
PMATH 321 Non-Euclidean Geometry, Solutions to the Exercises for Chapter 1

Note: for many of the exercises, in order to better understand the solution, it helps to draw a picture which
illustrates the situation. The solutions below do not include pictures, so it is recommended that you draw
your own.

1: Let C = C(0, r) be the circle in R2 of radius r centred at the origin.

(a) Given a ∈ R with 0 < a < r, find the centre (b, 0) and radius s of the circle which passes through the point
(a, 0) and intersects the circle C orthogonally.

Solution: Let D be the circle of radius s centred at (b, 0) which passes through (a, 0) and intersects orthogonally
with C. Let u = (0, 0), let v = (b, 0) and let w be the point of intersection of C and D which lies above the
x-axis. Since w ∈ C we have |w− u| = r, since w ∈ D we have |w− v| = s, and since u = (0, 0) and v = (b, 0)
with b > r > 0 we have |v − u| = b. Since D intersects orthogonally with C we have ∠vwu = π

2 so, by
Pythagoras’ Theorem, we have |v − u|2 = |w − v|2 + |u − w|2, that is b2 = s2 + r2 (1). Let p = (a, 0). Since
p = (a, 0) and v = (b, 0) with b > r > a we have |p−v| = b−a. Since p lies on the circle D we have |p−v| = s,

and so b− a = s (2). Solve equations (1) and (2) to get b = r2+a2

2a and s = r2−a2
2a .

(b) Let u = (0, r) and let v = (x, y) be a point on C with v 6= u. Find the point of intersection w = (a, 0) of
the line through u and v with the x-axis.

Solution: Since w lies on the line through u and v, we have w = u + t(v − u) for some t ∈ R, For t ∈ R we
have

w = u+ t(v − u) ⇐⇒ (a, 0) = (0, r) + t
(
(x, y)− (0, r)

)
⇐⇒ (a, 0) =

(
tx , r + t(y − r)

)
⇐⇒

(
a = tx and 0 = r + t(y − r)

)
.

To get 0 = r + t(y − r) we need t = r
r−y , and then we have a = tx = rx

r−y .

(c) Let a, b, c and d be any 4 distinct points on C such that the line segment [a, c] intersects with the line
segment [b, d] at a point p inside C. Show that |a− p||p− c| = |b− p||p− d|.
Solution: Since the points b and c both subtend the same chord [a, d] on the circle C (see Corollary 1.52), it
follows that ∠abd = ∠acd so we have ∠abp = ∠dcp. Since the points a and d both subtend the chord [b, c] on
the circle C, it follows that ∠bac = ∠bdc and so we have ∠pab = ∠pdc. Since ∠abp = ∠dcp and ∠pab = ∠pdc,
the triangles [a, b, p] and [d, c, p] are similar, by Corollary 1.50 (Similar Triangles, also called Angle-Angle),
meaning that there is a scaling factor t > 0 such that |p− c| = t|p− b|, |d− p| = t|a− p| and |c− d| = t|b− a|.
Thus we have t = |p−c|

|p−b| = |d−p|
|a−p| hence |p− c||a− p| = |p− b||d− p|, as required.



2: (a) Let u = (1, 0), v = (4, 1) and w = (6, 5). Find the exact values of the interior angles α, β and γ in the
triangle [u, v, w].

Solution: Let p = (3, 2). Note that p is the point on the line through u and w which is nearest to v. From the
right-angled triangle [u, p, v] (which has a right angle at p) we see that

α = ∠wuv = ∠puv = tan−1 |p−v||p−u| = tan−1
√
2

2
√
2

= tan−1 1
2 .

From the right-angled triangle [w, p, v] (which has a right-angle at p) we see that

γ = ∠vwu = ∠vwp = tan−1 |v−p||p−w| = tan−1
√
2

3
√
2

= tan−1 1
3 .

Let q = (7, 2). Note that q is the point on the line through u and v which is nearest to w. From the right-angled
triangle [v, q, w] (which has a right-angle at q) we see that

β = π − ∠wvq = π − tan−1 |w−q||q−v| = π tan−1
√
10√
10

= π tan−1 1 = π − π
4 = 3π

4 .

(b) Let u = (−1, 1) and v = (2, 0). Find a point w ∈ R2 such that the triangle [u, v, w] is positively oriented
with α = π

4 and γ = tan−1 1
3 .

Solution: In order for [u, v, w] to be positively oriented, we need w to lie above the line through u and v.
Let a = (0, 4) and b = (3, 3). Note that the vertices u, v, b and a form a square (with sides of length

√
10)

and the line through u and b is a diagonal of the square, and so ∠buv = π
4 . It follows that in order to have

∠wuv = α = π
4 we must choose w to lie along the line L through u and b.

Let c = (1, 2) and note that c is the point on line L which is nearest to v. Note that [b, c, v] is a right-angle
with its right angle at c and |b− c| = |c− v| =

√
5. To get γ = tan−1 1

3 we can choose

w = c+ 3(b− c) = (7, 5)

so [w, c, v] is a right-angled triangle with right angle at c and γ = ∠vwu = ∠vwc = tan−1 |v−c||wic| =
√

5
3
√
5

= 1
3 .

(c) Let a =
√

5, b =
√

10 and c =
√

13. Find the exact area of the triangle with sides of length a, b and c.

Solution: By inspection, we can place vertices u, v and w at positions u = (0, 0), v = (3, 2) and w = (1, 3) to
get a = |w− u| =

√
5, b = |u− v| =

√
10 and c = |v− u| =

√
13. Then we can use the formula from Corollary

1.51 to get

A = 1
2

∣∣∣det(u, v) + det(v, w) + det(w, u)
∣∣∣ = 1

2

∣∣∣det(v, w)
∣∣∣ = 1

2

∣∣∣∣det

(
3 1
2 3

) ∣∣∣∣ = 7
2 .



3: (a) Let u = (6, 7), v = (−2, 3) and w = (7, 0). Find the centre o and the radius r of the circumscribed circle
of triangle [u, v, w].

Solution: The line segment [u, v] has slope v2−u2

v1−u1
= 1

2 , The perpendicular bisector of [u, v] has slope −2 and

passes through the point u+v
2 = (2, 5) so it has equation 2x + y = 9 (1). The line segment [v, w] has slope

w2−v2
w1−v1 = − 1

3 . The perpendicular bisector of [v, w] has slope 3 and passes through v+w
2 =

(
5
2 ,

3
2

)
so it has

equation 3x− y = 6 (2). Solve equations (1) and (2) to get o = (3, 3), and the radius is r = |o− v| = 5

(b) Let u = (0, 9), v = (12, 0) and w = 12, 14). Find the centre i and the radius r of the inscribed circle of
triangle [u, v, w].

Solution: Since u− v = (−12, 9) = 3(−4, 3), the line from v to u has direction vector (−4, 3) and we note that
|(−4, 3)| = 5. The line from v to w has direction vector (0, 5) with |(0, 5)| = 5. The internal angle bisector at
v is the line through v = (12, 0) with direction vector (−4, 3) + (0, 5) = (−4, 8) = 4(−1, 2), so it has equation
2x + y = 24 (1). The line from w to u has direction vector u − w = (−12,−5) and |(−12, 5)| = 13. The line
from w to v has direction vector (0,−13) with |(0,−13)| = 13. The internal angle bisector at w is the line
through w = (12, 14) with direction vector (−12,−5) + (0,−13) = (−12,−18) = −6(2, 3), so it has equation
3x− 2y = 8 (2). Solve equations (1) and (2) to get i = (8, 8), and then the radius r is the distance from i to
the line through v and w, that is r = 4.

(c) Let u = (−2, 9), v = (2, 1) and w = (7, 6). Find the centres o, g and h of the triangle [u, v, w] and verify
that h = 3g − 2o.

Solution: We have g = 1
3 (u+ v +w) = 1

3 (7, 16) =
(
7
3 ,

16
3

)
. The perpendicular bisector of [u, v] passes through

the point u+v
2 = (0, 5) and has slope −v1−u1

v2−u2
= 1

2 , so it has equation x − 2y = −10 (1). The perpendicular

bisector of [v, w] passes through v+w
2 =

(
9
2 ,

7
2

)
with slope −w1−v1

w2−v2 = −1, so it has equation x + y = 8 (2).
Solve equations (1) and (2) to get o = (2, 6). The altitude from w passes through w = (7, 6) with slope
−v1−u1

v2−u2
= 1

2 , so it has equation x− 2y = −5 (3). The altitude from u passes through u = (−2, 9) with slope

−w1−v1
w2−v2 = −1, so it has equation x + y = 7 (4). Solve equations (3) and (4) to get h = (3, 4). Finally, note

that 3g − 2o = (7, 16)− (4, 12) = (3, 4) = h.



4: (a) Let u = (3, 1), v = (3, 6) and i = (2, 3). Find the point w in R2 such that i is the incentre of triangle
[u, v, w].

Solution: Let a = (3, 3) and note that a is the point on [u, v] which is nearest to i. From the right-angled

triangle [u, a, i] we see that ∠vui = ∠aui = tan−1 |i−a||a−u| = tan−1 1
2 . Let b = u + 2(i − u) = (1, 5) and

let c = b + (i − u)× = (−1, 4) so that [u, b, c] is a right angled triangle (with its right angle at b), and

∠iuc = ∠buc = tan−1 |c−b||b−u| = tan−1 1
2 . It follows that w must lie along the ray from u through c. The

line through u and c has equation 3x + 4y = 13 (1). From the right-angled triangle [i, v, a] we see that

∠ivu = ∠iva = tan−1 |i−a||a−v| = tan−1 1
3 . Let d = v + 3(i − v) = (0,−3) and let e = di(i − v)× = (−3,−2)

so that [v, d, c] is a right-angled triangle (with right angle at d) and ∠ive = ∠dve = tan−1 1
3 . It follows that

w must lie along the ray from v through e. The line through v and e has equation 4x − 3y = −6 (2). Solve
equations (1) and (2) to get w =

(
3
5 ,

14
5

)
.

(b) Let u = (7, 4), o = (1, 1) and g = (1, 2). Find points v and w in R2 such that o is the circumcentre and g
is the centroid of triangle [u, v, w].

Solution: Since g lies 2
3 of the way along the median from u to the midpoint m = v+w

2 it follows that
m = u+ 3

2 (g−u) = (−2, 1). Since o lies on the perpendicular bisector of [v, w] it follows that the line through
v, and w is the line through m which is perpendicular to the vector o−m = (3, 0), so the line through v and
w has equation x = −2 (1). Since o is equidistant from u, v and w the points v and w both lie on the circle
centred at o of radius |o−u| = 3

√
5, which has equation (x−1)2 +(y−1)2 = 45 (2). Put x = −2 into equation

(2) to get (−3)2 + (y − 1)2 = 45 which gives (y − 1)2 = 36 hence y − 1 = ±6, that is y ∈ {−5, 7}. Thus v and
w are the two points (−2,−5) and (−2, 7).



5: (a) Let L be the line x+ y = 1, let M be the line 3y = 2x+ 6, and let N be the line 2x+ y = 6. Find points
u, v, w ∈ R2 such that, in the triangle [u, v, w], L is the perpendicular bisector of [u, v], M is the median from
u, and N is the altitude from v.

Solution: Let [u, v, w] be a triangle which satisfies the required conditions. Let p = (5,−4) and note that
L ∩ N = {p}. Since N is the altitude from v we have v ∈ N so N is the line through p and v. Let K be
the line through p and u. Let m be the midpoint m = u+v

2 . Since L is the perpendicular bisector of [u, v]
the triangles [p, v,m] and [p, u,m] are congruent right-angled triangles (with the right angles at m) and so we
have ∠vpm = ∠upm. It follows that K is the line through p with K 6= L for which θ(N,L) = θ(L,K) (so
L is the angle bisector of N and K at p). Let a = (3, 0) and b = (2,−1) so that a ∈ N and b is the point

on L nearest to a. Then we have θ(N,L) = ∠apb = tan−1 |a−b||b−p| = tan−1 1
3 . Let c = b + (b − a) = (1,−2)

so that [p, b, a] is a right-angled triangle (with right angle at b) and ∠cpb = tan−1 |c−b||b−p| = tan−1 1
3 . It follows

that the K is the line through p and c, and so K has equation x + 2y = −3. Since M is the median from u
we must have u ∈ M . Since u ∈ M and u ∈ K we can solve the equations for M and K to get u = (−3, 0).
The midpoint m is the point on L nearest to u, which is the point m = (−1, 2), and then the point v is given
by v = u + 2(m − u) = (1, 4). Since N is the altitude from v, the line through u and w is the line through
u perpendicular to N , which has equation x − 2y = −3 (1). Since M is the median from u we must have
v+w
2 ∈ M . For w = (x, y) we have v+w

2 = (1,4)+(x,y)
2 =

(
x+1
2 , y+4

2

)
and by putting this in the equation of M

we have

v+w
2 ∈M ⇐⇒ 3

(
y+4
2

)
= 2
(
x+1
2

)
+ 6 ⇐⇒ 3(y + 4) = 2(x+ 1) + 12 ⇐⇒ 2x− 3y = −2 (2)

Solve equations (1) and (2) to get w = (2, 2).

(b) Let L be the line 2y = x+ 4, let M be the line x+ y = 4, and let N be the line y + 8 = 3x. Find points
u, v, w ∈ R2 such that, in the triangle [u, v, w], L is the angle bisector at u, M is the altitude from v, and N
is the median from w.

Solution: Let [u, v, w] be a triangle with the required properties. Let K be the line through u and w. Since M
is the altitude from v, the line K is perpendicular to M . Since M has normal vector (1, 1), K has direction
vector (1, 1). Let J be the line through u and v. Then L is an angle bisector of the lines J and K at the
point u. Let us determine the direction of the line J . Since K has direction vector (1, 1) and L has direction
vector (2, 1) we have θ(L,K) = θ

(
(2, 1), (1, 1)

)
= cos−1 3√

10
= tan−1 1

3 . Since L has direction vector (2, 1), to

get θ(J, L) = θ(L,K) = tan−1 1
3 , the line J must be in the direction of the vector 3(2, 1) + (1,−2) = (7, 1).

Since the line J through u and v has direction vector (7, 1), we can write v = u+ t(7, 1) for some t ∈ R, and
then the midpoint m of u and v is m = u+v

2 = u+ t
2 (7, 1). Let us now calculate the coordinates of the point

u. Let u = (x, y). Then m = u + t
2 (7, 1) = (x + 7t

2 , y + t
2 ) and v = u + t(7, 1) = (x + 7t , y + t). Put v into

the equation for M to get (x + 7t) + (y + t) = 4 that is x + y + 8t = 4 (1). Put m into the equation for N
to get (y + t

2 ) + 8 = 3(x + 7t
2 ), that is 3x − y + 10t = 8 (2). Multiply equation (2) times 4 and subtract 5

times equation (1) to get 7x − 9y = 12 (3). Since u also lies on L, which has equation 2y = x + 4 (4), we
can solve equations (3) and (4) to get u = (12, 8). Put (x, y) = (12, 8) into equation (1) to get t = −2, and
so v = u + t(7, 1) = (12, 8) − 2(7, 1) = (−2, 6). The line K through u and w is the line through u = (12, 8)
with direction vector (1, 1), so K has equation x− y = 4 (5). The point w also lies on the line N , which has
equation 3x− y = 8 (6). Solve equations (5) and (6) to get w = (2,−2).



6: (a) Let u = (1, 1, 2), v = (2, 1, 3) and x = (4, 1,−1). Find ProjU (x) where U = Span{u, v}.
Solution: Let w = u× v = (1, 1, 2)× (2, 1, 3) = (1, 1,−1). Then

ProjU (x) = x− Projw(x) = x− x.w
|w|2

w = (4, 1,−1)− (4, 1,−1)× (1, 1,−1)∣∣(1, 1,−1)
∣∣2 (1, 1,−1)

= (4, 1,−1)− 6
3 (1, 1,−1) = (4, 1,−1)− (2, 2,−2) = (2,−1, 1).

(b) Let a = (2, 1, 3), b = (1, 2, 1), u = (1, 3, 2) and v = (2, 0, 1). Find the distance between the line x = a+ tu
and the line x = b+ tv.

Solution: In general, when L is the line x = a+ su, s ∈ R, and M is the line x = b+ tv, t ∈ R, the Euclidean
distance between L and M is given by

dE(L,M) = min
{
d(a+su, b+tv)

∣∣ s, t ∈ R
}

= min
{
|(a+su)− (b+tv)|

∣∣ s, t ∈ R
}

= min
{
|(a−b)− (−su+tv)|

∣∣ s, t ∈ R
}

= min
{
d(a−b, w)

∣∣w ∈ Span{u, v}
}

= dE(a−b, U) where U = Span{u, v}

=
∣∣∣Proju×v(a−b)

∣∣∣
For this particular problem, note that u× v = (1, 3, 2)× (2, 0, 1) = (3, 3,−6) and let w = 1

3 (u× v) = (1, 1,−2).
The distance d between the two lines is

d =
∣∣Proju×v(a−b)

∣∣ =
∣∣Projw(a−b)

∣∣ =
|(a−b).w|
|w|

=

∣∣(1,−1, 2). (1, 1,−2)
∣∣∣∣(1, 1,−2)

∣∣ = 4√
6

= 2
√
6

3 .

(c) Referring to Theorem 1.22 in the Lecture Notes (Properties of the Cross Product), use Properties 1, 2, 3
and 5 to prove Property 4.

Solution: Let u, v, w, x ∈ R3. Then

(u× v). (w × x) =
(
(u× v)× w

).x by Theorem 1.22 Part 5

=
(
(u.w)v − (v .w)u

).x by Theorem 1.22 Part 3

= (u.w)(v .x)− (v .w)(u.x) by Theorem 1.22 Part 1



7: Let u1 = (1, 0, 1,−1), u2 = (2, 1, 1, 0), u3 = (1,−3, 2, 1), B = {u1, u2, u3}, U = Span(B), and x = (1, 1, 7, 3).
Find ProjU (x) in the following three ways.

(a) Let A =
(
u1, u2, u3

)
∈M4×3 so ProjU (x) = At where t is the solution to ATA t = ATx.

Solution: We have

ATA =

 1 0 1 −1
2 1 1 0
1 −3 2 1




1 2 1
0 1 −3
1 1 2
−1 0 1

 =

 3 3 2
3 6 1
2 1 15



ATx =

 1 0 1 −1
2 1 1 0
1 −3 2 1




1
1
7
3

 =

 5
10
15


(
ATA

∣∣ATx) =

 3 3 2
3 6 1
2 1 15

∣∣∣∣∣∣
5
10
15

 ∼
 1 2 −13

3 6 1
2 1 15

∣∣∣∣∣∣
−10

10
15

 ∼
 1 2 −13

0 0 40
0 3 −41

∣∣∣∣∣∣
−10

40
−35


∼

 1 2 −13
0 3 −41
0 0 1

∣∣∣∣∣∣
−10
−35

1

 ∼
 1 2 0

0 3 0
0 0 1

∣∣∣∣∣∣
3
6
1

 ∼
 1 2 0

0 1 0
0 0 1

∣∣∣∣∣∣
3
2
1

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
−1

2
1


and so

t =

−1
2
1

 and ProjU (x) = At =


1 2 1
0 1 −3
1 1 2
−1 0 1


−1

2
1

 =


4
−1

3
2

 .

(b) Apply the Gram-Schmidt Procedure to the basis B to obtain an orthogonal basis C = {v1, v2, v3} for U ,

so that ProjU (x) =
3∑
i=1

x. vi
|vi|2 vi.

Solution: We let

v1 = u1 =


1
0
1
−1

 , v2 = u2 −
u2 . v1
|v1|2

v1 =


2
1
1
0

− 3

3


1
0
1
−1

 =


1
1
0
1

 ,

v3 = u3 −
u3 . v1
|v1|2

v1 −
u3 . v2
|v2|2

v2 =


1
−3

2
1

− 2

3


1
0
1
−1

+
1

3


1
1
0
1

 =
1

3


2
−8

4
6

 =
2

3


1
−4

2
3

 .

Then

ProjU (x) =
x. v1
|v1|2

v1 −
x. v2
|v2|2

v2 −
x. v3
|v3|2

v3 =
5

3


1
0
1
−1

+
5

3


1
1
0
1

+
20

30


1
−4

2
3

 =
1

3


12
−3

9
6

 =


4
−1

3
2

 .

(c) Find w ∈ R4 so {w} is a basis for U⊥, so ProjU (x) = x− Projw(x) = x− x.w
|w|2 w.

Solution: Let A = (u1, u2, u3) ∈ M4×3. We wish to find a basis for U⊥ = (ColA)⊥ = (RowAT)⊥ = NullAT.
We have

AT =

 1 0 1 −1
2 1 1 0
1 −3 2 1

 ∼
 1 0 1 −1

0 1 −1 2
0 3 −1 −2

 ∼
 1 0 1 −1

0 1 −1 2
0 0 2 −8

 ∼
 1 0 0 3

0 1 0 −2
0 0 1 −4


so we can take w = (−3, 2, 4, 1)T . Thus

ProjU (x) = x− x.w
|w|2

w =


1
1
7
3

− 30

30


−3
2
4
1

 =


4
−1

3
2

 .



8: (a) Let a = (2, 1, 3), b = (4, 1, 2) and c = (1,−1, 5). Find the area of the triangle in R3 with vertices at a, b
and c.

Solution: Let u = b−a = (2, 0,−1) and v = c−a = (−1,−2, 2). The area A of the triangle with vertices a, b, c
is equal to the area of the triangle with vertices 0, u, v which is equal to half of the area of the parallelogram
with vertices at 0, u, v, u+ v, that is

A = 1
2 |u× v| =

1
2

∣∣(2, 0,−1)× (−1,−2, 2)
∣∣ = 1

2

∣∣(−2,−3,−4)
∣∣ =

√
29
2 .

(b) (a) Let a = (1, 0, 1), b = (2, 2, 1), c = (0, 1, 4) and d = (−1, 1, 2). Find the volume of the tetrahedron with
vertices at a, b, c and d (given that the volume of a tetrahedron is equal to 1

3Ah where A is the base area and
h is the altitude).

Solution: Let u = b − a = (1, 2, 0), v = c − a = (−1, 1, 3) and w = d − a = (−2, 1, 1). Then the volume V of
the tetrahedron with vertices a, b, c, d is equal to the volume of the tetrahedron with vertices 0, u, v, w, which
is equal to one sixth of the volume of the parallelotope with vertices at 0, u, v, w, u+ v, u+w, v+w, u+ v+w
(because the volume of the tetrahedron is 1

3Ah, and the volume of the paralleloptope is Bh, where both have
the same height h, and A is the area of the base triangle with vertices at 0, u, v and B is the areaa of the base
parallelogram with vertices at 0, u, v, u+ v, and we have B = 2A). By Part 3 of Theorem 1,25, the volume of
the tetrahedron is

V = 1
6

∣∣ det(u, v, w)
∣∣ = 1

6

∣∣∣∣∣∣det

 1 −1 −2
2 1 1
0 3 1

∣∣∣∣∣∣ = 1
6

∣∣1− 12− 3 + 2
∣∣ = 2.

(c) Find the volume of the regular icosahedron whose 12 vertices are at ±(1,±a, 0), ±(0, 1,±a) and ±(±a, 0, 1),
where a > 0 is chosen so that the edges all have equal length.

Solution: First let us find a > 0 so the side lengths are equal. The distance from (1, a, 0) to (1,−a, 0) is equal
to 2a and the distance from (1, a, 0) to (0, 1, a) is

√
1 + (a− 1)2 + a2 =

√
2a2 − 2a+ 2, and so, for the edges

to be equal, we need√
2a2 − 2a+ 2 = 2a =⇒ 2a2 − 2a+ 2 = 4a2 =⇒ 2a2 + 2a− 2 = 0 =⇒ a2 + a− 1 = 0 =⇒ a =

−1+
√
5

2 .

The icosahedron can be cut into 20 congruent tetrahedra each of which is congruent to the tetrahedron with
vertices at 0, u, v, w with u = (1, a, 0), v = (0, 1, a) and w = (a, 0, 1), and so the volume is

V = 20 · 16
∣∣ det(u, v, w)

∣∣ = 10
3

∣∣∣∣∣∣det

 1 0 a
a 1 0
0 a 1

∣∣∣∣∣∣ = 10
3

∣∣1 + a3
∣∣.

Since a2 + a− 1 = 0 we have a2 = 1− a hence a3 = a− a2 = a− (1− a) = 2a− 1 = (−1 +
√

5)− 1 =
√

5− 2
and so

V = 10
3 (1 + a3) = 10

3 (
√

5− 1).



9: Let x and p be points in R3, let u and v be unit vectors in R3 with v 6= ±u, and let P and Q be the
planes in R3 through p with unit normal vectors u and v,. The (Euclidean) distance between x and P is
d(x, P ) =

∣∣Proju(x − p)
∣∣ =

∣∣(x − p).u∣∣, the angle between P and Q is θ(P,Q) = cos−1 |u. v| ∈ [0, π2 ], and
the angle bisectors of P and Q are the two planes in R3 through p with normal vectors u+ v and u− v.

(a) Show that x lies on one of the two angle bisectors of P and Q if and only if we have d(x, P ) = d(x,Q).

Solution: Let B and C be the two angle bisectors of P and Q, in other words let B and C be the planes in
R3 through p with normal vectors u+ v and u− v. Then

d(x, P ) = d(x,Q) ⇐⇒
∣∣(x− p).u∣∣ =

∣∣(x− p). v∣∣ ⇐⇒ (x− p).u = ±(x− p). v
⇐⇒ (x− p). (u± v) = 0 ⇐⇒ x ∈ B or x ∈ C.

(b) Let B be a plane in R3. Show that B is equal to one of the two angle bisectors of P and Q if and only if
we have P ∩Q ⊆ B and θ(B,P ) = θ(B,Q).

Solution: Let B be one of the two angle bisectors of P and Q, say B is the plane through p with normal vector
u+ v (the case that B has normal vector u− v is similar). Then P ∩Q ⊆ B because

x ∈ P ∩Q =⇒
(
x ∈ P and x ∈ Q

)
=⇒

(
(x− p).u = 0 and (x− p). v = 0

)
=⇒ (x− p). (u+ v) = 0 =⇒ x ∈ B,

and we have

θ(B,P ) = cos−1
∣∣(u+ v).u∣∣ = cos−1

∣∣u.u+ u. v∣∣ = cos−1
∣∣v . v + u. v∣∣ = cos−1

∣∣(u+ v). v∣∣ = θ(B,Q).

Conversely, let B be any plane in R3 with P ∩ Q ⊆ B such that θ(B,P ) = θ(B,Q). Let w be a unit
normal vector for B. Note that P ∩Q is equal to the line through p in the direction of the vector u× v. Since
P ∩Q ⊆ B, it follows that B is parallel to u× v, and so the normal vector w must be perpendicular to u× v,
and hence w ∈ Span{u, v}. Also note that in Span{u, v} we have (u+ v). (u− v) = u.u− v . v = 1− 1 = 0

and so
{
u+ v, u− v

}
is an orthogonal basis for Span{u, v}. We have

θ(B,P ) = θ(B,Q) =⇒ cos θ(B,P ) = cos θ(B,Q) =⇒ |w .u| = |w . v|
=⇒ w .u = ±w . v =⇒

(
w . (u+ v) = 0 or w . (u− v) = 0

)
.

In the case that w . (u + v) = 0, since
{
u + v, u − v

}
is an orthogonal basis for Span{u, v} it follows that

w = ± u−v
|u−v| , and so B is the plane through p with normal vector u−v. Similarly, in the case that w . (u−v) = 0,

B is the plane through p with normal vector u+ v.

(c) Let a = (−4,−3, 1), b = (8, 3, 1), c = (2, 6, 1) and d = (4, 3, 3). Find the centre of the inscribed sphere of
the tetrahedron with vertices at a, b, c and d.

Solution: Let Fa, Fb, Fc and Fc be the faces opposite the vertices a, b, c and d so for example Fa is the plane
through b, c and d). Let Bpq denote the internal angle bisector of the planes Fp and Fq, so for example Bab is
the angle bisector of Fa and Fb (which intersect along the edge through c and d). Outwards pointing normal
vectors to these faces are given by

(c− b)× (d− b) = (−6, 3, 0)× (−4, 0, 2) = (6, 12, 12) = 6(1, 2, 2)

(d− a)× (c− a) = (8, 6, 2)× (6, 9, 0) = (−18, 12, 36) = 6(−3, 2, 6)

(b− a)× (d− a) = (12, 6, 0)× (8, 6, 2) = (12,−24, 24) = 12(1,−2, 2)

(c− a)× (b− a) = (6, 9, 0)× (12, 6, 0) = (0, 0,−72) = 72(0, 0,−1)

and so the outwards pointing unit normal vectors are ua = 1
3 (1, 2, 2), ub = 1

7 (−3, 2, 6), uc = 1
3 (1,−2, 2) and

ud = (0, 0,−1). Plane Bad is the plane through c = (2, 6, 1) with normal vector ua − ud = 1
3 (1, 2, 5) so

it has equation x + 2y + 5z = 19 (1). Plane Bbd is the plane through a = (−4,−3, 1) with normal vector
ub−ud = 1

7 (−3, 2, 13) so it has equation −3x+2y+13z = 19 (2). Plane Bcd is the plane through a = (−4,−3, 1)
with normal vector uc−ud = 1

3 (1,−2, 5) so it has equation x−2y+5z = 7 (3). We solve these three equations. 1 2 5
−3 2 13

1 −2 5

∣∣∣∣∣∣
19
19
7

 ∼
 1 2 5

0 8 28
0 4 0

∣∣∣∣∣∣
19
76
12

 ∼
 1 2 5

0 1 0
0 2 7

∣∣∣∣∣∣
19
3
19

 ∼
 1 0 5

0 1 0
0 0 7

∣∣∣∣∣∣
13
3
13

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
26
7
3
13
7


Thus the centre of the inscribed sphere is the point

(
26
7 , 3,

13
7

)
.



10: (a) Let u = (1, 8), v = (2, 1) and w = (3, 4). Find the image of the triangle [u, v, w] under the isometry
G(−2,−6),y=3x−8R(3,8),π2

.

Solution: Let R = R(3,8),90◦ and G = G(−2,−6),y=3x−8. Then the given isometry is the composite S = GR.
The image of the triangle [u, v, w] is the triangle [u′, v′, w′] where u′ = S(u) = G(R(1, 8)) = G(3, 6) = (4,−1),
v′ = S(v) = G(R(2, 1)) = G(10, 7) = (−1, 4) and w′ = S(w) = G(R(3, 4) = G(7, 8) = (2, 3).

(b) Let a = (2,−1) and b = (3, 2). Draw a picture, or give an accurate description of the set{
p ∈ R2

∣∣Rp,θ(a) = b for some θ ∈ R
}
.

Solution: Since Rp,θ is an isometry and Rp,θ(p) = p, it follows that in order to have Rp,θ(a) = b we must

have |p− a| =
∣∣Rp,θ(p)−Rp,θ(a)

∣∣ = |p− b| and so the point p must lie on the perpendicular bisector of [a, b].
Conversely, if p lies on the perpendicular of [a, b] and θ = θ0(a − p, b − p) then we have Rθ(a − p) = b − p
and so Rp,θ(a) = b. Thus the set of all points p for which Rp,θ(a) = Rp,θ(b) for some angle θ is equal to the
perpendicular bisector of [a, b]. In the case that a = (2,−1) and b = (3, 2), the given set is the line x+ 3y = 4.

(c) Let a = (−1, 2) and b = (3, 4). Draw a picture, or give an accurate description, of the set{
0 6= u ∈ R2

∣∣Gu,L(a) = b for some line L with direction vector u
}
.

Solution: When 0 6= u ∈ R2 and L is a line in R2 with direction vector u and a ∈ R2 and b = Gu,L(a), the
points a, Tu(a) = a + u, FL(a) and Gu,L(a) = b are the vertices of a rectangle (unless a ∈ L in which cas
FL(a) = a and Tu(a) = a + u = b). It follows that the circle with diameter a, b passes through the point
Tu(a) = a+u (and also the point FL(a)). By translating by −a we see that u lies on the circle with diameter
0, b−a. Conversely, suppose that u lies on the circle with diameter 0,, b−a. Then the point Tu(a) = a+u lies
on the circle with diameter a, b. If u = b−a so that Tu(a) = b then we can take L to be the line through a and
b to get Gu,L(a) = FL(a+ u) = FL(b) = b. If u 6= b− a then we can take L to be the perpendicular bisector

of [a + u, b] to get Gu,L(a) = FL(a + u) = b. Thus the set of all points 0 6= u ∈ R2 such that Gu,L(a) = b

for some line L with direction vector u is equal to the circle in R2 with diameter 0, b − a (with the point 0
removed). In the case that a = (−1, 2) and b = (3, 4), the given set is the circle with diameter from (0, 0) to
(4, 2), that is the circle (x− 2)2 + (y − 1)2 = 5, with the point (0, 0) removed.



11: (a) Let L be the line x+ 3y = 2. Find the equation of the line M such that FMFL = T (1,3).

Solution: By Theorem 1.83, the line M is the line obtained by translating the line L by 1
2 (1, 3) =

(
1
2 ,

3
2

)
. The

line L passes through the point (2, 0) so the line M passes through the point (2, 0) +
(
1
2 ,

3
2

)
=
(
5
2 ,

3
2

)
. Thus

M is the line through
(
5
2 ,

3
2

)
parallel to L, so M has equation x+ 3y = 7.

(b) Let L be the line 2x− 3y = 1. Find the equation of the line M with FMFL = R(2,1),π2
.

Solution: By Theorem 1.83, the line N is the line obtain by rotating the line L by π
4 about the point (2, 1).

Notice that the points (2, 1), (5, 3), (3, 6) and (0, 4) form a square, so the line N is the diagonal which passes
through (2, 1) and (3, 6). Thus N is the line y = 5x− 9.

(c) Let p ∈ R2 and let L, M and N be any lines in R2 with p ∈ L∩M ∩N . Show that FNFMFL = FLFMFN .

Solution: Let θ = θ0(L,M) so that FMFL = Rp,2θ and FLFM = Rp,−2θ. Let K be the line obtained by
rotating the line N about p by −θ so that FNFK = Rp,2θ and FKFN = Rp,−2θ. Then we have

FNFMFL = FNRp,2θ = FNFNFK = FK ,

FLFMFN = Rp,−2θFN = FKFNFN = FK .



12: (a) Express the isometry R(4,4),π2
Fx+3y=6 as a glide reflection.

Solution: Note that for a glide-reflection S = Gu,L and a point a ∈ R2, the points a, Fu(a), S(a) and FL(a)
form a rectangle, and the reflection line L passes through the centre of this rectangle, which is the midpoint
of [a, S(a)]. Let S = R(4,4),90◦Fx+3y=6. Choose a = (0, 2) and b = (3, 1) (we could have chosen any two points
a and b). We have

S(a) = R(4,4,),90◦Fx+3y=6(0, 2) = R(4,4),90◦(0, 2) = (6, 0),

S(b) = R(4,4),90◦Fx+3y=6(3, 1) = R(4,4),90◦(3, 1) = (7, 3).

The midpoint of a and S(a) is (3, 1) and the midpoint of b and S(b) is (5, 2). To have S = Gu,L, the reflection
line L must pass through these two midpoints, so L is the line x− 2y = 1. The translation vector is the vector
u = S(a)− FL(a) = (6, 0)− (2,−2) = (4, 2). Thus S = G(4,2),x−2y=1.

(b) Express the isometry Fy=3xT (−2,3)G(2,1),x+2=2y as a rotation.

Solution: Note that for a rotation S = Rp,θ and a point a ∈ R2, since a and S(a) are equidistant form p,
the point rotation p must lie on the perpendicular bisector of [a, S(a)]. Let S = Fy=3xT (−2,3)G(2,1),x+2=2y.
Choose a = (0, 1) and b = (2, 2). We have

S(a) = Fy=3xT (−2,3)G(2,1),x+2=2y(0, 1) = Fy=3xT (−2,3)(2, 2) = Fy=3x(0, 5) = (3, 4),

S(b) = Fy=3xT (−2,3)G(2,1),x+2=2y(2, 2) = Fy=3xT (−2,3)(4, 3) = Fy=3x(2, 6) = (2, 6).

The perpendicular bisector of a and S(a) is the line x+ y = 4, and the perpendicular bisector of b and S(b) is
the line y = 4. As explained above, the rotation point is the point of intersection of these two perpendicular
bisectors, which is the point p = (0, 4). The rotation angle θ is the angle from the vector b− a = (2, 1) to the
vector S(b)− S(a) = (−1, 2), that is θ = π

2 . Thus S = R(0,4),π2
.

(c) Express the isometry G(2,0),y=
√
3F
√
3x+y=2

√
3 as a rotation.

Solution: To help to visualize the relative points and lines in this problem, it helps to draw a grid of equilateral
triangles with vertices at points s(2, 0) + t(1,

√
3) with s, t ∈ Z. Let S = G(2,0),y=

√
3F
√
3x+y=2

√
3. Choose

a = (2, 0) and b = (0, 2
√

3) (these two points lie on the line
√

3x+ y = 2
√

3). Then

S(a) = G(2,0),y=
√
3F
√
3x+y=2

√
3(2, 0) = G(2,0),y=

√
3(2, 0) = Fy=

√
3(4, 0) = (4, 2

√
3),

S(b) = G(2,0),y=
√
3F
√
3x+y=2

√
3(0, 2

√
3) = G(2,0),y=

√
3(0, 2

√
3) = Fy=

√
3(2, 2

√
3) = (2, 0).

The perpendicular bisector of a and S(a) is the line x+
√

3y = 6 (1) and the perpendicular bisector of b and
S(b) is the line x−

√
3y = −2 (2). As explained in Part (b), the rotation point p is the point of intersection

of these two perpendicular bisectors, so we solve (1) and (2) to get p =
(
2, 43
√

3
)
. The rotation angle θ is the

oriented angle from the vector b− a = 2(−1,
√

3) to the vector S(b)− S(a) = 2(−1,−
√

3), that is θ = 2π
3 .



13: Given a point p ∈ R2 and a real number k 6= 0, 1, we define the dilation about p with scaling factor k to be
the map Dp,k : R2 → R2 given by Dp,k(x) = p+ k(x− p) for x ∈ R2.

(a) Show that if q = p and k` = 1 then Dq,`Dp.k is the identity.

Solution: Suppose that q = p and that k` = 1. Then for x ∈ R2 we have

Dq,`Dp,k(x) = Dp,`

(
p+ k(x− p)

)
= p+ `

(
p+ k(x− p)− p

)
= p+ `k(x− p) = p+ x− p = x

(b) Show that if q 6= p and k` = 1 then Dq,`Dp,k is a translation.

Solution: Suppose that q 6= p and that k` = 1. Then for x ∈ R2 we have

Dq,`Dp,k(x) = Dq,`

(
p+ k(x− p)

)
= q + `

(
p+ k(x− p)− q

)
= q + `(p− q) + (x− p) = x+ (1− `)(q − p) = Tu(x)

where u = (1− `)(q − p).
(c) Show that if q 6= p and k` 6= 1 then Dq,`Dp,k is a dilation.

Solution: Suppose that k` 6= 1. Then for x ∈ R2 we have

Dq,`Dp,k(x) = Dq,`

(
p+ k(x− p)

)
= q + `

(
p+ k(x− p)− q

)
= q + `(p− q)− k`p+ k`x

and for r ∈ R2 we have
Dr,k`(x) = r + k`(x− r) = r(1− k`) + k`x.

and so we obtain Dq,`Dp,k(x) = Dr,k`(x) by choosing

r =
q + `(p− q)− k`p

1− k`
.



14: (a) Show that the composite of a translation and a dilation is a dilation.

Solution: Given u ∈ R2, p ∈ R2 and k ∈ R with k 6= 0, 1, we have

TuDp,k(x) = Tu
(
p+ k(x− p)

)
= p+ k(x− p) + u = u+ p− kp+ kx

and given r ∈ R2 we have
Dr,k(x) = r + k(x− r) = r(1− k) + kx

and so we obtain TuDp,k(x) = Dr,k(x) by choosing

r =
u+ p− kp

1− k
= p+ 1

1−k u.

Similarly, one can obtain Dp,kTu(x) = Dr,k(x) when r = p+ku−kp
1−k = p+ k

1−k u.

(b) Show that given k ∈ R with k 6= 0, 1 and given a, b, c, d ∈ R2 with (d− c) = k(b− a) there exists a unique
point p ∈ R2 such that Dp,k(a) = c and Dp,k(b) = d.

Solution: Let k ∈ R with k 6= 0, 1, let a, b, c, d ∈ R2 with 0 6= (d − c) = k(b − a). We have Dp,k(a) = c when

c = p+ k(a− p) = p(1− k) + ka and this occurs when p = c−ka
1−k . We must check that with this choice of p we

also have Dp,k(b) = d. Indeed, when p = c−ka
1−k we have

Dp,k(b) = p+ k(b− p) = c−ka
1−k + k

(
b− c−ka

1−k

)
= c−ka

1−k + k
(
b−kb−c+ka

1−k

)
=
c− ka+ kb− k2b− kc+ k2a

1− k
=

(c− ka+ kb)(1− k)

1− k
= c− ka+ kb = c+ k(b− a) = c+ (d− c) = c.

(c) Show that a dilation maps a circle to a circle, and find two dilations which send the circle (x−2)2 +y2 = 5
to the circle (x− 6)2 + (y − 2)2 = 20.

Solution: We claim that the dilation Dp,k maps the circle C centred at a of radius r to the circle C ′ centred

at Dp,k(a) of radius |k|r. For x ∈ R2 we have∣∣∣Dp,k(x)−Dp,k(a)
∣∣∣ =

∣∣∣(p+ k(x− p)
)
−
(
p+ k(a− p)

)∣∣∣ =
∣∣k(x− a)

∣∣ = |k||x− a|

and so
x ∈ C ⇐⇒ |x− a| = r ⇐⇒

∣∣∣Dp,k(x)−Dp,k(a)
∣∣∣ = |k|r ⇐⇒ Dp,k(x) ∈ C ′.

Thus the dilation Dp,k maps the circle C to the circle C ′, as claimed.

Now let C be the circle (x − 2)2 + y2 = 5 and let C ′ be the circle (x − 6)2 + (y − 2)2 = 20. The circle
C has centre a = (2, 0) and radius r =

√
5 and the circle C ′ has centre b = (6, 2) and radius s = 2

√
5. By

our above calculation, in order for Dp,k to send C to C ′ we must have s = |k|r, that is 2
√

5 = |k|
√

5, that is
k = ±2, and in this case the dilation Dp,k sends C to C ′ provided that Dp,k(a) = b. As we just showed in

Part (b), we have Dp,k(a) = b when b = p+ k(a− p) = (1− k)p+ ka , that is when p = b−ka
1−k . In the case that

k = 2 we obtain p = b−ka
1−k = b−2a

−1 = 2a − b = 2(2, 0) − (6, 2) = (−2,−2). In the case that k = −2 we obtain

p = b−ka
1−k = b+2a

3 = 1
3

(
(6, 2) + 2(2, 0)

)
=
(
10
3 ,

2
3

)
. Thus the two dilations which send the circle C to the circle

C ′ are the dilations D(−2,−2),2 and D( 10
3 ,

2
3 ),−2.


