PMATH 321 Non-Euclidean Geometry, Solutions to the Exercises for Chapter 4

: (a) Let C be the Euclidean circle in R? with diameter from a = (1,4) to b = (3,—-2), and let D be the
Euclidean circle in R? with diameter from ¢ = (4,2) to d = (3, 3). Find the (Euclidean) area of the image of
D under the reflection F¢.

Solution: The centre of circle C' is p = (2,1) and the radius is » = v/10. Circle D also has diameter from
u=(3,2) to v = (4,3). Since u and v lie along the same ray from p, we see (from Theorem 4.6) that the
image of D under F¢ is the circle E with diameter from Fgo(u) to Fo(v). We have

Fo(u)=p+ om(u—p) = (2,1) + 2(1,1) = (7,6) and
Fo(v) =p+ pom(w—p) = (2,1)+ 2(2,2) = (3, 1).

The radius of E is s = %‘(7,6) - (%,%)’ = %‘(%,%)’ = 57‘/5 so the area is A = 7s? = 237,

(b) Let C be the Euclidean circle in R? of radius 7 = 5 centred at p = (—1,—1) and let T' be the Euclidean
triangle in R? with vertices at a = (1,0), b= (3,1) and ¢ = (0,2). Find the (Euclidean) area of the image of
T under the reflection Fg.

Solution: Let )
a/ = FC(a) =p+ Miipp(a _p) = (_17_1) + 2755(2a 1) = (974)a

V= Fo(b) = p+ 5m(b—p) = (-1,-1) + £(4,2) = (4,4), and
2
d=Fc(e)=p+ hiip‘g(C—p) =(-1L,-1)+5(1,3) = (3,4).

Again, we make use of Theorem 4.6. Since a and b lie on the same ray from p, the line segment from a to b
is mapped by F¢ to the line segment from a’ to b’. Since a is the point on line ac nearest to p, the line ac is
mapped by F¢ to the circle D with diameter p, a’, so the line segment from a to ¢ is mapped to the arc from a’
counterclockwise to ¢’ along D. Since c is the point on line bc nearest to p, the line be is mapped by F¢ to the

circle E with diameter p, ¢/, so the line segment from b to ¢ is mapped to the arc from b’ counterclockwise to ¢’
along E. The circle D with diameter p, a’ has centre at £ (p+a’) = (4,3) = b’ and radius s = £|a’ —p| = %
The circle E with diameter p, ¢’ has centre at ' = 2(p+¢) = (3, 4) and radius t = 1|/ — p| = @. The
area A of the image F¢(T) is equal to § of the area of D (since the arc from a’ to ¢’ subtends the angle

2
at b’) plus the area of the triangle ¥’, ¢/, v’ minus i of the area of F (since the arc from ¥’ to ¢’ subtends the
angle 7 at u'), so we have

A=ins? 12 - im2 =7 . 185 4

1 125 & 125 _ 125
i I 3% i s = m(mT2).



2: (a) Find the centre p € R? and radius r > 0 of the Euclidean circle C' in R? such that the reflection Fio sends
the line L with equation 2z +y = 8 to the circle D with equation (z + 1)% 4+ y? = 5 (with one point removed).

Solution: The centre of D is the point d = (—1,0). Note that if a is the point on L nearest to p and o’ = F¢(a),
so that the circle D = Fx(L) has diameter p,a’, then the line p,a’ passes through d and meets the line L
orthogonally at a. This shows that the points p and a’ both lie on the line M through d which meets L
orthogonally at a. This line M has equation z — 2y = —1, and it meets L at the point a = (3,2) and it
meets D at the two points (—3,—1) and (1,1). Since a and ¢’ must lie on the same ray from p (so p does
not lie between a and a’) it follows that p = (—3,—1) and «’ = (1,1). In order that Fo(a) = o/ we need
r? = la —pl|la’ — p| = 3v/5-2v/5 = 30 and so r = /30. Thus p = (=3, —1) and r = v/30.

(b) Find the centre p € R? and the radius r > 0 of the Euclidean circle C' in R? such that the reflection
F¢ sends the Euclidean circle D with diameter from a = (2,1) to b = (1,2) to the Euclidean circle E with
diameter from ¢ = (—1,3) to d = (6,2).

Solution: Note that when F¢o sends the circle with diameter through v and v to the circle with diameter
through v/ = F¢(u) and v/ = Fo(v) where 0 # u € R? and v = u + t(v — u) with 0 # ¢ € R, all of the points
u,v,u’ ,v’ lie on the same line through p. Also note that the centres of the two circles also lie on this same
line. The given circles D and F have centres (%, %) and (%, %) and so the points u,v,u’, v’ and p must all lie
on the line through these two centres, namely the line y = x. The line y = x meets the circle D at the points
(1,1) and (2,2) so we can take u = (1,1) and v = (2,2). The line y = = meets the circle E at the points (0, 0)
and (5,5) so either we must take ' = (0,0) and v' = (5,5) or we must take v’ = (5,5) and v = (0,0). In
order to have u and v lie on the same ray through p and to have v and v’ lie on the same ray through p we
must choose u’ = (0,0) and v" = (5,5) with p on the line y = 2 between u = (1,1) and v = (2, 2).

Let p = t(1,1) with 1 < ¢ < 2. Then to get Fco(u) = v’ and Fo(v) = v’ we need |u — p|[u’ — p| = r? and
[v—pllv —p| =7% 50

‘upru/ 7p‘ = ‘”Upr’U/ *p| = |(171) 7t(171)|’(070) 7t(171)| = |2(171) 7t(171)||5(171) 7t(171)|
— (t-DV2-tV2=2-t)V2- (5 - t)V2 = t(t — 1) = (t — 2)(t — 5)

=t —t=t"-Tt+10=6t=10=1t =3

[\v]
oa%
(o3}

Thus we must take p = ¢(1,1) = 2(1,1) and 72 = |u — p||u’ — p| = |§(1,1)H%(1,1)| =2 sor=

5
3



3:(a)Let0<a< ‘f Find the hyperbolic length of the Euclidean line segment given by (z,y) = a(t) = (3,t)
for 0 <t <a.

Solution: We have o/(t) = (0,1) so the hyperbolic arclength is
4

4
@21/ (t @ 2dt e dt @ 73 73
L:/ L)'th:/ 17:/ 872: V3 L V3 o
=0 1 — |e(t)] =0 1— (3 +1?) t=0 3 — 4 =0 V3—2t V3-2t
_{2ln<\/§+2t>]“ _2ln<\/§+2a>
V3 V3-2t)],_o V3 V3—-2a/)’

(b) Let 0 < @ < 1. Find the hyperbolic area of the circle given by 2% + y? = ax.

Solution: We give two solutions. For a short solution, note that the hyperbolic diameter d of this circle is the
hyperbolic length of the straight line segment from (0, 0) to (a,0), which is equal to d = ln , so the radius

_ 1 1+a _
isr=351In =In 1 +a Thus the area is

A:27r(coshr—1):27r(cosh(ln %fg)—1)=2ﬂ(%( e+ %IZ)_1)22”(\/11_7_1)'

Here is a second solution. The area is

acos /2 9 acosf
[ [ 12
—m/2Jr 1 —r? O0=—m/2 1—r r=0
2 ™2 4de
= —_——— —2d0= -2 — 5
/9_—71/2 1—a?cos?6 T /9:0 1—a?cos?6

) +/5 4.df 0 +/’T/2 8do
= 27 5 — —2W
—o 1 — a?(1ews20) o—o (2 —a?)—a?cos26

i 4d¢
—27r+/¢ (2_a2)_a2cos¢,where¢>:20
8
o0 —— du
:727r+/ 0(2_;%“2 q2 =2 ,Whereu:tan¢ cos ¢ = 1+u2,d¢ - u2 du
u= 1+u2
9 +/°° 8du
=27
(2—0a?)(1+u?) —a?(1 —u?)

9 +/°° 8 du 9 +/°° 4 du
= 21 = -2 - @
w0 24 2u2 — 242 u=o U2+ (1 —a?)
:_27T+/“/24\/ 1 — a2 sec® ) dip
=0 (\/1 — a?sec w)2

, where tany = \/1117

4 /2 4 1
— —27T+ |:7ﬁ Q/}:| ¥=0 = —27T+ T—a2 . 5 = 271’( T—a? — 1)



4: (a) Let u = (%, %) and v = (%, i) Find the centre p € R? and the radius r > 0 of the Euclidean circle C' in
R? such that L = C'NH? is the hyperbolic line in H? through u and v.

Solution: Let L = Cg(p,r)NH? with p = (z,y). As shown in the proof of Theorem 4.18, in order to have u € L
2 1

we need p » u = MT'H, that is %x + %y = 22“ = %, or equivalently x +y = % (1), and in order to have v € L

we need p« v = ‘Uz%, that is 3z + 1y = §'2H = 13, or equivalently 3z +y = 12 (2). Subtract Equation (1)

from Equation (2) to get 2z = § so that x = g, then put this into Equation (1) to get y = % —r=3_1=

278
Thus we must take p = (z,y) = (3, 3) and, by Note 4.14, r = /[p[> — 1 = ,/42422=64 — @.

(b) Let u = (— %, %) and v = (%, —%) Find the centre p € R? and the radius 7 > 0 of the Euclidean circle C
in R? such that the L = C NH? is the hyperbolic line such that Fo(u) = v.

5
5

Solution: By the proof of Theorem 4.20 we can take p = u + t(v — u) with ¢t = |v1|2_|:77|j|2' Thus we let

. 1— |ul? 1=
SR o

p=u+tlv—u)=(-12)+3(1,-1) = ({3, —7) and

r—= /7|p|2 — 1 _  /169+81-100 __ V150 __ 6
100 10 2"

(c) Let u=(2,2), let b=(%,2), let s=1/]b]> — 1, let C be the Euclidean circle in R? centred at b of radius
s, and let L = C NH2. Find the centre a € R? and the radius » > 0 of a Euclidean circle D in R? such that
M = D NH? is the hyperbolic line which is asymptotic to « and intersects orthogonally with L.

Solution: Let a = (z,y). In order for D to intersect orthogonally with S, by Note 4.14 we need r = /|a|? — 1.

In order to have u € D, by the proof of Theorem 4.18 we need a « u = WTH, that is —ga: + %y =1or

equivalently —3x 44y = 5 (1). In order for D to intersect orthogonally with C' at say the point ¢, the points a,
b and ¢ must form a right-angled Euclidean triangle with side lengths s,  and |a — b| so that, by Pythagoras’
Theorem, we need s2 + 172 = |a — b|? hence |b|? — 1+ |a|> — 1 = |a|? — 2a « b+ |b|? which simplifies to a « b = 1,
that is 2o + 2y = 1, or equivalently 6z + 2y = 5 (2). Solve Equations (1) and (2) to get a = (z,y) = (3, 3)

and hence r = \/[a[> — 1 = I.

)
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5: (a) Let a = (%7 g) and b = (%, —g), let C' and D be the Euclidean circles centred at a and b, respectively,
which intersect orthogonally with S, and let L = C NH? and M = D NH2. Find the centre p and radius
r of the Euclidean circle £ such that N = E N H? is the hyperbolic line which intersects both L and M

orthogonally.

Solution: Let s and ¢ be the radii of the circles C' and D respectively. Since C' and D intersect orthogonally
with S! we have s? = |a|? — 1 and t? = |b|? — 1. In order that E intersects orthogonally with all three circles
S, C and D, by Pythagoras’ Theorem we need |p|? =72+ 1, |p — al?> = 7% + s? and |p — b|?> = 72 +t2. When
r?2 = |p|? — 1 we have

2

|p—a\ =r? 4+ —= \p|2—2p a—i—|a|2 (\p|2 1)+ (\a|2—1) — pea=1

and similarly [p — b]? = r?2 +t> <= p.b = 1. Thus we must take p to be the (unique) point such that
pea=1and p-b=1. For p= (z,y) we have

pea=1 < l:c—f—gyzl < z+6y=5 (1)

peb=1<«= 2a-Cfy=1 <<= 4z-6y=5 (2
Add (1) and (2) to get 5z = 10 so that « = 2, then put this into (1) to get 6y =5 — 2z =5 — 2 = 3 so that

y = 3. Thus we must take p = (z,y) = (2,3) and r = VPP —1= \/ =t = \/7173

(b) Let w € H and let L by a hyperbolic line in H. Prove that there exists a unique hyperbolic line M which
contains v and intersects orthogonally with L.

Solution: First let us consider the case that L = N NH? where N is a line in R? through 0. Let p € R? with
|p| > 1 and let C be the circle centred at p of radius r = /|p|? — 1. Note that C intersects orthogonally with
N if and only if p € N and note that

2
we O e |u—p|2:r2 — |u|2—2p-u+\p|2=\p|2—1 — p.uzlu\zﬂ.

2
We also remark that, when u # 0, the point on the line x « u = M which is nearest the origin is the point

1 . 1
x = lgl‘ |+2 u which has norm |z| = luf+1 -

> 1, so any point p Wthh lies on this line satisfies |p| > 1.

When u = 0, the (unique) line in R2 through u perpendicular to N passes through 0 (hence determines a
2
hyperbolic line) but there is no point p € R? for which p « u = MTH When u # 0 and u is orthogonal to IV,

the (unique) line in R? through u perpendicular to N passes through 0 (hence determines a hyperbolic line)
2 2
but there is no point p € M for which p « u = MT'H since the line x « u = lulTH is parallel to N. When u # 0

and u is not orthogonal to IV, the line in R? through v perpendicular to N does not pass through 0, and there
lul®+1
2

2
exists a unique point p € N withp . u = because the line x « u = ‘“IT'H is not parallel to V. In all cases
we find that there is a unique hyperbolic line through u orthogonal to N.

Now let us consider the case that L = D N H? where D is the circle in R? centred at a € R? with
la] > 1 of radius s = y/]a|2 — 1. Again, let p € R? and let C be the circle in R? centred at p with radius

2

r = 4/|p|?> — 1. As above, we have u € C if and only if p « u = MT'H As in Part (a), C intersects orthogonally
with D, say at ¢, if and only if the Euclidean triangle with vertices at a,p, g is right-angled, if and only if
lp—al*>=r*+s*=(p|> 1)+ (Ja|* — 1), if and only if p + a = 1.

When {u,a} is linearly independent, the line through 0 and a (which is the unique line in R? through
0 which is orthogonal to D) does not pass through u, but there is a unique point p for which the above
circle C passes through u and intersects orthogonally with p, namely the (unique) point of intersection of the
non-parallel lines = « u = MZTH and z - a=1.

Suppose that {u,a} is linearly dependent, say u = ta with ¢ € R. Then the line through 0 and a passes
through u. We claim that there is no point p € R? for which the above circle C passes through u and intersects

s lulP+1
U= "3

orthogonally with D. Suppose, for a contradiction, that p is such a point. Then we have p and

p e+ a = 1. It follows that

2+1 ta 2+1 t2 a 2+1
t == t(p . a) - p . (ta) - p *U = |u‘2 - | |2 - ‘ 2' .
Bul lhlS iS nO( pOSSible Since ‘a| > 1 SO lhal

2y 12 2 —1)2
Elal 4l _y5 4 = G2 5,



6: (a) Let u = (0,0), v = (%,0) and w = (4, 1). Find the hyperbolic area of the triangle [u, v, w] in H2.

Solution: We provide two solutions. The first solution you might find it useful to draw an accompanying
picture. The hyperbolic line segments [u,v] and [u,w] are equal to the Euclidean line segments [u,v], u,w]
(since they lie along lines through 0) so we have o = 7 (v is the angle at u between [u,v] and [u,w]). Let us

find the hyperbolic line L through v and w. Say L = C' N H? where Cg(p,r) and write p = (z,y). To have

2 1
uELweneedp-u:‘"lT'chatis%x: 4;1:%andsox:% To have w € L we need p « w = |w| + , that
. 14141 .
is %x—i—%y:%:%,soy:%—x:%—g:i. Thus we obtain p = (x,y) = (2,4) Since the radlus of

C from p to v has slope %, the tangent line to L at at v has slope —3 and so we have 3 = tan~! 3 Since the
radius of C' from p to w has slope — 3, the tangent line to L at w has slope 3 and so we have v = T —tan ™! %

Thus the hyperbolic area of the hyperbolic triangle [u, v, w] is

Since tan~! 3 4+ tan~! % = 7, we can also write this as A =2tan™" 3 = tan~? %.

The second solution is purely algebraic. For the hyperbolic triangle [u, v, w]| we have

A:W—(a+ﬂ+7)=7r—(3+tan_13+§—tan_1%)zg—i—tan_l%—tan_l&
11

2.3

I

) =cosh '

a=dg(v,w) = cosh™ ( + 3

B
oi Wi

l\.’)

) = cosh™* 3

—

I
2

b=dp(w,u) =cosh™" (1+
¢ =dy(u,v) =cosh™" (1 +

hence also sinha = v/cosh?’a — 1 = \/%9 —-1= @, sinhb = Vcosh®b—1 = v/9—1 = 2/2 and sinhc =
Veosh?c—1= 1/% -1= %. By the First Law of Cosines, we have

=) = cosh™! :

.Mc.am»-

cosh bcosh e — cosha 3-37% L
cos o = - - = 3 =L
sin hbsin ha 2v/2 - 3 V2
3 cosh acosh ¢ — cosh b g % -3 1
cos 8 = = — 1
sinh a sinh ¢ 2@ % V10
coshacoshb —coshe % 3— %

[
ﬁ ;
o

- -2
R = sinh a sinh ¢ S22 a

w ‘

Thus the hyperbolic area of the hyperbolic triangle [u, v, w] is

SN~—
=
Q
g
=
o
|
Q
g
Sl

— _ ™ — 1 -1 2
A=7m—(a+B+7)=n— (5 +cos 1ﬁ+cos 1%
If you want, you can show that this simplifies to A = tan~! %.
(b) Let u = (1,0), v = (0,1) and w = (0,—1). Find the hyperbolic area of the circle inscribed in the triply
asymptotic triangle [u, v, w] in H2.

Solution: It helps to draw a picture to accompany the solution. The hyperbolic line through v and v is Cg(a, 1)
where a = (1,1) and the hyperbolic line through v and w is Cg(b, 1) N H? where b = (—1,1). By symmetry,
both the Euclidean centre and the hyperbolic centre of the inscribed circle lie along the y-axis. To find the
Euclidean centre p = (0, y), note that the points (0,y), (1,y) and (1, 1) form a Euclidean right—angled triangle
with edge lengths 1, 1—y and 14y, and so we must have (1+y)? = 12+ (1—v)?, that is 1+2y+y? = 2—2y+1?,
hence 4y = 1. Thus the Euclidean centre of the inscribed circle is at p = (O, 4) and the Euclidean radius is 411

The line segment from 0 = (0,0) to ¢ = (O7 2) is both a Euclidean and hyperbolic diameter for the inscribed
circle. The hyperbolic length of the diameter is d = dy (0, q) = cosh™ ( f—g) = cosh™* 5 , so the hyperbolic
4

radius is r = %d so that cosh 2r = coshd = g We have

cosh? r = (6”'2677‘)2 = 62”'22'67% =1(1+cosh2r)=1(1+32)=3%

so that coshr = %, and so the hyperbolic area of the inscribed circle is

A= 27r(coshr— 1) = 27‘(‘(% — 1).



7: (a) Find the hyperbolic area and perimeter of the regular hexagon in H? with interior angles 5

Solution: The hexagon can be cut into 6 triangles, meeting at 0, each of which is congruent to a triangle

s

[u,v,w] with o = § and 3 =y = 7. The area of the hexagon is

A=6(r—(a+p+7)=6(r—(E+2+2))=6-2=r.

By the Second Hyperbolic Law of Cosines, the length ¢ = a of the side opposite to u is given by

cos a + cos 3 cos 3+% >
cosh(¢) = - - T2 1‘/51‘/5:2
sin §sin ~y 575

and so the perimeter of the hexagon is L = 6¢ = 6 cosh™*(2). We remark that cosh™' 2 = In(2 + /3).

(b) Find a > 0 such that the regular hexagon in H? with vertices at (+a, 0), (:I: 5 :I:@) has interior angles

equal to F.

Solution: The hexagon can be cut into 6 triangles meeting at 0 each of which is congruent to the triangle

a V3a s
27 2

¢ of the side opposite to u is given by

1+4cos &

h(0) cosa+cosfBcosy cosEtcos? L T4 00 2—&-@
COS. = = = =

. n -2 1—cos & V3

sin B sin ~y sin® 75 - 11—

_4+V3 _ (4+V3)(2+V3)
=% = o =114 6v3.

By the formula for the hyperbolic distance between two points, we also have

2|v—wul|?

cosh?¢ = coshdy(u,v) =1+ T = 1+ (13‘222)2

[u, v, w] where u = (0,0), v = (a,0) and w = (7 —) with interior angles a = £ and f = v = 5.

The length

so we have
142 1168 2 046vE— — % 54343 ¢ _\/5+3V3
ey SOV AT TV T T TV T T TV
— a=1\/5+3V31-d?) = \/5+3V3a®> +a—\/54+3V3=0
= —14+/14+4(54+3V3) _ —14V21412v3 _ —14(342VB) 1443

2¢/5+3/3 2v/5+3v3 2¢/5+3/3 V5+3v3



8: (a) Find the hyperbolic circumference and the area of the circle in H? which is inscribed in the hyperbolic
square with interior angles %

g.

Solution: We can place the vertices of the square at positions (£k,0) and (0, +k). The square can be cut into

8 triangles meeting at 0 so that each triangle is congruent to the triangle [u,v, w] where u = (0,0), v = (k, 0)

and w is the midpoint of the hyperbolic line segment from (k,0) to (0, k), which has interior angles a = %,
s

B = § and v = 7. The hyperbolic radius of the inscribed circle is the length r = b of the side opposite the
angle 8 = % at vertex v. By the Second Hyperbolic Law of Cosines, we have

h(r) = cos 3+ cosycosa §+0~§ B
COSmT) = sin y sin o B 1.% B

s

Thus the area A and the circumference L of the circle are given by

A =2m(cosh(r)—1) = 2%(% —1) =7(v6—2), and

: 2 /
L =27 sinh(r) = 2my/cosh®(r) — 1 = 27 %—1):27?%:\/571

(b) Find the hyperbolic perimeter and area of the square in H? with edges along the lines K, L, M and N
such that Fx (0) = (3,0), F£(0) = (0,3), Fa(0) = (— 3,0) and Fx(0) = (0,—3).

Solution: Using the formula in the proof of Theorem 10.10 (or the formula from Example 10.11), the circle
1
C for which K = C NH? is centred at the point p = (30) _ (2,0) and has radius r = \/|p|> — 1 = V/3,

[CO

3

so C' is the circle (x — 2)? +y? = 3. The intersection of K = C' N H? with the z-axis is at v = (2 — v/3,0).
By symmetry, the point of intersection of K with L lies on the line y = x, so we put y = x into the equation
(x—224+y>=3toget (r—2)2+22=3= 222 —da+1=0= g =1L/ L0 1:&% so that the
intersection point is w = (z,y) = (1 — %)(1, 1). Thus the square can be cut into 8 congruent triangles each

of which is congruent to the square with vertices at u = (0,0), v = (2 -3, 0) and w = (1 = % , 11— %)
In the triangle [u, v, w] we have a = § and § = 7. By the formula for the hyperbolic distance between two

points, we have

2|v|?
I—Tof?

7 2(7-4V3) _ 7-4V3) —342v3 _ 2v3 _ 2
_lJr1—(7—4\/§_l+—3+2\/§_1Jr 3 - 3 -

By the Second Hyperbolic Cosine Law,we have

cosh(c) = coshdp(u,v) = coshdg(0,v) =1+

cosy = sinasin S cosh ¢ — cosacos f = @ -1 % — @ 0= %
2

V2
BRI
v

sl

cos a + cos [ cos 7y

cosha = - .
sin §sin ~y 1-

1
V3
Thus the perimeter L and the area A of the square are

Q. — -1 3
L = 8a = 8 cosh s

A=8(r—(a+B+7) =8(r— (5 + % +cos!

SlS

)) =27 —8cos™ !

s



9: (a) Let p=(3,3), 0 =% and a = (3, 2). Find R, ¢(a) in H?
Solution: We find two hyperbolic lines L and M through p such that R, ¢ = FaFr. We take L to be the line
x =y (the through 0 and p). We want to find a line M through p such that the angle from L to M is 7, say

2 1,1
M = Cg(q,s) NH? with ¢ = (x,y). To have p € M, we need q « p = MTH, that is %x—i— %y = %4“ = %, or
equivalently x +y = % (1). In order that the angle from L to M is 7, we want M to have a vertical tangent

line at the point p, so ¢ must lie on the horizontal line through p. that is the line y = % We put y = % into

Equation (1) to get z = 1, and so we obtain ¢ = (z,y) = (1,1). And weneed s> = [¢* —1=1+1-1=1
and so s = % Since L is the line y = = we have b = Fp(a) = Fy:w(%, %) = (%, %), and since Fj; = F¢o where
C = Cg(q,s) we have

Rpﬂ(a) = FJWFL(a) :FC(b) :q+ ﬁ(bfq) = (1,%) + é_,_%(f %37%) = (17%) - 1%(2a1) = (%a%)

(b) Let u = (2,—%2) and v = (1,0), and let P be the parallel displacement such that P(u) = u and P(—u) = v.

Find a € H? such that P(a) = 0.

Solution: Let L be the line through w and —u, that is the line 4z + 3y = 0, and note that Fr(u) = v and

Fr(—u) = —u. We want to find the line M through u such that Fj;(—u) = v and then we can take P = Fj/ FJ,
2

to get P(u) = u and P(—u) =v. Say M = Cg(p,r) with p = (x,y). To have u € M we need p « u = IU‘QH,

that is %x— %y = 1, or equivalently 3z —4y = 5 (1). To get F'(—u) = p we need p to lie on the line through —u

and v, that is the line z + 2y = 1 (2). Solve Equations (1) and (2) to get p = (z,y) = (Z,—1%). And we need

r2 = |p|2—1 = %4—%—1 = 1 so that r = 1. To summarize, we have P = F); F, where L is the line 4x+3y = 0

and M = C NH* where C' = Cg(p,r) with p = (I,—1) and r = 1. To get P(a) = 0, that is FarFy(a) = 0, we

need a = (FarF)~1(0) = FL Far (0). We have Fyy(0) = Fo(0) = p+ (2 (—p) =p— 3p = 3p = (35, — ;) and

so (using a formula from Part (4) of Example 1.82) we have

3. L
a = FLFn(0) = Fizssy=o(f5. ) = (1) — “Hm ™ (43) = (5. —%) - (1.3) = (- .~ 1).



10: (a) Let a = (2,7) and r = V10 and let L = Cg(a,r) N H2. Let u = (2,-2) and v = (3,0). Find

4> 4 T4 8’ 4
the hyperbolic line M such that FrFy(u) = v and determine whether the isometry Fy/Fp is a rotation, a
translation, or a parallel displacement.

Solution: To get FrFa(u) =v we need Fyy(u) = F(v). We have
2 5
Fue) =t -0 = (334 (- 50 = (20 252 = ()
Let w = Fy(v) = (§,—1) and let M = Cg(b,s) NH?. From the definition of Fy/, in order to have Fy/(u) = w,
the point b must lie below and to the right of u on the line through v and w, that is the line y = —z, and we
need |u —b| - |w —b| = s? = [b|? — 1. Say b= (t,—t) with ¢ > 3 (so that b lies below and to the right of u).

We have u = 2(1,-1) and w = (1, —1) and b = #(1, 1) and so

lu—b - lw—bl=s"=pP-1= (t—2)V2- (t-Hv2=22-1=2(2 - Zt+3)-22—1

— Tp—2l 3
Zt_lﬁ t_4'

Thus we have b = (3,—3) and we have s> = [b|? — 1 = — 1 = { so that s = %.

‘We have found the hyperbolic line M, and it remains to determine whether F); F7, is a translation, a parallel
displacement, or a rotation. This depends on whether the two circles Cg(a,r) and Cg(b, s) have 0 points of
intersection (giving a translation), or 1 point of intersection (giving a parallel displacement about that point),
or 2 points of intersection (giving a rotation about the point that lies in H?). The two circles have Ok, 1 or 2
points of intersection according to whether |a —b| > r+ s or [a —b| =r + s or |a —b| < r + s. In this case we
have |a — b|? = f(%, 1)|2 = 2 and we have (r + 5)? = (@ + %)2 = 3+T\/g > 2 50 that the two circles have
two points of intersection, hence the composite Fi; FJ, is a rotation.

Another way to see that the two circles have two points of intersection is to notice, by inspection using a
picture, that (1, —%) is a point of intersection, and it does not lie on the line containing a and b, so there must
be another point of intersection. Yet another way is to find the two points of intersection algebraically from
the equations of the two circles.

(b) Let u = (0,0) and v = (2, $). Find the point p € H? such that Ry =Ry z = R, for some ¢ € [0,27).

Solution: Let L be the line z + 3y = 0 and let M be the line x — 2y = 0. Note that L and M pass
through u = (0,0) with 0,(L, M) = § so that Fy Fp, = R, z and that M also passes through v (to see that
0,(L, M) = 7, consider the square with vertices at (0,0). (1,-2), (3,—1) and (2,1)). We want to find the
hyperbolic line N' which passes through v, and whose tangent line at v has slope 3 so that 6,(M,N) = %
(consider the above square again to se why the slope should be 3). Let N = Cg(q, s) with ¢ = (x,y). To have

4 1
sstastl 3

2
veEN weneed g+ v = “IITH, that is %x—i— %y = 2 =, or equivalently 2z +y = 3 (1). For the tangent

line at v to have slope 3, we need ¢ to lie on the line through v with slope —%, that is the line x + 3y =1 (2).
Solve Equations (1) and (2) to get ¢ = (z,y) = (3,—1%). And we need s* = [¢|> =1 =% + L —1 = & s0 that

s = 2—\/5%. With this choice for the lines L, M and N we have
Rv,gRu,g =FNFyFubL = FNFL =R,

where p is the point of intersection of L and M in H? and § = 6,(L, N). Thee line L has Equation z+3y = 0 (3)
and we have M = Cg(q, s) NH? where the circle Cr(q, s) has equation (ac - %)2 + (y + %)2 = % (4). We solve
Equations (3) and (4): From (3) we have x = —3y, and we put this in (4) to get

2 2 _
(=3y—5) " +(y+1) =8 =02+ 8y + 812+ 2y+ L =2 =102 + 10y +1 = 0 = y = =1LV

—104v60 _ —54+/15 15—-315 .
20 =" 10 io— - Thus

For the point in H? we need |y| < 1 so we choose y = , and take r = —3y =

the desired point p is the point p = (%Xﬁ J%O‘/ﬁ)

)



11: Let 0 # u € R%. Let K, L and M be the lines in H? such that Fx (0) = —u, Fr,(—u) = u and Fj;(0) = u. Let
T, denote the translation T, = Fi,Fp, .
(a) Show that T,, = FFk

Solution: Note that L is (the intersection with H? of) the line through 0 with normal vector u and that, by
symmetry, Fr, sends the line K to the line M. Let v be a point on K which does not lie on the line through
0 and u, and let w = F(v) € M. Consider the hyperbolic triangle [—u,0,v]. We have

FM(FL(—u)) =Fpy(u)=0, FM(FL(O)) =Fy(0) =u, and FM(FL(’U)) =Fyw)=w
and we have

FL(FK(—u)) =Fr(0)=0, FL(FK(O)) = Fr(—u) =u , and FL(FK(v)) = Fr(v) = w.
It follows from Theorem 13.6 that T,, = F.Fx = FFk.

(b) Find p € H? and 6 € R such that T, Ry T, = Rp0.
Solution: Let N be (the intersection with H? of) the line through 0 and u, and let a be the point where K
meets N (in other words let a be the hyperbolic midpoint between —u and 0). Then

T.RoxTy =T, FNFrLF Fg =T, FnFrk =T Ry = FLFxkFxFn = FrLFN = Ro .

Thus we must take p =0 and 0 = .

(c) Let u = (i,—%), v = (i,@) and w = ( — 3,0). Let Ly, Lo, L3, Ly, Ls and Lg be the lines in H?
containing the hyperbolic line segments [u,v], [0,v], [v,w], [0,w], [w,u] and [0,u] respectively. Find p € H?

and 6 € R such that FLGFL5FL4FL3FL2FL1 = Ny 9.
Solution: Let a be the interior angle at each vertex in the equilateral hyperbolic triangle [u,v,w]. Then we
have
Fp FL.FL,Fp,F,Fr, = FL F1 F, Fr, Ry —o = F1,F. Fi Fr, F, Fr, = F, FL Fp, Fy,
= FL6FL5R0,7477r = RU,*O&RO,f%' =P, FroFreFr, = Fr,Fr, = Rpo
where p is the point of intersection of lines Ly and L4 (that is the hyperbolic midpoint of v and v) and 6 = .

To finish our solution, let us calculate the coordinates of the point p. Let C' be the circle in R? such that
L; = CNH2 Let a = (x,y) be the centre of C. Note that

2 1
weC=a-u="1 — (z ) (1,83) =28 — 1y V85— 5y By =3,

Also, by symmetry, note that y = 0 so that a = (x,y) = (%, 0). Since the centre of C'is at a = (g, O) and the

radius of Cisr = /Ja? — 1= /2 - 1= @ it follows that p = (E’_T‘/ﬁ,O).



12: In this problem we find formulas for isometries on H? using complex number notation.
(a) Let p € C, let 0 # u € C and let L be the line in C through p perpendicular to u. Show that for z € C we
2

u
have Fr(z) =p — B (z —D).

2(z —p) - 2
Solution: We know that Fp(z) =z — (z||1;)u u. Let Gp(z) =p— %(E —p). Let M be the line through
U u
0 perpendicular to u. Then for w = z + iy = (z,y) and v = k + il = (k,[) we have
2w . u 2 (z,y) « (k1)
FM(U}) =w — WU = (l‘,y) — W (]€7l) , SO that

(K> + ) Far(w) = (B2 + Pz, (K +12)y) — 2(kz + ly)(k, 1)
- ((12 — )z — 2kly, (K2 — 2)y — 2klx)

. @ (ki) —iy)
_ + i) (x — iy
GM(’LU) = | w k;2—+l2 , SO that
(K + )G r(w) = —((* — 17) + i 2kl) (z — iy)
( (K% = )z + 2kly) = i((k? — 12}y — 2kiz) )

= ((I = k*)z — 2kly) +i((k* — 1*)y — 2kiz).
Thus we have G p(w) = Fpy(w) for all w € C. It follows that for all p € C and z € C we have

u2

GL(Z)=p—W(f—ﬁ)=p+GM(z—p)=p+FM(Z—p)

(R e O]

(b) Let p € C let r > 0 and let C' be the circle centred at p of radius r. Show that for z € C we have
Fo(z) =

—p
Solution: For z € C we have
2 2 2
Fo(z)=p+—7@—-p) =p++————=GE—p)=p+—,
) \Z*pIQ( ) (zfp)(zfp)( ) Z—Dp
as required.
2 . Z+u
(c) Let 0 # u € R? and let T, be as in Problem 11. Show that T,(z) = — e
Uz

Solution: In Problem 11, the line L is the line through 0 perpendicular to u, and the line M is the line such
that F/(0) = u, which is given by M = C NH? where C is the circle in R? centred at p = rupz of radius

r=+/|p?—-1= ,/ﬁ — 1. By Parts (a) and (b), for z,w € C we have

2 2 11

us r U [al?
Fr(z)=——=7z and Fy(w)=Fc(w) =p+ = — 4+ —.
T A
Thus for z € C we have
u? u e L u 1—|uf?
T, = Fy(F, =Fyl——5%2) = — — — = —
()= Pl ) = Pl =+ T T e e
_1( 1—uﬂ)_1(ﬂz+uﬂ) z4+u
T u uz+1 utuz+1 uz+1’

as required.



