

1: (a) Let C be the Euclidean circle in \mathbb{R}^2 with diameter from $a = (1, 4)$ to $b = (3, -2)$, and let D be the Euclidean circle in \mathbb{R}^2 with diameter from $c = (4, 2)$ to $d = (3, 3)$. Find the (Euclidean) area of the image of D under the reflection F_C .
 (b) Let C be the Euclidean circle in \mathbb{R}^2 of radius $r = 5$ centred at $p = (-1, -1)$ and let T be the Euclidean triangle in \mathbb{R}^2 with vertices at $a = (1, 0)$, $b = (3, 1)$ and $c = (0, 2)$. Find the (Euclidean) area of the image of T under the reflection F_C .

2: (a) Find the centre $p \in \mathbb{R}^2$ and radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that the reflection F_C sends the line L with equation $2x + y = 8$ to the circle D with equation $(x + 1)^2 + y^2 = 5$ (with one point removed).
 (b) Find the centre $p \in \mathbb{R}^2$ and the radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that the reflection F_C sends the Euclidean circle D with diameter from $a = (2, 1)$ to $b = (1, 2)$ to the Euclidean circle E with diameter from $c = (-1, 3)$ to $d = (6, 2)$.

3: (a) Let $0 < a < \frac{\sqrt{3}}{2}$. Find the hyperbolic length of the Euclidean line segment given by $(x, y) = \alpha(t) = (\frac{1}{2}, t)$ for $0 \leq t \leq a$.
 (b) Let $0 < a < 1$. Find the hyperbolic area of the circle given by $x^2 + y^2 = ax$.

4: (a) Let $u = (\frac{1}{2}, \frac{1}{2})$ and $v = (\frac{3}{4}, \frac{1}{4})$. Find the centre $p \in \mathbb{R}^2$ and the radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that $L = C \cap \mathbb{H}^2$ is the hyperbolic line in \mathbb{H}^2 through u and v .
 (b) Let $u = (-\frac{1}{5}, \frac{3}{5})$ and $v = (\frac{4}{5}, -\frac{2}{5})$. Find the centre $p \in \mathbb{R}^2$ and the radius $r > 0$ of the Euclidean circle C in \mathbb{R}^2 such that the $L = C \cap \mathbb{H}^2$ is the hyperbolic line such that $F_C(u) = v$.
 (c) Let $u = (-\frac{3}{5}, \frac{4}{5})$, let $b = (\frac{6}{5}, \frac{2}{5})$, let $s = \sqrt{|b|^2 - 1}$, let C be the Euclidean circle in \mathbb{R}^2 centred at b of radius s , and let $L = C \cap \mathbb{H}^2$. Find the centre $a \in \mathbb{R}^2$ and the radius $r > 0$ of a Euclidean circle D in \mathbb{R}^2 such that $M = D \cap \mathbb{H}^2$ is the hyperbolic line which is asymptotic to u and intersects orthogonally with L .

5: (a) Let $a = (\frac{1}{5}, \frac{6}{5})$ and $b = (\frac{4}{5}, -\frac{6}{5})$, let C and D be the Euclidean circles centred at a and b , respectively, which intersect orthogonally with \mathbb{S}^1 , and let $L = C \cap \mathbb{H}^2$ and $M = D \cap \mathbb{H}^2$. Find the centre p and radius r of the Euclidean circle E such that $N = E \cap \mathbb{H}^2$ is the hyperbolic line which intersects both L and M orthogonally.
 (b) Let $u \in \mathbb{H}$ and let L by a hyperbolic line in \mathbb{H} . Prove that there exists a unique hyperbolic line M which contains u and intersects orthogonally with L .

6: (a) Let $u = (0, 0)$, $v = (\frac{1}{2}, 0)$ and $w = (\frac{1}{2}, \frac{1}{2})$. Find the hyperbolic area of the triangle $[u, v, w]$ in \mathbb{H}^2 .
 (b) Let $u = (1, 0)$, $v = (0, 1)$ and $w = (0, -1)$. Find the hyperbolic area of the circle inscribed in the triply asymptotic triangle $[u, v, w]$ in \mathbb{H}^2 .

7: (a) Find the hyperbolic area and perimeter of the regular hexagon in \mathbb{H}^2 with interior angles $\frac{\pi}{2}$.
 (b) Find $a > 0$ such that the regular hexagon in \mathbb{H}^2 with vertices at $(\pm a, 0)$, $(\pm \frac{a}{2}, \pm \frac{\sqrt{3}a}{2})$ has interior angles equal to $\frac{\pi}{6}$.

8: (a) Find the hyperbolic circumference and the area of the circle in \mathbb{H}^2 which is inscribed in the hyperbolic square with interior angles $\frac{\pi}{3}$.
 (b) Find the hyperbolic perimeter and area of the square in \mathbb{H}^2 with edges along the lines K , L , M and N such that $F_K(0) = (\frac{1}{2}, 0)$, $F_L(0) = (0, \frac{1}{2})$, $F_M(0) = (-\frac{1}{2}, 0)$ and $F_N(0) = (0, -\frac{1}{2})$.

9: (a) Let $p = (\frac{1}{2}, \frac{1}{2})$, $\theta = \frac{\pi}{2}$ and $a = (\frac{1}{3}, \frac{2}{3})$. Find $R_{p,\theta}(a)$ in \mathbb{H}^2 .

(b) Let $u = (\frac{3}{5}, -\frac{4}{5})$ and $v = (1, 0)$, and let P be the parallel displacement such that $P(u) = u$ and $P(-u) = v$. Find $a \in \mathbb{H}^2$ such that $P(a) = 0$.

10: (a) Let $a = (\frac{5}{4}, \frac{1}{4})$ and $r = \frac{\sqrt{10}}{4}$, and let $L = C_E(a, r) \cap \mathbb{H}^2$. Let $u = (\frac{5}{8}, -\frac{5}{8})$ and $v = (\frac{3}{4}, 0)$. Find the hyperbolic line M such that $F_L F_M(u) = v$ and determine whether the isometry $F_M F_L$ is a rotation, a translation, or a parallel displacement.

(b) Let $u = (0, 0)$ and $v = (\frac{2}{5}, \frac{1}{5})$. Find the point $p \in \mathbb{H}^2$ such that $R_{v, \frac{\pi}{2}} R_{u, \frac{\pi}{2}} = R_{p,\theta}$ for some $\theta \in [0, 2\pi)$.

11: Let $0 \neq u \in \mathbb{R}^2$. Let K , L and M be the lines in \mathbb{H}^2 such that $F_K(0) = -u$, $F_L(-u) = u$ and $F_M(0) = u$. Let T_u denote the translation $T_u = F_M F_L$.

(a) Show that $T_u = F_L F_K$

(b) Find $p \in \mathbb{H}^2$ and $\theta \in \mathbb{R}$ such that $T_u R_{0,\pi} T_u = R_{p,\theta}$.

(c) Let $u = (\frac{1}{4}, -\frac{\sqrt{3}}{4})$, $v = (\frac{1}{4}, \frac{\sqrt{3}}{4})$ and $w = (-\frac{1}{2}, 0)$. Let L_1, L_2, L_3, L_4, L_5 and L_6 be the lines in \mathbb{H}^2 containing the hyperbolic line segments $[u, v]$, $[0, v]$, $[v, w]$, $[0, w]$, $[w, u]$ and $[0, u]$ respectively. Find $p \in \mathbb{H}^2$ and $\theta \in \mathbb{R}$ such that $F_{L_6} F_{L_5} F_{L_4} F_{L_3} F_{L_2} F_{L_1} = R_{p,\theta}$.

12: In this problem we find formulas for isometries on \mathbb{H}^2 using complex number notation.

(a) Let $p \in \mathbb{C}$, let $0 \neq u \in \mathbb{C}$ and let L be the line in \mathbb{C} through p perpendicular to u . Show that for $z \in \mathbb{C}$ we have $F_L(z) = p - \frac{u^2}{|u|^2}(\bar{z} - \bar{p})$.

(b) Let $p \in \mathbb{C}$, let $r > 0$ and let C be the circle centred at p of radius r . Show that for $z \in \mathbb{C}$ we have $F_C(z) = p + \frac{r^2}{\bar{z} - \bar{p}}$.

(c) Let $0 \neq u \in \mathbb{R}^2$ and let T_u be as in Problem 11. Show that $T_u(z) = \frac{z+u}{\bar{u}z+1}$.