
Chapter 6. Completeness and Compactness

Completeness

6.1 Definition: A sequence (xk)k≥p in a metric space X is called Cauchy when

∀ ε>0 ∃m∈Z≥p ∀ k, l∈Z≥p
(
k, ` ≥ m =⇒ d(xk, x`) < ε

)
.

A metric space X is called complete when every Cauchy sequence in X converges in X.
We remark that a complete inner product space is called a Hilbert space, and a complete
normed linear space is called a Banach space.

6.2 Example: R is complete by the Cauchy Criterion for Convergence (Theorem 1.26).

6.3 Theorem: Let X be a metric space.

(1) Every Cauchy sequence in X is bounded.
(2) Every convergent sequence in X is Cauchy.
(3) If some subsequence of a Cauchy sequence (xn) converges, then (xn) converges.

Proof: To prove Part 1, let (xn)n≥1 be a Cauchy sequence in X. Choose m ∈ Z+ such
that k, ` ≥ m =⇒ d(xk, x`) ≤ 1 and note that, in particular, we have d(xk, xm) ≤ 1 for all
k ≥ m. Let a = xm and choose r > max

{
d(x1, a), d(x2, a), · · · , d(xm−1, a), 1

}
. Then for

all n ∈ Z+ we have d(xn, a) < r so the sequence (xn) is bounded, as required.
To Prove Part 2, let (xn)n≥1 be a convergent sequence in X and let a = lim

n→∞
xn. Let

ε > 0. Choose m ∈ Z+ such that n ≥ m =⇒ d(xn, a) < ε
2 . Then for all k, ` ≥ m we have

d(xk, x`) ≤ d(xk, a) + d(a, x`) <
ε
2 + ε

2 = ε,

so the sequence (xn) is Cauchy, as required.
To prove Part 3, let (xn)n≥1 be a Cauchy sequence in X, let (xnk

)k≥1 be a subsequence
of (xn)n≥1, suppose tha (xnk

)k≥1 converges, and let a = lim
k→∞

xnk
. Let ε > 0. Since (xn)

is Cauchy we can choose m ∈ Z+ so that k, ` ≥ m =⇒ d(xk, x`) <
ε
2 . Since lim

k→∞
nk =∞

and lim
k→∞

xnk
= a, we can choose an index ` such that n` ≥ m and d(xn`

, a) < ε
2 . Then

for all k ≥ m we have

d(xk, a) ≤ d(xk, xn`
) + d(xn`

, a) < ε
2 + ε

2 = ε.

6.4 Theorem: Let X be a complete metric space and let A ⊆ X. Then A is complete if
and only if A is closed in X

Proof: Suppose that A is closed in X. Let (xn) be a Cauchy sequence in A. Since X is
complete, (xn) converges in X. Since A is closed in X and (xn) is a sequence in A which
converges in X, we have lim

n→∞
xn ∈ A by Theorem 3.5 (The Sequential Characterization of

Closed Sets). Thus every Cauchy sequence in A converges in A, so A is complete.
Suppose, conversely, that A is complete. Let a ∈ A′, that is let a ∈ X be a limit point

of A. Since a ∈ A′, by Theorem 5.16 (The Sequential Characterization of Limit Points)
we can choose a sequence (xn) in A (indeed in A \ {a}) with lim

n→∞
xn = a. Since (xn)

converges in X, it is Cauchy. Since (xn) is Cauchy and A is complete, (xn) converges in
A, that is a = lim

n→∞
xn ∈ A.
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The Completeness of Rm

6.5 Theorem: (Bolzano-Weierstrass Theorem) Every bounded sequence in Rm has a
convergent subsequence (using the standard metric in Rm).

Proof: For this proof, we shall label the components of an element in Rm using superscripts
rather than subscripts, se we shall write an element x ∈ Rm as (x1, x2, · · · , xm). Let
(xn)n≥1 be a bounded sequence in Rm. Then the first component sequence (x1n)n≥1 is
a bounded sequence in R. By the Bolzano-Weierstrass Theorem in R (Theorem 1.23),
we can choose a convergent subsequence (x1n`

)`≥1. Since the second component sequence
(x2n)n≥1 is bounded, the subsequence (x2n`

)`≥1 is also bounded so (by Theorem 1.23 again)
we can choose a convergent subsequence (x2n`k

)k≥1. Since (x1n`
)`≥1 converges, so does

the subsequence (x1n`k
)k≥1. Since the third component sequence (x3n)n≥1 is bounded, the

subsequence (x3n`k
)k≥1 is also bounded so (by Theorem 1.23) we can choose a convergent

subsequence (x3n`kj

)j≥1. Since the component sequences (x1n`
) and (x2n`

) both converge, so

do the subsequences (x1n`k
) and (x2n`k

). Thus the subsequence (xn`k
)k≥1 of (xn) has the

property that the first 3 component sequences (x1n`k
), (x2n`k

) and (x3n`k
) all converge. We

repeat the procedure until we obtain a subsequence of (xn) whose m component sequences
all converge. This subsequence converges in Rm by Theorem 5.4 (Component Sequences
in Rm).

6.6 Theorem: (The Completeness of Rm) For every sequence in Rm, the sequence con-
verges if and only if it is Cauchy (where we are using the standard metric in Rm).

Proof: Let (xn)n≥1 be a sequence in Rm. If (xn)n≥1 converges, then it is Cauchy by
Part 2 of Theorem 6.3. Suppose, conversely, that (xn)n≥1 is Cauchy. Choose N ∈ Z+ so
that when k, ` ≥ N we have |xk − x`| < 1. Then for all k ∈ Z+ we have |xk − xN | < 1
and hence |xk| ≤ |xk − xN | + |xN | < 1 + |xN |, and so the sequence (xn)n≥1 is bounded
by max

{
|x1|, |x2|, · · · , |xN−1| , 1+ |xN |

}
. By the Bolzano-Weierstrass Theorem, we can

choose a convergent subsequence (xnk
)k≥1. Since (xn) is Cauchy and has a convergent

subsequence, it follows that (xn) converges by Part 3 of Theorem 6.3.

6.7 Theorem: Every finite-dimensional normed linear space is complete.

Proof: Let U be an m-dimensional normed linear space. Let {u1, · · · , um} be a basis for
the vector space U and let F : Rm → U be the associated vector space isomorphism

given by F (t) =
m∑
k=1

tkuk. Recall, from Theorem 5.38, that both F and F−1 are Lipschitz

continuous. Let L be a Lipschitz constant for F and let M be a Lipschitz constant for
F−1. Let (xn)n≥1 be a Cauchy sequence in U . For each n ∈ Z+, let tn = F−1(xn) ∈ Rm.
Note that (tn)n≥1 is a Cauchy sequence in Rm because

‖tk − t`‖ =
∥∥F−1(xk)− F−1(x`)

∥∥ ≤M‖xk − x`‖.
Since (tn) is a Cauchy sequence in Rm and Rm is complete, (tn) converges in Rm. Let
s = lim

n→∞
tn ∈ Rm and let a = F (s) ∈ U . Then we have lim

n→∞
xn = a because

‖xn − a‖ =
∥∥F (tn)− F (s)

∥∥ ≤ L‖tn − s‖.

6.8 Corollary: The metric spaces (Rm, d1), (Rm, d2) and (Rm, d∞) are all complete.

6.9 Corollary: Let U be a finite dimensional normed linear space and let A ⊆ U . Then
A is complete if and only if A is closed in U .
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The Completeness of Spaces of Sequences and Spaces of Functions

6.10 Theorem: The metric spaces (`1, d1), (`2, d2) and (`∞, d∞) are all complete.

Proof: We prove that (`1, d1) is complete and we leave the proof that (`2, d2) and (`∞, d∞)
are complete as an exercise. Let (an)n≥1 be a Cauchy sequence in `1. For each n ∈ Z+,

write an = (an,k)k≥1 = (an,1, an,2, an,3, · · ·). Since an ∈ `1 we have
∞∑
k=1

|an,k| < ∞. Since

(an)n≥1 is Cauchy, for every ε > 0 we can choose N ∈ Z+ such that for all n,m ≥ N we

have ‖an − am‖1 < ε, that is
∞∑
k=1

|an,k − am,k| < ε. For each fixed k ∈ Z+, note that for

n,m ≥ N we have |an,k − am,k| ≤
∞∑
j=1

|an,j − am,j | < ε, and so the sequence (an,k)n≥1 is

Cauchy in R, so it converges. For each k ∈ Z+, let bk = lim
n→∞

an,k ∈ R and let b = (bk)k≥1.

We claim that b ∈ `1. Since (an)n≥1 is Cauchy, for every ε > 0 we can choose

N ∈ Z+ such that for all n,m ≥ N we have ‖an − am‖1 < ε, that is
∞∑
k=1

|an,k − am,k| < ε.

By the Triangle Inequality, for n,m ≥ N we have
∣∣‖an‖1 − ‖am‖1∣∣ ≤ ‖an − am‖1 < ε

It follows that the sequence
(
‖an‖

)
n≥1 is a Cauchy sequence in R, so it converges. Let

M = lim
n→∞

‖an‖1 ∈ R. For each fixed K ∈ Z+ we have

K∑
k=1

|bk| =
K∑
k=1

∣∣ lim
n→∞

an,k
∣∣ = lim

n→∞

K∑
k=1

|an,k| ≤ lim
n→∞

∞∑
k=1

|an,k| = lim
n→∞

‖an‖1 = M.

Since
K∑
k=1

|bk| ≤M for all K ∈ Z+ it follows that
∞∑
k=1

|bk| ≤M , so b ∈ `1, as claimed.

Finally, we claim that lim
n→∞

an = b in `1. Let ε > 0. Choose N ∈ Z+ such that for all

n,m ≥ N we have ‖an − am‖1 < ε. Then for each K ∈ Z+ we have
K∑
k=1

|an,k − bk| =
K∑
k=1

∣∣an,k − lim
m→∞

am,k
∣∣ = lim

m→∞

K∑
k=1

|an,k − am,k|

≤ lim
m→∞

∞∑
k=1

|an,k − am,k| = lim
m→∞

‖an − am‖1 ≤ ε

Since
K∑
k=1

|an,k − bk| ≤ ε for all K ∈ Z+ it follows that ‖an − b‖1 =
∞∑
k=1

|an,k − bk| ≤ ε.

6.11 Exercise: After showing that (`∞, d∞) is complete, show that (`1, d∞) and (`2, d∞)
are not closed in (`∞, d∞) and so they are not complete.

6.12 Definition: For a metric space X, we define

B(X) = B(X,R) =
{
f : X → R

∣∣ f is bounded
}

C(X) = C(X,R) =
{
f : X → R

∣∣ f is continuous
}
,

Cb(X) = Cb(X,R) =
{
f : X → R

∣∣ f is bounded and continuous
}
.

Note that B(X) is a normed linear space using the supremum norm given by

‖f‖∞ = sup
x∈X

∣∣f(x)
∣∣

and a metric space under the supremum metric given by d∞(f, g) = sup
x∈X

∣∣f(x)− g(x)
∣∣.

3



6.13 Definition: For a sequence (fn) of functions fn : X → R and a function g : X → R,
we say that (fn) converges uniformly to g on X, and write fn → g uniformly on X,
when

∀ε>0 ∃m∈Z+ ∀x∈X ∀n∈Z+
(
n ≥ m =⇒ |fn(x)− g(x)| < ε

)
.

6.14 Note: For a sequence (fn) ∈ B(X) and for g ∈ B(X), note that |fn(x)− g| < ε for
every x ∈ X if and only if ‖fn − g‖∞ < ε. It follows that fn → g uniformly on X if and
only if fn → g in the metric space

(
B(X), d∞

)
.

6.15 Theorem: Let X be a metric space. Then the metric spaces
(
B(X), d∞

)
and(

Cb(X), d∞
)

are complete.

Proof: Let (fn)n≥1 be a Cauchy sequence in
(
B(X), d∞

)
. Note that for each x ∈ X,

we have
∣∣fn(x) − fm(x)

∣∣ ≤ supy∈X
∣∣fn(y) − fm(y)

∣∣ = ‖fn − fm‖∞, and so the sequence(
fn(x)

)
n≥1 is a Cauchy sequence in R, so it converges. Thus we can define a function

g : X → R by g(x) = lim
n→∞

fn(x) and then we have fn → g pointwise in X.

We claim that g ∈ B(X), that is we claim that g is bounded. Since (fn) is a Cauchy
sequence in B(X), it is bounded (by Part 1 of Theorem 6.3) so we can choose M ≥ 0 such
that ‖fn‖∞ ≤M for all indices n. Then for all x ∈ X we have |fn(x)| ≤ ‖fn‖∞ ≤M and
hence |g(x)| = lim

n→∞
|fn(x)| ≤M . Thus g is a bounded function, that is g ∈ B(X).

We know that fn → g pointwise on X. We must show that fn → g uniformly on
X. Let ε > 0. Since (fn) is Cauchy in

(
B(X), d∞

)
, we can choose m ∈ Z+ such that

‖fk − f`‖∞ < ε for all k, ` ≥ m. Then for all k ≥ m and for all x ∈ X we have∣∣fk(x)− g(x)
∣∣ = lim

`→∞

∣∣fk(x)− f`(x)
∣∣ ≤ ε.

It follows that fn → g uniformly on X, that is fn → g in the metric space
(
B(X), d∞

)
.

Thus
(
B(X), d∞

)
is complete.

To show that
(
Cb(X), d∞

)
is complete, it suffices (by Theorem 6.4) to show that Cb(X)

is closed in B(X). Let (fn) be a sequence in Cb(X) which converges in
(
B(X), d∞

)
. Let

g = lim
n→∞

fn in B(X). We need to show that g is continuous. Let ε > 0 and let a ∈ X. Since

fn → g in
(
B(X), d∞

)
we know that fn → g uniformly on X, so we can choose m ∈ Z+

such that
∣∣fm(x)− g(x)

∣∣ < ε
3 for all n ≥ m and all x ∈ X. Since fm is continuous at a we

can choose δ > 0 such that for all x ∈ X with d(x, a) < δ we have
∣∣fm(x) − fm(a)

∣∣ < ε
3 .

Then for all x ∈ X with d(x, a) < δ we have∣∣g(x)− g(a)
∣∣ ≤ ∣∣g(x)− fm(x)

∣∣+
∣∣fm(x)− fm(a)

∣∣+
∣∣fm(a)− g(a)

∣∣ < ε
3 + ε

3 + ε
3 = ε.

Thus g is continuous at a. Since a was arbitrary, g is continuous on X, hence g ∈ Cb(X).
By the Sequential Characterization of Closed Sets (Part 3 of Theorem 5.16) it follows that
Cb(X) is closed in B(X), as required.

6.16 Corollary: The metric space
(
C[a, b], d∞

)
is complete.

Proof: Since every continuous function f : [a, b]→ R is bounded, we have C[a, b] = Cb[a, b].

6.17 Exercise: Show that the metric spaces
(
C[a, b], d1

)
and

(
C[a, b], d2

)
are not complete.

Hint: in the case [a, b] = [−1, 1], consider fn : [−1, 1] → R given by fn(x) = x1/2n−1 for
n ∈ Z+. Show that if (fn) did converge, either in

(
C[−1, 1], d1

)
or in

(
C[−1, 1], d2

)
, then it

would necessarily converge to a function g with g(x) = 1 when x > 0 and g(x) = −1 when
x < 0, but such a function g cannot be continuous.

4



Compactness

6.18 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. An
open cover for A (in X) is a set S of open sets in X such that A ⊆

⋃
S =

⋃
U∈S

U .

When S is an open cover for A in X, a subcover of S for A is a subset T ⊆ S such that
A ⊆

⋃
T =

⋃
U∈T U . We say that A is compact (in X) when every open cover for A has

a finite subcover.

6.19 Theorem: Let A ⊆ X ⊆ Y where Y is a metric space (or a topological space). Then
A is compact in X if and only if A is compact in Y .

Proof: Suppose that A is compact in X. Let T be an open cover for A in Y . For each
V ∈ T , let UV = V ∩X. By Theorem 4.49 (or Remark 4.50), each set UV is open in X.
Since A ⊆ X and A ⊆

⋃
V ∈T V , we also have A ⊆

⋃
V ∈T (V ∩X) =

⋃
V ∈T UV . Thus the

set S =
{
UV
∣∣V ∈ T} is an open cover for A in X. Since A is compact in X we can choose

a finite subcover, say
{
UV1 , · · ·UVn

}
of S, where each Vi ∈ T . Since A ⊆

⋃n
i=1 UVi =⋃n

i=1(Vi ∩X), we also have A ⊆
⋃n
i=1 Vi and so {V1, · · · , Vn} is a finite subcover of T .

Suppose, conversely, that A is compact in Y . Let S be an open cover for A in X. For
each U ∈ S, by Theorem 4.49 (or by Remark 4.50) we can choose an open set VU in Y such
that U = VU ∩X. Then T =

{
VU
∣∣U ∈ S} is an open cover of A in Y . Since A is compact

in Y we can choose a finite subcover, say
{
VU1

, · · · , VUn

}
of T , where each Ui ∈ S. Then

we have A ⊆
⋃n
i=1(VUi

∩X) =
⋃n
i=1 Ui and so {U1, · · · , Un} is a finite subcover of S.

6.20 Remark: Let A ⊆ X where X is a metric space (or a topological space). By the
above theorem, note that A is compact in X if and only if A is compact in itself. For this
reason, we do not usually say that A is compact in X, we simply say that A is compact.

6.21 Theorem: Let X be a metric space and let A ⊆ X. If A is compact then A is closed
and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let b ∈ Ac. For each a ∈ A,
let ra = d(a, b) > 0, let Ua = B

(
b,
ra
2

)
, and let Va = B

(
b,
ra
2

)
so that Ua and Va are disjoint.

Note that the set S =
{
Va
∣∣a ∈ A

}
is an open cover for A. Since A is compact we can

choose a finite subcover, say {Va1 , · · · , Van} where each ak ∈ A. Let r = min{ra1 , · · · , ran}
so that B

(
b, r2
)
⊆ Uak for all k, and hence B

(
b, r2
)

is disjoint from each set Vak . Since

B
(
b, r2
)

is disjoint from each set Vak and the sets Vak cover A, it follows that B
(
b, r2
)

is

disjoint from A, hence B
(
b, r2
)
⊆ Ac. Thus Ac is open, hence A is closed.

We claim that A is bounded. Let a ∈ A. For each n ∈ Z+, let Un = B(a, n). Then the
set S = {U1, U2, U3, · · ·} is an open cover for A. Since A is compact, we can choose a finite
subcover, say {Un1 , Un2 , · · · , Un,`} ⊆ S, with each ni ∈ Z+. Let m = max{n1, n2, · · · , n`}
so that Uni

⊆ Um for all indices i. Then we have A ⊆
⋃`
i=1 Uni

= Um = B(a,m) and so
A is bounded.

6.22 Theorem: Let X be a metric space (or a topological space) and let A ⊆ X. If X is
compact and A is closed in X, then A is compact.

Proof: Suppose that X is compact and A is closed in X. Let S be an open cover for A.
Then S∪{Ac} is an open cover for X. Since X is compact, we can choose a finite subcover
T of S∪{Ac}. Note that T may or may not contain the set Ac but, in either case, T \{Ac}
is an open cover for A with T \ {Ac} ⊆ S, so that T \ {Ac} is a finite subcover of S.
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Compactness in Rn

6.23 Definition: A closed bounded rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn]

=
{

(x1, x2, · · · , xn) ∈ Rn
∣∣aj ≤ xj ≤ bj for all j

}
.

6.24 Theorem: (Nested Rectangles) Let (Rk)k≥1 be a sequence of closed bounded rect-
angles in Rn with R1 ⊇ R2 ⊇ R3 ⊇ · · ·. Then

∞⋂
k=1

Rk 6= ∅.

Proof: Let Rk = [ak,1, bk,1]× [ak,2, bk,2]× · · · × [ak,n, bk,n]. Since R1 ⊇ R2 ⊇ · · · it follows
that for each index j with 1 ≤ j ≤ n we have [a1,j , b1,j ] ⊇ [a2,j , b2,j ] ⊇ [a3,j , b3,j ] ⊇ · · ·.
By the Nested Interval Theorem (Theorem 1.19), for each index j with 1 ≤ j ≤ n we can

choose uj ∈
∞⋂
k=1

[ak,j , bk,j ]. Then for u = (u1, u2, · · · , un) we have u ∈
∞⋂
k=1

Rk.

6.25 Theorem: (Compactness of Rectangles) Every closed bounded rectangles in Rn is
compact (using the standard topology in Rn).

Proof: Let R = I1× I2×· · ·× In where Ij = [aj , bj ] with aj ≤ bj . Let d be the diameter of

R, that is d=diam(R)=
( n∑
j=1

(bj − aj)2
)1/2

. Let S be an open cover of R. Suppose, for a

contradiction, that S does not have a finite subset which covers R. Let a1,j = aj , b1,j = bj ,
I1,j = Ij = [a1,j , b1,j ] and R1 = R = I1,1 × · · · × I1,n. Recursively, we construct rectangles
R = R1 ⊇ R2 ⊇ R3 ⊇ · · ·, with Rk = Ik,1 × · · · × Ik,n where Ik,j = [ak,j , bk,j ], and

dk = diam(Rk) =
( n∑
j=1

(bk,j − ak,j)2
)1/2

= d
2k−1 , such that the open cover S does not have

a finite subset which covers any of the rectangles Rk. We do this recursive construction
as follows. Having constructed one of the rectangles Rk, we partition each of the intervals
Ik,j = [ak,j , bk,j ] into the two equal-sized subintervals [ak,j ,

ak,j+bk,j

2 ] and [
ak,j+bk,j

2 , bk,j ],
and we thereby partition the rectangle Rk into 2n equal-sized sub-rectangles. We choose
Rk+1 to be equal to one of these 2n sub-rectangles with the property that the open cover
S does not have a finite subset which covers Rk+1 (if each of the 2n sub-rectangles could
be covered by a finite subset of S then the union of theses 2n finite subsets would be a
finite subset of S which covers Rk).

By the Nested Rectangles Theorem, we can choose an element u ∈
∞⋂
k=1

Rk. Since

u ∈ R and S covers R we can choose an open set U ∈ S such that u ∈ U . Since U is open
we can choose r > 0 such that B(u, r) ⊆ U . Since dk → 0 we can choose k so that dk < r.
Since u ∈ Rk and diamRk = dk < r we have Rk ⊆ B(u, r) ⊆ U . Thus S does have a finite
subset, namely {U}, which covers Rk, giving the desired contradiction.

6.26 Theorem: (The Heine-Borel Theorem) Let A ⊆ Rn. Then A is compact if and only
if A is closed and bounded (using the standard topology in Rn).

Proof: If A is compact then A is closed and bounded by Theorem 6.21. Suppose that A
is closed and bounded. Since A is bounded we can choose r > 0 so that A ⊆ B(0, r). Let
R =

{
x ∈ Rn

∣∣|xk| ≤ r for all k
}

. Note that B(0, r) ⊆ R since if x = (x1, · · · , xn) ∈ B(0, r),

then for each index k we have |xk| =
(
xk

2
)1/2 ≤ ( n∑

i=1

xi
2
)1/2

= ‖x‖ < r. Since A is closed

and A ⊆ R and R is compact, it follows that A is compact, by the Theorem 6.22.
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Compact Sets and Continuous Maps

6.27 Theorem: Let X and Y be metric spaces (or topological spaces) and let f : X → Y .
If X is compact and f is continuous then f(X) is compact.

Proof: Suppose that X is compact and f is continuous. Let T be an open cover for
f(X) in Y . Since f is continuous, so that f−1(V ) is open in X for each V ∈ T , the set
S =

{
f−1(V )

∣∣V ∈ T
}

is an open cover for X. Since X is compact, we can choose a

finite subcover, say {f−1(V1), f−1(V2), · · · , f−1(Vn)
}

of S, with each Vi ∈ T . Then the set
{V1, V2, · · · , Vn} is a finite subcover of T for f(X).

6.28 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f : R→ R given by f(x) = 2

π tan−1(x) sends the closed set R
homeomorphically to the open interval (−1, 1).

6.29 Theorem: (The Extreme Value Theorem) Let X be a nonempty compact metric
space (or topological space) and let f : X → R be continuous. Then there exist a, b ∈ X
such that f(a) ≤ f(x) ≤ f(b) for all x ∈ X.

Proof: Since X is compact and f is continuous, f(X) is compact, hence f(X) is closed and
bounded. By the Supremum and Infimum Properties of R, since f(X) is nonempty and
bounded, M = sup f(X) and m = inf f(X) are finite real numbers. By the Approximation
Property of the Supremum and Infimum, M and m are both limits of sequences in f(X),
so they both lie in the closure of f(X). Since f(X) is closed in R, we have m,M ∈ f(X).

6.30 Theorem: Let X and Y be metric spaces (or topological spaces) with X compact.
Let f : X → Y be continuous and bijective. Then f is a homeomorphism.

Proof: Let g = f−1 : Y → X. We need to prove that g is continuous. Let A ⊆ X be
closed in X. Since X is compact and A ⊆ X is closed, it follows (from Theorem 6.22) that
A is compact. Since the map f : A→ Y is continuous and A is compact, it follows (from
Theorem 6.27) that f(A) is compact. Since f(A) is compact it follows (from Theorem
6.21) that f(A) is closed. Since g = f−1 we have g−1(A) = f(A), which is closed. Since
g−1(A) is closed in Y for every closed set A in X, it follows (by taking complements) that
g−1(U) is open in Y for every open set U in X. Thus g is continuous, by the Topological
Characterization of Continuity.

6.31 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0, 2π) and Y is the unit circle Y = {z ∈ C

∣∣‖z‖ = 1
}

,
then the map f : X → Y given by f(t) = ei t is continuous and bijective, but the inverse
map is not continuous at 1.

6.32 Theorem: Let X and Y be metric spaces with X compact and let f : X → Y be
continuous. Then f is uniformly continuous.

Proof: Let ε > 0. For each a ∈ X, since f is continuous at a we can choose δa > 0 such that
for all x ∈ X with d(x, a) < δa we have d

(
f(x), f(a)

)
< ε

2 . The set of open balls B
(
a, 12δa

)
with a ∈ X is an open cover for X, and X is compact, so we can choose a1, a2, · · · , an ∈ X
such that X = B

(
a1,

1
2δa1

)
∪ · · · ∪ B

(
an,

1
2δan

)
. Let δ = min

{
1
2δa1 , · · · ,

1
2δan

}
. We

claim that for all x, y ∈ X with d(x, y) < δ, we have d
(
f(x), f(y)

)
< ε. Let x, y ∈ X

with d(x, y) < δ. Since X = B
(
a1,

1
2δa1

)
∪ · · · ∪ B

(
an,

1
2δan

)
, we can choose an index

k so that x ∈ B
(
ak,

1
2δak

)
. Since d(x, ak) < 1

2δak and d(x, y) < δ ≤ 1
2δak , we have

d(y, ak) < δak . Since d(x, ak) < δak we have d
(
f(x), f(ak)

)
< ε

2 and since d(y, ak) < δak we

have d
(
f(y), f(ak)

)
< ε

2 . Thus d(f(x), f(y)
)
≤ d
(
f(x), f(ak)

)
+d
(
f(ak), f(y)

)
< ε

2+ ε
2 = ε.

7



6.33 Theorem: Let X and Y be metric spaces (or topological spaces), and let f : X → Y
be a homeomorphism Which means that f is bijective and both f and f−1 are continuous).
Then for every set A ⊆ X, A is compact (in X) if and only if f(A) is compact (in Y ).

Proof: This follows immediately from Theorem 6.27. Indeed, if A is compact (in X) then
since f : A ⊆ X → Y is continuous (on A), it follows that f(A) is compact (in Y ) and,
conversely, if B = f(A) is compact (in Y ) then since f−1 : B ⊆ Y → X is continuous it
follows that A = f−1(B) is compact (in X).

6.34 Remark: When X and Y are metric spaces and f : X → Y is a homeomorphsm
and A ⊆ X, it is not always the case that for every A ⊆ X, A is complete if and only if
f(A) is complete. For example, the map f :

(
− π

2 ,
π
2

)
→ R given by f(x) = tanx is a

homeomorphism, but
(
− π

2 ,
π
2

)
is not complete and R is complete.

6.35 Theorem: Let A be a subset of a finite-dimensional normed linear space U . Then
A is compact if and only if A is closed and bounded.

Proof: If A is compact (in X), then A is closed and bounded by Theorem 6.21. Suppose
that A is closed and bounded. Let {u1, u2, · · · , un} be a basis for U and let F : Rn → U be

the bijective linear map given by F (t) =
n∑
k=1

tkuk. Recall (from Theorem 5.35) that F and

F−1 are Lipschitz continuous. Let L be a Lipschitz constant for F . Since A is closed in U

and F−1 is continuous, it follows (from Theorem 6.27) that F (A) =
(
F−1

)−1
(A) is closed

in Rn. Since A is bounded (in U) and F is Lipschitz continuous, it follows that F (A) is
bounded in Rn, indeed if A ⊆ B(0, R) then for all x ∈ A we have

‖Fx‖ = ‖Fx− F0‖ ≤ L‖x− 0‖ < LR

so that F (A) ⊆ B(0, LR). Since F (A) is closed and bounded in Rn, it follows (from the
Heine-Borel Theorem) that F (A) is compact (in Rn). Since F (A) is compact (in Rn) and
F−1 is continuous, it follows (from Theorem 6.27) that A = F−1

(
F (A)

)
is compact (in U).

6.36 Exercise: Recall from linear algebra (or verify) that the space Mn×m(R) of n×m
matrices with entries in R is an inner-product space with inner product given by

〈A,B〉 = trace(BTA) =
n∑
k=1

m∑̀
=1

Ak,`Bk,`,

and with standard orthonormal basis
{
Ek,`

∣∣ 1≤k≤n, 1≤ `≤m} where Ek,` is the n ×m
matrix whose (k, `) entry is equal to 1 and all other entries are zero. The linear map
L = Ln×m : Mn×m(R)→ Rnm given by L(Ek,`) = e

(k−1)n+` or, equivalently, by

L(u1, · · · , un) =

 u1
...
un


(where each uk ∈ Rn) is an inner product space isomorphism.

Show that the set S =
{
A ∈ Mn×m(R)

∣∣ATA = I
}

is compact by showing that it is
closed and bounded. To show that S is bounded, first show that A ∈ S if and only if the
columns of A are orthonormal. To show that S is closed, first use the isomorphisms Ln×m
and Lp×q to show that a function F : Mn×m(R) → Mp×q(R) is continuous if and only if
each component function F : Mk×`(R)→ R

(
given by Fk,`(X) = F (X)k,`

)
is continuous as

a function of the entries Xi,j , of the matrix X ∈Mn×m(R), hence show that the function
F : Mn×m(R) → Mm×m(R) given by F (X) = XTX is continuous, then show that S is
closed by noting that S = F−1

(
{I}
)
.
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Some Characterizations of Compactness

6.37 Definition: Let X be a metric space. We say that X is totally bounded when for

every ε > 0 there exists a finite subset {a1, a2, · · · , an} ⊆ X such that X =
n⋃
i=1

B(ai, ε).

We say that X has the finite intersection property on closed sets when for every set
T of closed sets in X, if every finite subset of T has non-empty intersection, then T has
non-empty intersection.

6.38 Theorem: Let X be a metric space. Then the following are equivalent.

(1) X is compact.
(2) X has the finite intersection property on closed sets.
(3) Every sequence (xn) in X has a convergent subsequence.
(4) Every infinite subset A ⊆ X has a limit point.
(5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set
of closed sets in X. Suppose that T has empty intersection, that is suppose

⋂
A∈T A = ∅.

Then
⋃
A∈T A

c = X so the set S =
{
Ac
∣∣A ∈ T

}
is an open cover for X. Since X is

compact, we can choose a finite subcover, say
{
A1

c, · · · , Anc
}

of S for X. Then we have
A1 ∩A2 ∩ · · · ∩An = ∅, showing that some finite subset of T has empty intersection.

Next we prove that (2) implies (3). Suppose X has the finite intersection property on
closed sets. Let (xn)n≥1 be a sequence in X. For each m ∈ Z+, let Am = {xn|n > m} and
note that each Am is closed with A1 ⊇ A2 ⊇ A3 ⊇ · · ·. Let T = {Am|m ∈ Z+}. Note that
every finite subset of T has non-empty intersection because given Am1 , · · · , Am`

∈ T we

can let m = max{m1, · · · ,m`} and then we have
⋂`
i=1Ami

= Am and we have xn ∈ Am.
Since X has the finite intersection property on closed sets, it follows that T has non-empty
intersection. Choose a point a ∈

⋂∞
m=1Am. We construct a subsequence (xnk

)k≥1 of

(xn)n≥1 with lim
k→∞

xnk
= a as follows. Since a ∈ A1 = {xn|n > 1} we can choose n1 > 1

such that d(xn1 , a) < 1. Since a ∈ An1 = {xn|n > n1} we can choose n2 > n1 such
that d(xn2 , a) < 1

2 . Since a ∈ An2 = {xn|n > n2} we can choose n3 > n2 such that
d(xn3

, a) < 1
3 . Repeating this procedure, we can choose 1 < n1 < n2 < n3 < · · · such that

d(xnk
, a) < 1

k for all indices k, and then we have constructed a subsequence (xnk
) such

that lim
k→∞

xnk
= a.

Next we prove that (3) implies (4). Suppose that every sequence (xn) in X has a
convergent subsequence. Let A ⊆ X be an infinite subset. Choose a sequence (xn) in A
with the terms xn all distinct. Choose a convergent subsequence (xnk

) of (xn) and let
a = lim

k→∞
xnk

. Then a is a limit point of the set A.

Now let us prove that (4) implies (5). Suppose that every infinite subset A ⊆ X has a
limit point. We claim that X is complete. Let (xn) be a Cauchy sequence in X. We claim
that (xn) has a convergent subsequence. If the set {xn|n ∈ Z+} is finite, then some term in
the sequence occurs infinitely often, so we can choose indices n1 < n2 < n3 < · · · such that
x1 = x2 = x3 = · · ·, and so in this case (xn) has a constant subsequence. Suppose the set
{xn|n ∈ Z+} is infinite. Let a be a limit point of the infinite set A = {xn|n ∈ Z+}. Since a
is a limit point of the set {xn} we can choose indices nk with n1 < n2 < n3 < · · · such that
0 < d(xnk

, a) < 1
k for each index k. Then (xnk

) is a subsequence of (xn) with lim
k→∞

xnk
= a.

Since the sequence (xn) Cauchy and has a convergent subsequence, it follows, from Part 3
of Theorem 6.3, that the sequence (xn) converges. Thus X is complete, as claimed.
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Continuing our proof that (4) implies (5), suppose that X is not totally bounded.
Choose ε > 0 such that there do not exist finitely many points a1, · · · , an ∈ X for which
X =

⋃n
i=1B(ai, ε). Let a1 ∈ X. Since X 6= B(a1, ε) we can choose a2 ∈ X with a1 /∈

B(a1, ε). Since X 6= B(a1, ε)∪B(a2, ε) we can choose a3 ∈ X with a3 /∈ B(a1, ε)∪B(a2, ε).
Repeat this procedure to choose points a1, a2, a3, · · · with an+1 /∈

⋃n
k=1B(ak, ε). Then the

set A = {an|n ∈ Z+ is an infinite subset of X which has no limit point.
Finally we prove that prove that (5) implies (1). Suppose that X is complete and

totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open
cover S for X which has no finite subcover for X. Since X is totally bounded, we can
cover X by finitely many balls of radius 1. Choose one of the balls, say U1 = B(a1, 1)
such that there is no finite subcover of S for U1 (if there was a finite subcover for each
ball, then the union of all these subcovers would be a finite subcover for X). Since X
is totally bounded, we can cover X (hence also U1) by finitely many balls of radius 1

2 .
Choose one of these balls, say U2 = B(a2,

1
2

)
such that there is no finite subcover of S

for U1 ∩ U2. Repeat the procedure to obtain balls Un = B
(
an,

1
n

)
such that, for each n,

there is no finite subcover of S for
⋂n
k=1 Uk. In particular, each intersection

⋂n
k=1 Uk is

nonempty so we can choose an element xn ∈
⋂n
k=1 Uk. Since for all k, ` ≥ m we have

xk, x` ∈ Um = B
(
am,

1
m

)
it follows that (xn) is Cauchy. Since X is complete, it follows

that (xn) converges in X. Let a = lim
n→∞

xn. Since S covers X we can choose U ∈ S with

a ∈ U . Since U is open we can choose r > 0 such that B(a, r) ⊆ U . Since xn → a we
can choose m > 3

r such that d(xm, a) < r
3 . Then for all x ∈ Um = B

(
am,

1
m

)
we have

d(x, a) ≤ d(x, am) + d(am, xm) + d(xm, a) < 1
m + 1

m + r
3 < r, and so Um ⊆ B(a, r) ⊆ U .

But then S has a finite subcover for Um, namely the singleton {U}, which contradicts the
fact that S has no finite subcover for

⋂m
k=1 Uk.

6.39 Example: Show that in the metric space
(
C[0, 1], d∞

)
, the closed unit ball B(0, 1)

is not compact.

Solution: Let fn(x) = xn for n ∈ Z+. Note that ‖fn‖∞ = 1 so that each fn ∈ B(0, 1).
Note that the pointwise limit of the sequence (fn) is the function g : [0, 1] → R given by
g(x) = 0 when x < 1 and g(1) = 1, which is not continuous. If some subsequence (fnk

) of
(fn) were to converge in

(
C[0, 1], d∞

)
then it would need to converge uniformly on [0, 1] to

the function g. But this is not possible since the uniform limit of a sequence of continuous
functions is always continuous. Thus (fn) has no convergent subsequence and so B(0, 1)
is not compact.
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