

1: (a) Let C be the Euclidean circle in \mathbb{R}^2 with diameter from $a = (1, 4)$ to $b = (3, -2)$, and let D be the Euclidean circle in \mathbb{R}^2 with diameter from $c = (4, 2)$ to $d = (3, 3)$. Find the (Euclidean) area of the image of D under the reflection F_C .

Solution: The centre of circle C is $p = (2, 1)$ and the radius is $r = \sqrt{10}$. Circle D also has diameter from $u = (3, 2)$ to $v = (4, 3)$. Since u and v lie along the same ray from p , we see (from Theorem 4.6) that the image of D under F_C is the circle E with diameter from $F_C(u)$ to $F_C(v)$. We have

$$F_C(u) = p + \frac{r^2}{|u-p|^2}(u-p) = (2, 1) + \frac{10}{2}(1, 1) = (7, 6) \text{ and}$$

$$F_C(v) = p + \frac{r^2}{|v-p|^2}(v-p) = (2, 1) + \frac{10}{8}(2, 2) = \left(\frac{9}{2}, \frac{7}{2}\right).$$

The radius of E is $s = \frac{1}{2}|(7, 6) - \left(\frac{9}{2}, \frac{7}{2}\right)| = \frac{1}{2}\left|\left(\frac{5}{2}, \frac{5}{2}\right)\right| = \frac{5\sqrt{2}}{4}$ so the area is $A = \pi s^2 = \frac{25\pi}{8}$.

(b) Let C be the Euclidean circle in \mathbb{R}^2 of radius $r = 5$ centred at $p = (-1, -1)$ and let T be the Euclidean triangle in \mathbb{R}^2 with vertices at $a = (1, 0)$, $b = (3, 1)$ and $c = (0, 2)$. Find the (Euclidean) area of the image of T under the reflection F_C .

Solution: Let

$$a' = F_C(a) = p + \frac{r^2}{|a-p|^2}(a-p) = (-1, -1) + \frac{25}{5}(2, 1) = (9, 4),$$

$$b' = F_C(b) = p + \frac{r^2}{|b-p|^2}(b-p) = (-1, -1) + \frac{25}{20}(4, 2) = \left(4, \frac{3}{2}\right), \text{ and}$$

$$c' = F_C(c) = p + \frac{r^2}{|c-p|^2}(c-p) = (-1, -1) + \frac{25}{10}(1, 3) = \left(\frac{3}{2}, \frac{13}{2}\right).$$

Again, we make use of Theorem 4.6. Since a and b lie on the same ray from p , the line segment from a to b is mapped by F_C to the line segment from a' to b' . Since a is the point on line ac nearest to p , the line ac is mapped by F_C to the circle D with diameter p, a' , so the line segment from a to c is mapped to the arc from a' counterclockwise to c' along D . Since c is the point on line bc nearest to p , the line bc is mapped by F_C to the circle E with diameter p, c' , so the line segment from b to c is mapped to the arc from b' counterclockwise to c' along E . The circle D with diameter p, a' has centre at $\frac{1}{2}(p+a') = (4, \frac{3}{2}) = b'$ and radius $s = \frac{1}{2}|a'-p| = \frac{5\sqrt{5}}{2}$.

The circle E with diameter p, c' has centre at $u' = \frac{1}{2}(p+c') = \left(\frac{1}{4}, \frac{11}{4}\right)$ and radius $t = \frac{1}{2}|c'-p| = \frac{5\sqrt{10}}{4}$. The area A of the image $F_C(T)$ is equal to $\frac{1}{4}$ of the area of D (since the arc from a' to c' subtends the angle $\frac{\pi}{2}$ at b') plus the area of the triangle b', c', u' minus $\frac{1}{4}$ of the area of E (since the arc from b' to c' subtends the angle $\frac{\pi}{2}$ at u'), so we have

$$A = \frac{1}{4}\pi s^2 + \frac{1}{2}t^2 - \frac{1}{4}\pi t^2 = \frac{\pi}{4} \cdot \frac{125}{4} + \frac{1}{2} \cdot \frac{125}{8} - \frac{\pi}{4} \cdot \frac{125}{8} = \frac{125}{32}(\pi + 2).$$

2: (a) Find the centre $p \in \mathbb{R}^2$ and radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that the reflection F_C sends the line L with equation $2x + y = 8$ to the circle D with equation $(x + 1)^2 + y^2 = 5$ (with one point removed).

Solution: The centre of D is the point $d = (-1, 0)$. Note that if a is the point on L nearest to p and $a' = F_C(a)$, so that the circle $D = F_C(L)$ has diameter p, a' , then the line p, a' passes through d and meets the line L orthogonally at a . This shows that the points p and a' both lie on the line M through d which meets L orthogonally at a . This line M has equation $x - 2y = -1$, and it meets L at the point $a = (3, 2)$ and it meets D at the two points $(-3, -1)$ and $(1, 1)$. Since a and a' must lie on the same ray from p (so p does not lie between a and a') it follows that $p = (-3, -1)$ and $a' = (1, 1)$. In order that $F_C(a) = a'$ we need $r^2 = |a - p||a' - p| = 3\sqrt{5} \cdot 2\sqrt{5} = 30$ and so $r = \sqrt{30}$. Thus $p = (-3, -1)$ and $r = \sqrt{30}$.

(b) Find the centre $p \in \mathbb{R}^2$ and the radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that the reflection F_C sends the Euclidean circle D with diameter from $a = (2, 1)$ to $b = (1, 2)$ to the Euclidean circle E with diameter from $c = (-1, 3)$ to $d = (6, 2)$.

Solution: Note that when F_C sends the circle with diameter through u and v to the circle with diameter through $u' = F_C(u)$ and $v' = F_C(v)$ where $0 \neq u \in \mathbb{R}^2$ and $v = u + t(v - u)$ with $0 \neq t \in \mathbb{R}$, all of the points u, v, u', v' lie on the same line through p . Also note that the centres of the two circles also lie on this same line. The given circles D and E have centres $(\frac{3}{2}, \frac{3}{2})$ and $(\frac{5}{2}, \frac{5}{2})$ and so the points u, v, u', v' and p must all lie on the line through these two centres, namely the line $y = x$. The line $y = x$ meets the circle D at the points $(1, 1)$ and $(2, 2)$ so we can take $u = (1, 1)$ and $v = (2, 2)$. The line $y = x$ meets the circle E at the points $(0, 0)$ and $(5, 5)$ so either we must take $u' = (0, 0)$ and $v' = (5, 5)$ or we must take $u' = (5, 5)$ and $v' = (0, 0)$. In order to have u and u' lie on the same ray through p and to have v and v' lie on the same ray through p we must choose $u' = (0, 0)$ and $v' = (5, 5)$ with p on the line $y = x$ between $u = (1, 1)$ and $v = (2, 2)$.

Let $p = t(1, 1)$ with $1 < t < 2$. Then to get $F_C(u) = u'$ and $F_C(v) = v'$ we need $|u - p||u' - p| = r^2$ and $|v - p||v' - p| = r^2$ so

$$\begin{aligned} |u - p||u' - p| &= |v - p||v' - p| \implies |(1, 1) - t(1, 1)| |(0, 0) - t(1, 1)| = |2(1, 1) - t(1, 1)| |5(1, 1) - t(1, 1)| \\ &\implies (t-1)\sqrt{2} \cdot t\sqrt{2} = (2-t)\sqrt{2} \cdot (5-t)\sqrt{2} \implies t(t-1) = (t-2)(t-5) \\ &\implies t^2 - t = t^2 - 7t + 10 \implies 6t = 10 \implies t = \frac{5}{3} \end{aligned}$$

Thus we must take $p = t(1, 1) = \frac{5}{3}(1, 1)$ and $r^2 = |u - p||u' - p| = \left|\frac{2}{3}(1, 1)\right| \left|\frac{5}{3}(1, 1)\right| = \frac{20}{9}$, so $r = \frac{2\sqrt{5}}{3}$.

3: (a) Let $0 < a < \frac{\sqrt{3}}{2}$. Find the hyperbolic length of the Euclidean line segment given by $(x, y) = \alpha(t) = \left(\frac{1}{2}, t\right)$ for $0 \leq t \leq a$.

Solution: We have $\alpha'(t) = (0, 1)$ so the hyperbolic arclength is

$$\begin{aligned} L &= \int_{t=0}^a \frac{2|\alpha'(t)|}{1-|\alpha(t)|^2} dt = \int_{t=0}^a \frac{2 dt}{1 - \left(\frac{1}{4} + t^2\right)} = \int_{t=0}^a \frac{8 dt}{3 - 4t^2} = \int_{t=0}^a \frac{\frac{4}{\sqrt{3}}}{\sqrt{3} - 2t} + \frac{\frac{4}{\sqrt{3}}}{\sqrt{3} + 2t} dt \\ &= \left[\frac{2}{\sqrt{3}} \ln \left(\frac{\sqrt{3} + 2t}{\sqrt{3} - 2t} \right) \right]_{t=0}^a = \frac{2}{\sqrt{3}} \ln \left(\frac{\sqrt{3} + 2a}{\sqrt{3} - 2a} \right). \end{aligned}$$

(b) Let $0 < a < 1$. Find the hyperbolic area of the circle given by $x^2 + y^2 = ax$.

Solution: We give two solutions. For a short solution, note that the hyperbolic diameter d of this circle is the hyperbolic length of the straight line segment from $(0, 0)$ to $(a, 0)$, which is equal to $d = \ln \frac{1+a}{1-a}$, so the radius is $r = \frac{1}{2} \ln \frac{1+a}{1-a} = \ln \sqrt{\frac{1-a}{1+a}}$. Thus the area is

$$A = 2\pi(\cosh r - 1) = 2\pi \left(\cosh \left(\ln \sqrt{\frac{1+a}{1-a}} \right) - 1 \right) = 2\pi \left(\frac{1}{2} \left(\sqrt{\frac{1+a}{1-a}} + \sqrt{\frac{1-a}{1+a}} \right) - 1 \right) = 2\pi \left(\frac{1}{\sqrt{1-a^2}} - 1 \right).$$

Here is a second solution. The area is

$$\begin{aligned} A &= \int_{\theta=-\pi/2}^{\pi/2} \int_{r=0}^{a \cos \theta} \frac{4r}{(1-r^2)^2} dr d\theta = \int_{\theta=-\pi/2}^{\pi/2} \left[\frac{2}{1-r^2} \right]_{r=0}^{a \cos \theta} d\theta \\ &= \int_{\theta=-\pi/2}^{\pi/2} \frac{2}{1-a^2 \cos^2 \theta} - 2 d\theta = -2\pi + \int_{\theta=0}^{\pi/2} \frac{4 d\theta}{1-a^2 \cos^2 \theta} \\ &= -2\pi + \int_{\theta=0}^{\frac{\pi}{2}} \frac{4 d\theta}{1-a^2 \left(\frac{1+\cos 2\theta}{2} \right)} = -2\pi + \int_{\theta=0}^{\pi/2} \frac{8 d\theta}{(2-a^2) - a^2 \cos 2\theta} \\ &= -2\pi + \int_{\phi=0}^{\pi} \frac{4 d\phi}{(2-a^2) - a^2 \cos \phi} , \text{ where } \phi = 2\theta \\ &= -2\pi + \int_{u=0}^{\infty} \frac{\frac{8}{1+u^2} du}{(2-a^2) - a^2 \frac{1-u^2}{1+u^2}} , \text{ where } u = \tan \frac{\phi}{2}, \cos \phi = \frac{1-u^2}{1+u^2}, d\phi = \frac{2}{1-u^2} du \\ &= -2\pi + \int_{u=0}^{\infty} \frac{8 du}{(2-a^2)(1+u^2) - a^2(1-u^2)} \\ &= -2\pi + \int_{u=0}^{\infty} \frac{8 du}{2+2u^2-2a^2} = -2\pi + \int_{u=0}^{\infty} \frac{4 du}{u^2 + (1-a^2)} \\ &= -2\pi + \int_{\psi=0}^{\pi/2} \frac{4\sqrt{1-a^2} \sec^2 \psi d\psi}{(\sqrt{1-a^2} \sec \psi)^2} , \text{ where } \tan \psi = \frac{u}{\sqrt{1-a^2}} \\ &= -2\pi + \left[\frac{4}{\sqrt{1-a^2}} \psi \right]_{\psi=0}^{\pi/2} = -2\pi + \frac{4}{\sqrt{1-a^2}} \cdot \frac{\pi}{2} = 2\pi \left(\frac{1}{\sqrt{1-a^2}} - 1 \right). \end{aligned}$$

4: (a) Let $u = \left(\frac{1}{2}, \frac{1}{2}\right)$ and $v = \left(\frac{3}{4}, \frac{1}{4}\right)$. Find the centre $p \in \mathbb{R}^2$ and the radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that $L = C \cap \mathbb{H}^2$ is the hyperbolic line in \mathbb{H}^2 through u and v .

Solution: Let $L = C_E(p, r) \cap \mathbb{H}^2$ with $p = (x, y)$. As shown in the proof of Theorem 4.18, in order to have $u \in L$ we need $p \cdot u = \frac{|u|^2+1}{2}$, that is $\frac{1}{2}x + \frac{1}{2}y = \frac{\frac{1}{2}+1}{2} = \frac{3}{4}$, or equivalently $x + y = \frac{3}{2}$ (1), and in order to have $v \in L$ we need $p \cdot v = \frac{|v|^2+1}{2}$, that is $\frac{3}{4}x + \frac{1}{4}y = \frac{\frac{5}{4}+1}{2} = \frac{13}{16}$, or equivalently $3x + y = \frac{13}{4}$ (2). Subtract Equation (1) from Equation (2) to get $2x = \frac{7}{4}$ so that $x = \frac{7}{8}$, then put this into Equation (1) to get $y = \frac{3}{2} - x = \frac{3}{2} - \frac{7}{8} = \frac{5}{8}$.

Thus we must take $p = (x, y) = \left(\frac{7}{8}, \frac{5}{8}\right)$ and, by Note 4.14, $r = \sqrt{|p|^2 - 1} = \sqrt{\frac{49+25-64}{64}} = \frac{\sqrt{10}}{8}$.

(b) Let $u = \left(-\frac{1}{5}, \frac{3}{5}\right)$ and $v = \left(\frac{4}{5}, -\frac{2}{5}\right)$. Find the centre $p \in \mathbb{R}^2$ and the radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that the $L = C \cap \mathbb{H}^2$ is the hyperbolic line such that $F_C(u) = v$.

Solution: By the proof of Theorem 4.20 we can take $p = u + t(v - u)$ with $t = \frac{1-|u|^2}{|v|^2-|u|^2}$. Thus we let

$$\begin{aligned} t &= \frac{1-|u|^2}{|v|^2-|u|^2} = \frac{1-\frac{2}{5}}{\frac{4}{5}-\frac{2}{5}} = \frac{3}{2}, \\ p &= u + t(v - u) = \left(-\frac{1}{5}, \frac{3}{5}\right) + \frac{3}{2}(1, -1) = \left(\frac{13}{10}, -\frac{9}{10}\right) \text{ and} \\ r &= \sqrt{|p|^2 - 1} = \sqrt{\frac{169+81-100}{100}} = \frac{\sqrt{150}}{10} = \frac{\sqrt{6}}{2}. \end{aligned}$$

(c) Let $u = \left(-\frac{3}{5}, \frac{4}{5}\right)$, let $b = \left(\frac{6}{5}, \frac{2}{5}\right)$, let $s = \sqrt{|b|^2 - 1}$, let C be the Euclidean circle in \mathbb{R}^2 centred at b of radius s , and let $L = C \cap \mathbb{H}^2$. Find the centre $a \in \mathbb{R}^2$ and the radius $r > 0$ of a Euclidean circle D in \mathbb{R}^2 such that $M = D \cap \mathbb{H}^2$ is the hyperbolic line which is asymptotic to u and intersects orthogonally with L .

Solution: Let $a = (x, y)$. In order for D to intersect orthogonally with \mathbb{S}^1 , by Note 4.14 we need $r = \sqrt{|a|^2 - 1}$. In order to have $u \in D$, by the proof of Theorem 4.18 we need $a \cdot u = \frac{|u|^2+1}{2}$, that is $-\frac{3}{5}x + \frac{4}{5}y = 1$ or equivalently $-3x + 4y = 5$ (1). In order for D to intersect orthogonally with C at say the point q , the points a , b and q must form a right-angled Euclidean triangle with side lengths s , r and $|a - b|$ so that, by Pythagoras' Theorem, we need $s^2 + r^2 = |a - b|^2$ hence $|b|^2 - 1 + |a|^2 - 1 = |a|^2 - 2a \cdot b + |b|^2$ which simplifies to $a \cdot b = 1$, that is $\frac{6}{5}x + \frac{2}{5}y = 1$, or equivalently $6x + 2y = 5$ (2). Solve Equations (1) and (2) to get $a = (x, y) = \left(\frac{1}{3}, \frac{3}{2}\right)$ and hence $r = \sqrt{|a|^2 - 1} = \frac{7}{6}$.

5: (a) Let $a = (\frac{1}{5}, \frac{6}{5})$ and $b = (\frac{4}{5}, -\frac{6}{5})$, let C and D be the Euclidean circles centred at a and b , respectively, which intersect orthogonally with \mathbb{S}^1 , and let $L = C \cap \mathbb{H}^2$ and $M = D \cap \mathbb{H}^2$. Find the centre p and radius r of the Euclidean circle E such that $N = E \cap \mathbb{H}^2$ is the hyperbolic line which intersects both L and M orthogonally.

Solution: Let s and t be the radii of the circles C and D respectively. Since C and D intersect orthogonally with \mathbb{S}^1 we have $s^2 = |a|^2 - 1$ and $t^2 = |b|^2 - 1$. In order that E intersects orthogonally with all three circles \mathbb{S}^1 , C and D , by Pythagoras' Theorem we need $|p|^2 = r^2 + 1$, $|p - a|^2 = r^2 + s^2$ and $|p - b|^2 = r^2 + t^2$. When $r^2 = |p|^2 - 1$ we have

$$|p - a|^2 = r^2 + s^2 \iff |p|^2 - 2p \cdot a + |a|^2 = (|p|^2 - 1) + (|a|^2 - 1) \iff p \cdot a = 1$$

and similarly $|p - b|^2 = r^2 + t^2 \iff p \cdot b = 1$. Thus we must take p to be the (unique) point such that $p \cdot a = 1$ and $p \cdot b = 1$. For $p = (x, y)$ we have

$$p \cdot a = 1 \iff \frac{1}{5}x + \frac{6}{5}y = 1 \iff x + 6y = 5 \quad (1)$$

$$p \cdot b = 1 \iff \frac{4}{5}x - \frac{6}{5}y = 1 \iff 4x - 6y = 5 \quad (2)$$

Add (1) and (2) to get $5x = 10$ so that $x = 2$, then put this into (1) to get $6y = 5 - x = 5 - 2 = 3$ so that $y = \frac{1}{2}$. Thus we must take $p = (x, y) = (2, \frac{1}{2})$ and $r = \sqrt{|p|^2 - 1} = \sqrt{\frac{16+1-4}{4}} = \frac{\sqrt{13}}{2}$.

(b) Let $u \in \mathbb{H}$ and let L by a hyperbolic line in \mathbb{H} . Prove that there exists a unique hyperbolic line M which contains u and intersects orthogonally with L .

Solution: First let us consider the case that $L = N \cap \mathbb{H}^2$ where N is a line in \mathbb{R}^2 through 0. Let $p \in \mathbb{R}^2$ with $|p| > 1$ and let C be the circle centred at p of radius $r = \sqrt{|p|^2 - 1}$. Note that C intersects orthogonally with N if and only if $p \in N$ and note that

$$u \in C \iff |u - p|^2 = r^2 \iff |u|^2 - 2p \cdot u + |p|^2 = |p|^2 - 1 \iff p \cdot u = \frac{|u|^2 + 1}{2}.$$

We also remark that, when $u \neq 0$, the point on the line $x \cdot u = \frac{|u|^2 + 1}{2}$ which is nearest the origin is the point $x = \frac{|u|^2 + 1}{2|u|^2} u$ which has norm $|x| = \frac{|u|^2 + 1}{2} > 1$, so any point p which lies on this line satisfies $|p| > 1$.

When $u = 0$, the (unique) line in \mathbb{R}^2 through u perpendicular to N passes through 0 (hence determines a hyperbolic line) but there is no point $p \in \mathbb{R}^2$ for which $p \cdot u = \frac{|u|^2 + 1}{2}$. When $u \neq 0$ and u is orthogonal to N , the (unique) line in \mathbb{R}^2 through u perpendicular to N passes through 0 (hence determines a hyperbolic line) but there is no point $p \in M$ for which $p \cdot u = \frac{|u|^2 + 1}{2}$ since the line $x \cdot u = \frac{|u|^2 + 1}{2}$ is parallel to N . When $u \neq 0$ and u is not orthogonal to N , the line in \mathbb{R}^2 through u perpendicular to N does not pass through 0, and there exists a unique point $p \in N$ with $p \cdot u = \frac{|u|^2 + 1}{2}$ because the line $x \cdot u = \frac{|u|^2 + 1}{2}$ is not parallel to N . In all cases we find that there is a unique hyperbolic line through u orthogonal to N .

Now let us consider the case that $L = D \cap \mathbb{H}^2$ where D is the circle in \mathbb{R}^2 centred at $a \in \mathbb{R}^2$ with $|a| > 1$ of radius $s = \sqrt{|a|^2 - 1}$. Again, let $p \in \mathbb{R}^2$ and let C be the circle in \mathbb{R}^2 centred at p with radius $r = \sqrt{|p|^2 - 1}$. As above, we have $u \in C$ if and only if $p \cdot u = \frac{|u|^2 + 1}{2}$. As in Part (a), C intersects orthogonally with D , say at q , if and only if the Euclidean triangle with vertices at a, p, q is right-angled, if and only if $|p - a|^2 = r^2 + s^2 = (|p|^2 - 1) + (|a|^2 - 1)$, if and only if $p \cdot a = 1$.

When $\{u, a\}$ is linearly independent, the line through 0 and a (which is the unique line in \mathbb{R}^2 through 0 which is orthogonal to D) does not pass through u , but there is a unique point p for which the above circle C passes through u and intersects orthogonally with p , namely the (unique) point of intersection of the non-parallel lines $x \cdot u = \frac{|u|^2 + 1}{2}$ and $x \cdot a = 1$.

Suppose that $\{u, a\}$ is linearly dependent, say $u = ta$ with $t \in \mathbb{R}$. Then the line through 0 and a passes through u . We claim that there is no point $p \in \mathbb{R}^2$ for which the above circle C passes through u and intersects orthogonally with D . Suppose, for a contradiction, that p is such a point. Then we have $p \cdot u = \frac{|u|^2 + 1}{2}$ and $p \cdot a = 1$. It follows that

$$t = t(p \cdot a) = p \cdot (ta) = p \cdot u = \frac{|u|^2 + 1}{2} = \frac{|ta|^2 + 1}{2} = \frac{t^2|a|^2 + 1}{2}.$$

But this is not possible since $|a| > 1$ so that

$$\frac{t^2|a|^2 + 1}{2} - t > \frac{t^2 + 1}{2} - t = \frac{(t-1)^2}{2} \geq 0.$$

6: (a) Let $u = (0, 0)$, $v = (\frac{1}{2}, 0)$ and $w = (\frac{1}{2}, \frac{1}{2})$. Find the hyperbolic area of the triangle $[u, v, w]$ in \mathbb{H}^2 .

Solution: We provide two solutions. The first solution you might find it useful to draw an accompanying picture. The hyperbolic line segments $[u, v]$ and $[u, w]$ are equal to the Euclidean line segments $[u, v]$, u, w (since they lie along lines through 0) so we have $\alpha = \frac{\pi}{4}$ (α is the angle at u between $[u, v]$ and $[u, w]$). Let us find the hyperbolic line L through v and w . Say $L = C \cap \mathbb{H}^2$ where $C_E(p, r)$ and write $p = (x, y)$. To have $u \in L$ we need $p \cdot u = \frac{|u|^2+1}{2}$ that is $\frac{1}{2}x = \frac{\frac{1}{4}+1}{2} = \frac{5}{8}$ and so $x = \frac{5}{4}$. To have $w \in L$ we need $p \cdot w = \frac{|w|^2+1}{2}$, that is $\frac{1}{2}x + \frac{1}{2}y = \frac{\frac{1}{4}+\frac{1}{4}+1}{2} = \frac{3}{4}$, so $y = \frac{3}{2} - x = \frac{3}{2} - \frac{5}{4} = \frac{1}{4}$. Thus we obtain $p = (x, y) = (\frac{5}{4}, \frac{1}{4})$. Since the radius of C from p to v has slope $\frac{1}{3}$, the tangent line to L at v has slope -3 and so we have $\beta = \tan^{-1} 3$. Since the radius of C from p to w has slope $-\frac{1}{3}$, the tangent line to L at w has slope 3 and so we have $\gamma = \frac{\pi}{4} - \tan^{-1} \frac{1}{3}$. Thus the hyperbolic area of the hyperbolic triangle $[u, v, w]$ is

$$A = \pi - (\alpha + \beta + \gamma) = \pi - (\frac{\pi}{4} + \tan^{-1} 3 + \frac{\pi}{4} - \tan^{-1} \frac{1}{3}) = \frac{\pi}{2} + \tan^{-1} \frac{1}{3} - \tan^{-1} 3.$$

Since $\tan^{-1} 3 + \tan^{-1} \frac{1}{3} = \frac{\pi}{2}$, we can also write this as $A = 2 \tan^{-1} \frac{1}{3} = \tan^{-1} \frac{3}{4}$.

The second solution is purely algebraic. For the hyperbolic triangle $[u, v, w]$ we have

$$\begin{aligned} a &= d_H(v, w) = \cosh^{-1} \left(1 + \frac{\frac{2 \cdot \frac{1}{4}}{\frac{3 \cdot \frac{1}{2}}{2}}}{\frac{2 \cdot \frac{1}{4}}{\frac{3 \cdot \frac{1}{2}}{2}}} \right) = \cosh^{-1} \frac{7}{3} \\ b &= d_H(w, u) = \cosh^{-1} \left(1 + \frac{\frac{2 \cdot \frac{1}{2}}{\frac{1 \cdot \frac{1}{2}}{1}}}{\frac{2 \cdot \frac{1}{2}}{\frac{1 \cdot \frac{1}{2}}{1}}} \right) = \cosh^{-1} 3 \\ c &= d_H(u, v) = \cosh^{-1} \left(1 + \frac{\frac{2 \cdot \frac{1}{4}}{\frac{1 \cdot \frac{1}{2}}{4}}}{\frac{2 \cdot \frac{1}{4}}{\frac{1 \cdot \frac{1}{2}}{4}}} \right) = \cosh^{-1} \frac{5}{3} \end{aligned}$$

hence also $\sinh a = \sqrt{\cosh^2 a - 1} = \sqrt{\frac{49}{9} - 1} = \frac{2\sqrt{10}}{3}$, $\sinh b = \sqrt{\cosh^2 b - 1} = \sqrt{9 - 1} = 2\sqrt{2}$ and $\sinh c = \sqrt{\cosh^2 c - 1} = \sqrt{\frac{25}{9} - 1} = \frac{4}{3}$. By the First Law of Cosines, we have

$$\begin{aligned} \cos \alpha &= \frac{\cosh b \cosh c - \cosh a}{\sinh b \sinh c} = \frac{\frac{3 \cdot \frac{5}{3} - \frac{7}{3}}{2\sqrt{2} \cdot \frac{4}{3}}}{\frac{2\sqrt{10}}{3} \cdot \frac{4}{3}} = \frac{1}{\sqrt{2}} \\ \cos \beta &= \frac{\cosh a \cosh c - \cosh b}{\sinh a \sinh c} = \frac{\frac{7 \cdot \frac{5}{3} - 3}{2\sqrt{10} \cdot \frac{4}{3}}}{\frac{2\sqrt{10}}{3} \cdot \frac{4}{3}} = \frac{1}{\sqrt{10}} \\ \cos \gamma &= \frac{\cosh a \cosh b - \cosh c}{\sinh a \sinh b} = \frac{\frac{7}{3} \cdot 3 - \frac{5}{3}}{\frac{2\sqrt{10}}{3} \cdot 2\sqrt{2}} = \frac{2}{\sqrt{5}}. \end{aligned}$$

Thus the hyperbolic area of the hyperbolic triangle $[u, v, w]$ is

$$A = \pi - (\alpha + \beta + \gamma) = \pi - \left(\frac{\pi}{4} + \cos^{-1} \frac{1}{\sqrt{10}} + \cos^{-1} \frac{2}{\sqrt{5}} \right) = \frac{3\pi}{4} - \cos^{-1} \frac{1}{\sqrt{10}} - \cos^{-1} \frac{2}{\sqrt{5}}.$$

If you want, you can show that this simplifies to $A = \tan^{-1} \frac{3}{4}$.

(b) Let $u = (1, 0)$, $v = (0, 1)$ and $w = (0, -1)$. Find the hyperbolic area of the circle inscribed in the triply asymptotic triangle $[u, v, w]$ in \mathbb{H}^2 .

Solution: It helps to draw a picture to accompany the solution. The hyperbolic line through u and v is $C_E(a, 1)$ where $a = (1, 1)$ and the hyperbolic line through v and w is $C_E(b, 1) \cap \mathbb{H}^2$ where $b = (-1, 1)$. By symmetry, both the Euclidean centre and the hyperbolic centre of the inscribed circle lie along the y -axis. To find the Euclidean centre $p = (0, y)$, note that the points $(0, y)$, $(1, y)$ and $(1, 1)$ form a Euclidean right-angled triangle with edge lengths 1 , $1-y$ and $1+y$, and so we must have $(1+y)^2 = 1^2 + (1-y)^2$, that is $1+2y+y^2 = 2-2y+y^2$, hence $4y = 1$. Thus the Euclidean centre of the inscribed circle is at $p = (0, \frac{1}{4})$ and the Euclidean radius is $\frac{1}{4}$. The line segment from $0 = (0, 0)$ to $q = (0, \frac{1}{2})$ is both a Euclidean and hyperbolic diameter for the inscribed circle. The hyperbolic length of the diameter is $d = d_H(0, q) = \cosh^{-1} \left(1 + \frac{2 \cdot \frac{1}{4}}{1 \cdot \frac{1}{2}} \right) = \cosh^{-1} \frac{5}{3}$, so the hyperbolic radius is $r = \frac{1}{2}d$ so that $\cosh 2r = \cosh d = \frac{5}{3}$. We have

$$\cosh^2 r = \left(\frac{e^r + e^{-r}}{2} \right)^2 = \frac{e^{2r} + 2 + e^{-2r}}{4} = \frac{1}{2}(1 + \cosh 2r) = \frac{1}{2}(1 + \frac{5}{3}) = \frac{4}{3}$$

so that $\cosh r = \frac{2}{\sqrt{3}}$, and so the hyperbolic area of the inscribed circle is

$$A = 2\pi(\cosh r - 1) = 2\pi(\frac{2}{\sqrt{3}} - 1).$$

7: (a) Find the hyperbolic area and perimeter of the regular hexagon in \mathbb{H}^2 with interior angles $\frac{\pi}{2}$.

Solution: The hexagon can be cut into 6 triangles, meeting at 0, each of which is congruent to a triangle $[u, v, w]$ with $\alpha = \frac{\pi}{3}$ and $\beta = \gamma = \frac{\pi}{4}$. The area of the hexagon is

$$A = 6(\pi - (\alpha + \beta + \gamma)) = 6(\pi - (\frac{\pi}{3} + \frac{\pi}{4} + \frac{\pi}{4})) = 6 \cdot \frac{\pi}{6} = \pi.$$

By the Second Hyperbolic Law of Cosines, the length $\ell = a$ of the side opposite to u is given by

$$\cosh(\ell) = \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} = \frac{\frac{1}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}} = 2$$

and so the perimeter of the hexagon is $L = 6\ell = 6 \cosh^{-1}(2)$. We remark that $\cosh^{-1} 2 = \ln(2 + \sqrt{3})$.

(b) Find $a > 0$ such that the regular hexagon in \mathbb{H}^2 with vertices at $(\pm a, 0)$, $(\pm \frac{a}{2}, \pm \frac{\sqrt{3}a}{2})$ has interior angles equal to $\frac{\pi}{6}$.

Solution: The hexagon can be cut into 6 triangles meeting at 0 each of which is congruent to the triangle $[u, v, w]$ where $u = (0, 0)$, $v = (a, 0)$ and $w = (\frac{a}{2}, \frac{\sqrt{3}a}{2})$ with interior angles $\alpha = \frac{\pi}{3}$ and $\beta = \gamma = \frac{\pi}{12}$. The length ℓ of the side opposite to u is given by

$$\begin{aligned} \cosh(\ell) &= \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} = \frac{\cos \frac{\pi}{3} + \cos^2 \frac{\pi}{12}}{\sin^2 \frac{\pi}{12}} = \frac{\frac{1}{2} + \frac{1+\cos \frac{\pi}{6}}{2}}{\frac{1-\cos \frac{\pi}{6}}{2}} = \frac{2 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}} \\ &= \frac{4+\sqrt{3}}{2-\sqrt{3}} = \frac{(4+\sqrt{3})(2+\sqrt{3})}{4-3} = 11 + 6\sqrt{3}. \end{aligned}$$

By the formula for the hyperbolic distance between two points, we also have

$$\cosh \ell = \cosh d_H(u, v) = 1 + \frac{2|v-u|^2}{(1-|u|^2)(1-|v|^2)} = 1 + \frac{2a^2}{(1-a^2)^2}$$

so we have

$$\begin{aligned} 1 + \frac{2a^2}{(1-a^2)^2} &= 11 + 6\sqrt{3} \implies \frac{2a^2}{(1-a^2)^2} = 10 + 6\sqrt{3} \implies \frac{a^2}{(1-a^2)^2} = 5 + 3\sqrt{3} \implies \frac{a}{1-a^2} = \sqrt{5 + 3\sqrt{3}} \\ &\implies a = \sqrt{5 + 3\sqrt{3}}(1-a^2) \implies \sqrt{5 + 3\sqrt{3}}a^2 + a - \sqrt{5 + 3\sqrt{3}} = 0 \\ &\implies a = \frac{-1 \pm \sqrt{1+4(5+3\sqrt{3})}}{2\sqrt{5+3\sqrt{3}}} = \frac{-1 + \sqrt{21+12\sqrt{3}}}{2\sqrt{5+3\sqrt{3}}} = \frac{-1 + (3+2\sqrt{3})}{2\sqrt{5+3\sqrt{3}}} = \frac{1+\sqrt{3}}{\sqrt{5+3\sqrt{3}}}. \end{aligned}$$

8: (a) Find the hyperbolic circumference and the area of the circle in \mathbb{H}^2 which is inscribed in the hyperbolic square with interior angles $\frac{\pi}{3}$.

Solution: We can place the vertices of the square at positions $(\pm k, 0)$ and $(0, \pm k)$. The square can be cut into 8 triangles meeting at 0 so that each triangle is congruent to the triangle $[u, v, w]$ where $u = (0, 0)$, $v = (k, 0)$ and w is the midpoint of the hyperbolic line segment from $(k, 0)$ to $(0, k)$, which has interior angles $\alpha = \frac{\pi}{4}$, $\beta = \frac{\pi}{6}$ and $\gamma = \frac{\pi}{2}$. The hyperbolic radius of the inscribed circle is the length $r = b$ of the side opposite the angle $\beta = \frac{\pi}{6}$ at vertex v . By the Second Hyperbolic Law of Cosines, we have

$$\cosh(r) = \frac{\cos \beta + \cos \gamma \cos \alpha}{\sin \gamma \sin \alpha} = \frac{\frac{\sqrt{3}}{2} + 0 \cdot \frac{\sqrt{2}}{2}}{1 \cdot \frac{\sqrt{2}}{2}} = \frac{\sqrt{3}}{\sqrt{2}}.$$

Thus the area A and the circumference L of the circle are given by

$$A = 2\pi(\cosh(r) - 1) = 2\pi\left(\frac{\sqrt{3}}{\sqrt{2}} - 1\right) = \pi(\sqrt{6} - 2), \text{ and}$$

$$L = 2\pi \sinh(r) = 2\pi \sqrt{\cosh^2(r) - 1} = 2\pi \sqrt{\frac{3}{2} - 1} = 2\pi \cdot \frac{1}{\sqrt{2}} = \sqrt{2}\pi.$$

(b) Find the hyperbolic perimeter and area of the square in \mathbb{H}^2 with edges along the lines K , L , M and N such that $F_K(0) = \left(\frac{1}{2}, 0\right)$, $F_L(0) = \left(0, \frac{1}{2}\right)$, $F_M(0) = \left(-\frac{1}{2}, 0\right)$ and $F_N(0) = \left(0, -\frac{1}{2}\right)$.

Solution: Using the formula in the proof of Theorem 10.10 (or the formula from Example 10.11), the circle C for which $K = C \cap \mathbb{H}^2$ is centred at the point $p = \frac{\left(\frac{1}{2}, 0\right)}{\left|\left(\frac{1}{2}, 0\right)\right|^2} = (2, 0)$ and has radius $r = \sqrt{|p|^2 - 1} = \sqrt{3}$,

so C is the circle $(x - 2)^2 + y^2 = 3$. The intersection of $K = C \cap \mathbb{H}^2$ with the x -axis is at $v = (2 - \sqrt{3}, 0)$. By symmetry, the point of intersection of K with L lies on the line $y = x$, so we put $y = x$ into the equation $(x - 2)^2 + y^2 = 3$ to get $(x - 2)^2 + x^2 = 3 \implies 2x^2 - 4x + 1 = 0 \implies x = \frac{4 \pm \sqrt{16-8}}{4} = 1 \pm \frac{1}{\sqrt{2}}$ so that the intersection point is $w = (x, y) = (1 - \frac{1}{\sqrt{2}}, 1)$. Thus the square can be cut into 8 congruent triangles each of which is congruent to the square with vertices at $u = (0, 0)$, $v = (2 - \sqrt{3}, 0)$ and $w = (1 - \frac{1}{\sqrt{2}}, 1 - \frac{1}{\sqrt{2}})$.

In the triangle $[u, v, w]$ we have $\alpha = \frac{\pi}{4}$ and $\beta = \frac{\pi}{2}$. By the formula for the hyperbolic distance between two points, we have

$$\begin{aligned} \cosh(c) &= \cosh d_H(u, v) = \cosh d_H(0, v) = 1 + \frac{2|v|^2}{1-|v|^2} \\ &= 1 + \frac{2(7-4\sqrt{3})}{1-(7-4\sqrt{3})} = 1 + \frac{7-4\sqrt{3}}{-3+2\sqrt{3}} = 1 + \frac{-3+2\sqrt{3}}{3} = \frac{2\sqrt{3}}{3} = \frac{2}{\sqrt{3}}. \end{aligned}$$

By the Second Hyperbolic Cosine Law, we have

$$\begin{aligned} \cos \gamma &= \sin \alpha \sin \beta \cosh c - \cos \alpha \cos \beta = \frac{\sqrt{2}}{2} \cdot 1 \cdot \frac{2}{\sqrt{3}} - \frac{\sqrt{2}}{2} \cdot 0 = \frac{\sqrt{2}}{\sqrt{3}}, \text{ and} \\ \cosh a &= \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} = \frac{\frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{\sqrt{3}}}{1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3}}{\sqrt{2}}. \end{aligned}$$

Thus the perimeter L and the area A of the square are

$$\begin{aligned} L &= 8a = 8 \cosh^{-1} \frac{\sqrt{3}}{\sqrt{2}} \\ A &= 8(\pi - (\alpha + \beta + \gamma)) = 8\left(\pi - \left(\frac{\pi}{4} + \frac{\pi}{2} + \cos^{-1} \frac{\sqrt{2}}{\sqrt{3}}\right)\right) = 2\pi - 8 \cos^{-1} \frac{\sqrt{2}}{\sqrt{3}}. \end{aligned}$$

9: (a) Let $p = (\frac{1}{2}, \frac{1}{2})$, $\theta = \frac{\pi}{2}$ and $a = (\frac{1}{3}, \frac{2}{3})$. Find $R_{p,\theta}(a)$ in \mathbb{H}^2 .

Solution: We find two hyperbolic lines L and M through p such that $R_{p,\theta} = F_M F_L$. We take L to be the line $x = y$ (the through 0 and p). We want to find a line M through p such that the angle from L to M is $\frac{\pi}{4}$, say $M = C_E(q, s) \cap \mathbb{H}^2$ with $q = (x, y)$. To have $p \in M$, we need $q \cdot p = \frac{|p|^2+1}{2}$, that is $\frac{1}{2}x + \frac{1}{2}y = \frac{\frac{1}{4}+\frac{1}{4}+1}{2} = \frac{3}{4}$, or equivalently $x + y = \frac{3}{2}$ (1). In order that the angle from L to M is $\frac{\pi}{4}$, we want M to have a vertical tangent line at the point p , so q must lie on the horizontal line through p , that is the line $y = \frac{1}{2}$. We put $y = \frac{1}{2}$ into Equation (1) to get $x = 1$, and so we obtain $q = (x, y) = (1, \frac{1}{2})$. And we need $s^2 = |q|^2 - 1 = 1 + \frac{1}{4} - 1 = \frac{1}{4}$ and so $s = \frac{1}{2}$. Since L is the line $y = x$ we have $b = F_L(a) = F_{y=x}(\frac{1}{3}, \frac{2}{3}) = (\frac{2}{3}, \frac{1}{3})$, and since $F_M = F_C$ where $C = C_E(q, s)$ we have

$$R_{p,\theta}(a) = F_M F_L(a) = F_C(b) = q + \frac{s^2}{|b-q|^2}(b-q) = (1, \frac{1}{2}) + \frac{\frac{1}{4}}{\frac{1}{9} + \frac{1}{36}}(-\frac{1}{3}, -\frac{1}{6}) = (1, \frac{1}{2}) - \frac{3}{10}(2, 1) = (\frac{2}{5}, \frac{1}{5}).$$

(b) Let $u = (\frac{3}{5}, -\frac{4}{5})$ and $v = (1, 0)$, and let P be the parallel displacement such that $P(u) = u$ and $P(-u) = v$. Find $a \in \mathbb{H}^2$ such that $P(a) = 0$.

Solution: Let L be the line through u and $-u$, that is the line $4x + 3y = 0$, and note that $F_L(u) = u$ and $F_L(-u) = -u$. We want to find the line M through u such that $F_M(-u) = v$ and then we can take $P = F_M F_L$ to get $P(u) = u$ and $P(-u) = v$. Say $M = C_E(p, r)$ with $p = (x, y)$. To have $u \in M$ we need $p \cdot u = \frac{|u|^2+1}{2}$, that is $\frac{3}{5}x - \frac{4}{5}y = 1$, or equivalently $3x - 4y = 5$ (1). To get $F(-u) = p$ we need p to lie on the line through $-u$ and v , that is the line $x + 2y = 1$ (2). Solve Equations (1) and (2) to get $p = (x, y) = (\frac{7}{5}, -\frac{1}{5})$. And we need $r^2 = |p|^2 - 1 = \frac{49}{25} + \frac{1}{25} - 1 = 1$ so that $r = 1$. To summarize, we have $P = F_M F_L$ where L is the line $4x + 3y = 0$ and $M = C \cap \mathbb{H}^2$ where $C = C_E(p, r)$ with $p = (\frac{7}{5}, -\frac{1}{5})$ and $r = 1$. To get $P(a) = 0$, that is $F_M F_L(a) = 0$, we need $a = (F_M F_L)^{-1}(0) = F_L F_M(0)$. We have $F_M(0) = F_C(0) = p + \frac{r^2}{|p|^2}(-p) = p - \frac{1}{2}p = \frac{1}{2}p = (\frac{7}{10}, -\frac{1}{10})$ and so (using a formula from Part (4) of Example 1.82) we have

$$a = F_L F_M(0) = F_{4x+3y=0}(\frac{7}{10}, -\frac{1}{10}) = (\frac{7}{10}, -\frac{1}{10}) - \frac{2(4 \cdot \frac{7}{10} - 3 \cdot \frac{1}{10})}{4^2 + 3^2}(4, 3) = (\frac{7}{10}, -\frac{1}{10}) - (\frac{4}{5}, \frac{3}{5}) = (-\frac{1}{10}, -\frac{7}{10}).$$

10: (a) Let $a = (\frac{5}{4}, \frac{1}{4})$ and $r = \frac{\sqrt{10}}{4}$, and let $L = C_E(a, r) \cap \mathbb{H}^2$. Let $u = (\frac{5}{8}, -\frac{5}{8})$ and $v = (\frac{3}{4}, 0)$. Find the hyperbolic line M such that $F_L F_M(u) = v$ and determine whether the isometry $F_M F_L$ is a rotation, a translation, or a parallel displacement.

Solution: To get $F_L F_M(u) = v$ we need $F_M(u) = F_L(v)$. We have

$$F_L(v) = a + \frac{r^2}{|v-a|^2}(v-a) = (\frac{5}{4}, \frac{1}{4}) + \frac{\frac{5}{8}}{\frac{1}{4} + \frac{1}{16}}(-\frac{1}{2}, -\frac{1}{4}) = (\frac{5}{4}, \frac{1}{4}) - 2(\frac{1}{2}, \frac{1}{4}) = (\frac{1}{4}, -\frac{1}{4}).$$

Let $w = F_L(v) = (\frac{1}{4}, -\frac{1}{4})$ and let $M = C_E(b, s) \cap \mathbb{H}^2$. From the definition of F_M , in order to have $F_M(u) = w$, the point b must lie below and to the right of u on the line through u and w , that is the line $y = -x$, and we need $|u-b| \cdot |w-b| = s^2 = |b|^2 - 1$. Say $b = (t, -t)$ with $t > \frac{5}{8}$ (so that b lies below and to the right of u). We have $u = \frac{5}{8}(1, -1)$ and $w = \frac{1}{4}(1, -1)$ and $b = t(1, -1)$ and so

$$\begin{aligned} |u-b| \cdot |w-b| = s^2 = |b|^2 - 1 &\implies (t - \frac{5}{8})\sqrt{2} \cdot (t - \frac{1}{4})\sqrt{2} = 2t^2 - 1 \implies 2(t^2 - \frac{7}{8}t + \frac{5}{32}) - 2t^2 - 1 \\ &\implies \frac{7}{4}t = \frac{21}{16} \implies t = \frac{3}{4}. \end{aligned}$$

Thus we have $b = (\frac{3}{4}, -\frac{3}{4})$ and we have $s^2 = |b|^2 - 1 = \frac{9}{8} - 1 = \frac{1}{8}$ so that $s = \frac{\sqrt{2}}{4}$.

We have found the hyperbolic line M , and it remains to determine whether $F_M F_L$ is a translation, a parallel displacement, or a rotation. This depends on whether the two circles $C_E(a, r)$ and $C_E(b, s)$ have 0 points of intersection (giving a translation), or 1 point of intersection (giving a parallel displacement about that point), or 2 points of intersection (giving a rotation about the point that lies in \mathbb{H}^2). The two circles have 0k, 1 or 2 points of intersection according to whether $|a-b| > r+s$ or $|a-b| = r+s$ or $|a-b| < r+s$. In this case we have $|a-b|^2 = |(\frac{1}{2}, 1)|^2 = \frac{5}{4}$ and we have $(r+s)^2 = (\frac{\sqrt{10}}{4} + \frac{\sqrt{2}}{4})^2 = \frac{3+\sqrt{5}}{4} > \frac{5}{4}$ so that the two circles have two points of intersection, hence the composite $F_M F_L$ is a rotation.

Another way to see that the two circles have two points of intersection is to notice, by inspection using a picture, that $(1, -\frac{1}{2})$ is a point of intersection, and it does not lie on the line containing a and b , so there must be another point of intersection. Yet another way is to find the two points of intersection algebraically from the equations of the two circles.

(b) Let $u = (0, 0)$ and $v = (\frac{2}{5}, \frac{1}{5})$. Find the point $p \in \mathbb{H}^2$ such that $R_{v, \frac{\pi}{2}} R_{u, \frac{\pi}{2}} = R_{p, \theta}$ for some $\theta \in [0, 2\pi)$.

Solution: Let L be the line $x + 3y = 0$ and let M be the line $x - 2y = 0$. Note that L and M pass through $u = (0, 0)$ with $\theta_o(L, M) = \frac{\pi}{4}$ so that $F_M F_L = R_{u, \frac{\pi}{2}}$ and that M also passes through v (to see that $\theta_o(L, M) = \frac{\pi}{4}$, consider the square with vertices at $(0, 0)$, $(1, -2)$, $(3, -1)$ and $(2, 1)$). We want to find the hyperbolic line N which passes through v , and whose tangent line at v has slope 3 so that $\theta_o(M, N) = \frac{\pi}{4}$ (consider the above square again to see why the slope should be 3). Let $N = C_E(q, s)$ with $q = (x, y)$. To have $v \in N$ we need $q \cdot v = \frac{|q|^2+1}{2}$, that is $\frac{2}{5}x + \frac{1}{5}y = \frac{\frac{4}{25} + \frac{1}{25} + 1}{2} = \frac{3}{5}$, or equivalently $2x + y = 3$ (1). For the tangent line at v to have slope 3, we need q to lie on the line through v with slope $-\frac{1}{3}$, that is the line $x + 3y = 1$ (2). Solve Equations (1) and (2) to get $q = (x, y) = (\frac{8}{5}, -\frac{1}{5})$. And we need $s^2 = |q|^2 - 1 = \frac{64}{25} + \frac{1}{25} - 1 = \frac{8}{5}$ so that $s = \frac{2\sqrt{10}}{5}$. With this choice for the lines L , M and N we have

$$R_{v, \frac{\pi}{2}} R_{u, \frac{\pi}{2}} = F_N F_M F_M F_L = F_N F_L = R_{p, \theta}$$

where p is the point of intersection of L and M in \mathbb{H}^2 and $\theta = \theta_o(L, N)$. The line L has Equation $x + 3y = 0$ (3) and we have $M = C_E(q, s) \cap \mathbb{H}^2$ where the circle $C_E(q, s)$ has equation $(x - \frac{8}{5})^2 + (y + \frac{1}{5})^2 = \frac{8}{5}$ (4). We solve Equations (3) and (4): From (3) we have $x = -3y$, and we put this in (4) to get

$$(-3y - \frac{8}{5})^2 + (y + \frac{1}{5})^2 - \frac{8}{5} \implies 9y^2 + \frac{48}{5}y + \frac{64}{25} + y^2 + \frac{2}{5}y + \frac{1}{25} - \frac{8}{5} \implies 10y^2 + 10y + 1 = 0 \implies y = \frac{-10 \pm \sqrt{60}}{20}$$

For the point in \mathbb{H}^2 we need $|y| < 1$ so we choose $y = \frac{-10 + \sqrt{60}}{20} = \frac{-5 + \sqrt{15}}{10}$, and take $x = -3y = \frac{15 - 3\sqrt{15}}{10}$. Thus the desired point p is the point $p = (\frac{15 - 3\sqrt{15}}{10}, \frac{-5 + \sqrt{15}}{10})$.

11: Let $0 \neq u \in \mathbb{R}^2$. Let K, L and M be the lines in \mathbb{H}^2 such that $F_K(0) = -u$, $F_L(-u) = u$ and $F_M(0) = u$. Let T_u denote the translation $T_u = F_M F_L$.

(a) Show that $T_u = F_L F_K$

Solution: Note that L is (the intersection with \mathbb{H}^2 of) the line through 0 with normal vector u and that, by symmetry, F_L sends the line K to the line M . Let v be a point on K which does not lie on the line through 0 and u , and let $w = F_L(v) \in M$. Consider the hyperbolic triangle $[-u, 0, v]$. We have

$$F_M(F_L(-u)) = F_M(u) = 0, \quad F_M(F_L(0)) = F_M(0) = u, \quad \text{and} \quad F_M(F_L(v)) = F_M(w) = w$$

and we have

$$F_L(F_K(-u)) = F_L(0) = 0, \quad F_L(F_K(0)) = F_L(-u) = u, \quad \text{and} \quad F_L(F_K(v)) = F_L(v) = w.$$

It follows from Theorem 13.6 that $T_u = F_L F_K = F_L F_K$.

(b) Find $p \in \mathbb{H}^2$ and $\theta \in \mathbb{R}$ such that $T_u R_{0,\pi} T_u = R_{p,\theta}$.

Solution: Let N be (the intersection with \mathbb{H}^2 of) the line through 0 and u , and let a be the point where K meets N (in other words let a be the hyperbolic midpoint between $-u$ and 0). Then

$$T_u R_{0,\pi} T_u = T_u F_N F_L F_L F_K = T_u F_N F_K = T_u R_{a,\pi} = F_L F_K F_K F_N = F_L F_N = R_{0,\pi}.$$

Thus we must take $p = 0$ and $\theta = \pi$.

(c) Let $u = (\frac{1}{4}, -\frac{\sqrt{3}}{4})$, $v = (\frac{1}{4}, \frac{\sqrt{3}}{4})$ and $w = (-\frac{1}{2}, 0)$. Let L_1, L_2, L_3, L_4, L_5 and L_6 be the lines in \mathbb{H}^2 containing the hyperbolic line segments $[u, v]$, $[0, v]$, $[v, w]$, $[0, w]$, $[w, u]$ and $[0, u]$ respectively. Find $p \in \mathbb{H}^2$ and $\theta \in \mathbb{R}$ such that $F_{L_6} F_{L_5} F_{L_4} F_{L_3} F_{L_2} F_{L_1} = R_{p,\theta}$.

Solution: Let α be the interior angle at each vertex in the equilateral hyperbolic triangle $[u, v, w]$. Then we have

$$\begin{aligned} F_{L_6} F_{L_5} F_{L_4} F_{L_3} F_{L_2} F_{L_1} &= F_{L_6} F_{L_5} F_{L_4} F_{L_3} R_{v,-\alpha} = F_{L_6} F_{L_5} F_{L_4} F_{L_3} F_{L_2} = F_{L_6} F_{L_5} F_{L_4} F_{L_2} \\ &= F_{L_6} F_{L_5} R_{0,-\frac{4\pi}{3}} = R_{u,-\alpha} R_{0,-\frac{4\pi}{3}} = F_{L_1} F_{L_6} F_{L_6} F_{L_4} = F_{L_1} F_{L_4} = R_{p,\theta} \end{aligned}$$

where p is the point of intersection of lines L_1 and L_4 (that is the hyperbolic midpoint of u and v) and $\theta = \pi$.

To finish our solution, let us calculate the coordinates of the point p . Let C be the circle in \mathbb{R}^2 such that $L_1 = C \cap \mathbb{H}^2$. Let $a = (x, y)$ be the centre of C . Note that

$$u \in C \implies a \cdot u = \frac{|u|^2 + 1}{2} \implies (x, y) \cdot \left(\frac{1}{4}, -\frac{\sqrt{3}}{4}\right) = \frac{\frac{1}{4} + 1}{2} \implies \frac{1}{4}x + \frac{\sqrt{3}}{4}y = \frac{5}{8} \implies x + \sqrt{3}y = \frac{5}{2}.$$

Also, by symmetry, note that $y = 0$ so that $a = (x, y) = (\frac{5}{2}, 0)$. Since the centre of C is at $a = (\frac{5}{2}, 0)$ and the radius of C is $r = \sqrt{|a|^2 - 1} = \sqrt{\frac{25}{4} - 1} = \frac{\sqrt{21}}{2}$ it follows that $p = (\frac{5-\sqrt{21}}{2}, 0)$.

12: In this problem we find formulas for isometries on \mathbb{H}^2 using complex number notation.

(a) Let $p \in \mathbb{C}$, let $0 \neq u \in \mathbb{C}$ and let L be the line in \mathbb{C} through p perpendicular to u . Show that for $z \in \mathbb{C}$ we have $F_L(z) = p - \frac{u^2}{|u|^2}(\bar{z} - \bar{p})$.

Solution: We know that $F_L(z) = z - \frac{2(z-p) \cdot u}{|u|^2}u$. Let $G_L(z) = p - \frac{u^2}{|u|^2}(\bar{z} - \bar{p})$. Let M be the line through 0 perpendicular to u . Then for $w = x + iy = (x, y)$ and $u = k + il = (k, l)$ we have

$$\begin{aligned} F_M(w) &= w - \frac{2w \cdot u}{|u|^2}u = (x, y) - \frac{2(x, y) \cdot (k, l)}{k^2 + l^2}(k, l), \text{ so that} \\ (k^2 + l^2)F_M(w) &= ((k^2 + l^2)x, (k^2 + l^2)y) - 2(kx + ly)(k, l) \\ &= ((l^2 - k^2)x - 2kly, (k^2 - l^2)y - 2klx) \end{aligned}$$

and

$$\begin{aligned} G_M(w) &= -\frac{u^2}{|u|^2}\bar{w} = -\frac{(k + il)^2(x - iy)}{k^2 + l^2}, \text{ so that} \\ (k^2 + l^2)G_M(w) &= -((k^2 - l^2) + i2kl)(x - iy) \\ &= -\left(((k^2 - l^2)x + 2kly) - i((k^2 - l^2)y - 2klx) \right) \\ &= ((l^2 - k^2)x - 2kly) + i((k^2 - l^2)y - 2klx). \end{aligned}$$

Thus we have $G_M(w) = F_M(w)$ for all $w \in \mathbb{C}$. It follows that for all $p \in \mathbb{C}$ and $z \in \mathbb{C}$ we have

$$\begin{aligned} F_L(z) &= p - \frac{u^2}{|u|^2}(\bar{z} - \bar{p}) = p + G_M(z - p) = p + F_M(z - p) \\ &= p + \left((z - p) - \frac{2(z - p) \cdot u}{|u|^2}u \right) = z - \frac{2(z - p) \cdot u}{|u|^2}u = F_L(z). \end{aligned}$$

(b) Let $p \in \mathbb{C}$, let $r > 0$ and let C be the circle centred at p of radius r . Show that for $z \in \mathbb{C}$ we have $F_C(z) = p + \frac{r^2}{\bar{z} - \bar{p}}$.

Solution: For $z \in \mathbb{C}$ we have

$$F_C(z) = p + \frac{r^2}{|z - p|^2}(z - p) = p + \frac{r^2}{(z - p)(\bar{z} - \bar{p})}(z - p) = p + \frac{r^2}{\bar{z} - \bar{p}},$$

as required.

(c) Let $0 \neq u \in \mathbb{R}^2$ and let T_u be as in Problem 11. Show that $T_u(z) = \frac{z + u}{\bar{u}z + 1}$.

Solution: In Problem 11, the line L is the line through 0 perpendicular to u , and the line M is the line such that $F_M(0) = u$, which is given by $M = C \cap \mathbb{H}^2$ where C is the circle in \mathbb{R}^2 centred at $p = \frac{u}{|u|^2}$ of radius $r = \sqrt{|p|^2 - 1} = \sqrt{\frac{1}{|u|^2} - 1}$. By Parts (a) and (b), for $z, w \in \mathbb{C}$ we have

$$F_L(z) = -\frac{u^2}{|u|^2}\bar{z} \text{ and } F_M(w) = F_C(w) = p + \frac{r^2}{\bar{w} - \bar{p}} = \frac{u}{|u|^2} + \frac{\frac{1}{|u|^2} - 1}{\bar{w} - \frac{\bar{u}}{|u|^2}}.$$

Thus for $z \in \mathbb{C}$ we have

$$\begin{aligned} T_u(z) &= F_M(F_L(z)) = F_M\left(-\frac{u^2}{|u|^2}\bar{z}\right) = \frac{u}{|u|^2} + \frac{\frac{1}{|u|^2} - 1}{-\frac{\bar{u}^2}{|u|^2}z - \frac{\bar{u}}{|u|^2}} = \frac{u}{u\bar{u}} + \frac{1 - |u|^2}{-\bar{u}^2z - \bar{u}} \\ &= \frac{1}{\bar{u}}\left(1 - \frac{1 - u\bar{u}}{\bar{u}z + 1}\right) = \frac{1}{\bar{u}}\left(\frac{\bar{u}z + u\bar{u}}{\bar{u}z + 1}\right) = \frac{z + u}{\bar{u}z + 1}, \end{aligned}$$

as required.