Chapter 6. Completeness and Compactness

Completeness

6.1 Definition: A sequence (zx)x>, in a metric space X is called Cauchy when
Ve>0dmeZs, Vk,I€Zs) (k,ﬁ >m = d(xg,x¢) < e).

A metric space X is called complete when every Cauchy sequence in X converges in X.
We remark that a complete inner product space is called a Hilbert space, and a complete
normed linear space is called a Banach space.

6.2 Example: R is complete by the Cauchy Criterion for Convergence (Theorem 1.26).

6.3 Theorem: Let X be a metric space.

(1) Every Cauchy sequence in X is bounded.
(2) Every convergent sequence in X is Cauchy.
(3) If some subsequence of a Cauchy sequence (x,,) converges, then (x,) converges.

Proof: To prove Part 1, let (z,),>1 be a Cauchy sequence in X. Choose m € Z* such
that k,¢ > m = d(xk,z¢) < 1 and note that, in particular, we have d(zy, x,,) < 1 for all
k > m. Let a = x,, and choose r > max{d(xl,a),d(mg,a), s d(Tp—1,a), 1}. Then for
all n € Z* we have d(z,,a) < r so the sequence (z,) is bounded, as required.

To Prove Part 2, let (z,),>1 be a convergent sequence in X and let a« = lim x,. Let
= n— oo

€ > 0. Choose m € Z* such that n > m = d(z,,a) < % Then for all k, £ > m we have
d(zg, ¢) < d(zg,a) + d(a,ze) < §+ § =,

so the sequence (x,,) is Cauchy, as required.
To prove Part 3, let (x,,),>1 be a Cauchy sequence in X, let (x,, )x>1 be a subsequence
of (xn)n>1, suppose tha (z,, )r>1 converges, and let a = klim Zn,. Let € > 0. Since (z,)
- - — 00

is Cauchy we can choose m € Z* so that k, £ > m = d(xy,x) < g Since klim ny = 00
— 00

and klim T, = a, we can choose an index ¢ such that ny > m and d(zy,,a) < §. Then
— 00

for all £ > m we have
d(zg,a) < d(xk, xn,) + d(zy,,a) < g + g =e€.

6.4 Theorem: Let X be a complete metric space and let A C X. Then A is complete if
and only if A is closed in X

Proof: Suppose that A is closed in X. Let (z,) be a Cauchy sequence in A. Since X is
complete, (x,) converges in X. Since A is closed in X and (z,) is a sequence in A which

converges in X, we have lim z, € A by Theorem 3.5 (The Sequential Characterization of
n—oo

Closed Sets). Thus every Cauchy sequence in A converges in A, so A is complete.
Suppose, conversely, that A is complete. Let a € A’, that is let a € X be a limit point

of A. Since a € A’, by Theorem 5.16 (The Sequential Characterization of Limit Points)

we can choose a sequence (z,) in A (indeed in A\ {a}) with nl;rgo x, = a. Since (z,)

converges in X, it is Cauchy. Since (z,,) is Cauchy and A is complete, (z,) converges in
A, that is a = lim x,, € A.

n— oo



The Completeness of R™

6.5 Theorem: (Bolzano-Weierstrass Theorem) Every bounded sequence in R™ has a
convergent subsequence (using the standard metric in R™).

Proof: For this proof, we shall label the components of an element in R™ using superscripts
rather than subscripts, se we shall write an element x € R™ as (z!,22,---,2™). Let
(Tn)n>1 be a bounded sequence in R™. Then the first component sequence (x)),>1 is
a bounded sequence in R. By the Bolzano-Weierstrass Theorem in R (Theorem 1.23),
we can choose a convergent subsequence (z}; ,)e>1. Since the second component sequence
(22)n>1 is bounded, the subsequence (22,)¢>1 is also bounded so (by Theorem 1.23 again)

we can choose a convergent subsequence (7, )p>1. Since (z),)¢>1 converges, so does
k> >

1

. ek)kzl' Since the third component sequence (z3),,>1 is bounded, the

the subsequence (x

subsequence (x3

ne, Jk>1 is also bounded so (by Theorem 1.23) we can choose a convergent
k>

subsequence (z3

, - 1 2
ney, )j>1. Since the component sequences (z,,,) and (z;,) both converge, so

do the subsequences (:z:}uk) and (acfwk) Thus the subsequence (zn,, )k>1 of (z;) has the

property that the first 3 component sequences (zl " ), (22 zk) and (z3 Zk) all converge. We
repeat the procedure until we obtain a subsequence of (x,,) whose m component sequences
all converge. This subsequence converges in R” by Theorem 5.4 (Component Sequences
in R™).

6.6 Theorem: (The Completeness of R™) For every sequence in R, the sequence con-
verges if and only if it is Cauchy (where we are using the standard metric in R™ ).

Proof: Let (x,),>1 be a sequence in R™. If (z,),>1 converges, then it is Cauchy by
Part 2 of Theorem 6.3. Suppose, conversely, that (z,),>1 is Cauchy. Choose N € Z™ so
that when k,¢ > N we have |r; — 24| < 1. Then for all k € ZT we have |z, — zy| < 1
and hence |zx| < |z — xn| + |zn| < 1+ |zN]|, and so the sequence (z,,)n>1 is bounded
by max {|z1|,|z2|,- -, |zn-1], 1+|zn|}. By the Bolzano-Weierstrass Theorem, we can
choose a convergent subsequence (x,, )r>1. Since (z,) is Cauchy and has a convergent
subsequence, it follows that (z,) converges by Part 3 of Theorem 6.3.

6.7 Theorem: Every finite-dimensional normed linear space is complete.

Proof: Let U be an m-dimensional normed linear space. Let {uj,---,u,} be a basis for
the vector space U and let F' : R™ — U be the associated vector space isomorphism

given by F(t) = Z trug. Recall, from Theorem 5.38, that both F' and F'~" are Lipschitz

continuous. Let L be a Lipschitz constant for F' and let M be a Lipschitz constant for
F~1. Let (x,)n>1 be a Cauchy sequence in U. For each n € Z*, let t,, = F~1(z,) € R™.
Note that (¢,,)n>1 is a Cauchy sequence in R™ because

[t = tell = [|F~ (@n) — F~ (wo)|| < My, — |-

Since (t,,) is a Cauchy sequence in R” and R™ is complete, (¢,) converges in R™. Let

s = lim ¢, € R™ and let a = F(s) € U. Then we have lim z, = a because

lzn — all = [[F(ta) = F(s)|| < Llftn — sll.
6.8 Corollary: The metric spaces (R™,d;), (R™,d2) and (R™,d,) are all complete.

6.9 Corollary: Let U be a finite dimensional normed linear space and let A C U. Then
A is complete if and only if A is closed in U.



The Completeness of Spaces of Sequences and Spaces of Functions

6.10 Theorem: The metric spaces (¢1,d1), (f2,d2) and (£, ds) are all complete.

Proof: We prove that (¢1,d;) is complete and we leave the proof that (2, ds) and ({oo, doo)
are complete as an exercise. Let (a,)n>1 be a Cauchy sequence in ¢;. For each n € 7T,

oo
write a, = (@n,k)k>1 = (An,1,0n,2,an.3, ). Since a,, € 1 we have ) |a, x| < co. Since
k=1
(@n)n>1 is Cauchy, for every € > 0 we can choose N € Z* such that for all n,m > N we
o0
have ||a, — anl|; <€, that is Y |ank — amk| < €. For each fixed k € Z*, note that for
k=1
o0
n,m > N we have |apr — am k| < D |an,; — am,j| < €, and so the sequence (an k)n>1 18

j=1
Cauchy in R, so it converges. For each k € Z™, let b, = lim ank € Rand let b= (by)r>1.
n—oo -

We claim that b € ¢;. Since (a,)n>1 is Cauchy, for every e > 0 we can choose
N € Z7 such that for all n,m > N we have ||a,, — a1 < €, that is Z |an ke — Gm k| < €.
By the Triangle Inequality, for n,m > N we have |[lan|; — [lam; ‘ < lan —amll; < €

It follows that the sequence (|]an\|)n>1 is a Cauchy sequence in R, so it converges. Let
M = lim lan|l; € R. For each fixed K € Z* we have

K K K 0
lim a, x| = lim ap k| < lim ap.k| = lim ||a,|; =M
; | | kgl ‘ n—00 { n—o00 kgl | ’ n—00 kgl | | n—o00 H Hl
Since Z |bp| < M for all K € Z* it follows that . |bx| < M, so b € 41, as claimed.
k=1

k=1
Finally, we claim that lim a, = bin ¢;. Let ¢ > 0. Choose N € Z* such that for all
n—oo

n,m > N we have ||a, — a,,||; < e. Then for each K € Z" we have

K K K

Yo lank — bkl = ’an E— hm Am k! = lim ) |ank — am.kl

k=1 k=1 m—oo p—1
gﬂ}gnookzllank_amk’— lgn Han_amnge

K
Since Y |ank — bi| < € for all K € Z7 it follows that ||a, — b||, = Z lank — br| <e.
k=1

6.11 Exercise: After showing that ({,d~) is complete, show that (¢1,d) and ({2, dw)
are not closed in (£, ds ) and so they are not complete.

6.12 Definition: For a metric space X, we define
B(X)=B(X, ):{f:X%R‘fisbounded}
C(X)=C(X,R)={f:X — R| fis continuous},
Cp(X) = Cb(X R ={f:X- R‘ f is bounded and continuous}.
is

Note that B(X) is a normed linear space using the supremum norm given by

£l = sup |f(2)]
reX

and a metric space under the supremum metric given by d(f, g) = sup !f(x) — g(w)‘
rzeX



6.13 Definition: For a sequence (f,,) of functions f,, : X — R and a function g : X — R,
we say that (f,) converges uniformly to g on X, and write f,, — ¢ uniformly on X,
when

Ve>0ImeZt Vae X VneZt (n > m = |fo(z) — g(z)| <¢).

6.14 Note: For a sequence (f,) € B(X) and for g € B(X), note that |f,(x) — g| < € for
every x € X if and only if || f, — g||, < e. It follows that f, — g uniformly on X if and
only if f, — g in the metric space (B(X), doo).

6.15 Theorem: Let X be a metric space. Then the metric spaces (B(X),doo) and
(Co(X),dss) are complete.

Proof: Let (f,)n>1 be a Cauchy sequence in (B(X),ds). Note that for each z € X,
we have |f,(2) — fm(2)] < supyex [fa(y) = fn(y)| = |fn — finlloo, and so the sequence
( fn(.r))n>1 is a Cauchy sequence in R, so it converges. Thus we can define a function
g: X - Rby g(z) = lim f,(z) and then we have f,, — g pointwise in X.
n—oo

We claim that g € B(X), that is we claim that ¢ is bounded. Since (f,,) is a Cauchy
sequence in B(X), it is bounded (by Part 1 of Theorem 6.3) so we can choose M > 0 such
that || f»| ., < M for all indices n. Then for all z € X we have |f,, ()| < ||fnll,, < M and
hence |g(z)| = lim |f,(x)] < M. Thus g is a bounded function, that is g € B(X).

n—oo

We know that f, — g pointwise on X. We must show that f, — ¢ uniformly on
X. Let € > 0. Since (f,) is Cauchy in (B(X),ds), we can choose m € ZT such that
| fi — fell o < € for all k,£>m. Then for all k > m and for all z € X we have

|fk(l') - g(:l:)\ = Eliglo |fk(:1;) — fe(.%’)’ < e.

It follows that f,, — ¢ uniformly on X, that is f,, — ¢ in the metric space (B(X ), doo).
Thus (B(X),dw) is complete.

To show that (Cy(X), deo) is complete, it suffices (by Theorem 6.4) to show that Cy(X)
is closed in B(X). Let (f,) be a sequence in Cy(X) which converges in (B(X),ds). Let
g = nh—>Holo frnin B(X). We need to show that g is continuous. Let € > 0 and let a € X. Since

)

fn — gin (B(X ,doo) we know that f, — ¢ uniformly on X, so we can choose m € Z*
such that | fn(z) — g(x)| < § for all n > m and all z € X. Since fy, is continuous at a we
can choose § > 0 such that for all z € X with d(z,a) < & we have |fn,(z) — fm(a)| < §.
Then for all z € X with d(x,a) < § we have

l9(x) = g(a)| < [g(x) = fun(@)| + [fm(z) = fm(@)| + [fm(a) —gla)| < §+ §+ § =
Thus g is continuous at a. Since a was arbitrary, ¢ is continuous on X, hence g € Cp(X).

By the Sequential Characterization of Closed Sets (Part 3 of Theorem 5.16) it follows that
Cp(X) is closed in B(X), as required.

6.16 Corollary: The metric space (Cla,b],ds) is complete.
Proof: Since every continuous function f : [a,b] — R is bounded, we have C[a, b] = C|a, b].

6.17 Exercise: Show that the metric spaces (Cla, b],d;) and (C[a, b], d2) are not complete.

Hint: in the case [a,b] = [—~1,1], consider f, : [-1,1] — R given by f,(z) = 2/?"~! for
n € Z*. Show that if (f,) did converge, either in (C[—1,1],d;) or in (C[—1,1],d5), then it
would necessarily converge to a function g with g(z) =1 when « > 0 and g(x) = —1 when

x < 0, but such a function g cannot be continuous.



Compactness

6.18 Definition: Let X be a metric space (or a topological space) and let A C X. An

open cover for A (in X) is a set S of open sets in X such that A C (JS = U U.
ves
When S is an open cover for A in X, a subcover of S for A is a subset T" C S such that

ACUT =UyerU. We say that A is compact (in X) when every open cover for A has
a finite subcover.

6.19 Theorem: Let A C X CY whereY is a metric space (or a topological space). Then
A is compact in X if and only if A is compact in Y.

Proof: Suppose that A is compact in X. Let T be an open cover for A in Y. For each
VeT,let Uy =V NX. By Theorem 4.49 (or Remark 4.50), each set Uy is open in X.
Since A € X and A C [y oV, we also have A C (¢ (VN X) = Uy cp Uv. Thus the
set §' = {UV‘V € T} is an open cover for A in X. Since A is compact in X we can choose
a finite subcover, say {Uv,,---Uy, } of S, where each V; € T. Since A C U}, Uy, =
Ui—,(ViN X), we also have A C |J;_, V; and so {V1,---,V,,} is a finite subcover of T'.

Suppose, conversely, that A is compact in Y. Let S be an open cover for A in X. For
each U € S, by Theorem 4.49 (or by Remark 4.50) we can choose an open set Vi in Y such
that U = VyNX. Then T = {VU|U € S} is an open cover of A in Y. Since A is compact
in Y we can choose a finite subcover, say {VUl, cee VUn} of T', where each U; € S. Then
we have A C |J;_,(Vu, N X) = U;—, U; and so {Uy,---,U,} is a finite subcover of S.

6.20 Remark: Let A C X where X is a metric space (or a topological space). By the
above theorem, note that A is compact in X if and only if A is compact in itself. For this
reason, we do not usually say that A is compact in X, we simply say that A is compact.

6.21 Theorem: Let X be a metric space and let A C X. If A is compact then A is closed
and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let b € A¢. For each a € A,
let ro, = d(a,b) > 0,let U, = B(b, %“), and let V,, = B(b, %") so that U, and V, are disjoint.
Note that the set S = {Va’a € A} is an open cover for A. Since A is compact we can
choose a finite subcover, say {V,,,- -, V,, } where each ar € A. Let r = min{r,,,--,7q, }
so that B(b, g) C U,, for all k, and hence B(b, %) is disjoint from each set V,,. Since
B(b,%) is disjoint from each set V,, and the sets V,, cover A, it follows that B(b,%) is
disjoint from A, hence B(b, %) C Ac. Thus A€ is open, hence A is closed.

We claim that A is bounded. Let a € A. For each n € Z", let U, = B(a,n). Then the
set S = {Uy,Us,Us,- -} is an open cover for A. Since A is compact, we can choose a finite
subcover, say {U,,,Un,, -+, Une} C S, with each n; € ZT. Let m = max{ny,na, -, ns}
so that U,, C U, for all indices i. Then we have A C Ule Un;, = Un = B(a,m) and so
A is bounded.

6.22 Theorem: Let X be a metric space (or a topological space) and let A C X. If X is
compact and A is closed in X, then A is compact.

Proof: Suppose that X is compact and A is closed in X. Let S be an open cover for A.
Then SU{A°} is an open cover for X. Since X is compact, we can choose a finite subcover
T of SU{A}. Note that 7" may or may not contain the set A° but, in either case, T'\ { A}
is an open cover for A with 7'\ {A°} C S, so that T'\ {A°} is a finite subcover of S.



Compactness in R"

6.23 Definition: A closed bounded rectangle in R” is a set of the form
R = [al,bl] X [CLQ,bQ] X oo X [an,bn]
= {(wl,xg, cee L Xp) € R”‘aj < z; <b; for all j}.

6.24 Theorem: (Nested Rectangles) Let (Ry)r>1 be a sequence of closed bounded rect-
angles in R™ with Ry O Ry O R3 O ---. Then

ﬁ Ry # 0.
k=1

Proof: Let Ry = [ak,1,bk,1] X [ak,2,bk2] X -+ X [akn,bkn]. Since Ry O Ry D --- it follows
that for each index j with 1 < j < n we have [a1 ;,b1 ;] 2 [az,;,b2,;] 2 [as;,b3;] 2 -

By the Nested Interval Theorem (Theorem 1.19), for each index j with 1 < j <n we can
o [o.]
choose u; € () [ak,j, bk, j]. Then for u = (u1,us, -, u,) we have u € [ R.
k=1 k=1
6.25 Theorem: (Compactness of Rectangles) Every closed bounded rectangles in R™ is
compact (using the standard topology in R™).

Proof: Let R = I; x Iy x - -- x I,, where I; = [aj,b;] with a; < b;. Let d be the diameter of
R, that is d=diam(R)=( Y (b; — aj)2)1/2. Let S be an open cover of R. Suppose, for a

71=1
contradiction, that S does not have a finite subset which covers R. Let aq ; = aj, b1 ; = bj,

ILj=1I;=1Ja1,,b1 ] and Ry = R=1;1 X --- x I ,. Recursively, we construct rectangles

R = R1 D) R2 D) R3 D) ceey with Rk = Ik,l X o+ X Ik,n where Ikyj = [ak,j,bk,j], and
di, = diam(Ry) = ( Y (be,; — ak,j)z)l/Q = 2,%1, such that the open cover S does not have
j=1

a finite subset which covers any of the rectangles R;. We do this recursive construction
as follows. Having constructed one of the rectangles Ry, we partition each of the intervals
It.; = |ak.j, bk ;] into the two equal-sized subintervals [ag ;, %] and [a’“’jTer’“’j,bk’j],
and we thereby partition the rectangle Ry into 2" equal-sized sub-rectangles. We choose
Rjy41 to be equal to one of these 2" sub-rectangles with the property that the open cover
S does not have a finite subset which covers Ry (if each of the 2" sub-rectangles could
be covered by a finite subset of S then the union of theses 2™ finite subsets would be a
finite subset of S which covers Ry).

[oe)
By the Nested Rectangles Theorem, we can choose an element u € () Rj. Since
k=1
u € R and S covers R we can choose an open set U € S such that u € U. Since U is open

we can choose r > 0 such that B(u,r) C U. Since dy, — 0 we can choose k so that dj < r.
Since u € Ry, and diamRy, = dj, < r we have Ry C B(u,r) C U. Thus S does have a finite
subset, namely {U}, which covers Ry, giving the desired contradiction.

6.26 Theorem: (The Heine-Borel Theorem) Let A C R™. Then A is compact if and only
if A is closed and bounded (using the standard topology in R™).

Proof: If A is compact then A is closed and bounded by Theorem 6.21. Suppose that A
is closed and bounded. Since A is bounded we can choose r > 0 so that A C B(0,r). Let

R = {z € R"||z}| < r for all k}. Note that B(0,r) C Rsinceif x = (z1,---,2,) € B(0,7),
n 1/2

then for each index k we have |zy| = (mk2)1/2 < < > xﬂ) = ||z|| < r. Since A is closed

i=1

and A C R and R is compact, it follows that A is C:)mpact, by the Theorem 6.22.

6



Compact Sets and Continuous Maps

6.27 Theorem: Let X and Y be metric spaces (or topological spaces) and let f : X =Y.
If X is compact and f is continuous then f(X) is compact.

Proof: Suppose that X is compact and f is continuous. Let 7" be an open cover for
f(X)in Y. Since f is continuous, so that f=*(V) is open in X for each V € T, the set
S = {f‘l(V)}V € T} is an open cover for X. Since X is compact, we can choose a
finite subcover, say {f~*(V1), f~*(Va), -+, f~* (V) } of S, with each V; € T. Then the set
{V1,Va,---,V,} is a finite subcover of T for f(X).

6.28 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f: R — R given by f(z) = 2 tan~'(z) sends the closed set R
homeomorphically to the open interval (—1,1).

6.29 Theorem: (The Extreme Value Theorem) Let X be a nonempty compact metric
space (or topological space) and let f : X — R be continuous. Then there exist a,b € X
such that f(a) < f(z) < f(b) for all z € X.

Proof: Since X is compact and f is continuous, f(X) is compact, hence f(X) is closed and
bounded. By the Supremum and Infimum Properties of R, since f(X) is nonempty and
bounded, M = sup f(X) and m = inf f(X) are finite real numbers. By the Approximation
Property of the Supremum and Infimum, M and m are both limits of sequences in f(X),
so they both lie in the closure of f(X). Since f(X) is closed in R, we have m, M € f(X).

6.30 Theorem: Let X and Y be metric spaces (or topological spaces) with X compact.
Let f: X — Y be continuous and bijective. Then f is a homeomorphism.

Proof: Let g = f~! : Y — X. We need to prove that g is continuous. Let A C X be
closed in X. Since X is compact and A C X is closed, it follows (from Theorem 6.22) that
A is compact. Since the map f: A — Y is continuous and A is compact, it follows (from
Theorem 6.27) that f(A) is compact. Since f(A) is compact it follows (from Theorem
6.21) that f(A) is closed. Since g = f~! we have g~ !(A4) = f(A), which is closed. Since
g 1 (A) is closed in Y for every closed set A in X, it follows (by taking complements) that
g 1(U) is open in Y for every open set U in X. Thus g is continuous, by the Topological
Characterization of Continuity.

6.31 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0,27) and Y is the unit circle Y = {z € C|||z|| = 1},
then the map f : X — Y given by f(t) = e'! is continuous and bijective, but the inverse
map is not continuous at 1.

6.32 Theorem: Let X and Y be metric spaces with X compact and let f : X — Y be
continuous. Then f is uniformly continuous.

Proof: Let € > 0. For each a € X, since f is continuous at a we can choose §, > 0 such that
for all z € X with d(z,a) < §, we have d(f(z), f(a)) < 5. The set of open balls B(a, 34,)
with a € X is an open cover for X, and X is compact, so we can choose ay,as, -+, a, € X
such that X = B(ay,564,) U+ U B(an, 50a,). Let § = min{304,, -+, 504,}. We
claim that for all z,y € X with d(z,y) < &, we have d(f(z), f(y)) < e. Let z,y € X
with d(z,y) < 6. Since X = B(al, %(5(11) u---u B(an, %5%), we can choose an index
k so that = € B(ak,%éak). Since d(z,ar) < %5% and d(z,y) < § < %5%, we have
d(y, ar) < q,. Since d(z, ax) < d,, we have d(f(z), f(ar)) < £ and since d(y, ax) < 8,4, We

have d(f(y), f(ax)) < 5. Thus d(f(z), f(y)) < d(f(2), f(ar))+d(f(ar), f(y)) < 5+5 =€
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6.33 Theorem: Let X and Y be metric spaces (or topological spaces), and let f : X — Y
be a homeomorphism Which means that f is bijective and both f and f~! are continuous).
Then for every set A C X, A is compact (in X ) if and only if f(A) is compact (inY).

Proof: This follows immediately from Theorem 6.27. Indeed, if A is compact (in X) then
since f: A C X — Y is continuous (on A), it follows that f(A) is compact (in Y) and,
conversely, if B = f(A) is compact (in Y) then since f~!: B C Y — X is continuous it
follows that A = f~1(B) is compact (in X).

6.34 Remark: When X and Y are metric spaces and f : X — Y is a homeomorphsm
and A C X, it is not always the case that for every A C X, A is complete if and only if
f(A) is complete. For example, the map f : (— %,%) — R given by f(z) = tanz is a

202
homeomorphism, but (— .z

s 5) is not complete and R is complete.
6.35 Theorem: Let A be a subset of a finite-dimensional normed linear space U. Then

A is compact if and only if A is closed and bounded.

Proof: If A is compact (in X), then A is closed and bounded by Theorem 6.21. Suppose
that A is closed and bounded. Let {uy,us, -, u,} be a basis for U and let F: R™ — U be

the bijective linear map given by F(t) = ) trug. Recall (from Theorem 5.35) that F' and
k=1

F~1 are Lipschitz continuous. Let L be a Lipschitz constant for F'. Since A is closed in U
and F~! is continuous, it follows (from Theorem 6.27) that F(A) = (F _1)_1(A) is closed
in R™. Since A is bounded (in U) and F is Lipschitz continuous, it follows that F'(A) is
bounded in R”, indeed if A C B(0, R) then for all x € A we have

[Fz| = |Fz — FO| < Ll — 0 < LR

so that F(A) C B(0,LR). Since F(A) is closed and bounded in R", it follows (from the
Heine-Borel Theorem) that F'(A) is compact (in R™). Since F'(A) is compact (in R™) and
F~1is continuous, it follows (from Theorem 6.27) that A = F~Y(F(A)) is compact (in U).

6.36 Exercise: Recall from linear algebra (or verify) that the space M, xm,(R) of n x m
matrices with entries in R is an inner-product space with inner product given by

(A, B) = trace(BTA) = 3 3. AypyBr,
=1/=1

and with standard orthonormal basis {Ehg} 1<k<n,1</< m} where Fj, , is the n x m
matrix whose (k,£) entry is equal to 1 and all other entries are zero. The linear map
L= Lyxm: Mpxm(R) = R given by L(Ey ) = €(k—1yn-te OF equivalently, by

U1
L(Ul, e 7un) -
Unp,

(where each uj € R™) is an inner product space isomorphism.

Show that the set S = {A € Myxm(R) | AT A = I} is compact by showing that it is
closed and bounded. To show that S is bounded, first show that A € S if and only if the
columns of A are orthonormal. To show that S is closed, first use the isomorphisms L,, .,
and Lpy, to show that a function F' : M, xm(R) — My« 4(R) is continuous if and only if
each component function F : My, ¢(R) — R (given by Fj, ¢(X) = F(X)g,) is continuous as
a function of the entries X ;, of the matrix X € M,,,,(R), hence show that the function
F : Mysm(R) = Mpysm(R) given by F(X) = XTX is continuous, then show that S is
closed by noting that S = F~*({I}).



Some Characterizations of Compactness

6.37 Definition: Let X be a metric space. We say that X is totally bounded when for
n

every € > 0 there exists a finite subset {ai,as,---,a,} C X such that X = |J B(a,¢€).
i=1

We say that X has the finite intersection property on closed sets when for every set

T of closed sets in X, if every finite subset of 7" has non-empty intersection, then 7" has

non-empty intersection.

6.38 Theorem: Let X be a metric space. Then the following are equivalent.

(1) X is compact.

(2) X has the finite intersection property on closed sets.

(3) Every sequence (x,) in X has a convergent subsequence.
(4) Every infinite subset A C X has a limit point.

(5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set
of closed sets in X. Suppose that 7" has empty intersection, that is suppose () ,.p A = 0.
Then |Jyep A° = X so the set S = {AC‘A € T} is an open cover for X. Since X is
compact, we can choose a finite subcover, say {Alc, cee Anc} of S for X. Then we have
A1NAynN---NA, =0, showing that some finite subset of T has empty intersection.
Next we prove that (2) implies (3). Suppose X has the finite intersection property on
closed sets. Let (x,,),>1 be a sequence in X. For each m € Z*, let A,,, = {x,|n > m} and
note that each A,, is closed with A1 2 Ay D A3 D ---. Let T'={A,,|m € Z"}. Note that
every finite subset of 7' has non-empty intersection because given A,,,,---, A4, € T we
can let m = max{my,---, my} and then we have ﬂle A, = Ay, and we have x,, € A,,.
Since X has the finite intersection property on closed sets, it follows that T" has non-empty
intersection. Choose a point a € () ~_; A,. We construct a subsequence (x,, )k>1 of

(Tp)n>1 with klim Zn, = a as follows. Since a € A; = {z,|n > 1} we can choose n; > 1
- —00

such that d(z,,,a) < 1. Since a € A,, = {z,|n >n;} we can choose ny > n; such
that d(z,,,a) < 3. Since a € A,, = {z,|n > n2} we can choose n3 > ny such that
d(xp,,a) < % Repeating this procedure, we can choose 1 < nj; < ng < ng < --- such that
d(zn,,a) < 3 for all indices k, and then we have constructed a subsequence (z,,) such

that lim z,, = a.
k— o0

Next we prove that (3) implies (4). Suppose that every sequence (z,) in X has a
convergent subsequence. Let A C X be an infinite subset. Choose a sequence (z,) in A
with the terms z, all distinct. Choose a convergent subsequence (x,,) of (z,) and let

a = lim z,,. Then a is a limit point of the set A.
k— o0

Now let us prove that (4) implies (5). Suppose that every infinite subset A C X has a
limit point. We claim that X is complete. Let (z,) be a Cauchy sequence in X. We claim
that (z,) has a convergent subsequence. If the set {x,,|n € ZT} is finite, then some term in
the sequence occurs infinitely often, so we can choose indices n; < ny < ng < --- such that
T1 = x9 = x3 = -+, and so in this case (z,) has a constant subsequence. Suppose the set
{zn|n € ZT} is infinite. Let a be a limit point of the infinite set A = {z,,|n € ZT}. Since a
is a limit point of the set {x,} we can choose indices ny with n; < ns < ng < --- such that
0 < d(2n,,a) < 1 for each index k. Then (z,, ) is a subsequence of (z,,) with kli)rréo Tp, = a.

Since the sequence (z,,) Cauchy and has a convergent subsequence, it follows, from Part 3
of Theorem 6.3, that the sequence (z,) converges. Thus X is complete, as claimed.



Continuing our proof that (4) implies (5), suppose that X is not totally bounded.
Choose € > 0 such that there do not exist finitely many points aq,---,a, € X for which
X = U, B(a;,€). Let a1 € X. Since X # B(aj,€) we can choose az € X with a; ¢
B(ay,¢€). Since X # B(ai,€)UB(ag,€) we can choose ag € X with ag ¢ B(ay,€)UB(ag,¢€).
Repeat this procedure to choose points a1, az, as, - - - with a,41 ¢ Uy_; B(ak,€). Then the
set A = {ap|n € Z* is an infinite subset of X which has no limit point.

Finally we prove that prove that (5) implies (1). Suppose that X is complete and
totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open
cover S for X which has no finite subcover for X. Since X is totally bounded, we can
cover X by finitely many balls of radius 1. Choose one of the balls, say U; = B(aq,1)
such that there is no finite subcover of S for U; (if there was a finite subcover for each
ball, then the union of all these subcovers would be a finite subcover for X). Since X
is totally bounded, we can cover X (hence also U;) by finitely many balls of radius %
Choose one of these balls, say Uy = B(as, %) such that there is no finite subcover of S
for U; N Us. Repeat the procedure to obtain balls U,, = B(an, %) such that, for each n,
there is no finite subcover of S for ();_; Ux. In particular, each intersection (;_, Uy is
nonempty so we can choose an element z,, € (),_, Uy. Since for all k,¢ > m we have
Tr,xy € Uy, = B(am, %) it follows that (x,) is Cauchy. Since X is complete, it follows

that (x,) converges in X. Let a = lim z,. Since S covers X we can choose U € S with
n—oo

a € U. Since U is open we can choose r > 0 such that B(a,r) C U. Since z,, — a we
can choose m > % such that d(z,,a) < 5. Then for all z € U,, = B(am, %) we have
d(z,a) < d(z,am) + d(am, m) + d(Tm,a) < =+ L + % <7 and so U, C Bla,r) CU.
But then S has a finite subcover for U,,, namely the singleton {U}, which contradicts the
fact that S has no finite subcover for (-, Uy.

6.39 Example: Show that in the metric space (C[0,1],d), the closed unit ball B(0,1)
is not compact.

Solution: Let f,(z) = z™ for n € Z*. Note that | f,| ., = 1 so that each f,, € B(0,1).
Note that the pointwise limit of the sequence (f,,) is the function g : [0,1] — R given by
g(z) =0 when z < 1 and g(1) = 1, which is not continuous. If some subsequence (f,, ) of
(fn) were to converge in (C[0, 1], doo) then it would need to converge uniformly on [0, 1] to
the function g. But this is not possible since the uniform limit of a sequence of continuous
functions is always continuous. Thus (f,) has no convergent subsequence and so B(0, 1)
is not compact.
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