
PMATH 321 Non-Euclidean Geometry, Solutions to the Exercises for Chapter 4

1: (a) Let C be the Euclidean circle in R2 with diameter from a = (1, 4) to b = (3,−2), and let D be the
Euclidean circle in R2 with diameter from c = (4, 2) to d = (3, 3). Find the (Euclidean) area of the image of
D under the reflection FC .

Solution: The centre of circle C is p = (2, 1) and the radius is r =
√

10. Circle D also has diameter from
u = (3, 2) to v = (4, 3). Since u and v lie along the same ray from p, we see (from Theorem 4.6) that the
image of D under FC is the circle E with diameter from FC(u) to FC(v). We have

FC(u) = p+ r2

|u−p|2 (u− p) = (2, 1) + 10
2 (1, 1) = (7, 6) and

FC(v) = p+ r2

|v−p|2 (v − p) = (2, 1) + 10
8 (2, 2) =

(
9
2 ,

7
2

)
.

The radius of E is s = 1
2

∣∣(7, 6)−
(
9
2 ,

7
2

)∣∣ = 1
2

∣∣( 5
2 ,

5
2

)∣∣ = 5
√
2

4 so the area is A = πs2 = 25π
8 .

(b) Let C be the Euclidean circle in R2 of radius r = 5 centred at p = (−1,−1) and let T be the Euclidean
triangle in R2 with vertices at a = (1, 0), b = (3, 1) and c = (0, 2). Find the (Euclidean) area of the image of
T under the reflection FC .

Solution: Let
a′ = FC(a) = p+ r2

|a−p|2 (a− p) = (−1,−1) + 25
5 (2, 1) = (9, 4),

b′ = FC(b) = p+ r2

|b−p|2 (b− p) = (−1,−1) + 25
20 (4, 2) =

(
4, 32
)
, and

c′ = FC(c) = p+ r2

|c−p|2 (c− p) = (−1,−1) + 25
10 (1, 3) =

(
3
2 ,

13
2

)
.

Again, we make use of Theorem 4.6. Since a and b lie on the same ray from p, the line segment from a to b
is mapped by FC to the line segment from a′ to b′. Since a is the point on line ac nearest to p, the line ac is
mapped by FC to the circle D with diameter p, a′, so the line segment from a to c is mapped to the arc from a′

counterclockwise to c′ along D. Since c is the point on line bc nearest to p, the line bc is mapped by FC to the
circle E with diameter p, c′, so the line segment from b to c is mapped to the arc from b′ counterclockwise to c′

along E. The circle D with diameter p, a′ has centre at 1
2 (p+a′) =

(
4, 32
)

= b′ and radius s = 1
2 |a
′−p| = 5

√
5

2 .

The circle E with diameter p, c′ has centre at u′ = 1
2 (p + c′) =

(
1
4 ,

11
4

)
and radius t = 1

2 |c
′ − p| = 5

√
10
4 . The

area A of the image FC(T ) is equal to 1
4 of the area of D (since the arc from a′ to c′ subtends the angle π

2
at b′) plus the area of the triangle b′, c′, u′ minus 1

4 of the area of E (since the arc from b′ to c′ subtends the
angle π

2 at u′), so we have

A = 1
4πs

2 + 1
2 t

2 − 1
4πt

2 = π
4 ·

125
4 + 1

2 ·
125
8 −

π
4 ·

125
8 = 125

32 (π + 2).



2: (a) Find the centre p ∈ R2 and radius r > 0 of the Euclidean circle C in R2 such that the reflection FC sends
the line L with equation 2x+ y = 8 to the circle D with equation (x+ 1)2 + y2 = 5 (with one point removed).

Solution: The centre of D is the point d = (−1, 0). Note that if a is the point on L nearest to p and a′ = FC(a),
so that the circle D = FC(L) has diameter p, a′, then the line p, a′ passes through d and meets the line L
orthogonally at a. This shows that the points p and a′ both lie on the line M through d which meets L
orthogonally at a. This line M has equation x − 2y = −1, and it meets L at the point a = (3, 2) and it
meets D at the two points (−3,−1) and (1, 1). Since a and a′ must lie on the same ray from p (so p does
not lie between a and a′) it follows that p = (−3,−1) and a′ = (1, 1). In order that FC(a) = a′ we need
r2 = |a− p||a′ − p| = 3

√
5 · 2
√

5 = 30 and so r =
√

30. Thus p = (−3,−1) and r =
√

30.

(b) Find the centre p ∈ R2 and the radius r > 0 of the Euclidean circle C in R2 such that the reflection
FC sends the Euclidean circle D with diameter from a = (2, 1) to b = (1, 2) to the Euclidean circle E with
diameter from c = (−1, 3) to d = (6, 2).

Solution: Note that when FC sends the circle with diameter through u and v to the circle with diameter
through u′ = FC(u) and v′ = FC(v) where 0 6= u ∈ R2 and v = u+ t(v − u) with 0 6= t ∈ R, all of the points
u, v, u′, v′ lie on the same line through p. Also note that the centres of the two circles also lie on this same
line. The given circles D and E have centres

(
3
2 ,

3
2

)
and

(
5
2 ,

5
2

)
and so the points u, v, u′, v′ and p must all lie

on the line through these two centres, namely the line y = x. The line y = x meets the circle D at the points
(1, 1) and (2, 2) so we can take u = (1, 1) and v = (2, 2). The line y = x meets the circle E at the points (0, 0)
and (5, 5) so either we must take u′ = (0, 0) and v′ = (5, 5) or we must take u′ = (5, 5) and v′ = (0, 0). In
order to have u and u′ lie on the same ray through p and to have v and v′ lie on the same ray through p we
must choose u′ = (0, 0) and v′ = (5, 5) with p on the line y = x between u = (1, 1) and v = (2, 2).

Let p = t(1, 1) with 1 < t < 2. Then to get FC(u) = u′ and FC(v) = v′ we need |u − p||u′ − p| = r2 and
|v − p||v′ − p| = r2 so

|u− p||u′ − p| = |v − p||v′ − p| =⇒
∣∣(1, 1)− t(1, 1)

∣∣∣∣(0, 0)− t(1, 1)
∣∣ =

∣∣2(1, 1)− t(1, 1)
∣∣∣∣5(1, 1)− t(1, 1)

∣∣
=⇒ (t− 1)

√
2 · t
√

2 = (2− t)
√

2 · (5− t)
√

2 =⇒ t(t− 1) = (t− 2)(t− 5)

=⇒ t2 − t = t2 − 7t+ 10 =⇒ 6t = 10 =⇒ t = 5
3

Thus we must take p = t(1, 1) = 5
3 (1, 1) and r2 = |u− p||u′ − p| =

∣∣ 2
3 (1, 1)

∣∣∣∣ 5
3 (1, 1)

∣∣ = 20
9 , so r = 2

√
5

3 .



3: (a) Let 0 < a <
√
3
2 . Find the hyperbolic length of the Euclidean line segment given by (x, y) = α(t) =

(
1
2 , t
)

for 0 ≤ t ≤ a.

Solution: We have α′(t) = (0, 1) so the hyperbolic arclength is

L =

∫ a

t=0

2 |α′(t)|
1− |α(t)|2

dt =

∫ a

t=0

2 dt

1−
(
1
4 + t2

) =

∫ a

t=0

8 dt

3− 4t2
=

∫ a

t=0

4√
3√

3− 2t
+

4√
3√

3− 2t
dt

=

[
2√
3

ln

(√
3 + 2t√
3− 2t

)]a
t=0

=
2√
3

ln

(√
3 + 2a√
3− 2a

)
.

(b) Let 0 < a < 1. Find the hyperbolic area of the circle given by x2 + y2 = ax.

Solution: We give two solutions. For a short solution, note that the hyperbolic diameter d of this circle is the
hyperbolic length of the straight line segment from (0, 0) to (a, 0), which is equal to d = ln 1+a

1−a , so the radius

is r = 1
2 ln 1+a

1−a = ln
√

1−a
1+a . Thus the area is

A = 2π(cosh r − 1) = 2π
(

cosh
(

ln
√

1+a
1−a

)
− 1
)

= 2π
(

1
2

(√
1+a
1−a +

√
1−a
1+a

)
− 1
)

= 2π
(

1√
1−a2 − 1

)
.

Here is a second solution. The area is

A =

∫ π/2

θ=−π/2

∫ a cos θ

r=0

4r

(1− r2)2
dr dθ =

∫ π/2

θ=−π/2

[
2

1− r2

]a cos θ

r=0

dθ

=

∫ π/2

θ=−π/2

2

1− a2 cos2 θ
− 2 dθ = −2π +

∫ π/2

θ=0

4 dθ

1− a2 cos2 θ

= −2π +

∫ π
2

θ=0

4 dθ

1− a2
(
1+cos 2θ

2

) = −2π +

∫ π/2

θ=0

8 dθ

(2− a2)− a2 cos 2θ

= −2π +

∫ π

φ=0

4 dφ

(2− a2)− a2 cosφ
, where φ = 2θ

= −2π +

∫ ∞
u=0

8
1+u2 du

(2− a2)− a2 1−u2

1+u2

, where u = tan φ
2 , cosφ = 1−u2

1+u2 , dφ = 2
1−u2 du

= −2π +

∫ ∞
u=0

8 du

(2− a2)(1 + u2)− a2(1− u2)

= −2π +

∫ ∞
u=0

8 du

2 + 2u2 − 2a2
= −2π +

∫ ∞
u=0

4 du

u2 + (1− a2)

= −2π +

∫ π/2

ψ=0

4
√

1− a2 sec2 ψ dψ(√
1− a2 secψ

)2 , where tanψ = u√
1−a2

= −2π +
[

4√
1−a2 ψ

]π/2
ψ=0

= −2π + 4√
1−a2 ·

π
2 = 2π

(
1√

1−a2 − 1
)
.



4: (a) Let u =
(
1
2 ,

1
2

)
and v =

(
3
4 ,

1
4

)
. Find the centre p ∈ R2 and the radius r > 0 of the Euclidean circle C in

R2 such that L = C ∩H2 is the hyperbolic line in H2 through u and v.

Solution: Let L = CE(p, r)∩H2 with p = (x, y). As shown in the proof of Theorem 4.18, in order to have u ∈ L
we need p.u = |u|2+1

2 , that is 1
2x+ 1

2y =
1
2+1

2 = 3
4 , or equivalently x+ y = 3

2 (1), and in order to have v ∈ L
we need p. v = |v2|+1

2 , that is 3
4x+ 1

4y =
5
8+1

2 = 13
16 , or equivalently 3x+ y = 13

4 (2). Subtract Equation (1)
from Equation (2) to get 2x = 7

4 so that x = 7
8 , then put this into Equation (1) to get y = 3

2 −x = 3
2 −

7
8 = 5

8 .

Thus we must take p = (x, y) =
(
7
8 ,

5
8

)
and, by Note 4.14, r =

√
|p|2 − 1 =

√
49+25−64

64 =
√
10
8 .

(b) Let u =
(
− 1

5 ,
3
5

)
and v =

(
4
5 ,−

2
5

)
. Find the centre p ∈ R2 and the radius r > 0 of the Euclidean circle C

in R2 such that the L = C ∩H2 is the hyperbolic line such that FC(u) = v.

Solution: By the proof of Theorem 4.20 we can take p = u+ t(v − u) with t = 1−|u|2
|v|2−|u|2 . Thus we let

t =
1− |u|2

|v|2 − |u|2
=

1− 2
5

4
5 −

2
5

= 3
2 ,

p = u+ t(v − u) =
(
− 1

5 ,
3
5

)
+ 3

2

(
1,−1

)
=
(
13
10 ,−

9
10

)
and

r =
√
|p|2 − 1 =

√
169+81−100

100 =
√
150
10 =

√
6
2 .

(c) Let u=
(
− 3

5 ,
4
5

)
, let b=

(
6
5 ,

2
5

)
, let s=

√
|b|2 − 1, let C be the Euclidean circle in R2 centred at b of radius

s, and let L = C ∩ H2. Find the centre a ∈ R2 and the radius r > 0 of a Euclidean circle D in R2 such that
M = D ∩H2 is the hyperbolic line which is asymptotic to u and intersects orthogonally with L.

Solution: Let a = (x, y). In order for D to intersect orthogonally with S1, by Note 4.14 we need r =
√
|a|2 − 1.

In order to have u ∈ D, by the proof of Theorem 4.18 we need a.u = |u|2+1
2 , that is − 3

5x + 4
5y = 1 or

equivalently −3x+4y = 5 (1). In order for D to intersect orthogonally with C at say the point q, the points a,
b and q must form a right-angled Euclidean triangle with side lengths s, r and |a− b| so that, by Pythagoras’
Theorem, we need s2 + r2 = |a− b|2 hence |b|2− 1 + |a|2− 1 = |a|2− 2a. b+ |b|2 which simplifies to a. b = 1,
that is 6

5x + 2
5y = 1, or equivalently 6x + 2y = 5 (2). Solve Equations (1) and (2) to get a = (x, y) =

(
1
3 ,

3
2

)
and hence r =

√
|a|2 − 1 = 7

6 .



5: (a) Let a =
(
1
5 ,

6
5

)
and b =

(
4
5 ,−

6
5

)
, let C and D be the Euclidean circles centred at a and b, respectively,

which intersect orthogonally with S1, and let L = C ∩ H2 and M = D ∩ H2. Find the centre p and radius
r of the Euclidean circle E such that N = E ∩ H2 is the hyperbolic line which intersects both L and M
orthogonally.

Solution: Let s and t be the radii of the circles C and D respectively. Since C and D intersect orthogonally
with S1 we have s2 = |a|2 − 1 and t2 = |b|2 − 1. In order that E intersects orthogonally with all three circles
S1, C and D, by Pythagoras’ Theorem we need |p|2 = r2 + 1, |p− a|2 = r2 + s2 and |p− b|2 = r2 + t2. When
r2 = |p|2 − 1 we have

|p− a|2 = r2 + s2 ⇐⇒ |p|2 − 2p. a+ |a|2 = (|p|2 − 1) + (|a|2 − 1) ⇐⇒ p. a = 1

and similarly |p − b|2 = r2 + t2 ⇐⇒ p. b = 1. Thus we must take p to be the (unique) point such that
p. a = 1 and p. b = 1. For p = (x, y) we have

p. a = 1 ⇐⇒ 1
5x+ 6

5y = 1 ⇐⇒ x+ 6y = 5 (1)

p. b = 1 ⇐⇒ 4
5x−

6
5y = 1 ⇐⇒ 4x− 6y = 5 (2)

Add (1) and (2) to get 5x = 10 so that x = 2, then put this into (1) to get 6y = 5 − x = 5 − 2 = 3 so that

y = 1
2 . Thus we must take p = (x, y) =

(
2, 12
)

and r =
√
|p|2 − 1 =

√
16+1−4

4 =
√
13
2 .

(b) Let u ∈ H and let L by a hyperbolic line in H. Prove that there exists a unique hyperbolic line M which
contains u and intersects orthogonally with L.

Solution: First let us consider the case that L = N ∩H2 where N is a line in R2 through 0. Let p ∈ R2 with
|p| > 1 and let C be the circle centred at p of radius r =

√
|p|2 − 1. Note that C intersects orthogonally with

N if and only if p ∈ N and note that

u ∈ C ⇐⇒ |u− p|2 = r2 ⇐⇒ |u|2 − 2p.u+ |p|2 = |p|2 − 1 ⇐⇒ p.u = |u|2+1
2 .

We also remark that, when u 6= 0, the point on the line x.u = |u|2+1
2 which is nearest the origin is the point

x = |u|2+1
2|u|2 u which has norm |x| = |u|2+1

2 > 1, so any point p which lies on this line satisfies |p| > 1.

When u = 0, the (unique) line in R2 through u perpendicular to N passes through 0 (hence determines a

hyperbolic line) but there is no point p ∈ R2 for which p.u = |u|2+1
2 . When u 6= 0 and u is orthogonal to N,

the (unique) line in R2 through u perpendicular to N passes through 0 (hence determines a hyperbolic line)

but there is no point p ∈M for which p.u = |u|2+1
2 since the line x.u = |u|2+1

2 is parallel to N . When u 6= 0
and u is not orthogonal to N , the line in R2 through u perpendicular to N does not pass through 0, and there

exists a unique point p ∈ N with p.u = |u|2+1
2 because the line x.u = |u|2+1

2 is not parallel to N. In all cases
we find that there is a unique hyperbolic line through u orthogonal to N .

Now let us consider the case that L = D ∩ H2 where D is the circle in R2 centred at a ∈ R2 with
|a| > 1 of radius s =

√
|a|2 − 1. Again, let p ∈ R2 and let C be the circle in R2 centred at p with radius

r =
√
|p|2 − 1. As above, we have u ∈ C if and only if p.u = |u|2+1

2 . As in Part (a), C intersects orthogonally
with D, say at q, if and only if the Euclidean triangle with vertices at a, p, q is right-angled, if and only if
|p− a|2 = r2 + s2 = (|p|2 − 1) + (|a|2 − 1), if and only if p. a = 1.

When {u, a} is linearly independent, the line through 0 and a (which is the unique line in R2 through
0 which is orthogonal to D) does not pass through u, but there is a unique point p for which the above
circle C passes through u and intersects orthogonally with p, namely the (unique) point of intersection of the

non-parallel lines x.u = |u|2+1
2 and x. a = 1.

Suppose that {u, a} is linearly dependent, say u = ta with t ∈ R. Then the line through 0 and a passes
through u. We claim that there is no point p ∈ R2 for which the above circle C passes through u and intersects

orthogonally with D. Suppose, for a contradiction, that p is such a point. Then we have p.u = |u|2+1
2 and

p. a = 1. It follows that

t = t(p. a) = p. (ta) = p.u = |u|2+1
2 = |ta|2+1

2 = t2|a|2+1
2 .

But this is not possible since |a| > 1 so that

t2|a|2+1
2 − t > t2+1

2 − t = (t−1)2
2 ≥ 0.



6: (a) Let u = (0, 0), v =
(
1
2 , 0
)

and w =
(
1
2 ,

1
2

)
. Find the hyperbolic area of the triangle [u, v, w] in H2.

Solution: We provide two solutions. The first solution you might find it useful to draw an accompanying
picture. The hyperbolic line segments [u, v] and [u,w] are equal to the Euclidean line segments [u, v], u,w]
(since they lie along lines through 0) so we have α = π

4 (α is the angle at u between [u, v] and [u,w]). Let us
find the hyperbolic line L through v and w. Say L = C ∩ H2 where CE(p, r) and write p = (x, y). To have

u ∈ L we need p.u = |u|2+1
2 that is 1

2x =
1
4+1

2 = 5
8 and so x = 5

4 . To have w ∈ L we need p.w = |w|2+1
2 , that

is 1
2x+ 1

2y =
1
4+

1
4+1

2 = 3
4 , so y = 3

2 − x = 3
2 −

5
4 = 1

4 . Thus we obtain p = (x, y) =
(
5
4 ,

1
4

)
. Since the radius of

C from p to v has slope 1
3 , the tangent line to L at at v has slope −3 and so we have β = tan−1 3. Since the

radius of C from p to w has slope − 1
3 , the tangent line to L at w has slope 3 and so we have γ = π

4 − tan−1 1
3 .

Thus the hyperbolic area of the hyperbolic triangle [u, v, w] is

A = π − (α+ β + γ) = π −
(
π
4 + tan−1 3 + π

4 − tan−1 1
3

)
= π

2 + tan−1 1
3 − tan−1 3.

Since tan−1 3 + tan−1 1
3 = π

2 , we can also write this as A = 2 tan−1 1
3 = tan−1 3

4 .
The second solution is purely algebraic. For the hyperbolic triangle [u, v, w] we have

a = dH(v, w) = cosh−1
(
1 +

2· 14
3
4 ·

1
2

)
= cosh−1 7

3

b = dH(w, u) = cosh−1
(
1 +

2· 12
1
2 ·1

)
= cosh−1 3

c = dH(u, v) = cosh−1
(
1 +

2· 14
1· 34

)
= cosh−1 5

3

hence also sinh a =
√

cosh2 a− 1 =
√

49
9 − 1 = 2

√
10
3 , sinh b =

√
cosh2 b− 1 =

√
9− 1 = 2

√
2 and sinh c =√

cosh2 c− 1 =
√

25
9 − 1 = 4

3 . By the First Law of Cosines, we have

cosα =
cosh b cosh c− cosh a

sinhb sinha
=

3 · 53 −
7
3

2
√

2 · 43
= 1√

2

cosβ =
cosh a cosh c− cosh b

sinh a sinh c
=

7
3 ·

5
3 − 3

2
√
10
3 · 43

= 1√
10

cos γ =
cosh a cosh b− cosh c

sinh a sinh c
=

7
3 · 3−

5
3

2
√
10
3 · 2

√
2

= 2√
5
.

Thus the hyperbolic area of the hyperbolic triangle [u, v, w] is

A = π − (α+ β + γ) = π −
(
π
4 + cos−1 1√

10
+ cos−1 2√

5

)
= 3π

4 − cos−1 1√
10
− cos−1 2√

5
.

If you want, you can show that this simplifies to A = tan−1 3
4 .

(b) Let u = (1, 0), v = (0, 1) and w = (0,−1). Find the hyperbolic area of the circle inscribed in the triply
asymptotic triangle [u, v, w] in H2.

Solution: It helps to draw a picture to accompany the solution. The hyperbolic line through u and v is CE(a, 1)
where a = (1, 1) and the hyperbolic line through v and w is CE(b, 1) ∩ H2 where b = (−1, 1). By symmetry,
both the Euclidean centre and the hyperbolic centre of the inscribed circle lie along the y-axis. To find the
Euclidean centre p = (0, y), note that the points (0, y), (1, y) and (1, 1) form a Euclidean right-angled triangle
with edge lengths 1, 1−y and 1+y, and so we must have (1+y)2 = 12+(1−y)2, that is 1+2y+y2 = 2−2y+y2,
hence 4y = 1. Thus the Euclidean centre of the inscribed circle is at p =

(
0, 14
)

and the Euclidean radius is 1
4 .

The line segment from 0 = (0, 0) to q =
(
0, 12
)

is both a Euclidean and hyperbolic diameter for the inscribed

circle. The hyperbolic length of the diameter is d = dH
(
0, q) = cosh−1

(
1 +

2· 14
1· 34

)
= cosh−1 5

3 , so the hyperbolic

radius is r = 1
2d so that cosh 2r = cosh d = 5

3 . We have

cosh2 r =
(
er+e−r

2

)2
= e2r+2+e−2r

4 = 1
2

(
1 + cosh 2r

)
= 1

2

(
1 + 5

3

)
= 4

3

so that cosh r = 2√
3
, and so the hyperbolic area of the inscribed circle is

A = 2π
(

cosh r − 1
)

= 2π
(

2√
3
− 1
)
.



7: (a) Find the hyperbolic area and perimeter of the regular hexagon in H2 with interior angles π
2 .

Solution: The hexagon can be cut into 6 triangles, meeting at 0, each of which is congruent to a triangle
[u, v, w] with α = π

3 and β = γ = π
4 . The area of the hexagon is

A = 6
(
π − (α+ β + γ)

)
= 6
(
π −

(
π
3 + π

4 + π
4

))
= 6 · π6 = π.

By the Second Hyperbolic Law of Cosines, the length ` = a of the side opposite to u is given by

cosh(`) =
cosα+ cosβ cos γ

sinβ sin γ
=

1
2 + 1√

2
· 1√

2
1√
2
· 1√

2

= 2

and so the perimeter of the hexagon is L = 6` = 6 cosh−1(2). We remark that cosh−1 2 = ln(2 +
√

3).

(b) Find a > 0 such that the regular hexagon in H2 with vertices at (±a, 0),
(
± a

2 ,±
√
3 a
2

)
has interior angles

equal to π
6 .

Solution: The hexagon can be cut into 6 triangles meeting at 0 each of which is congruent to the triangle

[u, v, w] where u = (0, 0), v = (a, 0) and w =
(
a
2 ,
√
3a
2

)
with interior angles α = π

3 and β = γ = π
12 . The length

` of the side opposite to u is given by

cosh(`) =
cosα+ cosβ cos γ

sinβ sin γ
=

cos π3 + cos2 π
12

sin2 π
12

=
1
2 +

1+cos π6
2

1−cos π6
2

=
2 +

√
3
2

1−
√
3
2

= 4+
√
3

2−
√
3

= (4+
√
3)(2+

√
3)

4−3 = 11 + 6
√

3.

By the formula for the hyperbolic distance between two points, we also have

cosh ` = cosh dH(u, v) = 1 + 2|v−u|2
(1−|u|2)(1−|v|2) = 1 + 2a2

(1−a2)2

so we have

1 + 2a2

(1−a2)2 = 11 + 6
√

3 =⇒ 2a2

(1− a2)2
= 10 + 6

√
3 =⇒ a2

(1− a2)2
= 5 + 3

√
3 =⇒ a

1− a2
=

√
5 + 3

√
3

=⇒ a =

√
5 + 3

√
3(1− a2) =⇒

√
5 + 3

√
3 a2 + a−

√
5 + 3

√
3 = 0

=⇒ a =
−1±
√

1+4(5+3
√
3)

2
√

5+3
√
3

= −1+
√

21+12
√
3

2
√

5+3
√
3

= −1+(3+2
√
3)

2
√

5+3
√
3

= 1+
√
3√

5+3
√
3
.



8: (a) Find the hyperbolic circumference and the area of the circle in H2 which is inscribed in the hyperbolic
square with interior angles π

3 .

Solution: We can place the vertices of the square at positions (±k, 0) and (0,±k). The square can be cut into
8 triangles meeting at 0 so that each triangle is congruent to the triangle [u, v, w] where u = (0, 0), v = (k, 0)
and w is the midpoint of the hyperbolic line segment from (k, 0) to (0, k), which has interior angles α = π

4 ,
β = π

6 and γ = π
2 . The hyperbolic radius of the inscribed circle is the length r = b of the side opposite the

angle β = π
6 at vertex v. By the Second Hyperbolic Law of Cosines, we have

cosh(r) =
cosβ + cos γ cosα

sin γ sinα
=

√
3
2 + 0 ·

√
2
2

1 ·
√
2
2

=
√
3√
2
.

Thus the area A and the circumference L of the circle are given by

A = 2π
(

cosh(r)− 1
)

= 2π
(√

3√
2
− 1
)

= π(
√

6− 2), and

L = 2π sinh(r) = 2π

√
cosh2(r)− 1 = 2π

√
3
2 − 1

)
= 2π · 1√

2
=
√

2π.

(b) Find the hyperbolic perimeter and area of the square in H2 with edges along the lines K, L, M and N
such that FK(0) =

(
1
2 , 0
)
, FL(0) =

(
0, 12
)
, FM (0) =

(
− 1

2 , 0
)

and FN (0) =
(
0,− 1

2

)
.

Solution: Using the formula in the proof of Theorem 10.10 (or the formula from Example 10.11), the circle

C for which K = C ∩ H2 is centred at the point p =

(
1
2 ,0
)∣∣( 1

2 ,0
)∣∣2 = (2, 0) and has radius r =

√
|p|2 − 1 =

√
3,

so C is the circle (x − 2)2 + y2 = 3. The intersection of K = C ∩ H2 with the x-axis is at v = (2 −
√

3, 0).
By symmetry, the point of intersection of K with L lies on the line y = x, so we put y = x into the equation

(x − 2)2 + y2 = 3 to get (x − 2)2 + x2 = 3 =⇒ 2x2 − 4x + 1 = 0 =⇒ x = 4±
√
16−8
4 = 1 ± 1√

2
so that the

intersection point is w = (x, y) = (1 − 1√
2
)(1, 1). Thus the square can be cut into 8 congruent triangles each

of which is congruent to the square with vertices at u = (0, 0), v =
(
2−
√

3 , 0
)

and w =
(
1− 1√

2
, 1− 1√

2

)
.

In the triangle [u, v, w] we have α = π
4 and β = π

2 . By the formula for the hyperbolic distance between two
points, we have

cosh(c) = cosh dH(u, v) = cosh dH(0, v) = 1 + 2|v|2
1−|v|2

= 1 + 2(7−4
√
3)

1−(7−4
√
3

= 1 + 7−4
√
3)

−3+2
√
3

= 1 + −3+2
√
3

3 = 2
√
3

3 = 2√
3
.

By the Second Hyperbolic Cosine Law,we have

cos γ = sinα sinβ cosh c− cosα cosβ =
√
2
2 · 1 ·

2√
3
−
√
2
2 · 0 =

√
2√
3
, and

cosh a =
cosα+ cosβ cos γ

sinβ sin γ
=

√
2
2 + 0 ·

√
2√
3

1 · 1√
3

=

√
3√
2
.

Thus the perimeter L and the area A of the square are

L = 8a = 8 cosh−1
√
3√
2

A = 8
(
π − (α+ β + γ)

)
= 8
(
π −

(
π
4 + π

2 + cos−1
√
2√
3

))
= 2π − 8 cos−1

√
2√
3
.



9: (a) Let p =
(
1
2 ,

1
2

)
, θ = π

2 and a =
(
1
3 ,

2
3

)
. Find Rp,θ(a) in H2.

Solution: We find two hyperbolic lines L and M through p such that Rp,θ = FMFL. We take L to be the line
x = y (the through 0 and p). We want to find a line M through p such that the angle from L to M is π

4 , say

M = CE(q, s) ∩H2 with q = (x, y). To have p ∈M , we need q . p = |p|2+1
2 , that is 1

2x+ 1
2y =

1
4+

1
4+1

2 = 3
4 , or

equivalently x+ y = 3
2 (1). In order that the angle from L to M is π

4 , we want M to have a vertical tangent
line at the point p, so q must lie on the horizontal line through p. that is the line y = 1

2 . We put y = 1
2 into

Equation (1) to get x = 1, and so we obtain q = (x, y) =
(
1, 12
)
. And we need s2 = |q|2 − 1 = 1 + 1

4 − 1 = 1
4

and so s = 1
2 . Since L is the line y = x we have b = FL(a) = Fy=x

(
1
3 ,

2
3

)
=
(
2
3 ,

1
3

)
, and since FM = FC where

C = CE(q, s) we have

Rp,θ(a) = FMFL(a) = FC(b) = q + s2

|b−q|2 (b− q) =
(
1, 12
)

+
1
4

1
9+

1
36

(
− 1

3 ,−
1
6

)
=
(
1, 12
)
− 3

10 (2, 1) =
(
2
5 ,

1
5

)
.

(b) Let u =
(
3
5 ,−

4
5

)
and v = (1, 0), and let P be the parallel displacement such that P (u) = u and P (−u) = v.

Find a ∈ H2 such that P (a) = 0.

Solution: Let L be the line through u and −u, that is the line 4x + 3y = 0, and note that FL(u) = u and
FL(−u) = −u. We want to find the line M through u such that FM (−u) = v and then we can take P = FMFL

to get P (u) = u and P (−u) = v. Say M = CE(p, r) with p = (x, y). To have u ∈ M we need p.u = |u|2+1
2 ,

that is 3
5x−

4
5y = 1, or equivalently 3x−4y = 5 (1). To get F (−u) = p we need p to lie on the line through −u

and v, that is the line x+ 2y = 1 (2). Solve Equations (1) and (2) to get p = (x, y) =
(
7
5 ,−

1
5

)
. And we need

r2 = |p|2−1 = 49
25 + 1

25−1 = 1 so that r = 1. To summarize, we have P = FMFL where L is the line 4x+3y = 0
and M = C ∩H2 where C = CE(p, r) with p =

(
7
5 ,−

1
5

)
and r = 1. To get P (a) = 0, that is FMFL(a) = 0, we

need a = (FMFL)−1(0) = FLFM (0). We have FM (0) = FC(0) = p+ r2

|p|2 (−p) = p− 1
2p = 1

2p =
(

7
10 ,−

1
10

)
and

so (using a formula from Part (4) of Example 1.82) we have

a = FLFM (0) = F4x+3y=0

(
7
10 ,−

1
10

)
=
(

7
10 ,−

1
10

)
− 2(4· 7

10−3·
1
10 )

42+32 (4, 3) =
(

7
10 ,−

1
10

)
−
(
4
5 ,

3
5

)
=
(
− 1

10 ,−
7
10

)
.

.



10: (a) Let a =
(
5
4 ,

1
4

)
and r =

√
10
4 , and let L = CE(a, r) ∩ H2. Let u =

(
5
8 ,−

5
8

)
and v =

(
3
4 , 0
)
. Find

the hyperbolic line M such that FLFM (u) = v and determine whether the isometry FMFL is a rotation, a
translation, or a parallel displacement.

Solution: To get FLFM (u) = v we need FM (u) = FL(v). We have

FL(v) = a+ r2

|v−a|2 (v − a) =
(
5
4 ,

1
4

)
+

5
8

1
4+

1
16

(
− 1

2 ,−
1
4

)
=
(
5
4 ,

1
4

)
− 2
(
1
2 ,

1
4

)
=
(
1
4 ,−

1
4

)
.

Let w = FL(v) =
(
1
4 ,−

1
4

)
and let M = CE(b, s)∩H2. From the definition of FM , in order to have FM (u) = w,

the point b must lie below and to the right of u on the line through u and w, that is the line y = −x, and we
need |u − b| · |w − b| = s2 = |b|2 − 1. Say b = (t,−t) with t > 5

8 (so that b lies below and to the right of u).
We have u = 5

8 (1,−1) and w = 1
4 (1,−1) and b = t(1,−1) and so

|u− b| · |w − b| = s2 = |b|2 − 1 =⇒
(
t− 5

8

)√
2 ·
(
t− 1

4

)√
2 = 2t2 − 1 =⇒ 2

(
t2 − 7

8 t+ 5
32

)
− 2t2 − 1

=⇒ 7
4 t = 21

16 =⇒ t = 3
4 .

Thus we have b =
(
3
4 ,−

3
4

)
and we have s2 = |b|2 − 1 = 9

8 − 1 = 1
8 so that s =

√
2
4 .

We have found the hyperbolic line M , and it remains to determine whether FMFL is a translation, a parallel
displacement, or a rotation. This depends on whether the two circles CE(a, r) and CE(b, s) have 0 points of
intersection (giving a translation), or 1 point of intersection (giving a parallel displacement about that point),
or 2 points of intersection (giving a rotation about the point that lies in H2). The two circles have 0k, 1 or 2
points of intersection according to whether |a− b| > r+ s or |a− b| = r+ s or |a− b| < r+ s. In this case we

have |a − b|2 =
∣∣( 1

2 , 1
)∣∣2 = 5

4 and we have (r + s)2 =
(√

10
4 +

√
2
4

)2
= 3+

√
5

4 > 5
4 so that the two circles have

two points of intersection, hence the composite FMFL is a rotation.
Another way to see that the two circles have two points of intersection is to notice, by inspection using a

picture, that
(
1,− 1

2

)
is a point of intersection, and it does not lie on the line containing a and b, so there must

be another point of intersection. Yet another way is to find the two points of intersection algebraically from
the equations of the two circles.

(b) Let u = (0, 0) and v =
(
2
5 ,

1
5

)
. Find the point p ∈ H2 such that Rv,π2Ru,

π
2

= Rp,θ for some θ ∈ [0, 2π).

Solution: Let L be the line x + 3y = 0 and let M be the line x − 2y = 0. Note that L and M pass
through u = (0, 0) with θo(L,M) = π

4 so that FMFL = Ru,π2 and that M also passes through v (to see that

θo(L,M) = π
4 , consider the square with vertices at (0, 0). (1,−2), (3,−1) and (2, 1)). We want to find the

hyperbolic line N which passes through v, and whose tangent line at v has slope 3 so that θo(M,N) = π
4

(consider the above square again to se why the slope should be 3). Let N = CE(q, s) with q = (x, y). To have

v ∈ N we need q . v = |q|2+1
2 , that is 2

5x+ 1
5y =

4
25+

1
25+1

2 = 3
5 , or equivalently 2x+ y = 3 (1). For the tangent

line at v to have slope 3, we need q to lie on the line through v with slope − 1
3 , that is the line x+ 3y = 1 (2).

Solve Equations (1) and (2) to get q = (x, y) =
(
8
5 ,−

1
5

)
. And we need s2 = |q|2 − 1 = 64

25 + 1
25 − 1 = 8

5 so that

s = 2
√
10
5 . With this choice for the lines L, M and N we have

Rv,π2Ru,
π
2

= FNFMFMFL = FNFL = Rp,θ

where p is the point of intersection of L and M in H2 and θ = θo(L,N). Thee line L has Equation x+3y = 0 (3)

and we have M = CE(q, s)∩H2 where the circle CE(q, s) has equation
(
x− 8

5

)2
+
(
y+ 1

5

)2
= 8

5 (4). We solve
Equations (3) and (4): From (3) we have x = −3y, and we put this in (4) to get(
− 3y − 8

5

)2
+
(
y + 1

5

)2
= 8

5 =⇒ 9y2 + 48
5 y + 64

25 + y2 + 2
5y + 1

25 = 8
5 =⇒ 10y2 + 10y + 1 = 0 =⇒ y = −10±

√
60

20

For the point in H2 we need |y| < 1 so we choose y = −10+
√
60

20 = −5+
√
15

10 , and take x = −3y = 15−3
√
15

10 . Thus

the desired point p is the point p =
(
15−3

√
15

10 , −5+
√
15

10

)
.



11: Let 0 6= u ∈ R2. Let K, L and M be the lines in H2 such that FK(0) = −u, FL(−u) = u and FM (0) = u. Let
Tu denote the translation Tu = FMFL .

(a) Show that Tu = FLFK

Solution: Note that L is (the intersection with H2 of) the line through 0 with normal vector u and that, by
symmetry, FL sends the line K to the line M . Let v be a point on K which does not lie on the line through
0 and u, and let w = FL(v) ∈M . Consider the hyperbolic triangle [−u, 0, v]. We have

FM
(
FL(−u)

)
= FM (u) = 0 , FM

(
FL(0)

)
= FM (0) = u , and FM

(
FL(v)

)
= FM (w) = w

and we have

FL
(
FK(−u)

)
= FL(0) = 0 , FL

(
FK(0)

)
= FL(−u) = u , and FL

(
FK(v)

)
= FL(v) = w.

It follows from Theorem 13.6 that Tu = FLFK = FLFK .

(b) Find p ∈ H2 and θ ∈ R such that TuR0,πTu = Rp,θ.

Solution: Let N be (the intersection with H2 of) the line through 0 and u, and let a be the point where K
meets N (in other words let a be the hyperbolic midpoint between −u and 0). Then

TuR0,πTu = TuFNFLFLFK = TuFNFK = TuRa,π = FLFKFKFN = FLFN = R0,π.

Thus we must take p = 0 and θ = π.

(c) Let u =
(
1
4 ,−

√
3
4

)
, v =

(
1
4 ,
√
3
4

)
and w =

(
− 1

2 , 0
)
. Let L1, L2, L3, L4, L5 and L6 be the lines in H2

containing the hyperbolic line segments [u, v], [0, v], [v, w], [0, w], [w, u] and [0, u] respectively. Find p ∈ H2

and θ ∈ R such that FL6FL5FL4FL3FL2FL1 = Rp,θ.

Solution: Let α be the interior angle at each vertex in the equilateral hyperbolic triangle [u, v, w]. Then we
have

FL6FL5FL4FL3FL2FL1 = FL6FL5FL4FL3Rv,−α = FL6FL5FL4FL3FL3FL2 = FL6FL5FL4FL2

= FL6FL5R0,− 4π
3

= Ru,−αR0,− 4π
3

= FL1
FL6

FL6
FL4

= FL1
FL4

= Rp,θ

where p is the point of intersection of lines L1 and L4 (that is the hyperbolic midpoint of u and v) and θ = π.
To finish our solution, let us calculate the coordinates of the point p. Let C be the circle in R2 such that

L1 = C ∩H2. Let a = (x, y) be the centre of C. Note that

u ∈ C =⇒ a.u = |u|2+1
2 =⇒ (x, y). ( 14 , √3

4

)
=

1
4+1

2 =⇒ 1
4x+

√
3
4 y = 5

8 =⇒ x+
√

3y = 5
2 .

Also, by symmetry, note that y = 0 so that a = (x, y) =
(
5
2 , 0
)
. Since the centre of C is at a =

(
5
2 , 0
)

and the

radius of C is r =
√
|a|2 − 1 =

√
25
4 − 1 =

√
21
2 it follows that p =

(
5−
√
21

2 , 0
)
.



12: In this problem we find formulas for isometries on H2 using complex number notation.

(a) Let p ∈ C, let 0 6= u ∈ C and let L be the line in C through p perpendicular to u. Show that for z ∈ C we

have FL(z) = p− u2

|u|2
(z − p).

Solution: We know that FL(z) = z − 2 (z − p).u
|u|2

u. Let GL(z) = p− u2

|u|2
(z − p). Let M be the line through

0 perpendicular to u. Then for w = x+ iy = (x, y) and u = k + il = (k, l) we have

FM (w) = w − 2w .u
|u|2

u = (x, y)− 2 (x, y). (k, l)

k2 + l2
(k, l) , so that

(k2 + l2)FM (w) =
(
(k2 + l2)x , (k2 + l2)y

)
− 2(kx+ ly)(k, l)

=
(

(l2 − k2)x− 2kly , (k2 − l2)y − 2klx
)

and

GM (w) = − u2

|u|2
w = − (k + il)2(x− iy)

k2 + l2
, so that

(k2 + l2)GM (w) = −
(
(k2 − l2) + i 2kl

)
(x− iy)

= −
((

(k2 − l2)x+ 2kly
)
− i
(
(k2 − l2)y − 2klx

))
=
(
(l2 − k2)x− 2kly

)
+ i
(
(k2 − l2)y − 2klx

)
.

Thus we have GM (w) = FM (w) for all w ∈ C. It follows that for all p ∈ C and z ∈ C we have

GL(z) = p− u2

|u|2
(z − p) = p+GM (z − p) = p+ FM (z − p)

= p+
(

(z − p)− 2 (z − p).u
|u|2

u
)

= z − 2(z − p).u
|u|2

u = FL(z).

(b) Let p ∈ C, let r > 0 and let C be the circle centred at p of radius r. Show that for z ∈ C we have

FC(z) = p+
r2

z − p
.

Solution: For z ∈ C we have

FC(z) = p+
r2

|z − p|2
(z − p) = p+

r2

(z − p)(z − p)
(z − p) = p+

r2

z − p
,

as required.

(c) Let 0 6= u ∈ R2 and let Tu be as in Problem 11. Show that Tu(z) =
z + u

u z + 1
.

Solution: In Problem 11, the line L is the line through 0 perpendicular to u, and the line M is the line such
that FM (0) = u, which is given by M = C ∩ H2 where C is the circle in R2 centred at p = u

|u|2 of radius

r =
√
|p|2 − 1 =

√
1
|u|2 − 1. By Parts (a) and (b), for z, w ∈ C we have

FL(z) = − u2

|u|2
z and FM (w) = FC(w) = p+

r2

w − p
=

u

|u|2
+

1
|u|2 − 1

w − u
|u|2

.

Thus for z ∈ C we have

Tu(z) = FM
(
FL(z)

)
= FM

(
− u2

|u|2
z
)

=
u

|u|2
+

1
|u|2 − 1

− u2

|u|2 z −
u
|u|2

=
u

uu
+

1− |u|2

−u2 z − u

=
1

u

(
1− 1− uu

u z + 1

)
=

1

u

(u z + uu

u z + 1

)
=

z + u

u z + 1
,

as required.


