

AMATH/PMATH 331 Real Analysis, Problems for Chapter 8

1: Let $f : \mathbf{R} \rightarrow \mathbf{R}$ be the 2π -periodic function with $f(x) = x^3 - \pi^2 x$ for $-\pi \leq x \leq \pi$.

(a) Find the coefficients of the (real) Fourier series for f .

(b) Show that $s_m(f) \rightarrow f$ uniformly on \mathbf{R} .

(c) By evaluating at $x = \frac{\pi}{2}$, evaluate $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3}$.

2: Let $f : \mathbf{R} \rightarrow \mathbf{R}$ be a 2π -periodic function whose restriction to $[-\pi, \pi]$ is continuous.

(a) Use Integration by Parts to show that if f is \mathcal{C}^1 (meaning that the derivative f' exists and is continuous) then $|c_n(f)| \leq \frac{M}{|n|}$ for all $n \in \mathbf{Z}$ where $M = \|f'\|_{\infty} = \max_{-\pi \leq t \leq \pi} |f'(t)|$.

(b) Use induction to show that if f in \mathcal{C}^k (meaning that the k^{th} derivative of f exists and is continuous) then $|c_n(f)| \leq \frac{M}{(2\pi)^{k-1}|n|^k}$ for all $n \in \mathbf{Z}$ where $M = \|f^{(k)}(x)\|_{\infty} = \max_{-\pi \leq x \leq \pi} |f^{(k)}(x)|$.

(c) Show that if $f \in \mathcal{C}^2$ then $s_m(f) \rightarrow f$ uniformly on \mathbf{R} .

3: Let $f \in \mathcal{R}(T)$, let $(c_n)_{n \geq 0}$ and $(d_n)_{n \geq 1}$ be sequences in \mathbf{R} and let $p_m(x) = c_0 + \sum_{n=1}^m c_n \cos nx + \sum_{n=1}^m d_n \sin nx$.

(a) Show that if $p_m \rightarrow f$ in $(\mathcal{R}(T), \|\cdot\|_1)$ then $c_0 = a_0(f)$ and $c_n = a_n(f)$ and $d_n = b_n(f)$ for all $n \in \mathbf{Z}^+$. for all $n \in \mathbf{Z}$.

(b) Show that if $p_m \rightarrow f$ in $(\mathcal{R}(T), \|\cdot\|_{\infty})$ then $c_0 = a_0(f)$ and $c_n = a_n(f)$ and $d_n = b_n(f)$ for all $n \in \mathbf{Z}^+$.

(c) Show that if $p_m \rightarrow f$ in $(\mathcal{R}(T), \|\cdot\|_2)$ then $c_0 = a_0(f)$ and $c_n = a_n(f)$ and $d_n = b_n(f)$ for all $n \in \mathbf{Z}^+$.

4: Let $f : \mathbf{R} \rightarrow \mathbf{R}$ be the 2π -periodic function with $f(x) = \begin{cases} 1 & \text{if } 0 < x < \pi, \\ -1 & \text{if } -\pi < x < 0, \\ 0 & \text{if } x = 0, \pm\pi. \end{cases}$

(a) Find the coefficients of the (real) Fourier series for f .

(b) By recognizing $s_{2m}(f)(\frac{\pi}{2m})$ as a Riemann sum, show that $\lim_{m \rightarrow \infty} s_{2m}(f)(\frac{\pi}{2m}) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin x}{x} dx$.

(c) Using a computer to approximate the value of $\frac{2}{\pi} \int_0^{\pi} \frac{\sin x}{x} dx$, show that there exists $\ell \in \mathbf{Z}^+$ such that for all $m \geq \ell$ we have $\|s_m(f) - f\|_{\infty} > 0.17$.

(d) (Optional Challenge) Show that $\{s_m(f)(x)\}$ converges for all x .