
PMATH 321 Non-Euclidean Geometry, Solutions to the Exercises for Chapter 2

1: (a) Let u = (3, 4,−1) and v = (4, 1, 3). Find the spherical distance between u and v on the sphere given by
x2 + y2 + z2 = 26.

Solution: The spherical distance is d = Rθ(u, v) = R cos−1 u. v
|u||v| =

√
26 cos−1 1

2 =
√
26π
3 .

(b) Let u= 1√
3
(1, 1,−1) and v= 1√

2
(1, 0, 1). Find a point w ∈ S2 such that Lw is the line through u and v.

Solution: The line through u and v is the line L = P ∩S2 where P is the plane through the origin which passes
through u and v, that is P = Span{u, v}. The unit normal vectors of P are ± u×v

|u×v| and so L = Lw where

w =
u× v
|u× v|

=
(1, 1,−1)× (1, 0, 1)∣∣(1, 1,−1)× (1, 0, 1)

∣∣ =
(1,−2,−1)∣∣(1,−2,−1)

∣∣ = 1√
6
(1,−2,−1).

(c) Let u = 1
3 (1, 2, 2) and v = 1√

5
(0, 1, 2). Find a point w ∈ S2 such that Lw is the line through u which is

perpendicular to Lv.

Solution: The lines perpendicular to Lv all pass through v and so the line through u which is perpendicular
to Lv is the line through u and v which, as above, is the line Lw where

w =
u× v
|u× v|

=
(1, 2, 2)× (0, 1, 2)∣∣(1, 2, 2)× (0, 1, 2)

∣∣ =
(2,−2, 1)∣∣(2,−2, 1)

∣∣ = 1
3 (2,−2, 1).

(d) Let u = 1√
3
(1,−1, 1) and v = 1√

6
(1, 2, 1). Find the two points of intersection on S2 of the spherical line

Lu and the spherical circle C
(
v, π3

)
.

Solution: The line Lu is the set of points p ∈ S2 such that p.u = 0, that is the set of points (x, y, z) ∈ S2
with x− y + z = 0 (1). The circle C

(
v, π3

)
is the set of points p ∈ S2 such that p. v = cos π3 = 1

2 , that is the

set of points (x, y, z) ∈ S2 such that x+ 2y + z =
√
6
2 (2). Solve equations (1) and (2) for (x, y, z) ∈ R3 to get

(x, y, z) = 1√
6

(
(1, 1, 0) + t(−1, 0, 1)

)
for some t ∈ R. For these points (x, y, z) we have

(x, y, z) ∈ S2 ⇐⇒ x2 + y2 + z2 = 1 ⇐⇒ 1
6

(
(1− t)2 + 11 + t2

)
= 1 ⇐⇒ t2 − t− 2 = 0 ⇐⇒ t = −1 or 2.

When t = −1 we obtain p = (x, y, z) = 1√
6

(
(1, 1, 0) − (−1, 0, 1)

)
= 1√

6
(2, 1,−1) and when t = 2 we obtain

p = (x, y, z) = 1√
6

(
(1, 1, 0) + 2(−1, 0, 1)

)
= 1√

6
(−1, 1, 2).

(e) Let u = 1√
2
(0, 1, 1) and v = 1√

6
(1, 2, 1). Find r > 0 such that C(u, r) is tangent to Lv.

Solution: Note that cos θ(u, v) = u. v
|u||v| = (0,1,1). (1,2,1)

|(0,1,1)||(1,2,1)| = 3√
2
√
6

=
√
3
2 so that dS(u, v) = θ(u, v) = π

6 . Look at

the sphere with the vector u × v pointing towards us and the vector v pointing upwards so that the sphere

looks like the unit circle, say in the st-plane, with v at position (s, t) = (0, 1) and u at position (s, t) =
(
1
2 ,
√
3
2

)
.

From this viewpoint (you should draw the picture), the line Lv appears as the diameter from (s, t) = (−1, 0)

to (s, t) = (1, 0), and each circle C(u, r) appears as a line segment perpendicular to the vector (s, t) =
(
1
2 ,
√
3
2

)
.

In particular, the circle C
(
u, π3

)
, which appears as the line segment from (s, t) =

(
− 1

2 ,
√
3
2

)
to (s, t) = (1, 0),

intersects Lv at the point (s, t) = (1, 0), and the circle C
(
u, 2π3

)
, which appears as the line segment from

(s, t) = (−1, 0) to (s, t) =
(
1
2 ,−

√
3
2

)
, intersects Lv at the point (s, t) = (−1, 0). These are the only two circles

C(u, r) which intersect with Lv at exactly one point. Thus the two possible values of r are r = π
3 and 2π

3 .



2: (a) Let u = 1√
5
(2, 0,−1), v = (2,−1, 4) and w = (1, 3, 2). Find the oriented angle θo(v, w) from v to w in the

tangent space Tu.

Solution: We have

cos θo(v, w) =
v .w
|v||w|

=
(2,−1, 4). (1, 3, 2)∣∣(2,−1, 4)

∣∣∣∣(1, 3, 2)
∣∣ =

7√
21
√

14
= 1√

6

so that either θo(v, w) = cos−1 1√
6

or θo(v, w) = 2π − cos−1 1√
6
, and we have

√
5 det(u, v, w) = det

 2 2 1
0 −1 3
−1 4 2

 = −35 < 0

so that sin θo(v, w) < 0, and so θo(v, w) = 2π − cos−1 1√
6
.

(b) Let u = 1√
6
(1, 1, 2), v = 1√

14
(2, 1, 3) and w = 1√

11
(1, 3, 1). Find uv and uw.

Solution: We have(
(1, 1, 2)× (2, 1, 3)

)
× (1, 1, 2) = (1, 1,−1)× (1, 1, 2) = (3,−3, 0) = 3(1,−1, 0) and

(1, 1, 2)× (1, 3, 1)
)
× (1, 1, 2) = (−5, 1, 2)× (1, 1, 2) = (0, 12,−6) = 6(0, 2,−1)

and so uv = 1√
2
(1,−1, 0) and uw = 1√

5
(0, 2,−1).

(c) Let u = 1
3 (−1, 2,−2), v = 1√

2
(1, 0, 1) and w = 1

3
√
3
(5,−1, 1). Find the interior angles α, β and γ in the

ordered triangle [u, v, w].

Solution: We have

3 · 3
√

3 det(u, v, w) = det

−1 1 5
2 0 −1
−2 1 1

 = 9 > 0

so that [u, v, w] is positively oriented. We have cos a = v .w = 6√
2·3
√
3

=
√

2
3 , cos b = w .u = −9

3
√
3·3 = − 1√

3

and cos c = u. v = −3
3·
√
2

= − 1√
2

so that a = cos−1
√

2
3 , b = cos−1

(
− 1√

3

)
and c = cos−1

(
− 1√

2

)
= 3π

4 . By

the First Law of Cosines, we have

cosα =
cos a− cos b cos c

sin b sin c
=

√
2
3−

1√
3
· 1√

2√
2
3 ·

1√
2

= 1√
2
,

cosβ =
cos b− cos a cos c

sin a sin c
=
− 1√

3
+
√

2
3 ·

1√
2

1√
3
· 1√

2

= 0 ,

cos γ =
cos c− cos a cos b

sin a sin c
=
− 1√

2
+
√

2
3 ·

1√
3

1√
3
·
√

2
3

= − 1
2 ,

so that α = π
4 , β = π

2 and γ = 2π
3 .



3: Let [u, v, w] be a triangle with edge lengths a, b and c and interior angles α, β and γ.

(a) Given that a = π
3 , c = π

6 and β = 2π
3 , find b.

Solution: By the First Law of Cosines we have cosβ =
cos b− cos a cos c

sin a sin c
and so

cos b = cosβ sin a sin c+ cos a cos c = − 1
2 ·
√
3
2 ·

1
2 + 1

2 ·
√
3
2 =

√
3
8

and so b = cos−1
√
3
8 .

(b) Given that a = π
6 , β = 5π

6 and γ = π
4 , find c.

Solution: By the Second Law of Cosines we have cos a =
cosα+ cosβ cos γ

sinβ sin γ
and so

cosα = cos a sinβ sin γ − cosβ cos γ =
√
3
2 ·

1
2 ·
√
2
2 +

√
3
2 ·

√
2
2 = 3

√
6

8 .

It follows that sinα =
√

1− cos2 α =
√

1− 54
64 =

√
10
8 . By the Second Cosine Law, we have

cos c =
cos γ + cosα cosβ

sinα sinβ
=

√
2
2 −

3
√
6

8 ·
√
3
2√

10
8 ·

1
2

= 8
√
2−9
√
2√

10
= − 1√

5

and so c = cos−1 −1√
5
.

(c) Given that a = cos−1 1
3 , b = π

2 and α = π
4 , find all possible values of c.

Solution: Since a = cos−1 1
3 we have cos a = 1

3 and sin a =
√

1− cos2 a =
√

1− 1
9 = 2

√
2

3 . By the Sine Law,

we have

sinβ =
sin b sinα

sin a
=

√
2
2 · 1
2
√
2

3

= 3
4

hence

cosβ = ±
√

1− sin2 β = ±
√

1− 9
16 = ±

√
7
4 .

By the First Law of Cosines, we have

cos γ =
cos c− cos a cos b

sin a sin b
=

cos c− 1
3 · 0

2
√
2

3 · 1
= 3
√
2

4 cos c

and so the Second Law of Cosines gives

cos c =
cos γ + cosα cosβ

sinα sinβ
=

3
√
2

4 cos c±
√
2
2 ·

√
7
4√

2
2 ·

3
4

= 2 cos c±
√
7
3 .

Thus we have cos c = ±
√
7
3 . hence c = cos−1

(
±
√
7
3

)
.



4: (a) Let u = 1√
6
(1, 2, 1), v = 1√

6
(1,−1, 2) and w = 1√

6
(2, 1,−1). Find the centroid of the spherical triangle

[u, v, w], that is find the point of intersection of the 3 medians
[
u, v+w|v+w|

]
,
[
v, w+u
|w+u|

]
and

[
w, u+v|u+v|

]
.

Solution: The midpoint of the spherical line segment [v, w] is the point v+w
|v+w| . The spherical line L through u

and v+w
|v+w| is the intersection of S2 with the vector space P = Span

{
u, v+w|v+w|

}
= Span

{
u, v + w

}
. Note that

u+ v + w ∈ P and so the point u+v+w
|u+v+w| ∈ P ∩ S2 = L. Similarly, the point u+v+w

|u+v+w| lies on each of the other

2 medians. Thus the centroid is the point g = u+v+w
|u+v+w| = 1√

6
(2, 1, 1).

(b) Let u = 1
3 (2, 2,−1), v = 1

3 (1, 2, 2) and w = 1
3 (2,−1,−2). Find the centre and radius of the circumscribed

circle of the spherical triangle [u, v, w].

Solution: The circumcentre is the point x such that dS(x, u) = dS(x, v) = dS(x,w). We have

dS(x, u) = dS(x, v) = dS(x,w) ⇐⇒ cos−1 x.u = cos−1 x. v = cos−1 x.w ⇐⇒ x.u = x. v = x.w
⇐⇒ x.u = x. v and x.u = x.w ⇐⇒ x. (u− v) = 0 and x. (u− w) = 0

⇐⇒ x. (1,−0,−3) = 0 and x. (0, 3, 1) = 0 ⇐⇒ x1 − 3x3 = 0 and 3x2 + x3 = 0

⇐⇒ x = (x1, x2, x3) = t(9,−1, 3) for some t ∈ R .

To get |x| = 1 we take t = 1√
91

, so the circumcentre is the point o = 1√
91

(9,−1, 3). The radius of the

circumcircle is r = dS(o, u) = cos−1(o.u) = cos−1 13
3
√
91

.

(c) Let u = 1√
3
(1, 1, 1), v = 1√

3
(1,−1,−1) and w = (0, 1, 0). Find the incentre of triangle [u, v, w].

Solution: The vector uv is in the same direction of the vector

u′ =
(
(1, 1, 1)× (1, 0, 1)

)
× (1, 1, 1) = (1, 0,−1)× (1, 1, 1) = (1,−2, 1)

and the vector uw is in the same direction as the vector

u′′ =
(
(1, 1, 1)× (0, 0,−1)

)
× (1, 1, 1) = (−1, 1, 0)× (1, 1, 1) = (1, 1,−2).

Since the vectors u′ and u′′ have the same length, the angle bisector at u is in the direction of the vector

u′′′ = u′ + u′′ = (1,−2, 1) + (1, 1,−2) = (2,−1,−1).

This angle bisector has normal vector

m =
√

3u× u′′′ = (1, 1, 1)× (2,−1,−1) = (0, 3,−3).

The vector vu is in the same direction as the vector

v′ =
(
(1, 0, 1)× (1, 1, 1)

)
× (1, 0, 1) = (−1, 0, 1)× (1, 0, 1) = (0, 2, 0)

and the vector vw is in the same direction as the vector

v′′ =
(
(1, 0, 1)× (0, 0,−1)

)
× (1, 0, 1) = (0, 1, 0)× (1, 0, 1) = (1, 0,−1).

Since the vectors 1√
2
v′ and v′′ have the same length, the angle bisector at v is in the direction of the vector

v′′′ =
1√
2
v′ + v′′ = (0,

√
2, 0) + (1, 0,−1) = (1,

√
2,−1).

This angle bisector has normal vector

n = v × v′′′ = 1√
2
(1, 0, 1)× (1,

√
2,−1) = (−1,

√
2, 1).

Since the two angle bisectors have normal vectors n and m, their point of intersection lies in the direction of
the vector

x = 1
3m× n = (0, 1,−1)× (−1,

√
2, 1) = (1 +

√
2, 1, 1).

Thus the incentre of the triangle [u, v, w] is the point

i =
x

|x|
=

(1 +
√

2, 1, 1)√
(1 +

√
2)2 + 12 + 12

= 1√
5+2
√
2

(1 +
√

2, 1, 1).



5: (a) Find the perimeter of the square on S2 with interior angles equal to 2π
3 .

Solution: Let ` be the length of the sides of the square. Notice that the square can be cut into 4 triangles
(with a common vertex at the centre of the square) each of which is congruent to a triangle [u, v, w] with
a = `, α = π

2 and β = γ = π
3 . By the Second Law of Cosines, we have

cos ` = cos a =
cosα+ cosβ cos γ

sinβ sin γ
=

0 + 1
2 ·

1
2√

3
2 ·

√
3
2

= 1
3 .

Thus the perimeter of the square is L = 4` = 4 cos−1 1
3 .

(b) Find the area of the regular hexagon on S2 with sides of length ` = cos−1 2
3 .

Solution: Note that the hexagon can be cut into 6 triangles (with a common vertex at the centre of the
hexagon) each of which is congruent to a triangle [u, v, w] with a = ` = cos−1 2

3 , α = π
3 and β = γ. The

Second Law of Cosines gives

cos a =
cosα+ cosβ cos γ

sinβ sin γ
=⇒ 2

3 =
1
2 + cos2 β

sin2 β
=⇒ 2

3 (1− cos2 β) = 1
2 + cos2 β

=⇒ 1
6 = 5

3 cos2 β =⇒ cos2 β = 1
10 =⇒ β = cos−1 1√

10
.

Thus the area of the hexagon is

A = 6
(
α+ β + γ − π

)
= 6
(
π
3 + 2 cos−1 1√

10
− π

)
= 12 cos−1 1√

10
− 4π.

(c) Find the perimeter and the area of the regular hexagon on S2 which is inscribed in an equilateral triangle
with interior angles π

2 .

Solution: Let ` be the length of the sides of the equilateral triangle. By the Second Law of Cosines, we have

cos ` =
cos π2 + cos2 π2

sin2 π
2

= 0

so that ` = π
2 . Let y be the length of the sides of the hexagon and let y + 2x = ` = π

2 so that the original
triangle is the union of the hexagon together with three triangles each of which is congruent to a triangle with
α = π

2 , a = y and b = c = x. The First Law of Cosines gives

cosα =
cos a− cos b cos c

sin b sin c
=⇒ 0 =

cos y − cos2 x

sin2 x
=⇒ cos y = cos2 x.

Since y + 2x = π
2 this gives

cos2 x = cos y = cos
(
π
2 − 2x

)
= sin 2x = 2 sinx cosx

so we have cosx = 0 or cosx = 2 sinx. Since x < π
2 so that cosx 6= 0, we must have cosx = 2 sinx, so that

tanx = 1
2 hence x = tan−1 1

2 . Thus

y = π
2 − 2x = π

2 − 2 tan−1 1
2 = π

2 − tan−1 4
3 = tan−1 3

4 .

Note that the hexagon can be cut into 6 triangles each of which is congruent to a triangle with a = y = tan−1 3
4 ,

α = π
3 and β = γ. The Second Law of Cosines gives

cos a =
cosα+ cosβ cos γ

sinβ sin γ
=⇒ 4

5 =
1
2 + cos2 β

sin2 β
=⇒ 4

5

(
1− cos2 β

)
= 1

2 + cos2 β

=⇒ 3
10 = 9

5 cos2 β =⇒ cos2 β = 1
6 =⇒ cosβ = 1√

6
=⇒ β = cos−1 1√

6
.

Thus the perimeter and the area of the hexagon are equal to

L = 6a = 6y = 6 tan−1 3
4 , and

A = 6
(
α+ β + γ − π

)
= 6
(
π
3 + 2 cos−1 1√

6
− π

)
= 12 cos−1 1√

6
− 4π.



6: (a) For a point (x, y, z) on the sphere x2 + y2 + z2 = R2, let φ ∈ [0, π] measure the angle in R3 from
(0, 0, 1) to (x, y, z) and let theta θ ∈ R measure the angle in R2 from (1, 0) counterclockwise to (x, y). Given
0 ≤ φ1 ≤ φ2 ≤ π and θ1 ≤ θ2 ≤ θ1 + 2π, find the area of the portion of the sphere given by φ1 ≤ φ ≤ φ2 and
θ1 ≤ θ ≤ θ2.

Solution: Since φ measures the angle between (0, 0, 1) and (x, y, z), we have z = R cosφ and so the portion of
the sphere given by φ1 ≤ φ ≤ φ2 is the portion of the sphere which lies between the planes z = R cosφ1 and
z = R cosφ2, and its area is

S = 2πR∆ = 2πR
(
R cosφ1 −R cosφ2

)
= 2πR2(cosφ1 − cosφ2).

By looking at the sphere with the z-axis pointing towards us and the x-axis pointing to the right, we see that
area A of the portion of the sphere given by φ1 ≤ φ ≤ φ2 and θ1 ≤ θ ≤ θ2 is equal to θ2−θ1

2π times the area of
the above area, that is

A =
θ2 − θ1

2π
S =

θ2 − θ1
2π

· 2πR2(cosφ1 − cosφ2) = R2(θ2 − θ1)(cosφ1 − cosφ2).

(b) A light at position (0, 0, 8) shines down on a spherical balloon of radius
√

5 centred at (3, 4, 3). Find the
area of the shadow which is cast on the xy-plane (given that the shadow is an ellipse and that the area of the

ellipse x2

a2 + y2

b2 = 1 is equal to πab).

Solution: Draw a picture to represent the situation with the vector (3, 4, 0) pointing to the right and the vector
(0, 0, 1) pointing upwards. From this viewpoint the ballon looks like the circle, say in the sz-plane, of radius√

5 centred at (s, z) = (5, 3), and the light is at position (s, z) = (0, 8). Rays of light shine down following the
lines z = 8− 2s and z = 8− 1

2s, which are tangent to the circle at (s, z) = (3, 2) and (s, t) = (6, 4), and meet
the s-axis at s = 4 and s = 16. This shows that elliptical shadow has major axis equal to 12 units.

Draw another picture with the vector (3, 4, 0) pointing towards us and the vector (0, 0, 1) pointing upwards.
From this viewpoint, the balloon looks like the circle, say in the tz-plane, of radius

√
5 centred at (t, z) = (0, 3),

and the light is positioned at (t, z) = (0, 8). Rays shine down following the lines z = 8± 2t which are tangent
to the circle at (t, z) = (±2, 4) and meet the t-axis at t = ±4. This shows that the elliptical shadow has minor

axis equal to 8 units. Thus the elliptical shadow has the same shape as the ellipse x2

62 + y2

42 = 1 and its area is
A = π · 6 · 4 = 24π.

(c) A light at position (0, 0, 30) shines down on a red spherical balloon of radius
√

10 centred at (0, 0, 20)
casting a shadow on a green balloon of radius 6

√
5 centred at (0, 0, 0). Find the area of the illuminated

portion of the green balloon.

Solution: Draw a picture to represent the situation with the x-axis pointing towards us and the z-axis pointing
upwards. From this viewpoint, the red ballon looks like the circle, in the yz-plane, of radius

√
10 centred at

(y, z) = (0, 30), the green balloon looks like the circle of radius 6
√

5 centred at (y, z) = (0, 0), and the light is
at position (y, z) = (0, 30). Two rays shine down following the lines z = 30±2y which are tangent to the green
balloon at (y, z) = (±12, 6), and two rays shine down following the lines z = 30−±3y which are tangent to the
red balloon at (y, z) = (±3, 21) and continue down to intersect the green ballon at the points (y, z) = (±6, 12).
This shows that the illuminated portion of the green balloon is the portion which lies between z = 6 and
z = 12. The area of this portion is

A = 2πR∆ = 2π · 6
√

5 · (12− 6) = 72
√

5π.



7: (a) Find the radius R of a sphere on which there is an equilateral triangle with sides of length π and angles
equal to 5π

6 .

Solution: The Second Cosine Law, modified for a sphere of radius R, gives

cos
π

R
=

cos 5π
6 + cos2 5π

6

sin2 5π
6

=
−
√
3
2 + 3

4
1
4

= 3− 2
√

3

so that
R =

π

cos−1(3− 2
√

3)
.

(b) Find an approximate value for the radius R of a sphere on which there is a circle of radius 2 and circum-
ference 215π

54 .

Solution: The circumference L of a circle of radius r on a sphere of radius R is given by

L = 2πR sin r
R
∼= 2πR

(
r
R −

1
6
r3

R3

)
= 2πr − π

3
r3

R2 .

Putting in L = 215π
54 and r = 2 gives

215π
54
∼= 4π − 8π

3R2 =⇒ 8
3R2
∼= 4− 215

54 = 1
54 =⇒ R2 ∼= 8·54

3 = 144 =⇒ R ∼= 12.

(c) Let R be the radius of the Earth, in meters (R ∼= 6, 370, 000). We describe the position of a point on the
Earth in terms of its longitude θ (with θ = 0 at Greenwitch, England and θ = π

2 somewhere in Bangladesh)
and its latitude φ (with φ = 0 at the equator and φ = π

2 at the north pole). Find the distance (expressed as a
multiple of R) and the bearing (expressed as an angle north of east) from the point at (θ, φ) = (π3 ,

π
6 ) to the

point at (θ, φ) = (π2 ,
π
4 ).

Solution: Consider the spherical triangle with vertices at u, v and w where u is given by (θ, φ) =
(
π
3 ,

π
6

)
, v is

given by (θ, φ) =
(
π
2 ,

π
4

)
, and w is the north pole, which is given by φ = π

2 . For this triangle we have a = R · π4 ,
b = R · π3 , and γ = π

6 . The First Law of Cosines, modified for a sphere of radius R, gives

cos γ =
cos(c/R)− cos(b/R) cos(a/R)

sin(b/R) sin(a/R)

so
cos(c/R) = cos γ sin(b/R) sin(a/R) + cos(b/R) cos(a/R)

= cos π6 sin π
4 sin π

3 + cos π4 cos π3 =
√
3
2 ·

√
2
2 ·

√
3
2 +

√
2
2 ·

1
2 = 5

√
2

8 .

Thus the required distance is c = R cos−1
(
5
√
2

8

)
. The Law of Sines, modified for a sphere of radius R, gives

sinα

sin(a/R)
=

sin γ

sin(c/R)

so we have

sinα =
sin(a/R) sin γ

sin(c/R)
∼=

sin π
6 sin π

4√
1−

(
5
√
2

8

)2 =
1
2 ·
√
2
2√

14
8

= 2√
7
.

Thus the bearing is θ east of north, where

θ = π
2 − α = π

2 − sin−1
(

2√
7

)
= cos−1

(
2√
7

)
.



8: (a) Let u = 1√
6
(1,−1, 2). Express the isometry Fu in matrix form.

Solution: We have

Fu = I − 2uuT = I − 1
3

 1
−1

2

(1 − 1 2
)

=

 1 0 0
0 1 0
0 0 1

− 1
3

 1 −1 2
−1 1 −2

2 −2 4

 = 1
3

 2 1 −2
1 2 2
−2 2 −1

 .

(b) Let u = 1
3 (1, 2,−2) and let θ = π

2 . Express the isometry Ru,θ in matrix form.

Solution: Let v = 1
3 (2, 1, 2) and w = u × v = 1

3 (2,−2,−1) so that {u, v, w} is an orthonormal basis for R3.
Then

Ru,θ =
(
u, v, w

) 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

(u, v, w)T = 1
3

 1 2 2
2 1 −2
−2 2 −1

 1 0 0
0 0 −1
0 1 0

 · 13
 1 2 −2

2 1 2
2 −2 −1


= 1

9

 1 2 2
2 1 −2
−2 2 −1

 1 2 −2
−2 2 1

2 1 2

 = 1
9

 1 8 4
−4 4 −7
−8 −1 4

 .

(c) Let u = 1√
3
(1, 1, 1), θ = π

3 , v = 1√
6
(2,−1, 1) and x = 1√

2
(1, 0, 1). Find Ru,θFv(x).

Solution: Let
w = Fv(x) = x− 2x. v v = 1√

2

(
(1, 0, 1)− 2 · 36 (2,−1, 1)

)
= 1√

2
(−1, 1, 0).

Note that u.w = 0 and let y = u×w = 1√
6
(−1,−1, 2) so that {u,w, y} is an orthonormal basis for R3. Then

Ru,θFv(x) = Ru,θ(w) = cos θ · w + sin θ · y = 1
2 ·

1√
2
(−1, 1, 0) +

√
3
2 ·

1√
6
(−1,−1, 2) = 1√

2
(−1, 0, 1).

(d) Find u ∈ S2 and θ ∈ [0, π] such that, in matrix form, we have −Ru,θ = 1
3

 1 2 2
2 1 −2
2 −2 1

.

Solution: Let A = −Ru,θ. Since A is symmetric, it is orthogonally diagonalizable with real eigenvalues, since
A is orthogonal, its eigenvalues have norm 1 so they are equal to ±1, since detA = −1, the eigenvalue −1
occurs with multiplicity 1 or 3, and since A 6= −I, the eigenvalue −1 occurs with multiplicity 1. Thus A
is orthogonally similar to the diagonal matrix with diagonal entries 1,−1,−1 (this can also be verified by
calculating the characteristic polynomial of A). It follows that A is equal to a reflection A = Fu and hence
that Ru,θ = −Fu = Ru,π. Thus the rotation angle is θ = π. The axis vector u is a unit eigenvector for the
eigenvalue 1. We have

I −Ru,π = 1
3

 4 2 2
2 4 −2
2 −2 4

 ∼
 2 1 1

1 2 −1
1 −1 2

 ∼
 1 −1 2

1 2 −1
1 −1 2

 ∼
 1 −1 2

0 3 −3
0 0 0

 ∼
 1 0 1

0 1 −1
0 0 0


Thus one eigenvector is (−1, 1, 1) and so we can take u = ± 1√

3
(−1, 1, 1).



9: (a) Let u = 1√
2
(1, 1, 0), w = 1√

3
(1,−1, 1) and θ = π

3 . Find v ∈ S2 such that FuFv = Rw,θ.

Solution: Note that u.w = 0 so that u ∈ Tw. By the Product of Two Reflections Theorem, to get FuFv = Rw,θ
we can choose v ∈ Tw so that θo(v, u) = θ

2 = π
6 . To do this, let x = w × u = 1√

6
(−1, 1, 2) so that {w, u, x} is

an orthonormal basis for R3 and then let

v = Rw,−π
6

(u) =
√
3
2 u− 1

2 x =
√
3
2 ·

1√
2
(1, 1, 0)− 1

2 ·
1√
6
(−1, 1, 2) = 1√

6
(2, 1,−1).

(b) Let u = 1√
2
(1, 0,−1), v = 1√

6
(−1, 2, 1), α = π

4 and β = π
3 . Find w and γ such that Ru,2αRv,2βRw,2γ = I.

Solution: Note that when [u, v, w] is a positively oriented triangle in S2 with angles α, β and γ, if we let L,
M and N be the lines in S2 which contain the edges [v, w], [w, u] and [u, v] respectively, then we have

Ru,2αRv,2βRw,2γ = FMFNFNFLFLFM = I.

Thus it suffices to find w and γ so that [u, v, w] is a triangle with angles α, β and γ. We can find w and γ
using spherical trigonometry. In the triangle [u, v, w] we have cos c = u. v = − 1√

3
. By the Second Law of

cosines we then have

cos γ = cos c sinα sinβ − cosα cosβ = − 1√
3
·
√
2
2 ·

√
3
2 −

√
2
2 ·

1
2 = −

√
2
2

so that γ = 3π
4 . Using the Second Law of Cosines twice more gives

cos a =
cosα+ cosβ cos γ

sinβ sin γ
=

√
2
2 −

1
2 ·
√
2
2√

3
2 ·

√
2
2

= 1√
3

, and

cos b =
cosβ + cosα cos γ

sinα sin γ
=

1
2 −

√
2
2 ·

√
2
2√

2
2 ·

√
2
2

= 0.

Let w = (x, y, z). To get cos b = 0 we need u.w = 0, that is x − z = 0 (1). To get cos a = 1√
3

we need

v .w = 1√
3
, that is −x + 2y + z =

√
2 (2). Solve (1) and (2) to get (x, y, z) =

(
t, 1√

2
, t
)
. To get |w| = 1 we

need t2 + 1
2 + t2 = 1, that is 2t2 = 1

2 so we need t = ± 1
2 . Take t = 1

2 to get w = 1
2 (1,
√

2, 1).

(c) Find p ∈ S2 and θ ∈ R so that F = −Rp,θ where F is the isometry such that F (u) = u′, F (v) = v′

and F (w) = w′ where u = 1√
2
(1, 1, 0), v = (0, 1, 0), w = 1√

3
(1, 1, 1), u′ = 1√

2
(0,−1, 1), v′ = (0, 0, 1) and

w′ = 1√
3
(1,−1, 1).

Solution: We provide a solution which follows the proof of the Congruent Triangles and Isometries Theorem
(Theorem 2.36) and the proof of the Geometric Classification of Isometries Theorem (Theorem 2.39).

Let L be the line y = 0, which is the perpendicular bisector of w and w′. Let u1 = FL(u) = 1√
2
(1,−1, 0),

v1 = FL(v) = (0,−1, 0) and w1 = FL(w) = w′ = 1√
3
(1,−1, 1). Let M be the line y + z = 0 , which is the

perpendicular bisector of v1 and v′. Let u2 = FM (u1) = 1√
2
(1, 0, 1), v2 = FM (v1) = v′, and w2 = FM (w1) =

w2 = w′. Let N be the line x + y = 0, which is the perpendicular bisector of u2 and u′. Then FN (u2) = u′,
FN (v2) = v2 = v′ and FN (w2) = w2 = w′. It follows that F = FNFMFL.

By the Product of Two Reflections Theorem (Theorem 2.33), we see that FMFL = Re1,π2 where e1 = (1, 0, 0)(
because L = La with a = (0, 1, 0) and M = Lb with b = 1√

2
(0, 1, 1) and in the tangent space Te1 we have

ϕ(a, b) = π
4

)
. Let N ′ = N , let M ′ be the line z = 0 which is the line through e1 which is orthogonal to N ′,

and let L′ = M so that, by Theorem 2.33, we have FM ′FL′ = Re1,π2 = FMFL
(
because M ′ = Le3 with

e3 = (0, 0, 1) and L′ = Lc with c = 1√
2
(0, 1, 1) and in the tangent space Te1 we have θo(c, e3) = π

4

)
. It follows

that F = FN ′FM ′FL′ . Since M ′ ∩ N ′ = {u1} where u1 = 1√
2
(1,−1, 0) and M ′ is perpendicular to N ′, by

Theorem 2.33 we have FN ′FM ′ = Ru1,π. Let L′′ = L′, let N ′′ be the line through u1 orthogonal to L′′, and
let M ′′ be the line through u1 which is orthogonal to N ′′ so that FN ′′FM ′′ = Ru1,π = FN ′FM ′ . It follows that
F = FN ′′FM ′′FL′′ .

Note that L′′ = Lr where r = 1√
2
(0, 1, 1), and N ′′ = Lp where p = 1√

3
(1, 1,−1) and M ′′ = Ls where

s = 1√
6
(1, 1, 2). In the tangent space Tp we have θo(r, s) = π

6 so, by Theorem 2.33, FM ′′FL′′ = Rp,π3 . Thus

F = FN ′′FM ′′FL′′ = FpRp,π3 = −Rp, 4π3 .



10: (a) Show that for every w ∈ S2 and θ ∈ R there exist u, v ∈ S2 such that Ru,πRv,π = Rw,θ.

Solution: Let w ∈ S2 and θ ∈ R. Choose lines L and M through w so that Rw,θ = FLFM . Let N be a line
which is perpendicular to both L and M . Choose u, v ∈ S2 so that L ∩N = {±u} and M ∩N = {±v}. Then

Rw,θ = FLFM = FLFNFNFM = Ru,πRv,π.

(b) Let u ∈ S2 and let L be a line in S2. Show that
(
FLRu,π

)2
= I if and only if either u ∈ L or L = Lu.

Solution: Note first that

(FLRu,π)2 = I ⇐⇒ FLRu,π = (FLRu,π)−1 ⇐⇒ FLRu,π = Ru,π
−1FL

−1 ⇐⇒ FLRu,π = Ru,πFL.

Suppose that u ∈ L. Let M be the line through u which is perpendicular to L so that, by Theorem 2.33, we
have FLFM = Ru,π = FMFL. Then

FLRu,θ = FLFLFM = FM = FMFLFL = Ru,πFL.

Now suppose that L = Lu so that FL = Fu then, by Part (2) of Theorem 5.38, we have

FLRu,π = FuRu,π = Ru,πFu = Ru,πFL.

Finally suppose that u /∈ L and L 6= Lu. Choose v ∈ S2 so that L = Lv and note that v 6= ±u since L 6= Lu.
Let M be the line through u which is perpendicular to L and choose p ∈ S2 so that M = Lp. Choose w ∈ S2
so that L∩M = {±w} and note that w 6= ±u since u /∈ L. Let N be the line through u perpendicular to M so
that Ru,π = FNFM = FMFN , and note that N 6= L since u ∈ M but u /∈ L. Note that since u,w ∈ M = Lp
we have u,w ∈ Tp, and so FNFL = Rp,θ where θ = 2ϕ = ϕ(u,w). Note that since u 6= ±w we have θ 6= 2πk
for k ∈ Z, and since u 6= ±v we have θ 6= π + 2πk for k ∈ Z. We have

FLRu,π = FLFNFM = Rp,θFp and Ru,πFL = FMFNFL = FpRp,−θ = Rp,−θFp.

Since θ 6= πk for k ∈ Z we have θ 6= −θ + 2πk for k ∈ Z, so Rp,θ 6= Rp,−θ hence Ru,πFL 6= FLRu,π.

(c) Let [u, v, w] be a positively oriented triangle with circumcentre p and let L, M and N are the perpendicular
bisectors of edges [v, w], [w, u] and [u, v] respectively. Show that FLFMFN = FNFMFL = FK where K is the
line through v and p.

Solution: For a reflection F we have det(F ) = −1 and it follows that det(FLFMFN ) = −1. From the
Geometric Classification of Isometries, it follows that FLFMFN is either of the form FJ for some line J or of
the form −Rp,θ for some p ∈ S2 and some θ ∈ R. Since L, M and N are the perpendicular bisectors of the
edges of [u, v, w], we have FLFMFN (v) = FLFM (w) = FL(u) = u. Since p ∈ L, p ∈ M and p ∈ N we have
FLFMFN (p) = FLFM (p) = FL(p) = p. Since the isometry FLFMFN fixes v and p it cannot be of the form
−Rp,θ (since Rp,θ has no fixed points) so it must be equal FJ for some line J . Since FJ(v) = v and FJ(p) = p
we have v ∈ J and p ∈ J , so J = K. A similar argument shows that FNFMFL = FK .



11: (a) Let L be the line segment in R2 from
(
1
2 , 0
)

to
(
1
2 ,

1
2

)
. Find the arclength of the inverse image of L under

the orthogonal projection φ(x, y, z) = (x, y).

Solution: The inverse image of the given line segment is the arc A from a = φ−1
(
1
2 , 0
)

=
(
1
2 , 0,

√
3
2

)
to

b = φ−1
(
1
2 ,

1
2

)
=
(
1
2 ,

1
2 ,

1√
2

)
along the circle C = S2 ∩ P where P is the plane x = 1

2 . As a Euclidean circle in

the plane P , the centre of C is at the point c =
(
1
2 , 0, 0

)
and the radius is r = |a− c| =

∣∣(0, 0, √3
2

)∣∣ =
√
3
2 . Let

u = a − c =
(
0, 0,

√
3
2

)
and v = b − c =

(
0, 12 ,

1√
2

)
. Then the arc A along C from a to b subtends the angle

θ = θ(u, v), and we have

cos θ =
u. v
|u||v|

=

√
3

2
√
2√

3
2 ·

√
3
2

=
√
2√
3

so the length of the arc A is equal to

L = rθ =
√
3
2 cos−1

√
2√
3
.

(b) Let C be the circular disc in R2 centred at
(
1
2 , 0
)

of radius 1
2 . Find the area of the inverse image of C

under the orthogonal projection φ(x, y, z) = (x, y).

Solution: The circle of radius 1
2 centred at

(
1
2 , 0
)

has equation x2 + y2 = x which can be written in polar
coordinates as r2 = r cos θ, or by r = cos θ. It follows that the circular disc C corresponds to the polar
coordinates region R =

{
(r, θ)

∣∣− π
2 ≤ θ ≤

π
2 , 0 ≤ r ≤ cos θ

}
and so, by the formula in Note 2.42, the area of

the inverse image of C under φ is

A =

∫ π/2

θ=−π/2

∫ cos θ

r=0

r√
1− r2

dr dθ =

∫ π/2

θ=−π/2

[
−
√

1− r2
]cos θ
r=0

dθ =

∫ π/2

θ=−π/2
1−

√
1− cos2 θ dθ

=

∫ π/2

θ=−π/2
1−

∣∣ sin θ∣∣ dθ = 2

∫ π/2

θ=0

1− sin θ dθ = 2
[
θ + cos θ

]π/2
θ=0

= 2
(
π
2 − 1

)
= π − 2.

(c) Let R =
{

(u, v) ∈ R2
∣∣0 ≤ u ≤ 1, 1 ≤ v

}
. Find the perimeter and the area of the inverse image of the set

R under the gnomic projection φ(x, y, z) =
(
x
z ,

y
z

)
.

Solution: The region R is bounded by the lines u = 0, u = 1 and v = 1. The inverse image of the line
v = 1 in R2 is the line y

z = 1, that is the line y = z in S2 intersected with the upper hemisphere H, the
inverse image of the line u = 1 is the line x

z = 1, that is the line x = z in S2 intersected with H, and the
inverse image of the line u = 0 is the line x = 0 in S2 intersected with H. Let k = φ−1(0, 1) = 1√

2
(0, 1, 1),

l = φ−1(1, 1) = 1√
3
(1, 1, 1) and let m = lim

t→∞
φ−1(0, t) = lim

t→∞
1

1+y2 (0, t, 1) = (0, 1, 0). Then the inverse image

of the region R is the triangle T = [k, l,m]. The side lengths a, b and c are given by cos a = l .m = 1√
3
,

cos b = m. k = 1√
2

and cos c = k . l =
√
2√
3
, and so the perimeter of T is

L = (a+ c) + b =
(

cos−1 1√
3

+ cos−1
√
2√
3

)
+ cos−1 1√

2
= π

2 + π
4 = 3π

4 .

By the First Law of Cosines, the angles α, β and γ are given by

cosα =
cos a− cos b cos c

sin b sin c
=

1√
3
− 1√

2
·
√
2√
3

1√
2
· 1√

3

= 0,

cosβ =
cos b− cos c cos a

sin c sin a
=

1√
2
−
√
2√
3
· 1√

3

1√
3
·
√
2√
3

= 1
2 and

cos γ =
cos c− cos a cos b

sin a sin b
=

√
2√
3
− 1√

2
· 1√

3

1√
2
·
√
2√
3

= 1√
2
,

and so the area of T is
A = (α+ β + γ)− π =

(
π
2 + π

3 + π
4

)
− π = π

12 .



12: (a) Let w = 1√
3
(1,−1, 1). Find the area of the image of the circle C

(
w, π6

)
under the stereographic projection

φ(x, y, z) =
(

x
1−z ,

y
1−z
)
.

Solution: Note that C
(
w, π6

)
= S2 ∩ P where P is the plane in R3 with equation p.w = cos π6 where p ∈ R3,

which we can also write as 1√
3

(x, y, z). (1,−1, 1) =
√
3
2 where (x, y, z) ∈ R3, that is x − y + z = 3

2 . Letting

(a, b, c, d) =
(
1,−1, 1,− 3

2

)
and applying the formula which occurs at the end of the proof of Theorem 2.55, we

see that the image of the circle C
(
w, π6

)
under the stereographic projection φ is the circle D in the uv-plane

centred at (u, v) =
( −a
c+d ,

−b
c+d

)
= (2,−2) of radius r =

√
a2+b2+c2−d2
|c+d| =

√
3. The area of the image circle D is

A = πr2 = 3π.

(b) Let T be the triangle on S2 with vertices at 1√
2
(1,−1, 0), 1√

3
(1, 1, 1) and 1√

3
(1,−1, 1). Find the area of

the image of T under the stereographic projection φ(x, y, z) =
(

x
1−z ,

y
1−z
)
.

Solution: Let a = φ(u) =
(

1/
√
2

1−0 ,
−1/
√
2

1−0

)
=
(

1√
2
,− 1√

2

)
, b = φ(v) =

(
1/
√
3

1−1/
√
3
, 1/

√
3

1−1/
√
3

)
=
(√

3+1
2 ,

√
3+1
2

)
and

c = φ(w) =
(

1/
√
3

1−1/
√
3
, −1/

√
3

1−1/
√
3

)
=
(√

3+1
2 ,−

√
3+1
2

)
. Let L, M and N be the lines in S2 containing the edges

[v, w], [w, u] and [u, v] respectively. Since v × w is in the direction of (1, 0,−1), we have L = S2 ∩ P where P
is the plane x− z = 0. Since w × u is in the direction of (1, 1, 0), we have M = S2 ∩Q where Q is the plane
x+y = 0. Since u×v is in the direction of (−1,−1, 2) we have N = S2∩R where R is the plane x+y−2z = 0.
Since Q passes through (0, 0, 1), the map φ maps points in Q to points in Q, so the image of M is equal to
Q ∩R2 which is the line x+ y = 0 in the xy-plane, that is the line u+ v = 0 in the uv-plane. Recall that the
proof of Theorem 2.55 shows that the intersection of S2 with the plane ax+ by+ cz = d with c 6= d is mapped

by φ to the circle centred at
(

a
d−c ,

b
d−c
)

of radius
√
a2+b2+c2−d2
|d−c| . It follows that the image φ(L) is the circle

centred at p = (1, 0) of radius r =
√

2 and that the image φ(N) is the circle centred at q =
(
1
2 ,

1
2

)
of radius

s =
√
6
2 . The figure below shows the images φ(L), φ(M) and φ(N) in grey and outlines the image of [u, v, w]

in blue.
The area of the image of [u, v, w] is

A = B + C −D − E

where B is the area of the sector of the circle centred at p from c to b, and C is the area of the quadrilateral
0, c, p, b which is equal to twice the area of triangle 0, c, p, and D is the area of the sector of the circle centred

at q from a to b, and E is the area of triangle 0, a, q. It is easy to check that C =
√
3+1
2 and E = 1

2
√
2
. Since

b− p =
(√

3−1
2 ,

√
3+1
2

)
, by symmetry we have θ = ∠cpb = 2 tan−1

√
3+1√
3−1 = 2 · 5π12 = 5π

6 and so B = 1
2 r

2θ = 5π
6 .

Since ∠0qa = tan−1
√

2 we have φ = ∠aqb = π − tan−1
√

2 and so D = 1
2 s

2φ = 3
4φ = 3π

4 −
3
4 tan−1

√
2. Thus

A = B + C −D − E = 5π
6 +

√
3+1
2 − 3π

4 + 3
4 tan−1

√
2− 1

2
√
2

= π
12 + 3

4 tan−1
√

2 +
√
3
2 + 1

2 −
1

2
√
2
.
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