open and convex. Then f has an antiderivative in U .

Consequently,

∫
α

f = 0 for all loops α in U .

Proof: Choose any point a ∈ U . For each z ∈ U set g(z) =
∫
α

f where α is the line

segment from a to z (that is α(t) = a+ (z − a) t , 0 ≤ t ≤ 1). We claim that g′(z) = f(z)
for all z ∈ U . Indeed, given h ∈ C (small enough so that z + h ∈ U) we let β be the
line segment from z to z + h and we let γ be the line segment from z + h to a, so by the
definition of g we have g(z+h) =

∫
γ−1 f = −

∫
γ
f , and by Cauchy’s Theorem in a Triangle

we have
∫
α
f +

∫
β
f +

∫
γ
f = 0, and so∣∣∣∣f(z)− g(z + h)− g(z)
h

∣∣∣∣ =
∣∣∣∣f(z) +

1
h

(∫
α

f(w) dw +
∫
γ

f(w) dw
)∣∣∣∣

=
∣∣∣∣f(z)− 1

h

∫
β

f(w) dw
∣∣∣∣

=
∣∣∣∣ 1h
∫
β

f(z) dw − 1
h

∫
β

f(w) dw
∣∣∣∣

=
∣∣∣∣ 1h
∫
β

f(z)− f(w) dw
∣∣∣∣

≤ max
w=β(t)

∣∣f(z)− f(w)
∣∣ .

As h→ 0 we have w = β(t)→ z and so |f(z)− f(w)| → 0, since f is continuous.
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6.25 Definition: Let α, β : [t1, t2] → U ⊂ C be paths with α(t1) = β(t1) = a and
α(t2) = β(t2) = b. A path-homotopy (or deformation of paths) from α to β in U is
a continuous map F : [t1, t2] × [0, 1] → U such that F (t, 0) = α(t) and F (t, 1) = β(t) for
all t, and also F (t1, s) = a and F (t2, s) = b for all s. If such a homotopy exists, then we
say that α is (path)-homotopic to β in U and we write α ∼= β. Note that for each fixed
s, Fs(t) := F (t, s) is a continuous curve from a to b.

F

a

α

β b

6.26 Example: In a convex set U we can find a path-homotopy between any two paths
α, β : [t1, t2] → U with α(t1) = β(t1) and α(t2) = β(t2). Indeed, we can take F (t, s) =
α(t) + s

(
β(t)− α(t)

)
.

6.27 Example: In C∗, the maps α, β : [0, π] → C∗ given by α(t) = ei t and β(t) = e−i t

are not homotopic. This follows from the following version of Cauchy’s theorem.

6.28 Theorem: (Cauchy’s Theorem for Paths) If f is holomorphic in U and if α ∼= β in

U then

∫
α

f =
∫
β

f .

Proof: Say α, β : [p, q] → U . Choose an path-homotopy F : [p, q] × [0, 1] → U from α to
β in U . Choose partitions p = t0 < t1 < . . . tk = q and 0 = s1 < s2 < . . . sl = 1 with the
property that if ij = {F (t, s)|ti−1 ≤ t ≤ ti, sj−1 ≤ s ≤ sj} then each ij is contained in
a convex set (a disc if you like) which is contained in U . (To prove that such partitions
can be found, you must use the fact that [p, q] × [0, 1] is compact). For each i and j, let
αi : [ti−1, ti] → U be a segment of the path α, let βi : [ti−1, ti] → U be a segment of β,
let ai be the line segment from α(ti−1) to α(ti), let bi be the line segment from β(ti−1) to
β(ti), and let γij be the loop around the polygon with vertices at F (ti−1, sj−1), F (ti, sj−1),
F (ti, sj) and F (ti−1, sj). Then by Cauchy’s Theorem for convex sets, we have∫

αi

f =
∫
ai

f ,

∫
βi

f =
∫
bi

f and
∫
γi

f = 0 .

When we consider all of the paths ai−1, bi and γij , every line segment occurs twice, once
in each direction, and so the path integrals all cancel with each other to give

0 =
∑
i

∫
bi

f −
∑
i

∫
ai

f +
∑
i,j

∫
γij

f

=
∑
i

∫
βi

f −
∑
i

∫
αi

f

=
∫
β

f −
∫
α

f
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F

α1

b1

a1

β1

β2

b2

γ22

a2

α2

b3

a3

β3

α3

6.29 Example: Let α, β : [0, π]→ C∗ be given by α(t) = ei t and β(t) = e−i t. Show that
α and β are not homotopic in C∗.

Solution: Let f(z) = 1/z. Then f is holomorphic in C∗ and we have
∫
α
f = i π and∫

β
f = −i π. Since

∫
α
f 6=

∫
β
f we know that α is not homotopic to β.

6.30 Definition: Let α, β : [t1, t2] → U ⊂ C be loops in U . A loop-homotopy (or
deformation of loops) from α to β in U is a continuous map F : [t1, t2]× [0, 1]→ U such
that F (t, 0) = α(t) and F (t, 1) = β(t) for all t and F (t1, s) = F (t2, s) for all s. If such a
homotopy exists then we say that α is (loop)-homotopic to β in U and we write α ∼ β.

β

F
α

6.31 Example: In a convex set U , any two loops are homotopic. Indeed, given loops
α, β : [t1, t2]→ U we can take F (t, s) = α(t) + s

(
β(t)− α(t)

)
.

6.32 Theorem: (Cauchy’s Theorem for Loops) If f is holomorphic in U and if α ∼ β
then

∫
α
f =

∫
β
f .

Proof: The proof is the same as the proof of Cauchy’s theorem for paths.

6.33 Example: Let α, β : [t1, t2] → C∗ be loops. Show that if η(α, 0) 6= η(β, 0) then α
and β are not homotopic in C∗.

Solution: Let f(z) = 1/z. Then f is holomorphic and we have
∫
α
f = 2π i η(α, 0) and∫

β
f = 2π i η(β, 0), so if η(α, 0) 6= η(β, 0) then α and β cannot be homotopic in C∗.

6.34 Definition: A set U ⊂ C is called simply connected if any two loops α, β :
[t1, t2] → U are homotopic in U . Roughly speaking, a connected set will be simply con-
nected if it doesn’t have any holes in it.

6.35 Example: Any convex set is simply connected, but C∗ is not.
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6.36 Theorem: (Cauchy’s Theorem in a Simply Connected Region) If U is a simply

connected open set and if f is holomorphic in U then

∫
α

f = 0 for any loop α in U .

Proof: Since U is simply connected, any loop α : [t1, t2] → U will be homotopic to the

constant loop e given by e(t) = α(t1) for all t, so
∫
α

f =
∫
e

f =
∫ t2

t1

f(α(a))e′(t) dt = 0

since e′(t) = 0.

6.37 Theorem: (Cauchy’s Integral Formulas) Let U be a convex open set, let f be
holomorphic in U and let α be a loop in U . Then for any point a ∈ U \ Image (α) we have

a) 2π i η(α, a) f(a) =
∫
α

f(z)
z − a

dz .

b) All the derivatives f (n)(a) exist, and 2π i η(α, a) f (n)(a) = n!
∫
α

f(z)
(z − a)n+1

dz .

Proof: First we prove part a). For any ε > 0, let αε denote the path αε(t) = a+ε(α(t)−a).
Note that α ∼ αε in the set U \{a}, indeed a homotopy is given by F (t, s) = α(t)+s(αε(t)−

α(t)). Also note that the map
f(z)− f(a)

z − a
is holomorphic in U \ {a}. So we have

∣∣∣∣ ∫
α

f(z)
z − a

dz − 2π i η(α, a) f(a)
∣∣∣∣ =

∣∣∣∣∫
α

f(z)
z − a

dz −
∫
α

f(a)
z − a

dz

∣∣∣∣
=
∣∣∣∣∫
α

f(z)− f(a)
z − a

dz

∣∣∣∣
=
∣∣∣∣∫
αε

f(z)− f(a)
z − a

dz

∣∣∣∣
≤Mε L(αε) ,

where Mε = max
z=αε(t)

∣∣∣∣f(z)− f(a)
z − a

∣∣∣∣. As ε→ 0 we have
f(z)− f(a)

z − a
→ f ′(a) so Mε → |f ′(a)|,

and also L(αε) = ε L(α)→ 0
Next we prove part b) using induction. Suppose that

2π i η(α, a) f (n)(a) = n!
∫
α

f(z)
(z − a)n+1

dz

Then we have

2π i η(α, a)
(
f (n)(a+ h)− f (n)(a)

h

)
=
n!
h

∫
α

f(z)
(z − (a+ h))n+1

− f(z)
(z − a)n+1

dz

=
n!
h

∫
α

f(z)
(

1
(z − (a+ h))n+1

− 1
(z − a)n+1

)
dz

=
(n+ 1)!

h

∫
α

f(z)
∫
λ

1
(z − w)n+2

dw dz ,
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where λ is the line segment from a to a+ h. So we have

L :=
∣∣∣∣2π i η(α, a)

f (n)(a+ h)− f (n)(a)
h

− (n+ 1)!
∫
α

f(z)
(z − a)n+2

dz

∣∣∣∣
=
∣∣∣∣ (n+ 1)!

h

(∫
α

f(z)
∫
λ

1
(z − w)n+2

dw dz − h
∫
α

f(z)
(z − a)n+2

)
dz

∣∣∣∣
=
∣∣∣∣ (n+ 1)!

h

∫
α

f(z)
(∫

λ

1
(z − w)n+2

dw − h 1
(z − a)n+2

)
dz

∣∣∣∣
=
∣∣∣∣ (n+ 1)!

h

∫
α

f(z)
∫
λ

1
(z − w)n+2

− 1
(z − a)n+2

dw dz

∣∣∣∣
=
∣∣∣∣ (n+ 2)!

h

∫
α

f(z)
∫
λ

∫
τ

1
(z − u)n+3

du dw dz

∣∣∣∣ ,
where τ is the line segment from a to w. Choose r > 0 so that D(a, 2r) ⊂ U \ Image (α),
and let |h| < r. For w ∈ Image (λ) and u ∈ Image (τ) we have w between a and a+h, and

u between a and w, so u ∈ D(a, r), and so we have |z − u| ≥ r hence
1

|z − u|
≤ 1
r

. By the

estimation theorem, L ≤ (n+ 2)!
|h|

L(α) max
z=α(t)

|f(z)| |h| |h| 1
rn+3

→ 0 as |h| → 0.

6.38 Example: Let α(t) = 2 ei t for 0 ≤ t ≤ 2π and let f(z) =
z + 1
z2 + 1

. Find
∫
α

f(z) dz.

Solution: We shall find the integral in several ways. First, we shall use partial fractions. To

write
z + 1
z2 + 1

=
z + 1

(z + i)(z − i)
in the form

A

z + i
+

B

z − i
we need A(z− i)+B(z+ i) = z+1

for all z. Setting z = i gives B(2i) = i + 1 so B =
i+ 1

2i
=
i− 1

2
. Setting z = −i gives

A(−2i) = −i+1 so A =
−i+ 1
−2i

=
1 + i

2
. And so we have

∫
α

z + 1
z2 + 1

dz =
1 + i

2

∫
α

dz

z + i
+

1− i
2

∫
α

dz

z − i
=

1 + i

2
2π i η(α,−i) +

1− i
2

2π i η(α, i) =
1 + i

2
2π i +

1− i
2

2π i = π (i −

1) + π (i+ 1) = 2π i.

Now we shall find the integral again by immitating the proof of Cauchy’s integral
formula. Notice that f is holomorphic except at z = ±i. Let α1 be the loop around the
top half of the circle, and let α2 be the loop around the bottom half, to be explicit, we

take α1(t) =
{

2 ei t for 0 ≤ t ≤ π
2
π t− 3 for π ≤ t ≤ 2π

and α2(t) =
{

1− 2
π t for 0 ≤ t ≤ π

2 ei π for π ≤ t ≤ 2π
and then we

will have
∫
α
f =

∫
α1
f +

∫
α2
f . Next we deform the paths α1 and α2 into the circular paths

σ1 and σ2, where σ1(t) = i+ r ei t and σ2(t) = −i+ r ei t for 0 ≤ t ≤ 2π, where 0 < r < 1.

We have
∫
α1

f =
∫
σ1

f =
∫ 2π

0

f(σ1(t))σ1
′(t) dt =

∫ 2π

0

1 + i+ r ei t

−1 + 2i reit + r2ei 2t + 1
i reit dt

→
∫ 2π

0

1 + i

2
dt = π(1 − i) as r → 0, and we have

∫
α2

f =
∫
σ2

f =
∫ 2π

0

f(σ2(t))σ2
′(t) dt

=
∫ 2π

0

1− i+ r eit

−2i reit + r2ei 2t
i reit dt→

∫ 2π

0

1− i
−2

dt = π (i− 1) as r → 0. So
∫
α

f = 2π i.
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Finally, we shall compute the integral a third time using Cauchy’s formula. Taking

α1 and α2 as above, we have
∫
α1

f =
∫
α1

(z + 1)/(z + i)
z − i

dz =
∫
α1

F (z)
z − i

dz = 2π i F (i) =

2π i
i+ 1

2i
= π(i+ 1), where F (z) = (z + 1)/(z + i), and

∫
α2

f =
∫
α2

(z + 1)/(z − i)
z + i

dz =∫
α2

G(z)
z + i

dz = 2π iG(−i) = 2π i
1− i
−2i

= π (i− 1), where G(z) = (z+ 1)/(z− i). Again we

obtain
∫
α

f = 2π i.

6.39 Example: Let α(t) = 2 ei t for 0 ≤ t ≤ 2π, and let f(z) =
ez

z2 − 1
. Find

∫
α
f .

Solution: Of the three methods we used above, only the third works here. Notice that f
is holomorphic except at z = ±1. Let α1 be the loop around the right half of the circle,
and let α2 be the loop around the left half, so we have

∫
α
f =

∫
α1
f +

∫
α2
f . Deform

α1 and α2 to the circles σ1 and σ2 with σ1(t) = 1 + reit and σ2(t) = −1 + reit. Then

we have
∫
α1

f =
∫
α1

ez/(z + 1)
z − 1

dz =
∫
α1

F (z)
z − 1

dz = 2π i F (1) = 2π i
e

2
= i π e, and∫

α2

f =
∫
α2

ez/(z − 1)
z + 1

dz =
∫
α2

G(z)
z + 1

dz = 2π iG(−1) = 2π i
e−1

−2
= −iπe−1. So the

integral of f over α is equal to i π
(
e− i

e

)
.

6.40 Example: Let α(t) = 2 eit for 0 ≤ t ≤ 2π and let f(z) =
z + 1

z3(z − 1)2
. Find

∫
α

f .

Solution: We shall solve this integral using two methods. First we use partial fractions.

To write f in the form
z + 1

z3(z − 1)2
=
A

z
+
B

z2
+
C

z3
+

D

z − 1
+

E

(z − 1)2
we need to have

Az2(z − 1)2 + Bz(z − 1)2 + C(z − 1)2 + Dz3(z − 1) + Ez3 = z + 1 for all z. Equating
coefficients gives fives 5 equations: A + D = 0, −2A + B −D + E = 0, A− 2B + C = 0,
B − 2C = 1 and C = 1. Solving these gives A = 5, B = 3, C = 1, D = −5 and E = 2. So∫
α

f =
∫
α

5
z

+
3
z2

+
1
z3
− 5
z − 1

+
2

(z − 1)2
dz = 2π i

(
5η(α, 0)− 5η(α, 1)

)
= 2π i(5− 5) = 0.

Now we compute the integral again using Cauchy’s formulas. Notice that f is holo-
morphic except at z = 0, 1. Let α1 be the loop around the portion of the circle which lies to
the right of the line y− 1

2 and let α0 be the loop around the portion to the left of y = 1
2 , so

that
∫
α
f =

∫
α1
f+
∫
α0
f . We have

∫
α0

f =
∫
α0

(z + 1)/z3

(z − 1)2
dz =

∫
α0

F (z)
z3

dz =
2π i
2!

F ′′(0).

From F (z) =
z + 1

(z − 1)3
, we calculate F ′(z) =

−z − 3
(z − 1)3

and F ′′(z) =
2z + 10
(z − 1)4

to get

F ′′(0) = 10, so we have
∫
α1

f = 10π i. Also,
∫
α1

f =
∫
α1

(z + 1)/z3

(z − 1)2
dz =

∫
α1

G(z)
(z − 1)2

dz =

2π i
1!

G′(1). From G(z) =
z + 1
z3

we find G′(z) =
−2z − 3
z4

to get G′(1) = −5, so we have∫
α2

f = −10π i. Again we obtain
∫
α

f = 0.
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6.41 Theorem: (Liouville’s Theorem) If f : C→ C is holomorphic and bounded, then f
is constant.

Proof: Suppose that f is holomorphic in C with |f(z)| ≤M for all z. Let a and b be any
two distinct points in C. Let α(t) = a+ r|b− a|eit for 0 ≤ t ≤ 2π, where r > 1. Then

∣∣f(a)− f(b)
∣∣ =

∣∣∣∣ 1
2π i

∫
α

f(z)
z − a

− f(z)
z − b

dz

∣∣∣∣
=

1
2π

∣∣∣∣∫
α

f(z)
a− b

(z − a)(z − b)
dz

∣∣∣∣
≤ 1

2π
2π r|b− a|M |b− a| 1

r|b− a|
1

(r − 1)|b− a|

=
M

r − 1
→ 0 as r →∞ .

6.42 Theorem: (The Fundamental Theorem of Algebra) Every non-constant polynomial
has a root in C.

Proof: Suppose that p is a non-constant polynomial with no roots. Since p is a non-
constant polynomial, we have p(z)→∞ as z →∞, and so we can choose R large enough
that when |z| ≥ R we have |p(z)| ≥ 1 and so 1/|p(z)| ≤ 1. Note that since p has no roots,
1/p is holomorphic in C. In particular, 1/p is continuous in D(0, R) and so it attains its
maximum value. Since 1/p is bounded in D(0, R) and |1/p| ≤ 1 outside D(0, R), we know
that 1/p is bounded in C. By Liouville’s Theorem, 1/p must be a constant. But this would
imply that p is constant.
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Chapter 7. Power Series

7.1 Definition: A sequence of complex numbers is a function α :{k, k+1, k+2 . . .} → C.
We usually write an = α(n) and {an|n ≥ k} = α or simply {an} = α. We say that the
sequence {an} converges to a ∈ C and write

lim
n→∞

an = a or an → a

if for all ε > 0 there exists N ∈ Z such that n ≥ N ⇒ an ∈ D(a, ε). If the sequence
converges to some a ∈ C, then we say it converges, otherwise we say it diverges. We
say that the sequence {an} diverges to ∞, and write

lim
n→∞

an =∞ or an →∞

if for all R > 0 there exists N ∈ Z such that n ≥ N ⇒ an /∈ D(0, R).

7.2 Example: If an = 1/n then an → 0. If bn = 2 +
(

1
2 (1 + i)

)n then bn → 2. If
cn = (1 + i)n then cn →∞. If dn = in then {dn} diverges.

7.3 Theorem: Let {an} and {bn} be sequences of complex numbers, and let c ∈ C.
a) Write an = xn + i yn and a = x+ i y. Then an → a if and only if (xn → x and yn → y).
b) If an → a and bn → b then

i) (c an)→ c a
ii) (an ± bn)→ a± b
iii) (anbn)→ ab
iv) (an/bn)→ a/b, provided that b 6= 0 (and hence bn 6= 0 for large n)
v) |an| → |a|

All parts (suitably modified) hold for sequences in Rn except parts a)iii) and iv).

Proof: We shall only show how to prove parts a) and b)iii) (the proofs of the other parts
are similar).

To prove part a), suppose first that an → a. Note that (xn − x) = Re (an − a) so
|xn − x| ≤ |an − a|. So given ε > 0 we choose N ∈ Z so that n ≥ N ⇒ |an − a| < ε,
and then for n ≥ N we have |xn − x| ≤ |an − a| < ε. This shows that xn → x. Similarly,
we can show that yn → y. Next we suppose that xn → x and that yn → y. By the
triangle inequality we have |an − a| ≤ |xn − x|+ |yn − y|. So given ε > 0 we choose N ∈ Z
so that n ≥ N ⇒

(
|xn − x| < 1

2ε and |yn − y| < 1
2ε
)
. Then for n ≥ N we will have

|an − a| ≤ |xn − x|+ |yn − y| < ε. This shows that an → a.
We shall now use part a), together with known results about sequences of real numbers,

to prove part b)iii). We write an = xn+ i yn, a = x+ i y, bn = un+ i vn and b = u+ i v. We
suppose that an → a and bn → b so that from part a) we have xn → x, yn → y, un → u
and vn → v. We have anbn = (xn + i yn)(un + i vn) = (xnun − ynvn) + i (xnvn + ynun).
From our knowlege of sequences of real numbers, we know that (xnun − ynvn)→ xu− yv
and that (xnvn + ynun) → xv − yu, and so using part a) again, we see that anbn =
(xnun − ynvn) + i (xnvn + ynun)→ (xu− yv) + i (xv + yu) = ab.
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7.4 Definition: We write
∞∑
n=0

an to denote the sequence {sn} where sn =
n∑
i=0

ai. This

kind of sequence is called a series, and the finite sums sn are called the partial sums.
We say the series

∑
an converges or diverges according to whether the sequence {sn}

converges or diverges. We also write
∞∑
n=0

an to denote the limit of {sn}, if it exists, and we

call the limit the sum of the series. If sn → s then we write
∞∑
n=0

an = s. The series
∑
an

is said to converge absolutely if the series
∑
|an| converges.

7.5 Theorem: a) i)
∑
c an = c

∑
an ii)

∑
(an + bn) =

∑
an +

∑
bn

b) If
∑
an converges then |an| → 0.

c) If
∑
|an| converges then

∑
an converges and |

∑
an| ≤

∑
|an|.

d) (The Ratio Test)

i) If lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1 then
∑
|an| converges.

ii)If ∃N ∈ Z s.t. n ≥ N ⇒
∣∣∣an+1

an

∣∣∣ ≥ 1 then |an| 6→ 0 and so
∑
an diverges.

e) (The Root Test)

i) If lim
n→∞

n
√
|an| < 1 then

∑
|an| converges and so

∑
an converges, too.

ii) If ∃N ∈ Z s.t. n ≥ N ⇒ n
√
|an| ≥ 1 then |an| 6→ 0 and so

∑
an diverges.

Proof: We shall only prove the ratio test here. Suppose first that lim
n→∞

∣∣∣an+1

an

∣∣∣ = p < 1.

Choose r with p < r < 1. Choose N such that for n ≥ N we have
∣∣∣an+1

an

∣∣∣ ≤ r. Then we

have |aN+1| ≤ r|aN |, aN+2 ≤ r|aN+1| ≤ r2|aN |, |aN+3| ≤ r|aN+2| ≤ r3|aN | and so on.

Hence
∞∑
n=0
|an| ≤ |a0| + · · · + |aN−1| + |aN | (1 + r + r2 + r3 + · · ·) so it converges (by the

comparison test for series of positive real numbers).
On the other hand, if we suppose that there exists N ∈ Z such that for n ≥ N we

have
∣∣∣an+1

an

∣∣∣ ≥ 1 the we have |aN | ≤ |aN+1| ≤ |aN+2| ≤ · · · and so |an| 6→ 0.

7.6 Example: The sum
∞∑
n=0

1
(n+ i)2

converges by part c) since for n ≥ 2 we have

|n+ i| ≥ n− 1 so
∣∣∣∣ 1
(n+ i)2

∣∣∣∣ ≤ 1
(n− 1)2

, and we know that
∑ 1

(n− 1)2
converges.

7.7 Definition: A power series centred at a ∈ C is a series of the form
∞∑
n=0

cn(z−a)n,

where cn ∈ C. A power series is a series for each value of z ∈ C. It will converge for
certain values of z and diverge for others.

7.8 Example: The geometric series
∞∑
n=0

zn = 1 + z + z2 + · · · is a power series centred at

a=0. Its partial sums are given by sn =
n∑
i=0

zn =
1− zn+1

1− z
. For |z| < 1 we have zn → 0 as

n→∞ and so sn →
1

1− z
hence

n∑
n=0

zn =
1

1− z
. On the other hand, for |z| ≥ 1 we have

|zn| ≥ 1 for all n so |zn| 6→ 0 and hence
∞∑
n=0

zn diverges.
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7.9 Theorem: Let
∞∑
n=0

cn(z − a)n be a power series.

a) There exists a number R with 0 ≤ R ≤ ∞, called the radius of convergence of the
power series, such that

i) if |z − a| < R then
∑
cn(z − a)n converges absolutely.

ii) if |z − a| > R then |cn(z − a)n| 6→ 0 and so
∑
cn(z − a)n diverges.

b) The power series
∑
n cn(z − a)n−1 has the same radius of convergence.

c) If R > 0 then the function f defined by f(z) =
∞∑
n=0

cn(z − a)n for z ∈ D(a,R) is

holomorphic with f ′(z) =
∞∑
n=1

n cn(z − a)n−1 and
∫
f = c+

∞∑
n=0

1
n+1 cn(z − a)n+1.

d) The function f(z) as above has derivatives of all orders and cn =
f (n)(a)
n!

, so we have

f(z) =
∞∑
n=0

f (n)(a)
n!

(z − a)n.

e) If
∑
bn(z − a)n =

∑
cn(z − a)n for all z ∈ D(a,R) then we have bn = cn for all n.

Proof: We shall give the proof in the case that a = 0.

To prove part a), we shall show that if
∞∑
n=0

cnw
n converges, where w ∈ C then

∞∑
n=0

cnz
n

converges absolutely for all z with |z| < |w|. So we suppose that
∑
cnw

n converges and
that |z| < |w|. Since

∑
cnw

n converges, we know that |cnwn| → 0 as n → ∞ and so we

can choose M > 0 so that M ≥ |cnwn| for all n. Then we have |cnzn| =
∣∣∣cnwn zn

wn

∣∣∣ =

|cnwn|
∣∣∣ zn
wn

∣∣∣ ≤ M
∣∣∣ z
w

∣∣∣n. Since
∣∣∣ z
w

∣∣∣ < 1, the series
∞∑
n=0

M
∣∣∣ z
w

∣∣∣ converges and hence the

series
∞∑
n=0
|cnzn| converges too (by the comparison test for series of positive real terms).

The radius of convergence is R = max
{
|w|
∣∣w ∈ C,

∑
cnw

n converges
}

. If R = ∞ then
the series converges for all z.

Next we prove part b). Let R be the radius of convergence of the series
∑
cnz

n and
let S be the radius of convergence of the series

∑
n cnz

n−1. First we show that R ≥ S.
If S 6= 0 then let z be any point with |z| < S. Then by part a), the series

∑
|n cnzn−1|

converges, and so
∑
|cnzn−1| =

∑
1
n |n cnz

n−1| also converges by comparison, and hence∑
|cnzn| = |z|

∑
|cnzn−1| also converges. This implies that R ≥ |z|. Since z was arbitrary,

we have R ≥ S.
It is a bit harder to show that R ≤ S. If R 6= 0 then let z be any point with

0 < |z| < R. Choose ρ > 0 with |z| < ρ < R. We have |n cnzn−1| =
n

|z|
(
|z|/ρ

)n|cnρn|.
The series (of positive real terms)

∑
n
(
|z|/ρ

)n converges by the Ratio Test, so we know
that n

(
|z|/ρ

)n → 0 and hence we can choose M > 0 so that M ≥ n
(
|z|/ρ

)n for all n. Then

we have |n cnzn−1| ≤ M

|z|
|cnρn|. Since ρ < R we know that the series

∑
|cnρn| converges,

so the series
∑

M
|z| |cnρ

n| = M
|z|
∑
|cnρn| also converges, and hence the series

∑
|n cnzn−1|

also converges by comparison. Thus S ≥ |z|, and since z was arbitrary, S ≥ R.

Now we prove part c). Let f(z) =
∞∑
n=0

cnz
n and let g(z) =

∞∑
n=1

n cnz
n−1 for all

z ∈ D(0, R). We claim that f ′(z) = g(z). Given z ∈ D(0, R) choose ρ > 0 with |z| < ρ < R.
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Then for |w| < ρ we have∣∣∣∣f(w)− f(z)
w − z

− g(z)
∣∣∣∣ =

∣∣∣∣ ∞∑
n=2

cn

(wn − zn
w − z

− n zn−1
)∣∣∣∣

=
∣∣∣∣ ∞∑
n=2

cn
(
wn−1 + wn−2z + · · ·+ w zn−2 + zn−1 − n zn−1

)∣∣∣∣
=
∣∣∣∣ ∞∑
n=2

cn(w − z)
(
wn−2 + 2wn−3z + +3wn−4z2 + · · ·+ (n− 1)zn−2

)∣∣∣∣
≤
∞∑
n=2

|cn||w − z|
(
|w|n−2 + 2 |w|n−3z + · · ·+ (n− 1)|z|n−2

)
≤
∞∑
n=2

|cn||w − z|ρn−2
(
1 + 2 + · · ·+ (n− 1)

)
=
|w − z|

2

∞∑
n=0

n(n− 1) |cn| ρn−2 .

But notice that by part b), the series
∑
cnz

n,
∑
n cnz

n−1 and
∑
n(n− 1) cnzn−2 all have

the same radius of convergence R and so since ρ < R we know that
∑
n(n − 1)|cn| ρn−2

converges. Thus |w − z| 12
∑
n(n− 1)|cn|ρn−2 → 0 as w → z. This proves part c).

Part d) follows from part c). If f(z) = c0 + c1z + c2z
2 + c3z

3 + · · · then we have
f ′(z) = c1 +2 c2z+3 c3z2 +4 c4z3 + · · ·, f ′′(z) = 2 ·1 c2 +3 ·2 c3z+4 ·3 c4z2 +5 ·4 c5z3 + · · ·
and f ′′′(z) = 3 · 2 · 1 c3 + 4 · 3 · 2 c4z + 5 · 4 · 3 c5z2 + · · · and so on, and we have f(0) = c0,
f ′(0) = 1 c1, f ′′(0) = 2! c2, f ′′′(0) = 3! c3 and so on. Using induction you can show that
f (n)(0) = n! cn.

Finally, part e) follows immediately from part d).

7.10 Theorem: (Taylor’s Theorem) If f(z) is holomorphic in D(a,R) and 0 < r < R ≤ ∞
then

f(z) =
∞∑
n=0

cn(z − a)n where cn =
f (n)(a)
n!

=
1

2πi

∫
σ

f(z)
(z − a)n+1

dz ,

where σ is the circle σ(t) = a+ r ei t with 0 ≤ t ≤ 2π.

Proof: We give the proof in the case that a = 0. Fix z ∈ D(0, R) and choose r with
|z| < r < R. Then by Cauchy’s integral formula,

f(z) =
1

2π i

∫
σ

f(w)
w − z

dw

=
1

2π i

∫
σ

f(w)
1
w

1
1− (z/w)

dw

=
1

2π i

∫
σ

f(w)
1
w

(
1 +

z

w
+
( z
w

)2

+ · · ·+
( z
w

)N−1

+
(z/w)N

1− (z/w)

)
dw

=
N−1∑
n=0

1
2π i

∫
σ

f(w)
wn+1

zn dw +
1

2π i

∫
σ

f(w)(z/w)N

w − z
dw

=
N−1∑
n=0

f (n)(0)
n!

zn +RN ,
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where RN =
1

2π i

∫
σ

f(w)(z/w)N

w − z
dw. Setting M = max

w=σ(t)
|f(w)|, the estimation theorem

gives |RN | ≤
1

2π
M(|z|/r)N

(r − |z|)
2πr. Since |z| < r, we have RN → 0 as N →∞

7.11 Example: The elementary complex functions have the same derivative formulas as
their real counterparts, and so they have the same Taylor series centred at the origin (or
centred at any real number). For all z ∈ C we have

ez =
∞∑
n=0

zn

n!

sin z =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
cos z =

∞∑
n=0

(−1)n
z2n

(2n)!

sinh z =
∞∑
n=0

z2n+1

(2n+ 1)!
cosh z =

∞∑
n=0

z2n

(2n)!

For |z| < 1 we have

1
1− z

=
∞∑
n=0

zn
1

1 + z
=
∞∑
n=0

(−1)n zn
1

1 + z2
=
∞∑
n=0

(−1)n z2n

When |z| < 1, the principal branch of logarithm and inverse tangent are given by

log(1− z) = −
∞∑
n=1

zn

n
log(1 + z) =

∞∑
n=1

(−1)n+1 z
n

n

tan−1(z) =
∞∑
n=0

(−1)n
z2n+1

2n+ 1

For |z| < 1 and for a ∈ R, the principal branch of (1 + z)a is given by

(1 + z)a =
∞∑
n=0

(a
n

)
zn = 1 + a z +

a(a− 1)
2!

z2 +
a(a− 1)(a− 2)

3!
z3 + · · ·

This last power series is called the Binomial series.

7.12 Note: We should point out two important differences between Taylor series of com-
plex functions and Taylor series of real functions. The first difference is that holomorphic
functions are always equal to their Taylor series. This is not the case for real C∞ func-

tions. The standard example is the real function f(x) =
{
e−1/x2 , x 6=0
0 , x=0 . This function is

C∞ at x = 0, but all its derivatives vanish so its Taylor series is equal to 0. The second
difference we would like to mention is that a real function might be C∞ in a large interval
while its Taylor series might converge only in a small interval, but notice that if a function
is holomorphic in a disc, then its Taylor series will converge in that disc. An example
which illustrates this difference is the real function f(x) = 1/(1 + x2). This function is
C∞ for all x, but its Taylor series only converges for |x| < 1. The reason for this is
that when we extend f to the complex numbers, so f(z) = 1/(1 + z2), then we find that

f(z) =
1

(z − i)(z + i)
so that f is holomorphic in C \ {±i}. The radius of convergence is

equal to 1 because the disc D(0, 1) is the largest disc (centred at 0) which can be contained
in the domain of f(z).
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7.13 Note: If f and g are both holomorphic at a then The product fg will also be
holomorphic at a. The coefficients of the Taylor series of fg at a are given by (fg)(n)(a)/n!,
and so they can be computed, using the product rule, from the coefficients of the Taylor
series for f and for g. One can show that the Taylor series at a for fg is obtained from the
Taylor series at a of f and of g by multiplying the power series together as if they were
polynomials. We have( ∞∑

n=0

an(z − a)n
)( ∞∑

n=0

bn(z − a)n
)

=
∞∑
n=0

(
n∑
i=0

aibn−i

)
zn

Also, if f and g are holomorphic at a and g(a) 6= 0, then we can solve the equation
hg = f for h to obtain the Taylor series of h = f/g centred at a from the Taylor series of
f and of g. This is equivalent to calculating f/g using long division as if the power series
were polynomials.

Also, if f is holomorphic at a and g is holomorphic at b = f(a) then the composite
g ◦ f is holomorphic at a and hence has a Taylor series centred at a. Using the chain rule,
one can show that the Taylor series for g◦f at a can be computed by composing the Taylor
series of g at b with that of f at a as if the power series were polynomials.

7.14 Example: Find the Taylor series at 0 for f(z) =
1

(1− z)2
.

Solution: We give several solutions. But first we note that since f(z) is holomorphic in
C \ {1}, we know that the Taylor series at 0 converges in D(0, 1).

For our first solution, we calculate the derivatives: f(z) = (1−z)−2, f ′(z) = 2(1−z)−3,
f ′′(z) = 3!(1− z)−4, and so on. So f(0) = 1, f ′(0) = 2, f ′′(0) = 3 and so on. Thus

f(z) = f(0) +
f ′(0)

1!
z +

f ′′(0)
2!

z2 +
f ′′′(0)

3!
z3 + · · · = 1 + 2z + 3z2 + 4z3 + · · ·

Our second solution uses the Binomial series:

f(z) = (1− z)−2 = 1 +
−2
1!

(−z)1 +
(−2)(−3)

2!
(−z)2 +

(−2)(−3)(−4)
3!

(−z)3 + · · ·

= 1 + 2z + 3z2 + · · ·

Our third solution is to differentiate both sides of
1

1− z
= 1 + z + z2 + z3 + · · · to obtain

f(z) = 0 + 1 + 2z + 3z2 + · · ·

Our fourth solution is to mutiply the Taylor series for
1

1− z
by itself as if it was a poly-

nomial to obtain

f(z) = (1 + z + z2 + z3 + · · ·)(1 + z + z2 + z3 + · · ·)
= 1 + (1 + 1)z + (1 + 1 + 1)z2 + (1 + 1 + 1 + 1)z3 + · · ·
= 1 + 2z + 3z2 + 4z3 + · · ·

7.15 Example: Find the Taylor series for f(z) = ez/(1− z).

Solution: We have f(z) = ez 1
1−z =

( ∞∑
n=0

1
n!z

n
)( ∞∑

n=0
zn
)

=
∞∑
n=0

( n∑
i=0

1
n!

)
zn. We can write

out the first few terms: f(z) = 1 + 2z + 5
2z

2 + 8
3z

3 + 65
24z

4 + · · ·.
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7.16 Example: Find the first few terms of the Taylor series about 0 for f(z) = tan z.

Solution: We have tan z =
sin z
cos z

. We can use long division:

z + 1
3z

3 + 2
15z

5 + · · ·

1− 1
2z

2 + 1
24z

4 + · · ·
)
z − 1

6z
3 + 1

120z
5 − · · ·

z − 1
2z

3 + 1
24z

5 − · · ·
1
3z

3 − 1
30z

5 + · · ·
1
3z

3 − 1
6z

5 + · · ·
2
15z

5 + · · ·

We find that f(z) = z+ 1
3z

3 + 2
15z

5 + · · ·. We can also easily find the radius of convergence.
Since cos z = 0 ⇐⇒ z = π

2 + π k for some k ∈ Z, we know that f(z) is holomorphic for
z 6= π

2 + π k, so the radius of convergence is R = π
2 .

7.17 Example: Find the Taylor series centred at 2i for f(z) =
1
z

.

Solution: f(z) =
1
z

=
1

z − 2i+ 2i
=

1
2i

1
1 + z−2i

2i

= − i
2

1

1− i(z−2i)
2

= − i
2

∞∑
n=0

( i(z − 2i)
2

)n
=
∞∑
n=0

−
( i

2

)n+1

(z − 2i)n. The disc of convergence is D(2i, 2).

7.18 Theorem: (The Identity Theorem) Let f and g be holomorphic in the disc D(a, r)
where 0 < r ≤ ∞. Let {an} be a sequence with an → a. If f(an) = g(an) for all n then
f(z) = g(z) for all z ∈ D(a, r).

Proof: Suppose that f(an) = g(an) for all n. Let h = f − g. Then h(an) = 0 for all
n. Since h is continuous, h(a) = 0. Since its holomorphic it is equal to its Taylor series

h(z) =
∞∑
n=0

cn(z− a)n. We want to show that all the coefficients cn are zero. Suppose not,

and say m is the smallest integer such that cm 6= 0. Let k(z) = h(z)(z − a)−m Then we
have k(z) = cm+cm+1(z−a)+cm+2(z−a)m+2 + · · ·, so k(z) is holomorphic in D(a, r) and
k(a) = cm 6= 0. Since k(z) is continuous with k(a) 6= 0, we can find s > 0 such that k(z) 6= 0
for all z ∈ D(a, s). But since (z − a)m 6= 0 in D∗(a, s) and since h(z) = k(z)(z − a)m, this
would imply that h(z) 6= 0 in D∗(a, s). This gives us a contradiction since we assumed
that h(an) = 0 for all n.

7.19 Note: We have studied power series. We are also interested in series of the form

∞∑
n=−∞

cn(z − a)n =
−1∑

n=−∞
cn(z − a)n +

∞∑
n=0

cn(z − a)nc =
∞∑
n=1

c−nw
n +

∞∑
n=0

cn(z − a)n .

where we have written w = 1/(z− a). If the first series has radius of convergence 1/R and
the second has radius of convergence S, then the first converges when |w| < 1/R, that is
when |z − a| > R, and the second converges for |z − a| < S. They both converge in the
annulus A =

{
z ∈ C

∣∣R < |z−a| < S
}

. The next theorem shows that every function which
is holomorphic in an annulus can be expressed as a series of this form.
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7.20 Theorem: (Laurent’s Theorem) Let 0 ≤ R < ρ < S ≤ ∞ and let a ∈ C. Suppose
that f is holomorphic in the annulus A =

{
z ∈ C

∣∣R < |z − a| < S
}

. Then for all z ∈ A,

f(z) =
∞∑

n=−∞
cn(z − a)n where cn =

1
2π i

∫
σ

f(z)
(z − a)n+1

dz ,

where σ is the circle σ(t) = a+ ρ ei t with 0 ≤ t ≤ 2π. In particular, we have

c−1 =
1

2πi

∫
σ

f(z) dz .

Proof: To simplify notation, we take a = 0, so A = {z|R < |z| < S}. For z ∈ A pick r and
s so that R < r < |z| < s < S. Again to simplify notation, suppose that Im (z) > 0. Let
α be the loop in A which follows the semicircle counterclockwise from s to −s, then the
line segment from −s to −r, then the semicircle clockwise from −r to r, and then the line
segment from r to s. Let β be the loop which follows the line segment from s to r, then
the semicircle clockwise from r to −r, then the line segment from −r to −s, and then the
semicircle counterclockwise from −s to s.

α

0

β

z

Since η(α, z) = 1 and η(β, z) = 0, Cauchy’s theorem tells us that
∫
α

f(w)
w − z

dw = 2π i f(z)

and
∫
β

f(w)
w − z

dw = 0. Also, since the integrals along the line segments cancel, we have∫
α

f(w)
w − z

dw+
∫
β

f(w)
w − z

dw =
∫
σs

f(w)
w − z

dw−
∫
σr

f(w)
w − z

dw, where σr and σs are the circles

σr(t) = r ei t and σs(t) = s ei t for 0 ≤ t ≤ 2π. So we have

f(z) =
1

2πi

(∫
σs

f(w)
1

w − z
dw −

∫
σr

f(w)
1

w − z
dw

)
=

1
2πi

(∫
σs

f(w)
1
w

1
1− z

w

dw −
∫
σr

f(w)
−1
z

1
1− w

z

)
=

1
2πi

(∫
σs

f(w)
∞∑
n=0

zn

wn+1
dw +

∫
σr

f(w)
∞∑
m=0

wm

zm+1
dw

)

=
1

2πi

( ∞∑
n=0

∫
σs

f(w) zn

wn+1
dw +

∞∑
m=0

∫
σr

f(w)wm

zm+1
dw

)

=
1

2πi

( ∞∑
n=0

(∫
σ

f(w)
wn+1

dw
)
zn +

−1∑
n=−∞

(∫
σ

f(w)
wn+1

dw
)
zn

)

=
1

2πi

∞∑
n=−∞

(∫
σ

f(w)
wn+1

dw

)
zn
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In the second last equlity, we replaced m by −n− 1, and we used the fact that each of the
loops σs and σr is homotopic to σ in A. The interchange of summation and integration in
the third equality should be justified. We can justify it as follows. For any positive integer
N we have

∫
σs

f(w)
1
w

∞∑
n=0

( z
w

)n
dw =

∫
σs

f(w)
1
w

(N−1∑
n=0

( z
w

)n +
(z/w)N

1− (z/w)

)
dw

=
N−1∑
n=0

∫
σs

f(w)
1
w

zn

wn
dw +

∫
σs

f(w)
1
w

(z/w)N

1− (z/w)
dw

As N → ∞ the first term tends to the infinite sum
∞∑
n=0

∫
σs

f(w)
zn

wn+1
dw and the second

term may be estimated using the Estimation Theorem:

∣∣∣∣∫
σs

f(w)
(z/w)N

w − z
dw

∣∣∣∣ ≤ max
|w|=s

∣∣f(w)
∣∣ (|z|/s)N

(s− |z|)
2πs→ 0

as N →∞ since (|z|/s) < 1.

7.21 Example: Let f(z) =
1

z(z2 + 4)
. Note that f is holomorphic except at z = 0 and

z = ±2i. In particular, f is holomorphic in the annulus A = {z|0 < |z| < 2} and in the
annulus B = {z|2 < |z| <∞} and also in the annulus C = {z|0 < |z − 2i| < 2}. Find the
Laurent series of f(z) in A and in B and in C. Also, use the Laurent series to find the
path integrals

∫
α
f ,
∫
β
f and

∫
γ
f , where α, β and γ are the circles α(t) = ei t, β(t) = 3 ei t

and γ = 2i+ ei t for 0 ≤ t ≤ 2π.

Solution: We have f(z) =
1
4z

1
1 + (z/2)2

=
1
4z

∞∑
n=0

(−1)n
(z

2
)2n =

∞∑
n=0

(−1)n

4n+1
z2n−1. This

is the Laurent series for f in A. Since the coefficient of z−1 in this series is c−1 = 1
4 , we

have
∫
α

f = 2πi c−1 =
1
2
π i.

Also, we have f(z) =
1
z3

1
1 + (2/z)2

=
1
z3

∞∑
n=0

(−1)n
(2
z

)2n =
∞∑
n=0

(−1)n4n z−2n−3. This

is the Laurent series for f in B. Since the coefficient of z−1 is c−1 = 0, we have
∫
β

f = 0.
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In the third annulus we write

f(z) =
1

z − 2i
1

z + 2i
1
z

=
1

z − 2i
1

(z − 2i) + 4i
1

(z − 2i) + 2i

=
1

z − 2i
1
4i

1
1 + z−2i

4i

1
2i

1
1 + z−2i

2i

= −1
8

1
z − 2i

∞∑
n=0

(−1)n
(
z − 2i

4i

)n ∞∑
n=0

(−1)n
(
z − 2i

2i

)n

= −1
8

1
z − 2i

∞∑
n=0

 n∑
j=0

(−1)j

(4i)j
(−1)n−j

(2i)n−j

 (z − 2i)n

= −1
8

∞∑
n=0

 n∑
j=0

(−1)n

in2n+j

 (z − 2i)n−1

= −1
8

∞∑
n=0

in

4n

 n∑
j=0

1
2j

 (z − 2i)n−1

= −1
8

∞∑
n=0

in(2n+1 − 1)
22n

(z − 2i)n−1

This is the Laurent series in C. The coefficient of (z− 2i)−1 is c−1 = − 1
8 so

∫
γ

f = −1
4
πi.

7.22 Note: It should be remarked that all three of the path integrals in the above example
are easy to compute using Cauchy’s integral formula. In the following example, however,
its easier to use the Laurent series to find the path integral.

7.23 Example: Let f(z) =
1

z4 sinh z
. Since sinh z = 0 when z = kπi, k ∈ Z we see that

f is holomorphic except at z = kπi. Find the first few terms of the Laurent series for f in
the annulus A = {z|0 < |z| < π}, and hence find

∫
σ
f where σ is the circle σ(t) = ei t with

0 ≤ t ≤ 2π.

Solution: We have f(z) =
1
z4

1
sinh z

=
1
z4

1
z(1 + 1

6z
2 + 1

120z
4 + · · ·)

. We use long division:

1− 1
6z

2 + 7
360z

4 + · · ·

1 + 1
6z

2 + 1
120z

4 + · · ·
)

1 + 0 z2 + 0 z4 + · · ·
1 + 1

6z
2 + 1

120z
4 + · · ·

− 1
6z

2 − 1
120z

4 + · · ·
− 1

6z
2 − 1

36z
4 + · · ·

7
360z

5 + · · ·

We find that f(z) = z−5 − 1
6z
−3 + 7

360z
−1 + · · ·. Since c−1 = 7

360 , we have
∫
σ

f =
7π
180

i.
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7.24 Definition: Suppose that f is holomorphic in an open set U which contains the
punctured disc D∗(a,R) and say the Laurent series of f in D∗(a,R) is given by

f(z) =
∞∑

n=−∞
an(z − a)n .

If for all N ∈ Z there exists n < N with an 6= 0 then we say that f has an essential
singularity at a. Otherwise, let N be the smallest integer such that aN 6= 0. If N < 0
then we say that f has a pole at a of order |N |. If N ≥ 0 we say that f has a removable
singularity at a, and in this case we shall extend f so that it is holomorphic in the disc
D(a, r) by setting f(a) = a0. If N > 0 then we say that f has a zero at a of order N .
In any case, we define the residue of f at a to be Res (f, a) = a−1. If σ is the circle
σ(t) = a+ r ei t for 0 ≤ t ≤ 2π where 0 < r < R then we have

Res (f, a) = a−1 =
1

2πi

∫
σ

f(z) dz

7.25 Note: If f has a removable singularity at a, then of course we have lim
z→a

f(z) = a0.

If f has a pole at a then its not hard to show that lim
z→a

f(z) = ∞. If f has an essential

singularity at a, then the limit lim
z→a

f(z) does not exist, and in fact there is a (dificult)

theorem called Picard’s Theorem which states that for all ε > 0 the image f
(
D∗(a, ε)

)
is

either equal to C or to C \ {p} for some point p.

7.26 Note: Let U be an open set and let p1, p2, · · · , pk be points in U . If f is holomorphic
in U \ {p1, p2, · · · pn} and if f has poles at each of the points pi, then we say that f is
meromorphic in U . In this case we can extend f to a holomorphic map f : U → Ĉ by
setting f(pi) =∞ for each i.

7.27 Theorem: (The Residue Theorem) Let U be an open set and let z1, z2, · · · , zn
be points in U . Let f be holomorphic in U \ {z1, z2, · · · , zn}. Let α be a loop in U \
{z1, z2, · · · , zn} which is homotopic in U to a constant loop. Then

∫
α

f(z) dz = 2π i
k∑
i=1

η(α, zi) Res (f, zi) .

Proof: Choose R > 0 so that each puctured disc D∗(zk, R) lies inside U \ {z1, z2, · · · , zn}.
Inside each of these puctured discs, f will be equal to its Laurent series, and we write

f(z) =
∞∑

n=−∞
an(z − zk)n = pk(z) + hk(z) , where

pk =
−1∑

n=−∞
an(z − zk)n and hk =

∞∑
n=0

an(z − zk)n

(pk is called the principal part of f , and hk is called the holomorphic part of f at
the point zk). We have Res (f, zk) = a−1 = Res (pk, zk). Notice that hk is holomorhic in
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the disc D(zk, R) (not just the punctured disc) and notice that pk is holomorphic in all of

C \ {zk} and
∫
α

pk(z) dz = 2π i η(α, zk) a−1. Now we let

g(z) = f(z)−
n∑
k=1

pk(z) .

Although f was only holomorphic in U \ {z1 . . . , zn}, the map g is holomorphic in all of
U , indeed in D∗(zk, R) we have g(z) = f(z)− pk(z)−

∑
i6=k

pi(z) = hk(z)−
∑
i 6=k

pi(z). Since

α is homotopic to a constant loop in U , we have

0 =
∫
α

g(z) dz =
∫
α

f(z)−
n∑
k=1

pk(z) dz =
∫
α

f(z) dz −
n∑
k=1

∫
α

pk(z) dz

=
∫
α

f(z) dz −
n∑
k=1

2π i η(α, ak) Res (f, zk)) .

7.28 Example: Let α be a loop in D(0, 3) with η(α, 0) = 3, η(α, π2 ) = −1 and η(α,−π2 ) =

1, and let f(z) =
(z + 1) ez

z cos z
. Find

∫
α

f(z) dz.

Solution: Notice that f is holomorphic in C except at z = 0 and z = π
2 + kπ, k ∈ Z. In

particular, f is holomorphic in D(0, 3) except at z = 0 and z = ±π2 . So by the Residue

Theorem,
∫
α

f(z) dz = 2π i
(
3Res (f, 0)− Res (f,

π

2
) + Res (f,−π

2
)
)
.

By Cauchy’s Integral Formula, Res (f, 0) =
1

2π i

∫
σ

F (z)
z

dz = F (0) = 1, where F (z) =

(z + 1) ez/ cos z and where σ is a small circle centred at 0. Alternatively, we could have
found Res (f, 0) by finding the coefficient of z−1 in the Laurent series for f in D∗(0, π2 ).

To find Res (f, π2 ) we use a Laurent series. Near π
2 we have (z+1) = (z− π

2 )+(1+ π
2 ),

and ez = ez−π/2+π/2 = eπ/2ez−π/2 = eπ/2
∞∑
n=0

1
n! (z −

π
2 )n = eπ/2

(
1 + (z − π

2 ) + . . .
)
, and

1
z

=
1

(z − π
2 ) + π

2

=
2
π

1 + 2
π (z − π

2 )
=

2
π

∞∑
n=0

(−1)n( 2
π )n(z − π

2 )n =
2
π

(
1 − 2

π (z − π
2 ) + . . .

)
,

and cos z = − sin(z− π
2 ) = −

∞∑
n=0

(−1)n
1

(2n+ 1)!
(z− π

2
)n =

1
(z − π

2 )
(
−1+ 1

6 (z− π
2 )2 + . . .

)
so that by long division

1
cos z

=
1

(z − π
2 )
(
− 1− 1

6 (z− π
2 )2 + . . .

)
. Multiplying these series

together gives f(z) = (z + 1) ez
1
z

1
cos z

=
(
(1 + π

2 ) + (z − π
2 )
)
eπ/2

(
1 + (z − π

2 ) + . . .
)

2
π(

1 − 2
π (z − π

2 ) + . . .
)
(z − π

2 )−1
(
− 1 + 1

6 (z − π
2 )2 + . . .

)
= (1 + π

2 )eπ/2 2
π (z − π

2 )−1 + . . ..
Thus we have Res (f, π2 ) = 2

π (1 + π
2 ) eπ/2 = (1 + 2

π )eπ/2.
To find Res (f,−π2 ) we use a Laurent series. Near−π2 we have (z+1) = (1−π2 )+(z+π

2 ),

ez = e(z+π/2)−π/2 = e−π/2(1 + . . .),
1
z

=
1

(z + π
2 )− π

2

=
− 2
π

1− 2
π (z + π

2 )
= − 2

π (1 + . . .), and
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cos z = sin(z+ π
2 ) = (z+ π

2 )+. . . so that
1

cos z
= (z+ π

2 )−1+. . .. Multiplying these together

gives f(z) = (1− π
2 )e−π/2(− 2

π )(z + π
2 )−1 + . . . so we have Res (f,−π2 ) = (1− 2

π )e−π/2.

Finally, we obtain
∫
α

f(z) dz = 2π i
(
3− (1 + 2

π )eπ/2 + (1− 2
π )e−π/2

)
7.29 Example: Evaluate the real integral

∫ ∞
−∞

cos t
t2 + 1

dt.

Solution: Let f(z) =
eiz

z2 + 1
and let σ be the loop which follows the line segment α(t) = t

for −R ≤ t ≤ R and then the semicircle β(t) = Rei t for 0 ≤ t ≤ π. Notice that f
has poles at z = ±i and that only the pole at z = i lies inside σ. By Cauchy’s Integral

Formula we have
∫
σ

f(z) dz =
∫
σ

eiz/z + i

z − i
dz = 2π i

e−1

2 i
=
π

e
. On the other hand we have∫

σ

f =
∫
α

f+
∫
β

f . We have
∫
α

f =
∫ R

−R

cos t+ i sin t
t2 + 1

dt→
∫ ∞
−∞

cos t
t2 + 1

dt+i
∫ ∞
−∞

sin t
t2 + 1

dt

as R→∞, and
∫
β

f =
∫ π

0

eiRe
it

R2ei2t + 1
dt =

∫ π

0

eiR(cos t+i sin t)iReit

R2ei2t + 1
dt so by the Estimation

Theorem
∣∣∣∣∫
β

f(z) dz
∣∣∣∣ ≤

(
max

0≤t≤π
e−R sin t

)
R

R2 − 1
π ≤ π R

R2 − 1
→ 0 as R → ∞. Comparing our

two values for
∫
σ

f we obtain
∫ ∞
−∞

cos t
t2 + 1

dt =
π

e
.
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