

1: (a) Let $u = (3, 4, -1)$ and $v = (4, 1, 3)$. Find the spherical distance between u and v on the sphere given by $x^2 + y^2 + z^2 = 26$.

Solution: The spherical distance is $d = R\theta(u, v) = R\cos^{-1} \frac{u \cdot v}{|u||v|} = \sqrt{26} \cos^{-1} \frac{1}{2} = \frac{\sqrt{26}\pi}{3}$.

(b) Let $u = \frac{1}{\sqrt{3}}(1, 1, -1)$ and $v = \frac{1}{\sqrt{2}}(1, 0, 1)$. Find a point $w \in \mathbb{S}^2$ such that L_w is the line through u and v .

Solution: The line through u and v is the line $L = P \cap \mathbb{S}^2$ where P is the plane through the origin which passes through u and v , that is $P = \text{Span}\{u, v\}$. The unit normal vectors of P are $\pm \frac{u \times v}{|u \times v|}$ and so $L = L_w$ where

$$w = \frac{u \times v}{|u \times v|} = \frac{(1, 1, -1) \times (1, 0, 1)}{|(1, 1, -1) \times (1, 0, 1)|} = \frac{(1, -2, -1)}{|(1, -2, -1)|} = \frac{1}{\sqrt{6}}(1, -2, -1).$$

(c) Let $u = \frac{1}{3}(1, 2, 2)$ and $v = \frac{1}{\sqrt{5}}(0, 1, 2)$. Find a point $w \in \mathbb{S}^2$ such that L_w is the line through u which is perpendicular to L_v .

Solution: The lines perpendicular to L_v all pass through v and so the line through u which is perpendicular to L_v is the line through u and v which, as above, is the line L_w where

$$w = \frac{u \times v}{|u \times v|} = \frac{(1, 2, 2) \times (0, 1, 2)}{|(1, 2, 2) \times (0, 1, 2)|} = \frac{(2, -2, 1)}{|(2, -2, 1)|} = \frac{1}{3}(2, -2, 1).$$

(d) Let $u = \frac{1}{\sqrt{3}}(1, -1, 1)$ and $v = \frac{1}{\sqrt{6}}(1, 2, 1)$. Find the two points of intersection on \mathbb{S}^2 of the spherical line L_u and the spherical circle $C(v, \frac{\pi}{3})$.

Solution: The line L_u is the set of points $p \in \mathbb{S}^2$ such that $p \cdot u = 0$, that is the set of points $(x, y, z) \in \mathbb{S}^2$ with $x - y + z = 0$ (1). The circle $C(v, \frac{\pi}{3})$ is the set of points $p \in \mathbb{S}^2$ such that $p \cdot v = \cos \frac{\pi}{3} = \frac{1}{2}$, that is the set of points $(x, y, z) \in \mathbb{S}^2$ such that $x + 2y + z = \frac{\sqrt{6}}{2}$ (2). Solve equations (1) and (2) for $(x, y, z) \in \mathbb{R}^3$ to get $(x, y, z) = \frac{1}{\sqrt{6}}((1, 1, 0) + t(-1, 0, 1))$ for some $t \in \mathbb{R}$. For these points (x, y, z) we have

$$(x, y, z) \in \mathbb{S}^2 \iff x^2 + y^2 + z^2 = 1 \iff \frac{1}{6}((1-t)^2 + 1^2 + t^2) = 1 \iff t^2 - t - 2 = 0 \iff t = -1 \text{ or } 2.$$

When $t = -1$ we obtain $p = (x, y, z) = \frac{1}{\sqrt{6}}((1, 1, 0) - (-1, 0, 1)) = \frac{1}{\sqrt{6}}(2, 1, -1)$ and when $t = 2$ we obtain $p = (x, y, z) = \frac{1}{\sqrt{6}}((1, 1, 0) + 2(-1, 0, 1)) = \frac{1}{\sqrt{6}}(-1, 1, 2)$.

(e) Let $u = \frac{1}{\sqrt{2}}(0, 1, 1)$ and $v = \frac{1}{\sqrt{6}}(1, 2, 1)$. Find $r > 0$ such that $C(u, r)$ is tangent to L_v .

Solution: Note that $\cos \theta(u, v) = \frac{u \cdot v}{|u||v|} = \frac{(0, 1, 1) \cdot (1, 2, 1)}{|(0, 1, 1)||1, 2, 1|} = \frac{3}{\sqrt{2}\sqrt{6}} = \frac{\sqrt{3}}{2}$ so that $d_S(u, v) = \theta(u, v) = \frac{\pi}{6}$. Look at the sphere with the vector $u \times v$ pointing towards us and the vector v pointing upwards so that the sphere looks like the unit circle, say in the st -plane, with v at position $(s, t) = (0, 1)$ and u at position $(s, t) = (\frac{1}{2}, \frac{\sqrt{3}}{2})$. From this viewpoint (you should draw the picture), the line L_v appears as the diameter from $(s, t) = (-1, 0)$ to $(s, t) = (1, 0)$, and each circle $C(u, r)$ appears as a line segment perpendicular to the vector $(s, t) = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.

In particular, the circle $C(u, \frac{\pi}{3})$, which appears as the line segment from $(s, t) = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$ to $(s, t) = (1, 0)$, intersects L_v at the point $(s, t) = (1, 0)$, and the circle $C(u, \frac{2\pi}{3})$, which appears as the line segment from $(s, t) = (-1, 0)$ to $(s, t) = (\frac{1}{2}, -\frac{\sqrt{3}}{2})$, intersects L_v at the point $(s, t) = (-1, 0)$. These are the only two circles $C(u, r)$ which intersect with L_v at exactly one point. Thus the two possible values of r are $r = \frac{\pi}{3}$ and $\frac{2\pi}{3}$.

2: (a) Let $u = \frac{1}{\sqrt{5}}(2, 0, -1)$, $v = (2, -1, 4)$ and $w = (1, 3, 2)$. Find the oriented angle $\theta_o(v, w)$ from v to w in the tangent space T_u .

Solution: We have

$$\cos \theta_o(v, w) = \frac{v \cdot w}{|v||w|} = \frac{(2, -1, 4) \cdot (1, 3, 2)}{|(2, -1, 4)||1, 3, 2|} = \frac{7}{\sqrt{21}\sqrt{14}} = \frac{1}{\sqrt{6}}$$

so that either $\theta_o(v, w) = \cos^{-1} \frac{1}{\sqrt{6}}$ or $\theta_o(v, w) = 2\pi - \cos^{-1} \frac{1}{\sqrt{6}}$, and we have

$$\sqrt{5} \det(u, v, w) = \det \begin{pmatrix} 2 & 2 & 1 \\ 0 & -1 & 3 \\ -1 & 4 & 2 \end{pmatrix} = -35 < 0$$

so that $\sin \theta_o(v, w) < 0$, and so $\theta_o(v, w) = 2\pi - \cos^{-1} \frac{1}{\sqrt{6}}$.

(b) Let $u = \frac{1}{\sqrt{6}}(1, 1, 2)$, $v = \frac{1}{\sqrt{14}}(2, 1, 3)$ and $w = \frac{1}{\sqrt{11}}(1, 3, 1)$. Find u_v and u_w .

Solution: We have

$$\begin{aligned} ((1, 1, 2) \times (2, 1, 3)) \times (1, 1, 2) &= (1, 1, -1) \times (1, 1, 2) = (3, -3, 0) = 3(1, -1, 0) \text{ and} \\ (1, 1, 2) \times (1, 3, 1)) \times (1, 1, 2) &= (-5, 1, 2) \times (1, 1, 2) = (0, 12, -6) = 6(0, 2, -1) \end{aligned}$$

and so $u_v = \frac{1}{\sqrt{2}}(1, -1, 0)$ and $u_w = \frac{1}{\sqrt{5}}(0, 2, -1)$.

(c) Let $u = \frac{1}{3}(-1, 2, -2)$, $v = \frac{1}{\sqrt{2}}(1, 0, 1)$ and $w = \frac{1}{3\sqrt{3}}(5, -1, 1)$. Find the interior angles α , β and γ in the ordered triangle $[u, v, w]$.

Solution: We have

$$3 \cdot 3\sqrt{3} \det(u, v, w) = \det \begin{pmatrix} -1 & 1 & 5 \\ 2 & 0 & -1 \\ -2 & 1 & 1 \end{pmatrix} = 9 > 0$$

so that $[u, v, w]$ is positively oriented. We have $\cos a = v \cdot w = \frac{6}{\sqrt{2} \cdot 3\sqrt{3}} = \sqrt{\frac{2}{3}}$, $\cos b = w \cdot u = \frac{-9}{3\sqrt{3} \cdot 3} = -\frac{1}{\sqrt{3}}$ and $\cos c = u \cdot v = \frac{-3}{3 \cdot \sqrt{2}} = -\frac{1}{\sqrt{2}}$ so that $a = \cos^{-1} \sqrt{\frac{2}{3}}$, $b = \cos^{-1} \left(-\frac{1}{\sqrt{3}} \right)$ and $c = \cos^{-1} \left(-\frac{1}{\sqrt{2}} \right) = \frac{3\pi}{4}$. By the First Law of Cosines, we have

$$\begin{aligned} \cos \alpha &= \frac{\cos a - \cos b \cos c}{\sin b \sin c} = \frac{\sqrt{\frac{2}{3}} - \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}}}{\sqrt{\frac{2}{3}} \cdot \frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2}}, \\ \cos \beta &= \frac{\cos b - \cos a \cos c}{\sin a \sin c} = \frac{-\frac{1}{\sqrt{3}} + \sqrt{\frac{2}{3}} \cdot \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}}} = 0, \\ \cos \gamma &= \frac{\cos c - \cos a \cos b}{\sin a \sin c} = \frac{-\frac{1}{\sqrt{2}} + \sqrt{\frac{2}{3}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}}} = -\frac{1}{2}, \end{aligned}$$

so that $\alpha = \frac{\pi}{4}$, $\beta = \frac{\pi}{2}$ and $\gamma = \frac{2\pi}{3}$.

3: Let $[u, v, w]$ be a triangle with edge lengths a, b and c and interior angles α, β and γ .

(a) Given that $a = \frac{\pi}{3}$, $c = \frac{\pi}{6}$ and $\beta = \frac{2\pi}{3}$, find b .

Solution: By the First Law of Cosines we have $\cos \beta = \frac{\cos b - \cos a \cos c}{\sin a \sin c}$ and so

$$\cos b = \cos \beta \sin a \sin c + \cos a \cos c = -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}$$

and so $b = \cos^{-1} \frac{\sqrt{3}}{8}$.

(b) Given that $a = \frac{\pi}{6}$, $\beta = \frac{5\pi}{6}$ and $\gamma = \frac{\pi}{4}$, find c .

Solution: By the Second Law of Cosines we have $\cos a = \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma}$ and so

$$\cos \alpha = \cos a \sin \beta \sin \gamma - \cos \beta \cos \gamma = \frac{\sqrt{3}}{2} \cdot \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{3\sqrt{6}}{8}.$$

It follows that $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{54}{64}} = \frac{\sqrt{10}}{8}$. By the Second Cosine Law, we have

$$\cos c = \frac{\cos \gamma + \cos \alpha \cos \beta}{\sin \alpha \sin \beta} = \frac{\frac{\sqrt{2}}{2} - \frac{3\sqrt{6}}{8} \cdot \frac{\sqrt{3}}{2}}{\frac{\sqrt{10}}{8} \cdot \frac{1}{2}} = \frac{8\sqrt{2} - 9\sqrt{2}}{\sqrt{10}} = -\frac{1}{\sqrt{5}}$$

and so $c = \cos^{-1} \frac{-1}{\sqrt{5}}$.

(c) Given that $a = \cos^{-1} \frac{1}{3}$, $b = \frac{\pi}{2}$ and $\alpha = \frac{\pi}{4}$, find all possible values of c .

Solution: Since $a = \cos^{-1} \frac{1}{3}$ we have $\cos a = \frac{1}{3}$ and $\sin a = \sqrt{1 - \cos^2 a} = \sqrt{1 - \frac{1}{9}} = \frac{2\sqrt{2}}{3}$. By the Sine Law, we have

$$\sin \beta = \frac{\sin b \sin \alpha}{\sin a} = \frac{\frac{\sqrt{2}}{2} \cdot 1}{\frac{2\sqrt{2}}{3}} = \frac{3}{4}$$

hence

$$\cos \beta = \pm \sqrt{1 - \sin^2 \beta} = \pm \sqrt{1 - \frac{9}{16}} = \pm \frac{\sqrt{7}}{4}.$$

By the First Law of Cosines, we have

$$\cos \gamma = \frac{\cos c - \cos a \cos b}{\sin a \sin b} = \frac{\cos c - \frac{1}{3} \cdot 0}{\frac{2\sqrt{2}}{3} \cdot 1} = \frac{3\sqrt{2}}{4} \cos c$$

and so the Second Law of Cosines gives

$$\cos c = \frac{\cos \gamma + \cos \alpha \cos \beta}{\sin \alpha \sin \beta} = \frac{\frac{3\sqrt{2}}{4} \cos c \pm \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{7}}{4}}{\frac{\sqrt{2}}{2} \cdot \frac{3}{4}} = 2 \cos c \pm \frac{\sqrt{7}}{3}.$$

Thus we have $\cos c = \pm \frac{\sqrt{7}}{3}$. hence $c = \cos^{-1} (\pm \frac{\sqrt{7}}{3})$.

4: (a) Let $u = \frac{1}{\sqrt{6}}(1, 2, 1)$, $v = \frac{1}{\sqrt{6}}(1, -1, 2)$ and $w = \frac{1}{\sqrt{6}}(2, 1, -1)$. Find the centroid of the spherical triangle $[u, v, w]$, that is find the point of intersection of the 3 medians $[u, \frac{v+w}{|v+w|}]$, $[v, \frac{w+u}{|w+u|}]$ and $[w, \frac{u+v}{|u+v|}]$.

Solution: The midpoint of the spherical line segment $[v, w]$ is the point $\frac{v+w}{|v+w|}$. The spherical line L through u and $\frac{v+w}{|v+w|}$ is the intersection of S^2 with the vector space $P = \text{Span}\{u, \frac{v+w}{|v+w|}\} = \text{Span}\{u, v+w\}$. Note that $u+v+w \in P$ and so the point $\frac{u+v+w}{|u+v+w|} \in P \cap S^2 = L$. Similarly, the point $\frac{u+v+w}{|u+v+w|}$ lies on each of the other 2 medians. Thus the centroid is the point $g = \frac{u+v+w}{|u+v+w|} = \frac{1}{\sqrt{6}}(2, 1, 1)$.

(b) Let $u = \frac{1}{3}(2, 2, -1)$, $v = \frac{1}{3}(1, 2, 2)$ and $w = \frac{1}{3}(2, -1, -2)$. Find the centre and radius of the circumscribed circle of the spherical triangle $[u, v, w]$.

Solution: The circumcentre is the point x such that $d_S(x, u) = d_S(x, v) = d_S(x, w)$. We have

$$\begin{aligned} d_S(x, u) = d_S(x, v) = d_S(x, w) &\iff \cos^{-1} x \cdot u = \cos^{-1} x \cdot v = \cos^{-1} x \cdot w \iff x \cdot u = x \cdot v = x \cdot w \\ &\iff x \cdot u = x \cdot v \text{ and } x \cdot u = x \cdot w \iff x \cdot (u - v) = 0 \text{ and } x \cdot (u - w) = 0 \\ &\iff x \cdot (1, -1, -3) = 0 \text{ and } x \cdot (0, 3, 1) = 0 \iff x_1 - 3x_3 = 0 \text{ and } 3x_2 + x_3 = 0 \\ &\iff x = (x_1, x_2, x_3) = t(9, -1, 3) \text{ for some } t \in \mathbb{R}. \end{aligned}$$

To get $|x| = 1$ we take $t = \frac{1}{\sqrt{91}}$, so the circumcentre is the point $o = \frac{1}{\sqrt{91}}(9, -1, 3)$. The radius of the circumcircle is $r = d_S(o, u) = \cos^{-1}(o \cdot u) = \cos^{-1} \frac{13}{3\sqrt{91}}$.

(c) Let $u = \frac{1}{\sqrt{3}}(1, 1, 1)$, $v = \frac{1}{\sqrt{3}}(1, -1, -1)$ and $w = (0, 1, 0)$. Find the incentre of triangle $[u, v, w]$.

Solution: The vector u_v is in the same direction of the vector

$$u' = ((1, 1, 1) \times (1, 0, 1)) \times (1, 1, 1) = (1, 0, -1) \times (1, 1, 1) = (1, -2, 1)$$

and the vector u_w is in the same direction as the vector

$$u'' = ((1, 1, 1) \times (0, 0, -1)) \times (1, 1, 1) = (-1, 1, 0) \times (1, 1, 1) = (1, 1, -2).$$

Since the vectors u' and u'' have the same length, the angle bisector at u is in the direction of the vector

$$u''' = u' + u'' = (1, -2, 1) + (1, 1, -2) = (2, -1, -1).$$

This angle bisector has normal vector

$$m = \sqrt{3}u \times u''' = (1, 1, 1) \times (2, -1, -1) = (0, 3, -3).$$

The vector v_u is in the same direction as the vector

$$v' = ((1, 0, 1) \times (1, 1, 1)) \times (1, 0, 1) = (-1, 0, 1) \times (1, 0, 1) = (0, 2, 0)$$

and the vector v_w is in the same direction as the vector

$$v'' = ((1, 0, 1) \times (0, 0, -1)) \times (1, 0, 1) = (0, 1, 0) \times (1, 0, 1) = (1, 0, -1).$$

Since the vectors $\frac{1}{\sqrt{2}}v'$ and v'' have the same length, the angle bisector at v is in the direction of the vector

$$v''' = \frac{1}{\sqrt{2}}v' + v'' = (0, \sqrt{2}, 0) + (1, 0, -1) = (1, \sqrt{2}, -1).$$

This angle bisector has normal vector

$$n = v \times v''' = \frac{1}{\sqrt{2}}(1, 0, 1) \times (1, \sqrt{2}, -1) = (-1, \sqrt{2}, 1).$$

Since the two angle bisectors have normal vectors n and m , their point of intersection lies in the direction of the vector

$$x = \frac{1}{3}m \times n = (0, 1, -1) \times (-1, \sqrt{2}, 1) = (1 + \sqrt{2}, 1, 1).$$

Thus the incentre of the triangle $[u, v, w]$ is the point

$$i = \frac{x}{|x|} = \frac{(1 + \sqrt{2}, 1, 1)}{\sqrt{(1 + \sqrt{2})^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{5+2\sqrt{2}}} (1 + \sqrt{2}, 1, 1).$$

5: (a) Find the perimeter of the square on \mathbb{S}^2 with interior angles equal to $\frac{2\pi}{3}$.

Solution: Let ℓ be the length of the sides of the square. Notice that the square can be cut into 4 triangles (with a common vertex at the centre of the square) each of which is congruent to a triangle $[u, v, w]$ with $a = \ell$, $\alpha = \frac{\pi}{2}$ and $\beta = \gamma = \frac{\pi}{3}$. By the Second Law of Cosines, we have

$$\cos \ell = \cos a = \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} = \frac{0 + \frac{1}{2} \cdot \frac{1}{2}}{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}} = \frac{1}{3}.$$

Thus the perimeter of the square is $L = 4\ell = 4 \cos^{-1} \frac{1}{3}$.

(b) Find the area of the regular hexagon on \mathbb{S}^2 with sides of length $\ell = \cos^{-1} \frac{2}{3}$.

Solution: Note that the hexagon can be cut into 6 triangles (with a common vertex at the centre of the hexagon) each of which is congruent to a triangle $[u, v, w]$ with $a = \ell = \cos^{-1} \frac{2}{3}$, $\alpha = \frac{\pi}{3}$ and $\beta = \gamma$. The Second Law of Cosines gives

$$\begin{aligned} \cos a &= \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} \implies \frac{2}{3} = \frac{\frac{1}{2} + \cos^2 \beta}{\sin^2 \beta} \implies \frac{2}{3}(1 - \cos^2 \beta) = \frac{1}{2} + \cos^2 \beta \\ &\implies \frac{1}{6} = \frac{5}{3} \cos^2 \beta \implies \cos^2 \beta = \frac{1}{10} \implies \beta = \cos^{-1} \frac{1}{\sqrt{10}}. \end{aligned}$$

Thus the area of the hexagon is

$$A = 6(\alpha + \beta + \gamma - \pi) = 6\left(\frac{\pi}{3} + 2 \cos^{-1} \frac{1}{\sqrt{10}} - \pi\right) = 12 \cos^{-1} \frac{1}{\sqrt{10}} - 4\pi.$$

(c) Find the perimeter and the area of the regular hexagon on \mathbb{S}^2 which is inscribed in an equilateral triangle with interior angles $\frac{\pi}{2}$.

Solution: Let ℓ be the length of the sides of the equilateral triangle. By the Second Law of Cosines, we have

$$\cos \ell = \frac{\cos \frac{\pi}{2} + \cos^2 \frac{\pi}{2}}{\sin^2 \frac{\pi}{2}} = 0$$

so that $\ell = \frac{\pi}{2}$. Let y be the length of the sides of the hexagon and let $y + 2x = \ell = \frac{\pi}{2}$ so that the original triangle is the union of the hexagon together with three triangles each of which is congruent to a triangle with $\alpha = \frac{\pi}{2}$, $a = y$ and $b = c = x$. The First Law of Cosines gives

$$\cos \alpha = \frac{\cos a - \cos b \cos c}{\sin b \sin c} \implies 0 = \frac{\cos y - \cos^2 x}{\sin^2 x} \implies \cos y = \cos^2 x.$$

Since $y + 2x = \frac{\pi}{2}$ this gives

$$\cos^2 x = \cos y = \cos\left(\frac{\pi}{2} - 2x\right) = \sin 2x = 2 \sin x \cos x$$

so we have $\cos x = 0$ or $\cos x = 2 \sin x$. Since $x < \frac{\pi}{2}$ so that $\cos x \neq 0$, we must have $\cos x = 2 \sin x$, so that $\tan x = \frac{1}{2}$ hence $x = \tan^{-1} \frac{1}{2}$. Thus

$$y = \frac{\pi}{2} - 2x = \frac{\pi}{2} - 2 \tan^{-1} \frac{1}{2} = \frac{\pi}{2} - \tan^{-1} \frac{4}{3} = \tan^{-1} \frac{3}{4}.$$

Note that the hexagon can be cut into 6 triangles each of which is congruent to a triangle with $a = y = \tan^{-1} \frac{3}{4}$, $\alpha = \frac{\pi}{3}$ and $\beta = \gamma$. The Second Law of Cosines gives

$$\begin{aligned} \cos a &= \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} \implies \frac{4}{5} = \frac{\frac{1}{2} + \cos^2 \beta}{\sin^2 \beta} \implies \frac{4}{5}(1 - \cos^2 \beta) = \frac{1}{2} + \cos^2 \beta \\ &\implies \frac{3}{10} = \frac{9}{5} \cos^2 \beta \implies \cos^2 \beta = \frac{1}{6} \implies \cos \beta = \frac{1}{\sqrt{6}} \implies \beta = \cos^{-1} \frac{1}{\sqrt{6}}. \end{aligned}$$

Thus the perimeter and the area of the hexagon are equal to

$$L = 6a = 6y = 6 \tan^{-1} \frac{3}{4}, \text{ and}$$

$$A = 6(\alpha + \beta + \gamma - \pi) = 6\left(\frac{\pi}{3} + 2 \cos^{-1} \frac{1}{\sqrt{6}} - \pi\right) = 12 \cos^{-1} \frac{1}{\sqrt{6}} - 4\pi.$$

6: (a) For a point (x, y, z) on the sphere $x^2 + y^2 + z^2 = R^2$, let $\phi \in [0, \pi]$ measure the angle in \mathbb{R}^3 from $(0, 0, 1)$ to (x, y, z) and let theta $\theta \in \mathbb{R}$ measure the angle in \mathbb{R}^2 from $(1, 0)$ counterclockwise to (x, y) . Given $0 \leq \phi_1 \leq \phi_2 \leq \pi$ and $\theta_1 \leq \theta_2 \leq \theta_1 + 2\pi$, find the area of the portion of the sphere given by $\phi_1 \leq \phi \leq \phi_2$ and $\theta_1 \leq \theta \leq \theta_2$.

Solution: Since ϕ measures the angle between $(0, 0, 1)$ and (x, y, z) , we have $z = R \cos \phi$ and so the portion of the sphere given by $\phi_1 \leq \phi \leq \phi_2$ is the portion of the sphere which lies between the planes $z = R \cos \phi_1$ and $z = R \cos \phi_2$, and its area is

$$S = 2\pi R \Delta = 2\pi R(R \cos \phi_1 - R \cos \phi_2) = 2\pi R^2(\cos \phi_1 - \cos \phi_2).$$

By looking at the sphere with the z -axis pointing towards us and the x -axis pointing to the right, we see that area A of the portion of the sphere given by $\phi_1 \leq \phi \leq \phi_2$ and $\theta_1 \leq \theta \leq \theta_2$ is equal to $\frac{\theta_2 - \theta_1}{2\pi}$ times the area of the above area, that is

$$A = \frac{\theta_2 - \theta_1}{2\pi} S = \frac{\theta_2 - \theta_1}{2\pi} \cdot 2\pi R^2(\cos \phi_1 - \cos \phi_2) = R^2(\theta_2 - \theta_1)(\cos \phi_1 - \cos \phi_2).$$

(b) A light at position $(0, 0, 8)$ shines down on a spherical balloon of radius $\sqrt{5}$ centred at $(3, 4, 3)$. Find the area of the shadow which is cast on the xy -plane (given that the shadow is an ellipse and that the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to πab).

Solution: Draw a picture to represent the situation with the vector $(3, 4, 0)$ pointing to the right and the vector $(0, 0, 1)$ pointing upwards. From this viewpoint the balloon looks like the circle, say in the sz -plane, of radius $\sqrt{5}$ centred at $(s, z) = (5, 3)$, and the light is at position $(s, z) = (0, 8)$. Rays of light shine down following the lines $z = 8 - 2s$ and $z = 8 - \frac{1}{2}s$, which are tangent to the circle at $(s, z) = (3, 2)$ and $(s, z) = (6, 4)$, and meet the s -axis at $s = 4$ and $s = 16$. This shows that elliptical shadow has major axis equal to 12 units.

Draw another picture with the vector $(3, 4, 0)$ pointing towards us and the vector $(0, 0, 1)$ pointing upwards. From this viewpoint, the balloon looks like the circle, say in the tz -plane, of radius $\sqrt{5}$ centred at $(t, z) = (0, 3)$, and the light is positioned at $(t, z) = (0, 8)$. Rays shine down following the lines $z = 8 \pm 2t$ which are tangent to the circle at $(t, z) = (\pm 2, 4)$ and meet the t -axis at $t = \pm 4$. This shows that the elliptical shadow has minor axis equal to 8 units. Thus the elliptical shadow has the same shape as the ellipse $\frac{x^2}{6^2} + \frac{y^2}{4^2} = 1$ and its area is $A = \pi \cdot 6 \cdot 4 = 24\pi$.

(c) A light at position $(0, 0, 30)$ shines down on a red spherical balloon of radius $\sqrt{10}$ centred at $(0, 0, 20)$ casting a shadow on a green balloon of radius $6\sqrt{5}$ centred at $(0, 0, 0)$. Find the area of the illuminated portion of the green balloon.

Solution: Draw a picture to represent the situation with the x -axis pointing towards us and the z -axis pointing upwards. From this viewpoint, the red balloon looks like the circle, in the yz -plane, of radius $\sqrt{10}$ centred at $(y, z) = (0, 30)$, the green balloon looks like the circle of radius $6\sqrt{5}$ centred at $(y, z) = (0, 0)$, and the light is at position $(y, z) = (0, 30)$. Two rays shine down following the lines $z = 30 \pm 2y$ which are tangent to the green balloon at $(y, z) = (\pm 12, 6)$, and two rays shine down following the lines $z = 30 - \pm 3y$ which are tangent to the red balloon at $(y, z) = (\pm 3, 21)$ and continue down to intersect the green balloon at the points $(y, z) = (\pm 6, 12)$. This shows that the illuminated portion of the green balloon is the portion which lies between $z = 6$ and $z = 12$. The area of this portion is

$$A = 2\pi R \Delta = 2\pi \cdot 6\sqrt{5} \cdot (12 - 6) = 72\sqrt{5}\pi.$$

7: (a) Find the radius R of a sphere on which there is an equilateral triangle with sides of length π and angles equal to $\frac{5\pi}{6}$.

Solution: The Second Cosine Law, modified for a sphere of radius R , gives

$$\cos \frac{\pi}{R} = \frac{\cos \frac{5\pi}{6} + \cos^2 \frac{5\pi}{6}}{\sin^2 \frac{5\pi}{6}} = \frac{-\frac{\sqrt{3}}{2} + \frac{3}{4}}{\frac{1}{4}} = 3 - 2\sqrt{3}$$

so that

$$R = \frac{\pi}{\cos^{-1}(3 - 2\sqrt{3})}.$$

(b) Find an approximate value for the radius R of a sphere on which there is a circle of radius 2 and circumference $\frac{215\pi}{54}$.

Solution: The circumference L of a circle of radius r on a sphere of radius R is given by

$$L = 2\pi R \sin \frac{r}{R} \cong 2\pi R \left(\frac{r}{R} - \frac{1}{6} \frac{r^3}{R^3} \right) = 2\pi r - \frac{\pi}{3} \frac{r^3}{R^2}.$$

Putting in $L = \frac{215\pi}{54}$ and $r = 2$ gives

$$\frac{215\pi}{54} \cong 4\pi - \frac{8\pi}{3R^2} \implies \frac{8}{3R^2} \cong 4 - \frac{215}{54} = \frac{1}{54} \implies R^2 \cong \frac{8 \cdot 54}{3} = 144 \implies R \cong 12.$$

(c) Let R be the radius of the Earth, in meters ($R \cong 6,370,000$). We describe the position of a point on the Earth in terms of its longitude θ (with $\theta = 0$ at Greenwich, England and $\theta = \frac{\pi}{2}$ somewhere in Bangladesh) and its latitude ϕ (with $\phi = 0$ at the equator and $\phi = \frac{\pi}{2}$ at the north pole). Find the distance (expressed as a multiple of R) and the bearing (expressed as an angle north of east) from the point at $(\theta, \phi) = (\frac{\pi}{3}, \frac{\pi}{6})$ to the point at $(\theta, \phi) = (\frac{\pi}{2}, \frac{\pi}{4})$.

Solution: Consider the spherical triangle with vertices at u , v and w where u is given by $(\theta, \phi) = (\frac{\pi}{3}, \frac{\pi}{6})$, v is given by $(\theta, \phi) = (\frac{\pi}{2}, \frac{\pi}{4})$, and w is the north pole, which is given by $\phi = \frac{\pi}{2}$. For this triangle we have $a = R \cdot \frac{\pi}{4}$, $b = R \cdot \frac{\pi}{3}$, and $\gamma = \frac{\pi}{6}$. The First Law of Cosines, modified for a sphere of radius R , gives

$$\cos \gamma = \frac{\cos(c/R) - \cos(b/R) \cos(a/R)}{\sin(b/R) \sin(a/R)}$$

so

$$\begin{aligned} \cos(c/R) &= \cos \gamma \sin(b/R) \sin(a/R) + \cos(b/R) \cos(a/R) \\ &= \cos \frac{\pi}{6} \sin \frac{\pi}{4} \sin \frac{\pi}{3} + \cos \frac{\pi}{4} \cos \frac{\pi}{3} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{5\sqrt{2}}{8}. \end{aligned}$$

Thus the required distance is $c = R \cos^{-1} \left(\frac{5\sqrt{2}}{8} \right)$. The Law of Sines, modified for a sphere of radius R , gives

$$\frac{\sin \alpha}{\sin(a/R)} = \frac{\sin \gamma}{\sin(c/R)}$$

so we have

$$\sin \alpha = \frac{\sin(a/R) \sin \gamma}{\sin(c/R)} \cong \frac{\sin \frac{\pi}{6} \sin \frac{\pi}{4}}{\sqrt{1 - \left(\frac{5\sqrt{2}}{8} \right)^2}} = \frac{\frac{1}{2} \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{14}}{8}} = \frac{2}{\sqrt{7}}.$$

Thus the bearing is θ east of north, where

$$\theta = \frac{\pi}{2} - \alpha = \frac{\pi}{2} - \sin^{-1} \left(\frac{2}{\sqrt{7}} \right) = \cos^{-1} \left(\frac{2}{\sqrt{7}} \right).$$

8: (a) Let $u = \frac{1}{\sqrt{6}}(1, -1, 2)$. Express the isometry F_u in matrix form.

Solution: We have

$$F_u = I - 2uu^T = I - \frac{1}{3} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & 2 \\ -2 & 2 & -1 \end{pmatrix}.$$

(b) Let $u = \frac{1}{3}(1, 2, -2)$ and let $\theta = \frac{\pi}{2}$. Express the isometry $R_{u,\theta}$ in matrix form.

Solution: Let $v = \frac{1}{3}(2, 1, 2)$ and $w = u \times v = \frac{1}{3}(2, -2, -1)$ so that $\{u, v, w\}$ is an orthonormal basis for \mathbb{R}^3 . Then

$$\begin{aligned} R_{u,\theta} &= (u, v, w) \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} (u, v, w)^T = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & -2 & -1 \end{pmatrix} \\ &= \frac{1}{9} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 & 8 & 4 \\ -4 & 4 & -7 \\ -8 & -1 & 4 \end{pmatrix}. \end{aligned}$$

(c) Let $u = \frac{1}{\sqrt{3}}(1, 1, 1)$, $\theta = \frac{\pi}{3}$, $v = \frac{1}{\sqrt{6}}(2, -1, 1)$ and $x = \frac{1}{\sqrt{2}}(1, 0, 1)$. Find $R_{u,\theta}F_v(x)$.

Solution: Let

$$w = F_v(x) = x - 2x \cdot v v = \frac{1}{\sqrt{2}} \left((1, 0, 1) - 2 \cdot \frac{3}{6}(2, -1, 1) \right) = \frac{1}{\sqrt{2}}(-1, 1, 0).$$

Note that $u \cdot w = 0$ and let $y = u \times w = \frac{1}{\sqrt{6}}(-1, -1, 2)$ so that $\{u, w, y\}$ is an orthonormal basis for \mathbb{R}^3 . Then

$$R_{u,\theta}F_v(x) = R_{u,\theta}(w) = \cos \theta \cdot w + \sin \theta \cdot y = \frac{1}{2} \cdot \frac{1}{\sqrt{2}}(-1, 1, 0) + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{6}}(-1, -1, 2) = \frac{1}{\sqrt{2}}(-1, 0, 1).$$

(d) Find $u \in \mathbb{S}^2$ and $\theta \in [0, \pi]$ such that, in matrix form, we have $-R_{u,\theta} = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$.

Solution: Let $A = -R_{u,\theta}$. Since A is symmetric, it is orthogonally diagonalizable with real eigenvalues, since A is orthogonal, its eigenvalues have norm 1 so they are equal to ± 1 , since $\det A = -1$, the eigenvalue -1 occurs with multiplicity 1 or 3, and since $A \neq -I$, the eigenvalue -1 occurs with multiplicity 1. Thus A is orthogonally similar to the diagonal matrix with diagonal entries $1, -1, -1$ (this can also be verified by calculating the characteristic polynomial of A). It follows that A is equal to a reflection $A = F_u$ and hence that $R_{u,\theta} = -F_u = R_{u,\pi}$. Thus the rotation angle is $\theta = \pi$. The axis vector u is a unit eigenvector for the eigenvalue 1. We have

$$I - R_{u,\pi} = \frac{1}{3} \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus one eigenvector is $(-1, 1, 1)$ and so we can take $u = \pm \frac{1}{\sqrt{3}}(-1, 1, 1)$.

9: (a) Let $u = \frac{1}{\sqrt{2}}(1, 1, 0)$, $w = \frac{1}{\sqrt{3}}(1, -1, 1)$ and $\theta = \frac{\pi}{3}$. Find $v \in \mathbb{S}^2$ such that $F_u F_v = R_{w, \theta}$.

Solution: Note that $u \cdot w = 0$ so that $u \in T_w$. By the Product of Two Reflections Theorem, to get $F_u F_v = R_{w, \theta}$ we can choose $v \in T_w$ so that $\theta_o(v, u) = \frac{\theta}{2} = \frac{\pi}{6}$. To do this, let $x = w \times u = \frac{1}{\sqrt{6}}(-1, 1, 2)$ so that $\{w, u, x\}$ is an orthonormal basis for \mathbb{R}^3 and then let

$$v = R_{w, -\frac{\pi}{6}}(u) = \frac{\sqrt{3}}{2}u - \frac{1}{2}x = \frac{\sqrt{3}}{2}(1, 1, 0) - \frac{1}{2} \cdot \frac{1}{\sqrt{6}}(-1, 1, 2) = \frac{1}{\sqrt{6}}(2, 1, -1).$$

(b) Let $u = \frac{1}{\sqrt{2}}(1, 0, -1)$, $v = \frac{1}{\sqrt{6}}(-1, 2, 1)$, $\alpha = \frac{\pi}{4}$ and $\beta = \frac{\pi}{3}$. Find w and γ such that $R_{u, 2\alpha} R_{v, 2\beta} R_{w, 2\gamma} = I$.

Solution: Note that when $[u, v, w]$ is a positively oriented triangle in \mathbb{S}^2 with angles α , β and γ , if we let L , M and N be the lines in \mathbb{S}^2 which contain the edges $[v, w]$, $[w, u]$ and $[u, v]$ respectively, then we have

$$R_{u, 2\alpha} R_{v, 2\beta} R_{w, 2\gamma} = F_M F_N F_N F_L F_L F_M = I.$$

Thus it suffices to find w and γ so that $[u, v, w]$ is a triangle with angles α , β and γ . We can find w and γ using spherical trigonometry. In the triangle $[u, v, w]$ we have $\cos c = u \cdot v = -\frac{1}{\sqrt{3}}$. By the Second Law of cosines we then have

$$\cos \gamma = \cos c \sin \alpha \sin \beta - \cos \alpha \cos \beta = -\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = -\frac{\sqrt{2}}{2}$$

so that $\gamma = \frac{3\pi}{4}$. Using the Second Law of Cosines twice more gives

$$\begin{aligned} \cos a &= \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} = \frac{\frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}} = \frac{1}{\sqrt{3}}, \text{ and} \\ \cos b &= \frac{\cos \beta + \cos \alpha \cos \gamma}{\sin \alpha \sin \gamma} = \frac{\frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}} = 0. \end{aligned}$$

Let $w = (x, y, z)$. To get $\cos b = 0$ we need $u \cdot w = 0$, that is $x - z = 0$ (1). To get $\cos a = \frac{1}{\sqrt{3}}$ we need $v \cdot w = \frac{1}{\sqrt{3}}$, that is $-x + 2y + z = \sqrt{2}$ (2). Solve (1) and (2) to get $(x, y, z) = (t, \frac{1}{\sqrt{2}}, t)$. To get $|w| = 1$ we need $t^2 + \frac{1}{2} + t^2 = 1$, that is $2t^2 = \frac{1}{2}$ so we need $t = \pm \frac{1}{2}$. Take $t = \frac{1}{2}$ to get $w = \frac{1}{2}(1, \sqrt{2}, 1)$.

(c) Find $p \in \mathbb{S}^2$ and $\theta \in \mathbb{R}$ so that $F = -R_{p, \theta}$ where F is the isometry such that $F(u) = u'$, $F(v) = v'$ and $F(w) = w'$ where $u = \frac{1}{\sqrt{2}}(1, 1, 0)$, $v = (0, 1, 0)$, $w = \frac{1}{\sqrt{3}}(1, 1, 1)$, $u' = \frac{1}{\sqrt{2}}(0, -1, 1)$, $v' = (0, 0, 1)$ and $w' = \frac{1}{\sqrt{3}}(1, -1, 1)$.

Solution: We provide a solution which follows the proof of the Congruent Triangles and Isometries Theorem (Theorem 2.36) and the proof of the Geometric Classification of Isometries Theorem (Theorem 2.39).

Let L be the line $y = 0$, which is the perpendicular bisector of w and w' . Let $u_1 = F_L(u) = \frac{1}{\sqrt{2}}(1, -1, 0)$, $v_1 = F_L(v) = (0, -1, 0)$ and $w_1 = F_L(w) = w' = \frac{1}{\sqrt{3}}(1, -1, 1)$. Let M be the line $y + z = 0$, which is the perpendicular bisector of v_1 and v' . Let $u_2 = F_M(u_1) = \frac{1}{\sqrt{2}}(1, 0, 1)$, $v_2 = F_M(v_1) = v'$, and $w_2 = F_M(w_1) = w_2 = w'$. Let N be the line $x + y = 0$, which is the perpendicular bisector of u_2 and u' . Then $F_N(u_2) = u'$, $F_N(v_2) = v_2 = v'$ and $F_N(w_2) = w_2 = w'$. It follows that $F = F_N F_M F_L$.

By the Product of Two Reflections Theorem (Theorem 2.33), we see that $F_M F_L = R_{e_1, \frac{\pi}{2}}$ where $e_1 = (1, 0, 0)$ (because $L = L_a$ with $a = (0, 1, 0)$ and $M = L_b$ with $b = \frac{1}{\sqrt{2}}(0, 1, 1)$ and in the tangent space T_{e_1} we have $\varphi(a, b) = \frac{\pi}{4}$). Let $N' = N$, let M' be the line $z = 0$ which is the line through e_1 which is orthogonal to N' , and let $L' = M$ so that, by Theorem 2.33, we have $F_{M'} F_{L'} = R_{e_1, \frac{\pi}{2}} = F_M F_L$ (because $M' = L_{e_3}$ with $e_3 = (0, 0, 1)$ and $L' = L_c$ with $c = \frac{1}{\sqrt{2}}(0, 1, 1)$ and in the tangent space T_{e_1} we have $\theta_o(c, e_3) = \frac{\pi}{4}$). It follows that $F = F_{N'} F_{M'} F_{L'}$. Since $M' \cap N' = \{u_1\}$ where $u_1 = \frac{1}{\sqrt{2}}(1, -1, 0)$ and M' is perpendicular to N' , by Theorem 2.33 we have $F_{N'} F_{M'} = R_{u_1, \pi}$. Let $L'' = L'$, let N'' be the line through u_1 orthogonal to L'' , and let M'' be the line through u_1 which is orthogonal to N'' so that $F_{N''} F_{M''} = R_{u_1, \pi} = F_{N'} F_{M'}$. It follows that $F = F_{N''} F_{M''} F_{L''}$.

Note that $L'' = L_r$ where $r = \frac{1}{\sqrt{2}}(0, 1, 1)$, and $N'' = L_p$ where $p = \frac{1}{\sqrt{3}}(1, 1, -1)$ and $M'' = L_s$ where $s = \frac{1}{\sqrt{6}}(1, 1, 2)$. In the tangent space T_p we have $\theta_o(r, s) = \frac{\pi}{6}$ so, by Theorem 2.33, $F_{M''} F_{L''} = R_{p, \frac{\pi}{3}}$. Thus

$$F = F_{N''} F_{M''} F_{L''} = F_p R_{p, \frac{\pi}{3}} = -R_{p, \frac{4\pi}{3}}.$$

10: (a) Show that for every $w \in \mathbb{S}^2$ and $\theta \in \mathbb{R}$ there exist $u, v \in \mathbb{S}^2$ such that $R_{u,\pi}R_{v,\pi} = R_{w,\theta}$.

Solution: Let $w \in \mathbb{S}^2$ and $\theta \in \mathbb{R}$. Choose lines L and M through w so that $R_{w,\theta} = F_L F_M$. Let N be a line which is perpendicular to both L and M . Choose $u, v \in \mathbb{S}^2$ so that $L \cap N = \{\pm u\}$ and $M \cap N = \{\pm v\}$. Then

$$R_{w,\theta} = F_L F_M = F_L F_N F_N F_M = R_{u,\pi} R_{v,\pi}.$$

(b) Let $u \in \mathbb{S}^2$ and let L be a line in \mathbb{S}^2 . Show that $(F_L R_{u,\pi})^2 = I$ if and only if either $u \in L$ or $L = L_u$.

Solution: Note first that

$$(F_L R_{u,\pi})^2 = I \iff F_L R_{u,\pi} = (F_L R_{u,\pi})^{-1} \iff F_L R_{u,\pi} = R_{u,\pi}^{-1} F_L^{-1} \iff F_L R_{u,\pi} = R_{u,\pi} F_L.$$

Suppose that $u \in L$. Let M be the line through u which is perpendicular to L so that, by Theorem 2.33, we have $F_L F_M = R_{u,\pi} = F_M F_L$. Then

$$F_L R_{u,\theta} = F_L F_L F_M = F_M = F_M F_L F_L = R_{u,\pi} F_L.$$

Now suppose that $L = L_u$ so that $F_L = F_u$ then, by Part (2) of Theorem 5.38, we have

$$F_L R_{u,\pi} = F_u R_{u,\pi} = R_{u,\pi} F_u = R_{u,\pi} F_L.$$

Finally suppose that $u \notin L$ and $L \neq L_u$. Choose $v \in \mathbb{S}^2$ so that $L = L_v$ and note that $v \neq \pm u$ since $L \neq L_u$. Let M be the line through u which is perpendicular to L and choose $p \in \mathbb{S}^2$ so that $M = L_p$. Choose $w \in \mathbb{S}^2$ so that $L \cap M = \{\pm w\}$ and note that $w \neq \pm u$ since $u \notin L$. Let N be the line through u perpendicular to M so that $R_{u,\pi} = F_N F_M = F_M F_N$, and note that $N \neq L$ since $u \in M$ but $u \notin L$. Note that since $u, w \in M = L_p$ we have $u, w \in T_p$, and so $F_N F_L = R_{p,\theta}$ where $\theta = 2\varphi = \varphi(u, w)$. Note that since $u \neq \pm w$ we have $\theta \neq 2\pi k$ for $k \in \mathbb{Z}$, and since $u \neq \pm v$ we have $\theta \neq \pi + 2\pi k$ for $k \in \mathbb{Z}$. We have

$$F_L R_{u,\pi} = F_L F_N F_M = R_{p,\theta} F_p \quad \text{and} \quad R_{u,\pi} F_L = F_M F_N F_L = F_p R_{p,-\theta} = R_{p,-\theta} F_p.$$

Since $\theta \neq \pi k$ for $k \in \mathbb{Z}$ we have $\theta \neq -\theta + 2\pi k$ for $k \in \mathbb{Z}$, so $R_{p,\theta} \neq R_{p,-\theta}$ hence $R_{u,\pi} F_L \neq F_L R_{u,\pi}$.

(c) Let $[u, v, w]$ be a positively oriented triangle with circumcentre p and let L, M and N are the perpendicular bisectors of edges $[v, w]$, $[w, u]$ and $[u, v]$ respectively. Show that $F_L F_M F_N = F_N F_M F_L = F_K$ where K is the line through v and p .

Solution: For a reflection F we have $\det(F) = -1$ and it follows that $\det(F_L F_M F_N) = -1$. From the Geometric Classification of Isometries, it follows that $F_L F_M F_N$ is either of the form F_J for some line J or of the form $-R_{p,\theta}$ for some $p \in \mathbb{S}^2$ and some $\theta \in \mathbb{R}$. Since L, M and N are the perpendicular bisectors of the edges of $[u, v, w]$, we have $F_L F_M F_N(v) = F_L F_M(w) = F_L(u) = u$. Since $p \in L$, $p \in M$ and $p \in N$ we have $F_L F_M F_N(p) = F_L F_M(p) = F_L(p) = p$. Since the isometry $F_L F_M F_N$ fixes v and p it cannot be of the form $-R_{p,\theta}$ (since $R_{p,\theta}$ has no fixed points) so it must be equal F_J for some line J . Since $F_J(v) = v$ and $F_J(p) = p$ we have $v \in J$ and $p \in J$, so $J = K$. A similar argument shows that $F_N F_M F_L = F_K$.

11: (a) Let L be the line segment in \mathbb{R}^2 from $(\frac{1}{2}, 0)$ to $(\frac{1}{2}, \frac{1}{2})$. Find the arclength of the inverse image of L under the orthogonal projection $\phi(x, y, z) = (x, y)$.

Solution: The inverse image of the given line segment is the arc A from $a = \phi^{-1}(\frac{1}{2}, 0) = (\frac{1}{2}, 0, \frac{\sqrt{3}}{2})$ to $b = \phi^{-1}(\frac{1}{2}, \frac{1}{2}) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}})$ along the circle $C = \mathbb{S}^2 \cap P$ where P is the plane $x = \frac{1}{2}$. As a Euclidean circle in the plane P , the centre of C is at the point $c = (\frac{1}{2}, 0, 0)$ and the radius is $r = |a - c| = |(0, 0, \frac{\sqrt{3}}{2})| = \frac{\sqrt{3}}{2}$. Let $u = a - c = (0, 0, \frac{\sqrt{3}}{2})$ and $v = b - c = (0, \frac{1}{2}, \frac{1}{\sqrt{2}})$. Then the arc A along C from a to b subtends the angle $\theta = \theta(u, v)$, and we have

$$\cos \theta = \frac{u \cdot v}{|u||v|} = \frac{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}} = \frac{\sqrt{2}}{\sqrt{3}}$$

so the length of the arc A is equal to

$$L = r\theta = \frac{\sqrt{3}}{2} \cos^{-1} \frac{\sqrt{2}}{\sqrt{3}}.$$

(b) Let C be the circular disc in \mathbb{R}^2 centred at $(\frac{1}{2}, 0)$ of radius $\frac{1}{2}$. Find the area of the inverse image of C under the orthogonal projection $\phi(x, y, z) = (x, y)$.

Solution: The circle of radius $\frac{1}{2}$ centred at $(\frac{1}{2}, 0)$ has equation $x^2 + y^2 = x$ which can be written in polar coordinates as $r^2 = r \cos \theta$, or by $r = \cos \theta$. It follows that the circular disc C corresponds to the polar coordinates region $R = \{(r, \theta) \mid -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq \cos \theta\}$ and so, by the formula in Note 2.42, the area of the inverse image of C under ϕ is

$$\begin{aligned} A &= \int_{\theta=-\pi/2}^{\pi/2} \int_{r=0}^{\cos \theta} \frac{r}{\sqrt{1-r^2}} dr d\theta = \int_{\theta=-\pi/2}^{\pi/2} \left[-\sqrt{1-r^2} \right]_{r=0}^{\cos \theta} d\theta = \int_{\theta=-\pi/2}^{\pi/2} 1 - \sqrt{1-\cos^2 \theta} d\theta \\ &= \int_{\theta=-\pi/2}^{\pi/2} 1 - |\sin \theta| d\theta = 2 \int_{\theta=0}^{\pi/2} 1 - \sin \theta d\theta = 2 \left[\theta + \cos \theta \right]_{\theta=0}^{\pi/2} = 2 \left(\frac{\pi}{2} - 1 \right) = \pi - 2. \end{aligned}$$

(c) Let $R = \{(u, v) \in \mathbb{R}^2 \mid 0 \leq u \leq 1, 1 \leq v\}$. Find the perimeter and the area of the inverse image of the set R under the gnomic projection $\phi(x, y, z) = (\frac{x}{z}, \frac{y}{z})$.

Solution: The region R is bounded by the lines $u = 0$, $u = 1$ and $v = 1$. The inverse image of the line $v = 1$ in \mathbb{R}^2 is the line $\frac{y}{z} = 1$, that is the line $y = z$ in \mathbb{S}^2 intersected with the upper hemisphere H , the inverse image of the line $u = 1$ is the line $\frac{x}{z} = 1$, that is the line $x = z$ in \mathbb{S}^2 intersected with H , and the inverse image of the line $u = 0$ is the line $x = 0$ in \mathbb{S}^2 intersected with H . Let $k = \phi^{-1}(0, 1) = \frac{1}{\sqrt{2}}(0, 1, 1)$, $l = \phi^{-1}(1, 1) = \frac{1}{\sqrt{3}}(1, 1, 1)$ and let $m = \lim_{t \rightarrow \infty} \phi^{-1}(0, t) = \lim_{t \rightarrow \infty} \frac{1}{1+y^2}(0, t, 1) = (0, 1, 0)$. Then the inverse image of the region R is the triangle $T = [k, l, m]$. The side lengths a , b and c are given by $\cos a = l \cdot m = \frac{1}{\sqrt{3}}$, $\cos b = m \cdot k = \frac{1}{\sqrt{2}}$ and $\cos c = k \cdot l = \frac{\sqrt{2}}{\sqrt{3}}$, and so the perimeter of T is

$$L = (a + c) + b = \left(\cos^{-1} \frac{1}{\sqrt{3}} + \cos^{-1} \frac{\sqrt{2}}{\sqrt{3}} \right) + \cos^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}.$$

By the First Law of Cosines, the angles α , β and γ are given by

$$\begin{aligned} \cos \alpha &= \frac{\cos a - \cos b \cos c}{\sin b \sin c} = \frac{\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{3}}}{\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}} = 0, \\ \cos \beta &= \frac{\cos b - \cos c \cos a}{\sin c \sin a} = \frac{\frac{1}{\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{2}}{\sqrt{3}}} = \frac{1}{2} \text{ and} \\ \cos \gamma &= \frac{\cos c - \cos a \cos b}{\sin a \sin b} = \frac{\frac{\sqrt{2}}{\sqrt{3}} - \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{3}}} = \frac{1}{\sqrt{2}}, \end{aligned}$$

and so the area of T is

$$A = (\alpha + \beta + \gamma) - \pi = \left(\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{4} \right) - \pi = \frac{\pi}{12}.$$

12: (a) Let $w = \frac{1}{\sqrt{3}}(1, -1, 1)$. Find the area of the image of the circle $C(w, \frac{\pi}{6})$ under the stereographic projection $\phi(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$.

Solution: Note that $C(w, \frac{\pi}{6}) = \mathbb{S}^2 \cap P$ where P is the plane in \mathbb{R}^3 with equation $p \cdot w = \cos \frac{\pi}{6}$ where $p \in \mathbb{R}^3$, which we can also write as $\frac{1}{\sqrt{3}}(x, y, z) \cdot (1, -1, 1) = \frac{\sqrt{3}}{2}$ where $(x, y, z) \in \mathbb{R}^3$, that is $x - y + z = \frac{3}{2}$. Letting $(a, b, c, d) = (1, -1, 1, -\frac{3}{2})$ and applying the formula which occurs at the end of the proof of Theorem 2.55, we see that the image of the circle $C(w, \frac{\pi}{6})$ under the stereographic projection ϕ is the circle D in the uv -plane centred at $(u, v) = (\frac{-a}{c+d}, \frac{-b}{c+d}) = (2, -2)$ of radius $r = \frac{\sqrt{a^2+b^2+c^2-d^2}}{|c+d|} = \sqrt{3}$. The area of the image circle D is $A = \pi r^2 = 3\pi$.

(b) Let T be the triangle on \mathbb{S}^2 with vertices at $\frac{1}{\sqrt{2}}(1, -1, 0)$, $\frac{1}{\sqrt{3}}(1, 1, 1)$ and $\frac{1}{\sqrt{3}}(1, -1, 1)$. Find the area of the image of T under the stereographic projection $\phi(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$.

Solution: Let $a = \phi(u) = \left(\frac{1/\sqrt{2}}{1-0}, \frac{-1/\sqrt{2}}{1-0}\right) = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$, $b = \phi(v) = \left(\frac{1/\sqrt{3}}{1-1/\sqrt{3}}, \frac{1/\sqrt{3}}{1-1/\sqrt{3}}\right) = \left(\frac{\sqrt{3}+1}{2}, \frac{\sqrt{3}+1}{2}\right)$ and $c = \phi(w) = \left(\frac{1/\sqrt{3}}{1-1/\sqrt{3}}, \frac{-1/\sqrt{3}}{1-1/\sqrt{3}}\right) = \left(\frac{\sqrt{3}+1}{2}, -\frac{\sqrt{3}+1}{2}\right)$. Let L , M and N be the lines in \mathbb{S}^2 containing the edges $[v, w]$, $[w, u]$ and $[u, v]$ respectively. Since $v \times w$ is in the direction of $(1, 0, -1)$, we have $L = \mathbb{S}^2 \cap P$ where P is the plane $x - z = 0$. Since $w \times u$ is in the direction of $(1, 1, 0)$, we have $M = \mathbb{S}^2 \cap Q$ where Q is the plane $x + y = 0$. Since $u \times v$ is in the direction of $(-1, -1, 2)$ we have $N = \mathbb{S}^2 \cap R$ where R is the plane $x + y - 2z = 0$. Since Q passes through $(0, 0, 1)$, the map ϕ maps points in Q to points in Q , so the image of M is equal to $Q \cap \mathbb{R}^2$ which is the line $x + y = 0$ in the xy -plane, that is the line $u + v = 0$ in the uv -plane. Recall that the proof of Theorem 2.55 shows that the intersection of \mathbb{S}^2 with the plane $ax + by + cz = d$ with $c \neq d$ is mapped by ϕ to the circle centred at $(\frac{a}{d-c}, \frac{b}{d-c})$ of radius $\frac{\sqrt{a^2+b^2+c^2-d^2}}{|d-c|}$. It follows that the image $\phi(L)$ is the circle centred at $p = (1, 0)$ of radius $r = \sqrt{2}$ and that the image $\phi(N)$ is the circle centred at $q = (\frac{1}{2}, \frac{1}{2})$ of radius $s = \frac{\sqrt{6}}{2}$. The figure below shows the images $\phi(L)$, $\phi(M)$ and $\phi(N)$ in grey and outlines the image of $[u, v, w]$ in blue.

The area of the image of $[u, v, w]$ is

$$A = B + C - D - E$$

where B is the area of the sector of the circle centred at p from b to a , and C is the area of the quadrilateral $0, c, p, b$ which is equal to twice the area of triangle $0, c, p$, and D is the area of the sector of the circle centred at q from a to b , and E is the area of triangle $0, a, q$. It is easy to check that $C = \frac{\sqrt{3}+1}{2}$ and $E = \frac{1}{2\sqrt{2}}$. Since $b - p = (\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}+1}{2})$, by symmetry we have $\theta = \angle cpb = 2 \tan^{-1} \frac{\sqrt{3}+1}{\sqrt{3}-1} = 2 \cdot \frac{5\pi}{12} = \frac{5\pi}{6}$ and so $B = \frac{1}{2}r^2\theta = \frac{5\pi}{6}$. Since $\angle 0qa = \tan^{-1} \sqrt{2}$ we have $\phi = \angle aqb = \pi - \tan^{-1} \sqrt{2}$ and so $D = \frac{1}{2}s^2\phi = \frac{3}{4}\phi = \frac{3\pi}{4} - \frac{3}{4}\tan^{-1} \sqrt{2}$. Thus

$$A = B + C - D - E = \frac{5\pi}{6} + \frac{\sqrt{3}+1}{2} - \frac{3\pi}{4} + \frac{3}{4}\tan^{-1} \sqrt{2} - \frac{1}{2\sqrt{2}} = \frac{\pi}{12} + \frac{3}{4}\tan^{-1} \sqrt{2} + \frac{\sqrt{3}}{2} + \frac{1}{2} - \frac{1}{2\sqrt{2}}.$$

