

1: (a) Let $u = (3, 4, -1)$ and $v = (4, 1, 3)$. Find the spherical distance between u and v on the sphere given by $x^2 + y^2 + z^2 = 26$.
 (b) Let $u = \frac{1}{\sqrt{3}}(1, 1, -1)$ and $v = \frac{1}{\sqrt{2}}(1, 0, 1)$. Find a point $w \in \mathbb{S}^2$ such that L_w is the line through u and v .
 (c) Let $u = \frac{1}{3}(1, 2, 2)$ and $v = \frac{1}{\sqrt{5}}(0, 1, 2)$. Find a point $w \in \mathbb{S}^2$ such that L_w is the line through u which is perpendicular to L_v .
 (d) Let $u = \frac{1}{\sqrt{3}}(1, -1, 1)$ and $v = \frac{1}{\sqrt{6}}(1, 2, 1)$. Find the two points of intersection on \mathbb{S}^2 of the spherical line L_u and the spherical circle $C(v, \frac{\pi}{3})$.
 (e) Let $u = \frac{1}{\sqrt{2}}(0, 1, 1)$ and $v = \frac{1}{\sqrt{6}}(1, 2, 1)$. Find $r > 0$ such that $C(u, r)$ is tangent to L_v .

2: (a) Let $u = \frac{1}{\sqrt{5}}(2, 0, -1)$, $v = (2, -1, 4)$ and $w = (1, 3, 2)$. Find the oriented angle $\theta_o(v, w)$ from v to w in the tangent space T_u .
 (b) Let $u = \frac{1}{\sqrt{6}}(1, 1, 2)$, $v = \frac{1}{\sqrt{14}}(2, 1, 3)$ and $w = \frac{1}{\sqrt{11}}(1, 3, 1)$. Find u_v and u_w .
 (c) Let $u = \frac{1}{3}(-1, 2, -2)$, $v = \frac{1}{\sqrt{2}}(1, 0, 1)$ and $w = \frac{1}{3\sqrt{3}}(5, -1, 1)$. Find the interior angles α , β and γ in the ordered triangle $[u, v, w]$.

3: Let $[u, v, w]$ be a triangle with edge lengths a , b and c and interior angles α , β and γ .
 (a) Given that $a = \frac{\pi}{3}$, $c = \frac{\pi}{6}$ and $\beta = \frac{2\pi}{3}$, find b .
 (b) Given that $a = \frac{\pi}{6}$, $\beta = \frac{5\pi}{6}$ and $\gamma = \frac{\pi}{4}$, find c .
 (c) Given that $a = \cos^{-1} \frac{1}{3}$, $b = \frac{\pi}{2}$ and $\alpha = \frac{\pi}{4}$, find all possible values of c .

4: (a) Let $u = \frac{1}{\sqrt{6}}(1, 2, 1)$, $v = \frac{1}{\sqrt{6}}(1, -1, 2)$ and $w = \frac{1}{\sqrt{6}}(2, 1, -1)$. Find the centroid of the spherical triangle $[u, v, w]$, that is find the point of intersection of the 3 medians $[u, \frac{v+w}{|v+w|}]$, $[v, \frac{w+u}{|w+u|}]$ and $[w, \frac{u+v}{|u+v|}]$.
 (b) Let $u = \frac{1}{3}(2, 2, -1)$, $v = \frac{1}{3}(1, 2, 2)$ and $w = \frac{1}{3}(2, -1, -2)$. Find the centre and radius of the circumscribed circle of the spherical triangle $[u, v, w]$.
 (c) Let $u = \frac{1}{\sqrt{3}}(1, 1, 1)$, $v = \frac{1}{\sqrt{3}}(1, -1, -1)$ and $w = (0, 1, 0)$. Find the incentre of triangle $[u, v, w]$.

5: (a) Find the perimeter of the square on \mathbb{S}^2 with interior angles equal to $\frac{2\pi}{3}$.
 (b) Find the area of the regular hexagon on \mathbb{S}^2 with sides of length $\ell = \cos^{-1} \frac{2}{3}$.
 (c) Find the perimeter and the area of the regular hexagon on \mathbb{S}^2 which is inscribed in an equilateral triangle with interior angles $\frac{\pi}{2}$.

6: (a) For a point (x, y, z) on the sphere $x^2 + y^2 + z^2 = R^2$, let $\phi \in [0, \pi]$ measure the angle in \mathbb{R}^3 from $(0, 0, 1)$ to (x, y, z) and let theta $\theta \in \mathbb{R}$ measure the angle in \mathbb{R}^2 from $(1, 0)$ counterclockwise to (x, y) . Given $0 \leq \phi_1 \leq \phi_2 \leq \pi$ and $\theta_1 \leq \theta_2 \leq \theta_1 + 2\pi$, find the area of the portion of the sphere given by $\phi_1 \leq \phi \leq \phi_2$ and $\theta_1 \leq \theta \leq \theta_2$.
 (b) A light at position $(0, 0, 8)$ shines down on a spherical balloon of radius $\sqrt{5}$ centred at $(3, 4, 3)$. Find the area of the shadow which is cast on the xy -plane (given that the shadow is an ellipse and that the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to πab).
 (c) A light at position $(0, 0, 30)$ shines down on a red spherical balloon of radius $\sqrt{10}$ centred at $(0, 0, 20)$ casting a shadow on a green balloon of radius $6\sqrt{5}$ centred at $(0, 0, 0)$. Find the area of the illuminated portion of the green balloon.

7: (a) Find the radius R of a sphere on which there is an equilateral triangle with sides of length π and angles equal to $\frac{5\pi}{6}$.
 (b) Find an approximate value for the radius R of a sphere on which there is a circle of radius 2 and circumference $\frac{215\pi}{54}$.
 (c) Let R be the radius of the Earth, in meters ($R \cong 6,370,000$). We describe the position of a point on the Earth in terms of its longitude θ (with $\theta = 0$ at Greenwich, England and $\theta = \frac{\pi}{2}$ somewhere in Bangladesh) and its latitude ϕ (with $\phi = 0$ at the equator and $\phi = \frac{\pi}{2}$ at the north pole). Find the distance (expressed as a multiple of R) and the bearing (expressed as an angle north of east) from the point at $(\theta, \phi) = (\frac{\pi}{3}, \frac{\pi}{6})$ to the point at $(\theta, \phi) = (\frac{\pi}{2}, \frac{\pi}{4})$.

8: (a) Let $u = \frac{1}{\sqrt{6}}(1, -1, 2)$. Express the isometry F_u in matrix form.

(b) Let $u = \frac{1}{3}(1, 2, -2)$ and let $\theta = \frac{\pi}{2}$. Express the isometry $R_{u,\theta}$ in matrix form.

(c) Let $u = \frac{1}{\sqrt{3}}(1, 1, 1)$, $\theta = \frac{\pi}{3}$, $v = \frac{1}{\sqrt{6}}(2, -1, 1)$ and $x = \frac{1}{\sqrt{2}}(1, 0, 1)$. Find $R_{u,\theta}F_v(x)$.

(d) Find $u \in \mathbb{S}^2$ and $\theta \in [0, \pi]$ such that, in matrix form, we have $-R_{u,\theta} = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$.

9: (a) Let $u = \frac{1}{\sqrt{2}}(1, 1, 0)$, $w = \frac{1}{\sqrt{3}}(1, -1, 1)$ and $\theta = \frac{\pi}{3}$. Find $v \in \mathbb{S}^2$ such that $F_uF_v = R_{w,\theta}$.

(b) Let $u = \frac{1}{\sqrt{2}}(1, 0, -1)$, $v = \frac{1}{\sqrt{6}}(-1, 2, 1)$, $\alpha = \frac{\pi}{4}$ and $\beta = \frac{\pi}{3}$. Find w and γ such that $R_{u,2\alpha}R_{v,2\beta}R_{w,2\gamma} = I$.

(c) Find $p \in \mathbb{S}^2$ and $\theta \in \mathbb{R}$ so that $F = -R_{p,\theta}$ where F is the isometry such that $F(u) = u'$, $F(v) = v'$ and $F(w) = w'$ where $u = \frac{1}{\sqrt{2}}(1, 1, 0)$, $v = (0, 1, 0)$, $w = \frac{1}{\sqrt{3}}(1, 1, 1)$, $u' = \frac{1}{\sqrt{2}}(0, -1, 1)$, $v' = (0, 0, 1)$ and $w' = \frac{1}{\sqrt{3}}(1, -1, 1)$.

10: (a) Show that for every $w \in \mathbb{S}^2$ and $\theta \in \mathbb{R}$ there exist $u, v \in \mathbb{S}^2$ such that $R_{u,\pi}R_{v,\pi} = R_{w,\theta}$.

(b) Let $u \in \mathbb{S}^2$ and let L be a line in \mathbb{S}^2 . Show that $(F_L R_{u,\pi})^2 = I$ if and only if either $u \in L$ or $L = L_u$.

(c) Let $[u, v, w]$ be a positively oriented triangle with circumcentre p and let L, M and N are the perpendicular bisectors of edges $[v, w]$, $[w, u]$ and $[u, v]$ respectively. Show that $F_L F_M F_N = F_N F_M F_L = F_K$ where K is the line through v and p .

11: (a) Let L be the line segment in \mathbb{R}^2 from $(\frac{1}{2}, 0)$ to $(\frac{1}{2}, \frac{1}{2})$. Find the arclength of the inverse image of L under the orthogonal projection $\phi(x, y, z) = (x, y)$.

(b) Let C be the circular disc in \mathbb{R}^2 centred at $(\frac{1}{2}, 0)$ of radius $\frac{1}{2}$. Find the area of the inverse image of C under the orthogonal projection $\phi(x, y, z) = (x, y)$.

(c) Let $R = \{(u, v) \in \mathbb{R}^2 \mid 0 \leq u \leq 1, 1 \leq v\}$. Find the perimeter and the area of the inverse image of the set R under the gnomic projection $\phi(x, y, z) = (\frac{x}{z}, \frac{y}{z})$.

12: (a) Let $w = \frac{1}{\sqrt{3}}(1, -1, 1)$. Find the area of the image of the circle $C(w, \frac{\pi}{6})$ under the stereographic projection $\phi(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$.

(b) Let T be the triangle on \mathbb{S}^2 with vertices at $\frac{1}{\sqrt{2}}(1, -1, 0)$, $\frac{1}{\sqrt{3}}(1, 1, 1)$ and $\frac{1}{\sqrt{3}}(1, -1, 1)$. Find the area of the image of T under the stereographic projection $\phi(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$.