

AMATH/PMATH 331 Real Analysis, Problems for Chapter 7

1: (a) Find an example of a function $f : \mathbf{R} \rightarrow \mathbf{R}$ such that $|f(y) - f(x)| < |y - x|$ for all $x, y \in \mathbf{R}$ with $x \neq y$, but f has no fixed point in \mathbf{R} .

(b) Define $F : \mathcal{C}[0, 1] \rightarrow \mathcal{C}[0, 1]$ by $F(f)(x) = \int_0^x f(t) dt$. Show that F is not a contraction map but that $F^2 = F \circ F$ is.

(c) Use the Banach Fixed Point Theorem to show that there exists a unique function $f \in \mathcal{C}[0, 1]$ such that $f(x) = x + \int_0^x t f(t) dt$ for all $x \in [0, 1]$.

2: (a) Let $A = \left\{ \sum_{k=1}^n f_k(x)g_k(y) \mid n \in \mathbf{Z}^+, f_k, g_k \in \mathcal{C}[0, 1] \right\}$. Show that A is dense in $(\mathcal{C}([0, 1] \times [0, 1]), d_\infty)$.

(b) Let $A = \left\{ \sum_{k=0}^n (a_k \sin(kx) + b_k \cos(kx)) \mid 0 \leq n \in \mathbf{Z}, a_k, b_k \in \mathbf{R} \right\}$. Show that A is dense in $(\mathcal{C}[0, r], d_\infty)$ for every $0 < r < 2\pi$, but A is not dense in $(\mathcal{C}[0, 2\pi], d_\infty)$.

(c) Show that there does exist $0 \neq f \in \mathcal{C}[-1, 2]$ such that $\int_{-1}^2 x^{2n} f(x) dx = 0$ for all $0 \leq n \in \mathbf{Z}$ but there does not exist $0 \neq f \in \mathcal{C}[-1, 2]$ such that $\int_{-1}^2 x^{3n} f(x) dx = 0$ for all $0 \leq n \in \mathbf{Z}$.