

PMATH 321 Non-Euclidean Geometry, Solutions to the Exercises for Chapter 1

Note: for many of the exercises, in order to better understand the solution, it helps to draw a picture which illustrates the situation. The solutions below do not include pictures, so it is recommended that you draw your own.

1: Let $C = C(0, r)$ be the circle in \mathbb{R}^2 of radius r centred at the origin.

(a) Given $a \in \mathbb{R}$ with $0 < a < r$, find the centre $(b, 0)$ and radius s of the circle which passes through the point $(a, 0)$ and intersects the circle C orthogonally.

Solution: Let D be the circle of radius s centred at $(b, 0)$ which passes through $(a, 0)$ and intersects orthogonally with C . Let $u = (0, 0)$, let $v = (b, 0)$ and let w be the point of intersection of C and D which lies above the x -axis. Since $w \in C$ we have $|w - u| = r$, since $w \in D$ we have $|w - v| = s$, and since $u = (0, 0)$ and $v = (b, 0)$ with $b > r > 0$ we have $|v - u| = b$. Since D intersects orthogonally with C we have $\angle vwu = \frac{\pi}{2}$ so, by Pythagoras' Theorem, we have $|v - u|^2 = |w - v|^2 + |u - w|^2$, that is $b^2 = s^2 + r^2$ (1). Let $p = (a, 0)$. Since $p = (a, 0)$ and $v = (b, 0)$ with $b > r > a$ we have $|p - v| = b - a$. Since p lies on the circle D we have $|p - v| = s$, and so $b - a = s$ (2). Solve equations (1) and (2) to get $b = \frac{r^2 + a^2}{2a}$ and $s = \frac{r^2 - a^2}{2a}$.

(b) Let $u = (0, r)$ and let $v = (x, y)$ be a point on C with $v \neq u$. Find the point of intersection $w = (a, 0)$ of the line through u and v with the x -axis.

Solution: Since w lies on the line through u and v , we have $w = u + t(v - u)$ for some $t \in \mathbb{R}$. For $t \in \mathbb{R}$ we have

$$\begin{aligned} w = u + t(v - u) &\iff (a, 0) = (0, r) + t((x, y) - (0, r)) \\ &\iff (a, 0) = (tx, r + t(y - r)) \\ &\iff (a = tx \text{ and } 0 = r + t(y - r)). \end{aligned}$$

To get $0 = r + t(y - r)$ we need $t = \frac{r}{r-y}$, and then we have $a = tx = \frac{rx}{r-y}$.

(c) Let a, b, c and d be any 4 distinct points on C such that the line segment $[a, c]$ intersects with the line segment $[b, d]$ at a point p inside C . Show that $|a - p||p - c| = |b - p||p - d|$.

Solution: Since the points b and c both subtend the same chord $[a, d]$ on the circle C (see Corollary 1.52), it follows that $\angle abd = \angle acd$ so we have $\angle abp = \angle dcp$. Since the points a and d both subtend the chord $[b, c]$ on the circle C , it follows that $\angle bac = \angle bdc$ and so we have $\angle pab = \angle pdc$. Since $\angle abp = \angle dcp$ and $\angle pab = \angle pdc$, the triangles $[a, b, p]$ and $[d, c, p]$ are similar, by Corollary 1.50 (Similar Triangles, also called Angle-Angle), meaning that there is a scaling factor $t > 0$ such that $|p - c| = t|p - b|$, $|d - p| = t|a - p|$ and $|c - d| = t|b - a|$. Thus we have $t = \frac{|p - c|}{|p - b|} = \frac{|d - p|}{|a - p|}$ hence $|p - c||a - p| = |p - b||d - p|$, as required.

2: (a) Let $u = (1, 0)$, $v = (4, 1)$ and $w = (6, 5)$. Find the exact values of the interior angles α , β and γ in the triangle $[u, v, w]$.

Solution: Let $p = (3, 2)$. Note that p is the point on the line through u and w which is nearest to v . From the right-angled triangle $[u, p, v]$ (which has a right angle at p) we see that

$$\alpha = \angle wuv = \angle puv = \tan^{-1} \frac{|p-v|}{|p-u|} = \tan^{-1} \frac{\sqrt{2}}{2\sqrt{2}} = \tan^{-1} \frac{1}{2}.$$

From the right-angled triangle $[w, p, v]$ (which has a right-angle at p) we see that

$$\gamma = \angle vwu = \angle vwp = \tan^{-1} \frac{|v-p|}{|p-w|} = \tan^{-1} \frac{\sqrt{2}}{3\sqrt{2}} = \tan^{-1} \frac{1}{3}.$$

Let $q = (7, 2)$. Note that q is the point on the line through u and v which is nearest to w . From the right-angled triangle $[v, q, w]$ (which has a right-angle at q) we see that

$$\beta = \pi - \angle wvq = \pi - \tan^{-1} \frac{|w-q|}{|q-v|} = \pi \tan^{-1} \frac{\sqrt{10}}{\sqrt{10}} = \pi \tan^{-1} 1 = \pi - \frac{\pi}{4} = \frac{3\pi}{4}.$$

(b) Let $u = (-1, 1)$ and $v = (2, 0)$. Find a point $w \in \mathbb{R}^2$ such that the triangle $[u, v, w]$ is positively oriented with $\alpha = \frac{\pi}{4}$ and $\gamma = \tan^{-1} \frac{1}{3}$.

Solution: In order for $[u, v, w]$ to be positively oriented, we need w to lie above the line through u and v . Let $a = (0, 4)$ and $b = (3, 3)$. Note that the vertices u , v , b and a form a square (with sides of length $\sqrt{10}$) and the line through u and b is a diagonal of the square, and so $\angle buv = \frac{\pi}{4}$. It follows that in order to have $\angle wuv = \alpha = \frac{\pi}{4}$ we must choose w to lie along the line L through u and b .

Let $c = (1, 2)$ and note that c is the point on line L which is nearest to v . Note that $[b, c, v]$ is a right-angle with its right angle at c and $|b - c| = |c - v| = \sqrt{5}$. To get $\gamma = \tan^{-1} \frac{1}{3}$ we can choose

$$w = c + 3(b - c) = (7, 5)$$

so $[w, c, v]$ is a right-angled triangle with right angle at c and $\gamma = \angle vwu = \angle vwc = \tan^{-1} \frac{|v-c|}{|w-c|} = \sqrt{\frac{5}{3\sqrt{5}}} = \frac{1}{3}$.

(c) Let $a = \sqrt{5}$, $b = \sqrt{10}$ and $c = \sqrt{13}$. Find the exact area of the triangle with sides of length a , b and c .

Solution: By inspection, we can place vertices u , v and w at positions $u = (0, 0)$, $v = (3, 2)$ and $w = (1, 3)$ to get $a = |w - u| = \sqrt{5}$, $b = |u - v| = \sqrt{10}$ and $c = |v - u| = \sqrt{13}$. Then we can use the formula from Corollary 1.51 to get

$$A = \frac{1}{2} \left| \det(u, v) + \det(v, w) + \det(w, u) \right| = \frac{1}{2} \left| \det(v, w) \right| = \frac{1}{2} \left| \det \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix} \right| = \frac{7}{2}.$$

3: (a) Let $u = (6, 7)$, $v = (-2, 3)$ and $w = (7, 0)$. Find the centre o and the radius r of the circumscribed circle of triangle $[u, v, w]$.

Solution: The line segment $[u, v]$ has slope $\frac{v_2 - u_2}{v_1 - u_1} = \frac{1}{2}$, The perpendicular bisector of $[u, v]$ has slope -2 and passes through the point $\frac{u+v}{2} = (2, 5)$ so it has equation $2x + y = 9$ (1). The line segment $[v, w]$ has slope $\frac{w_2 - v_2}{w_1 - v_1} = -\frac{1}{3}$. The perpendicular bisector of $[v, w]$ has slope 3 and passes through $\frac{v+w}{2} = (\frac{5}{2}, \frac{3}{2})$ so it has equation $3x - y = 6$ (2). Solve equations (1) and (2) to get $o = (3, 3)$, and the radius is $r = |o - v| = 5$

(b) Let $u = (0, 9)$, $v = (12, 0)$ and $w = (12, 14)$. Find the centre i and the radius r of the inscribed circle of triangle $[u, v, w]$.

Solution: Since $u - v = (-12, 9) = 3(-4, 3)$, the line from v to u has direction vector $(-4, 3)$ and we note that $|(-4, 3)| = 5$. The line from v to w has direction vector $(0, 5)$ with $|(0, 5)| = 5$. The internal angle bisector at v is the line through $v = (12, 0)$ with direction vector $(-4, 3) + (0, 5) = (-4, 8) = 4(-1, 2)$, so it has equation $2x + y = 24$ (1). The line from w to u has direction vector $u - w = (-12, -5)$ and $|(-12, -5)| = 13$. The line from w to v has direction vector $(0, -13)$ with $|(0, -13)| = 13$. The internal angle bisector at w is the line through $w = (12, 14)$ with direction vector $(-12, -5) + (0, -13) = (-12, -18) = -6(2, 3)$, so it has equation $3x - 2y = 8$ (2). Solve equations (1) and (2) to get $i = (8, 8)$, and then the radius r is the distance from i to the line through v and w , that is $r = 4$.

(c) Let $u = (-2, 9)$, $v = (2, 1)$ and $w = (7, 6)$. Find the centres o , g and h of the triangle $[u, v, w]$ and verify that $h = 3g - 2o$.

Solution: We have $g = \frac{1}{3}(u + v + w) = \frac{1}{3}(7, 16) = (\frac{7}{3}, \frac{16}{3})$. The perpendicular bisector of $[u, v]$ passes through the point $\frac{u+v}{2} = (0, 5)$ and has slope $-\frac{v_1 - u_1}{v_2 - u_2} = \frac{1}{2}$, so it has equation $x - 2y = -10$ (1). The perpendicular bisector of $[v, w]$ passes through $\frac{v+w}{2} = (\frac{9}{2}, \frac{7}{2})$ with slope $-\frac{w_1 - v_1}{w_2 - v_2} = -1$, so it has equation $x + y = 8$ (2). Solve equations (1) and (2) to get $o = (2, 6)$. The altitude from w passes through $w = (7, 6)$ with slope $-\frac{v_1 - u_1}{v_2 - u_2} = \frac{1}{2}$, so it has equation $x - 2y = -5$ (3). The altitude from u passes through $u = (-2, 9)$ with slope $-\frac{w_1 - v_1}{w_2 - v_2} = -1$, so it has equation $x + y = 7$ (4). Solve equations (3) and (4) to get $h = (3, 4)$. Finally, note that $3g - 2o = (7, 16) - (4, 12) = (3, 4) = h$.

4: (a) Let $u = (3, 1)$, $v = (3, 6)$ and $i = (2, 3)$. Find the point w in \mathbb{R}^2 such that i is the incentre of triangle $[u, v, w]$.

Solution: Let $a = (3, 3)$ and note that a is the point on $[u, v]$ which is nearest to i . From the right-angled triangle $[u, a, i]$ we see that $\angle vui = \angle aui = \tan^{-1} \frac{|i-a|}{|a-u|} = \tan^{-1} \frac{1}{2}$. Let $b = u + 2(i - u) = (1, 5)$ and let $c = b + (i - u)^\times = (-1, 4)$ so that $[u, b, c]$ is a right angled triangle (with its right angle at b), and $\angle iuc = \angle buc = \tan^{-1} \frac{|c-b|}{|b-u|} = \tan^{-1} \frac{1}{2}$. It follows that w must lie along the ray from u through c . The line through u and c has equation $3x + 4y = 13$ (1). From the right-angled triangle $[i, v, a]$ we see that $\angle ivu = \angle iva = \tan^{-1} \frac{|i-a|}{|a-v|} = \tan^{-1} \frac{1}{3}$. Let $d = v + 3(i - v) = (0, -3)$ and let $e = di(i - v)^\times = (-3, -2)$ so that $[v, d, c]$ is a right-angled triangle (with right angle at d) and $\angle ive = \angle dve = \tan^{-1} \frac{1}{3}$. It follows that w must lie along the ray from v through e . The line through v and e has equation $4x - 3y = -6$ (2). Solve equations (1) and (2) to get $w = \left(\frac{3}{5}, \frac{14}{5}\right)$.

(b) Let $u = (7, 4)$, $o = (1, 1)$ and $g = (1, 2)$. Find points v and w in \mathbb{R}^2 such that o is the circumcentre and g is the centroid of triangle $[u, v, w]$.

Solution: Since g lies $\frac{2}{3}$ of the way along the median from u to the midpoint $m = \frac{v+w}{2}$ it follows that $m = u + \frac{3}{2}(g - u) = (-2, 1)$. Since o lies on the perpendicular bisector of $[v, w]$ it follows that the line through v , and w is the line through m which is perpendicular to the vector $o - m = (3, 0)$, so the line through v and w has equation $x = -2$ (1). Since o is equidistant from u , v and w the points v and w both lie on the circle centred at o of radius $|o - u| = 3\sqrt{5}$, which has equation $(x - 1)^2 + (y - 1)^2 = 45$ (2). Put $x = -2$ into equation (2) to get $(-3)^2 + (y - 1)^2 = 45$ which gives $(y - 1)^2 = 36$ hence $y - 1 = \pm 6$, that is $y \in \{-5, 7\}$. Thus v and w are the two points $(-2, -5)$ and $(-2, 7)$.

5: (a) Let L be the line $x + y = 1$, let M be the line $3y = 2x + 6$, and let N be the line $2x + y = 6$. Find points $u, v, w \in \mathbb{R}^2$ such that, in the triangle $[u, v, w]$, L is the perpendicular bisector of $[u, v]$, M is the median from u , and N is the altitude from v .

Solution: Let $[u, v, w]$ be a triangle which satisfies the required conditions. Let $p = (5, -4)$ and note that $L \cap N = \{p\}$. Since N is the altitude from v we have $v \in N$ so N is the line through p and v . Let K be the line through p and u . Let m be the midpoint $m = \frac{u+v}{2}$. Since L is the perpendicular bisector of $[u, v]$ the triangles $[p, v, m]$ and $[p, u, m]$ are congruent right-angled triangles (with the right angles at m) and so we have $\angle vpm = \angle upm$. It follows that K is the line through p with $K \neq L$ for which $\theta(N, L) = \theta(L, K)$ (so L is the angle bisector of N and K at p). Let $a = (3, 0)$ and $b = (2, -1)$ so that $a \in N$ and b is the point on L nearest to a . Then we have $\theta(N, L) = \angle apb = \tan^{-1} \frac{|a-b|}{|b-p|} = \tan^{-1} \frac{1}{3}$. Let $c = b + (b - a) = (1, -2)$ so that $[p, b, a]$ is a right-angled triangle (with right angle at b) and $\angle cpb = \tan^{-1} \frac{|c-b|}{|b-p|} = \tan^{-1} \frac{1}{3}$. It follows that the K is the line through p and c , and so K has equation $x + 2y = -3$. Since M is the median from u we must have $u \in M$. Since $u \in M$ and $u \in K$ we can solve the equations for M and K to get $u = (-3, 0)$. The midpoint m is the point on L nearest to u , which is the point $m = (-1, 2)$, and then the point v is given by $v = u + 2(m - u) = (1, 4)$. Since N is the altitude from v , the line through u and w is the line through u perpendicular to N , which has equation $x - 2y = -3$ (1). Since M is the median from u we must have $\frac{v+w}{2} \in M$. For $w = (x, y)$ we have $\frac{v+w}{2} = \frac{(1, 4) + (x, y)}{2} = \left(\frac{x+1}{2}, \frac{y+4}{2}\right)$ and by putting this in the equation of M we have

$$\frac{v+w}{2} \in M \iff 3\left(\frac{y+4}{2}\right) = 2\left(\frac{x+1}{2}\right) + 6 \iff 3(y+4) = 2(x+1) + 12 \iff 2x - 3y = -2 \quad (2)$$

Solve equations (1) and (2) to get $w = (2, 2)$.

(b) Let L be the line $2y = x + 4$, let M be the line $x + y = 4$, and let N be the line $y + 8 = 3x$. Find points $u, v, w \in \mathbb{R}^2$ such that, in the triangle $[u, v, w]$, L is the angle bisector at u , M is the altitude from v , and N is the median from w .

Solution: Let $[u, v, w]$ be a triangle with the required properties. Let K be the line through u and w . Since M is the altitude from v , the line K is perpendicular to M . Since M has normal vector $(1, 1)$, K has direction vector $(1, 1)$. Let J be the line through u and v . Then L is an angle bisector of the lines J and K at the point u . Let us determine the direction of the line J . Since K has direction vector $(1, 1)$ and L has direction vector $(2, 1)$ we have $\theta(L, K) = \theta((2, 1), (1, 1)) = \cos^{-1} \frac{3}{\sqrt{10}} = \tan^{-1} \frac{1}{3}$. Since L has direction vector $(2, 1)$, to get $\theta(J, L) = \theta(L, K) = \tan^{-1} \frac{1}{3}$, the line J must be in the direction of the vector $3(2, 1) + (1, -2) = (7, 1)$. Since the line J through u and v has direction vector $(7, 1)$, we can write $v = u + t(7, 1)$ for some $t \in \mathbb{R}$, and then the midpoint m of u and v is $m = \frac{u+v}{2} = u + \frac{t}{2}(7, 1)$. Let us now calculate the coordinates of the point u . Let $u = (x, y)$. Then $m = u + \frac{t}{2}(7, 1) = (x + \frac{7t}{2}, y + \frac{t}{2})$ and $v = u + t(7, 1) = (x + 7t, y + t)$. Put v into the equation for M to get $(x + 7t) + (y + t) = 4$ that is $x + y + 8t = 4$ (1). Put m into the equation for N to get $(y + \frac{t}{2}) + 8 = 3(x + \frac{7t}{2})$, that is $3x - y + 10t = 8$ (2). Multiply equation (2) times 4 and subtract 5 times equation (1) to get $7x - 9y = 12$ (3). Since u also lies on L , which has equation $2y = x + 4$ (4), we can solve equations (3) and (4) to get $u = (12, 8)$. Put $(x, y) = (12, 8)$ into equation (1) to get $t = -2$, and so $v = u + t(7, 1) = (12, 8) - 2(7, 1) = (-2, 6)$. The line K through u and w is the line through $u = (12, 8)$ with direction vector $(1, 1)$, so K has equation $x - y = 4$ (5). The point w also lies on the line N , which has equation $3x - y = 8$ (6). Solve equations (5) and (6) to get $w = (2, -2)$.

6: (a) Let $u = (1, 1, 2)$, $v = (2, 1, 3)$ and $x = (4, 1, -1)$. Find $\text{Proj}_U(x)$ where $U = \text{Span}\{u, v\}$.

Solution: Let $w = u \times v = (1, 1, 2) \times (2, 1, 3) = (1, 1, -1)$. Then

$$\begin{aligned}\text{Proj}_U(x) &= x - \text{Proj}_w(x) = x - \frac{x \cdot w}{|w|^2} w = (4, 1, -1) - \frac{(4, 1, -1) \times (1, 1, -1)}{|(1, 1, -1)|^2} (1, 1, -1) \\ &= (4, 1, -1) - \frac{6}{3} (1, 1, -1) = (4, 1, -1) - (2, 2, -2) = (2, -1, 1).\end{aligned}$$

(b) Let $a = (2, 1, 3)$, $b = (1, 2, 1)$, $u = (1, 3, 2)$ and $v = (2, 0, 1)$. Find the distance between the line $x = a + su$ and the line $x = b + tv$.

Solution: In general, when L is the line $x = a + su$, $s \in \mathbb{R}$, and M is the line $x = b + tv$, $t \in \mathbb{R}$, the Euclidean distance between L and M is given by

$$\begin{aligned}d_E(L, M) &= \min \{d(a + su, b + tv) \mid s, t \in \mathbb{R}\} \\ &= \min \{|(a + su) - (b + tv)| \mid s, t \in \mathbb{R}\} \\ &= \min \{|(a - b) - (-su + tv)| \mid s, t \in \mathbb{R}\} \\ &= \min \{d(a - b, w) \mid w \in \text{Span}\{u, v\}\} \\ &= d_E(a - b, U) \text{ where } U = \text{Span}\{u, v\} \\ &= |\text{Proj}_{u \times v}(a - b)|\end{aligned}$$

For this particular problem, note that $u \times v = (1, 3, 2) \times (2, 0, 1) = (3, 3, -6)$ and let $w = \frac{1}{3}(u \times v) = (1, 1, -2)$. The distance d between the two lines is

$$d = |\text{Proj}_{u \times v}(a - b)| = |\text{Proj}_w(a - b)| = \frac{|(a - b) \cdot w|}{|w|} = \frac{|(1, -1, 2) \cdot (1, 1, -2)|}{|(1, 1, -2)|} = \frac{4}{\sqrt{6}} = \frac{2\sqrt{6}}{3}.$$

(c) Referring to Theorem 1.22 in the Lecture Notes (Properties of the Cross Product), use Properties 1, 2, 3 and 5 to prove Property 4.

Solution: Let $u, v, w, x \in \mathbb{R}^3$. Then

$$\begin{aligned}(u \times v) \cdot (w \times x) &= ((u \times v) \times w) \cdot x && \text{by Theorem 1.22 Part 5} \\ &= ((u \cdot w)v - (v \cdot w)u) \cdot x && \text{by Theorem 1.22 Part 3} \\ &= (u \cdot w)(v \cdot x) - (v \cdot w)(u \cdot x) && \text{by Theorem 1.22 Part 1}\end{aligned}$$

7: Let $u_1 = (1, 0, 1, -1)$, $u_2 = (2, 1, 1, 0)$, $u_3 = (1, -3, 2, 1)$, $\mathcal{B} = \{u_1, u_2, u_3\}$, $U = \text{Span}(\mathcal{B})$, and $x = (1, 1, 7, 3)$. Find $\text{Proj}_U(x)$ in the following three ways.

(a) Let $A = (u_1, u_2, u_3) \in M_{4 \times 3}$ so $\text{Proj}_U(x) = At$ where t is the solution to $A^T A t = A^T x$.

Solution: We have

$$A^T A = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & -3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -3 \\ 1 & 1 & 2 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 2 \\ 3 & 6 & 1 \\ 2 & 1 & 15 \end{pmatrix}$$

$$A^T x = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & -3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \\ 15 \end{pmatrix}$$

$$(A^T A | A^T x) = \left(\begin{array}{ccc|c} 3 & 3 & 2 & 5 \\ 3 & 6 & 1 & 10 \\ 2 & 1 & 15 & 15 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & -13 & -10 \\ 3 & 6 & 1 & 10 \\ 2 & 1 & 15 & 15 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & -13 & -10 \\ 0 & 0 & 40 & 40 \\ 0 & 3 & -41 & -35 \end{array} \right)$$

$$\sim \left(\begin{array}{ccc|c} 1 & 2 & -13 & -10 \\ 0 & 3 & -41 & -35 \\ 0 & 0 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & 0 & 3 \\ 0 & 3 & 0 & 6 \\ 0 & 0 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{array} \right)$$

and so

$$t = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \text{ and } \text{Proj}_U(x) = At = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -3 \\ 1 & 1 & 2 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \\ 2 \end{pmatrix}.$$

(b) Apply the Gram-Schmidt Procedure to the basis \mathcal{B} to obtain an orthogonal basis $\mathcal{C} = \{v_1, v_2, v_3\}$ for U , so that $\text{Proj}_U(x) = \sum_{i=1}^3 \frac{x \cdot v_i}{|v_i|^2} v_i$.

Solution: We let

$$v_1 = u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \quad v_2 = u_2 - \frac{u_2 \cdot v_1}{|v_1|^2} v_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix} - \frac{3}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix},$$

$$v_3 = u_3 - \frac{u_3 \cdot v_1}{|v_1|^2} v_1 - \frac{u_3 \cdot v_2}{|v_2|^2} v_2 = \begin{pmatrix} 1 \\ -3 \\ 2 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ -8 \\ 4 \\ 6 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix}.$$

Then

$$\text{Proj}_U(x) = \frac{x \cdot v_1}{|v_1|^2} v_1 - \frac{x \cdot v_2}{|v_2|^2} v_2 - \frac{x \cdot v_3}{|v_3|^2} v_3 = \frac{5}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} + \frac{5}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} + \frac{20}{30} \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 12 \\ -3 \\ 9 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \\ 2 \end{pmatrix}.$$

(c) Find $w \in \mathbb{R}^4$ so $\{w\}$ is a basis for U^\perp , so $\text{Proj}_U(x) = x - \text{Proj}_w(x) = x - \frac{x \cdot w}{|w|^2} w$.

Solution: Let $A = (u_1, u_2, u_3) \in M_{4 \times 3}$. We wish to find a basis for $U^\perp = (\text{ColA})^\perp = (\text{RowA}^T)^\perp = \text{NullA}^T$. We have

$$A^T = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & -3 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 3 & -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 2 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -4 \end{pmatrix}$$

so we can take $w = (-3, 2, 4, 1)^T$. Thus

$$\text{Proj}_U(x) = x - \frac{x \cdot w}{|w|^2} w = \begin{pmatrix} 1 \\ 7 \\ 3 \end{pmatrix} - \frac{30}{30} \begin{pmatrix} -3 \\ 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \\ 2 \end{pmatrix}.$$

8: (a) Let $a = (2, 1, 3)$, $b = (4, 1, 2)$ and $c = (1, -1, 5)$. Find the area of the triangle in \mathbb{R}^3 with vertices at a , b and c .

Solution: Let $u = b - a = (2, 0, -1)$ and $v = c - a = (-1, -2, 2)$. The area A of the triangle with vertices a, b, c is equal to the area of the triangle with vertices $0, u, v$ which is equal to half of the area of the parallelogram with vertices at $0, u, v, u + v$, that is

$$A = \frac{1}{2}|u \times v| = \frac{1}{2}|(2, 0, -1) \times (-1, -2, 2)| = \frac{1}{2}|(-2, -3, -4)| = \frac{\sqrt{29}}{2}.$$

(b) (a) Let $a = (1, 0, 1)$, $b = (2, 2, 1)$, $c = (0, 1, 4)$ and $d = (-1, 1, 2)$. Find the volume of the tetrahedron with vertices at a, b, c and d (given that the volume of a tetrahedron is equal to $\frac{1}{3}Ah$ where A is the base area and h is the altitude).

Solution: Let $u = b - a = (1, 2, 0)$, $v = c - a = (-1, 1, 3)$ and $w = d - a = (-2, 1, 1)$. Then the volume V of the tetrahedron with vertices a, b, c, d is equal to the volume of the tetrahedron with vertices $0, u, v, w$, which is equal to one sixth of the volume of the parallelopope with vertices at $0, u, v, w, u + v, u + w, v + w, u + v + w$ (because the volume of the tetrahedron is $\frac{1}{3}Ah$, and the volume of the parallelopope is Bh , where both have the same height h , and A is the area of the base triangle with vertices at $0, u, v$ and B is the area of the base parallelogram with vertices at $0, u, v, u + v$, and we have $B = 2A$). By Part 3 of Theorem 1.25, the volume of the tetrahedron is

$$V = \frac{1}{6}|\det(u, v, w)| = \frac{1}{6} \left| \det \begin{pmatrix} 1 & -1 & -2 \\ 2 & 1 & 1 \\ 0 & 3 & 1 \end{pmatrix} \right| = \frac{1}{6}|1 - 12 - 3 + 2| = 2.$$

(c) Find the volume of the regular icosahedron whose 12 vertices are at $\pm(1, \pm a, 0)$, $\pm(0, 1, \pm a)$ and $\pm(\pm a, 0, 1)$, where $a > 0$ is chosen so that the edges all have equal length.

Solution: First let us find $a > 0$ so the side lengths are equal. The distance from $(1, a, 0)$ to $(1, -a, 0)$ is equal to $2a$ and the distance from $(1, a, 0)$ to $(0, 1, a)$ is $\sqrt{1 + (a - 1)^2 + a^2} = \sqrt{2a^2 - 2a + 2}$, and so, for the edges to be equal, we need

$$\sqrt{2a^2 - 2a + 2} = 2a \implies 2a^2 - 2a + 2 = 4a^2 \implies 2a^2 + 2a - 2 = 0 \implies a^2 + a - 1 = 0 \implies a = \frac{-1 + \sqrt{5}}{2}.$$

The icosahedron can be cut into 20 congruent tetrahedra each of which is congruent to the tetrahedron with vertices at $0, u, v, w$ with $u = (1, a, 0)$, $v = (0, 1, a)$ and $w = (a, 0, 1)$, and so the volume is

$$V = 20 \cdot \frac{1}{6}|\det(u, v, w)| = \frac{10}{3} \left| \det \begin{pmatrix} 1 & 0 & a \\ a & 1 & 0 \\ 0 & a & 1 \end{pmatrix} \right| = \frac{10}{3}|1 + a^3|.$$

Since $a^2 + a - 1 = 0$ we have $a^2 = 1 - a$ hence $a^3 = a - a^2 = a - (1 - a) = 2a - 1 = (-1 + \sqrt{5}) - 1 = \sqrt{5} - 2$ and so

$$V = \frac{10}{3}(1 + a^3) = \frac{10}{3}(\sqrt{5} - 1).$$

9: Let x and p be points in \mathbb{R}^3 , let u and v be unit vectors in \mathbb{R}^3 with $v \neq \pm u$, and let P and Q be the planes in \mathbb{R}^3 through p with unit normal vectors u and v . The (Euclidean) **distance** between x and P is $d(x, P) = |\text{Proj}_u(x - p)| = |(x - p) \cdot u|$, the **angle** between P and Q is $\theta(P, Q) = \cos^{-1} |u \cdot v| \in [0, \frac{\pi}{2}]$, and the **angle bisectors** of P and Q are the two planes in \mathbb{R}^3 through p with normal vectors $u + v$ and $u - v$.

(a) Show that x lies on one of the two angle bisectors of P and Q if and only if we have $d(x, P) = d(x, Q)$.

Solution: Let B and C be the two angle bisectors of P and Q , in other words let B and C be the planes in \mathbb{R}^3 through p with normal vectors $u + v$ and $u - v$. Then

$$\begin{aligned} d(x, P) = d(x, Q) &\iff |(x - p) \cdot u| = |(x - p) \cdot v| \iff (x - p) \cdot u = \pm(x - p) \cdot v \\ &\iff (x - p) \cdot (u \pm v) = 0 \iff x \in B \text{ or } x \in C. \end{aligned}$$

(b) Let B be a plane in \mathbb{R}^3 . Show that B is equal to one of the two angle bisectors of P and Q if and only if we have $P \cap Q \subseteq B$ and $\theta(B, P) = \theta(B, Q)$.

Solution: Let B be one of the two angle bisectors of P and Q , say B is the plane through p with normal vector $u + v$ (the case that B has normal vector $u - v$ is similar). Then $P \cap Q \subseteq B$ because

$$\begin{aligned} x \in P \cap Q &\implies (x \in P \text{ and } x \in Q) \implies \left((x - p) \cdot u = 0 \text{ and } (x - p) \cdot v = 0 \right) \\ &\implies (x - p) \cdot (u + v) = 0 \implies x \in B, \end{aligned}$$

and we have

$$\theta(B, P) = \cos^{-1} |(u + v) \cdot u| = \cos^{-1} |u \cdot u + u \cdot v| = \cos^{-1} |v \cdot v + u \cdot v| = \cos^{-1} |(u + v) \cdot v| = \theta(B, Q).$$

Conversely, let B be any plane in \mathbb{R}^3 with $P \cap Q \subseteq B$ such that $\theta(B, P) = \theta(B, Q)$. Let w be a unit normal vector for B . Note that $P \cap Q$ is equal to the line through p in the direction of the vector $u \times v$. Since $P \cap Q \subseteq B$, it follows that B is parallel to $u \times v$, and so the normal vector w must be perpendicular to $u \times v$, and hence $w \in \text{Span}\{u, v\}$. Also note that in $\text{Span}\{u, v\}$ we have $(u + v) \cdot (u - v) = u \cdot u - v \cdot v = 1 - 1 = 0$ and so $\{u + v, u - v\}$ is an orthogonal basis for $\text{Span}\{u, v\}$. We have

$$\begin{aligned} \theta(B, P) = \theta(B, Q) &\implies \cos \theta(B, P) = \cos \theta(B, Q) \implies |w \cdot u| = |w \cdot v| \\ &\implies w \cdot u = \pm w \cdot v \implies \left(w \cdot (u + v) = 0 \text{ or } w \cdot (u - v) = 0 \right). \end{aligned}$$

In the case that $w \cdot (u + v) = 0$, since $\{u + v, u - v\}$ is an orthogonal basis for $\text{Span}\{u, v\}$ it follows that $w = \pm \frac{u - v}{|u - v|}$, and so B is the plane through p with normal vector $u - v$. Similarly, in the case that $w \cdot (u - v) = 0$, B is the plane through p with normal vector $u + v$.

(c) Let $a = (-4, -3, 1)$, $b = (8, 3, 1)$, $c = (2, 6, 1)$ and $d = (4, 3, 3)$. Find the centre of the inscribed sphere of the tetrahedron with vertices at a , b , c and d .

Solution: Let F_a , F_b , F_c and F_d be the faces opposite the vertices a , b , c and d so for example F_a is the plane through b , c and d . Let B_{pq} denote the internal angle bisector of the planes F_p and F_q , so for example B_{ab} is the angle bisector of F_a and F_b (which intersect along the edge through c and d). Outwards pointing normal vectors to these faces are given by

$$\begin{aligned} (c - b) \times (d - b) &= (-6, 3, 0) \times (-4, 0, 2) = (6, 12, 12) = 6(1, 2, 2) \\ (d - a) \times (c - a) &= (8, 6, 2) \times (6, 9, 0) = (-18, 12, 36) = 6(-3, 2, 6) \\ (b - a) \times (d - a) &= (12, 6, 0) \times (8, 6, 2) = (12, -24, 24) = 12(1, -2, 2) \\ (c - a) \times (b - a) &= (6, 9, 0) \times (12, 6, 0) = (0, 0, -72) = 72(0, 0, -1) \end{aligned}$$

and so the outwards pointing unit normal vectors are $u_a = \frac{1}{3}(1, 2, 2)$, $u_b = \frac{1}{7}(-3, 2, 6)$, $u_c = \frac{1}{3}(1, -2, 2)$ and $u_d = (0, 0, -1)$. Plane B_{ad} is the plane through $c = (2, 6, 1)$ with normal vector $u_a - u_d = \frac{1}{3}(1, 2, 5)$ so it has equation $x + 2y + 5z = 19$ (1). Plane B_{bd} is the plane through $a = (-4, -3, 1)$ with normal vector $u_b - u_d = \frac{1}{7}(-3, 2, 13)$ so it has equation $-3x + 2y + 13z = 19$ (2). Plane B_{cd} is the plane through $a = (-4, -3, 1)$ with normal vector $u_c - u_d = \frac{1}{3}(1, -2, 5)$ so it has equation $x - 2y + 5z = 7$ (3). We solve these three equations.

$$\left(\begin{array}{ccc|c} 1 & 2 & 5 & 19 \\ -3 & 2 & 13 & 19 \\ 1 & -2 & 5 & 7 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & 5 & 19 \\ 0 & 8 & 28 & 76 \\ 0 & 4 & 0 & 12 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & 5 & 19 \\ 0 & 1 & 0 & 3 \\ 0 & 2 & 7 & 19 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 5 & 13 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 7 & 13 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & \frac{26}{7} \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & \frac{13}{7} \end{array} \right)$$

Thus the centre of the inscribed sphere is the point $(\frac{26}{7}, 3, \frac{13}{7})$.

10: (a) Let $u = (1, 8)$, $v = (2, 1)$ and $w = (3, 4)$. Find the image of the triangle $[u, v, w]$ under the isometry $G_{(-2, -6), y=3x-8}R_{(3, 8), \frac{\pi}{2}}$.

Solution: Let $R = R_{(3, 8), 90^\circ}$ and $G = G_{(-2, -6), y=3x-8}$. Then the given isometry is the composite $S = GR$. The image of the triangle $[u, v, w]$ is the triangle $[u', v', w']$ where $u' = S(u) = G(R(1, 8)) = G(3, 6) = (4, -1)$, $v' = S(v) = G(R(2, 1)) = G(10, 7) = (-1, 4)$ and $w' = S(w) = G(R(3, 4)) = G(7, 8) = (2, 3)$.

(b) Let $a = (2, -1)$ and $b = (3, 2)$. Draw a picture, or give an accurate description of the set

$$\{p \in \mathbb{R}^2 \mid R_{p, \theta}(a) = b \text{ for some } \theta \in \mathbb{R}\}.$$

Solution: Since $R_{p, \theta}$ is an isometry and $R_{p, \theta}(p) = p$, it follows that in order to have $R_{p, \theta}(a) = b$ we must have $|p - a| = |R_{p, \theta}(p) - R_{p, \theta}(a)| = |p - b|$ and so the point p must lie on the perpendicular bisector of $[a, b]$. Conversely, if p lies on the perpendicular of $[a, b]$ and $\theta = \theta_0(a - p, b - p)$ then we have $R_\theta(a - p) = b - p$ and so $R_{p, \theta}(a) = b$. Thus the set of all points p for which $R_{p, \theta}(a) = R_{p, \theta}(b)$ for some angle θ is equal to the perpendicular bisector of $[a, b]$. In the case that $a = (2, -1)$ and $b = (3, 2)$, the given set is the line $x + 3y = 4$.

(c) Let $a = (-1, 2)$ and $b = (3, 4)$. Draw a picture, or give an accurate description, of the set

$$\{0 \neq u \in \mathbb{R}^2 \mid G_{u, L}(a) = b \text{ for some line } L \text{ with direction vector } u\}.$$

Solution: When $0 \neq u \in \mathbb{R}^2$ and L is a line in \mathbb{R}^2 with direction vector u and $a \in \mathbb{R}^2$ and $b = G_{u, L}(a)$, the points a , $T_u(a) = a + u$, $F_L(a)$ and $G_{u, L}(a) = b$ are the vertices of a rectangle (unless $a \in L$ in which case $F_L(a) = a$ and $T_u(a) = a + u = b$). It follows that the circle with diameter a, b passes through the point $T_u(a) = a + u$ (and also the point $F_L(a)$). By translating by $-a$ we see that u lies on the circle with diameter $0, b - a$. Conversely, suppose that u lies on the circle with diameter $0, b - a$. Then the point $T_u(a) = a + u$ lies on the circle with diameter a, b . If $u = b - a$ so that $T_u(a) = b$ then we can take L to be the line through a and b to get $G_{u, L}(a) = F_L(a + u) = F_L(b) = b$. If $u \neq b - a$ then we can take L to be the perpendicular bisector of $[a + u, b]$ to get $G_{u, L}(a) = F_L(a + u) = b$. Thus the set of all points $0 \neq u \in \mathbb{R}^2$ such that $G_{u, L}(a) = b$ for some line L with direction vector u is equal to the circle in \mathbb{R}^2 with diameter $0, b - a$ (with the point 0 removed). In the case that $a = (-1, 2)$ and $b = (3, 4)$, the given set is the circle with diameter from $(0, 0)$ to $(4, 2)$, that is the circle $(x - 2)^2 + (y - 1)^2 = 5$, with the point $(0, 0)$ removed.

11: (a) Let L be the line $x + 3y = 2$. Find the equation of the line M such that $F_M F_L = T_{(1,3)}$.

Solution: By Theorem 1.83, the line M is the line obtained by translating the line L by $\frac{1}{2}(1, 3) = \left(\frac{1}{2}, \frac{3}{2}\right)$. The line L passes through the point $(2, 0)$ so the line M passes through the point $(2, 0) + \left(\frac{1}{2}, \frac{3}{2}\right) = \left(\frac{5}{2}, \frac{3}{2}\right)$. Thus M is the line through $\left(\frac{5}{2}, \frac{3}{2}\right)$ parallel to L , so M has equation $x + 3y = 7$.

(b) Let L be the line $2x - 3y = 1$. Find the equation of the line M with $F_M F_L = R_{(2,1), \frac{\pi}{2}}$.

Solution: By Theorem 1.83, the line N is the line obtain by rotating the line L by $\frac{\pi}{4}$ about the point $(2, 1)$. Notice that the points $(2, 1)$, $(5, 3)$, $(3, 6)$ and $(0, 4)$ form a square, so the line N is the diagonal which passes through $(2, 1)$ and $(3, 6)$. Thus N is the line $y = 5x - 9$.

(c) Let $p \in \mathbb{R}^2$ and let L , M and N be any lines in \mathbb{R}^2 with $p \in L \cap M \cap N$. Show that $F_N F_M F_L = F_L F_M F_N$.

Solution: Let $\theta = \theta_0(L, M)$ so that $F_M F_L = R_{p, 2\theta}$ and $F_L F_M = R_{p, -2\theta}$. Let K be the line obtained by rotating the line N about p by $-\theta$ so that $F_N F_K = R_{p, 2\theta}$ and $F_K F_N = R_{p, -2\theta}$. Then we have

$$\begin{aligned} F_N F_M F_L &= F_N R_{p, 2\theta} = F_N F_N F_K = F_K, \\ F_L F_M F_N &= R_{p, -2\theta} F_N = F_K F_N F_N = F_K. \end{aligned}$$

12: (a) Express the isometry $R_{(4,4),\frac{\pi}{2}}F_{x+3y=6}$ as a glide reflection.

Solution: Note that for a glide-reflection $S = G_{u,L}$ and a point $a \in \mathbb{R}^2$, the points a , $F_u(a)$, $S(a)$ and $F_L(a)$ form a rectangle, and the reflection line L passes through the centre of this rectangle, which is the midpoint of $[a, S(a)]$. Let $S = R_{(4,4),90^\circ}F_{x+3y=6}$. Choose $a = (0, 2)$ and $b = (3, 1)$ (we could have chosen any two points a and b). We have

$$\begin{aligned} S(a) &= R_{(4,4),90^\circ}F_{x+3y=6}(0, 2) = R_{(4,4),90^\circ}(0, 2) = (6, 0), \\ S(b) &= R_{(4,4),90^\circ}F_{x+3y=6}(3, 1) = R_{(4,4),90^\circ}(3, 1) = (7, 3). \end{aligned}$$

The midpoint of a and $S(a)$ is $(3, 1)$ and the midpoint of b and $S(b)$ is $(5, 2)$. To have $S = G_{u,L}$, the reflection line L must pass through these two midpoints, so L is the line $x - 2y = 1$. The translation vector is the vector $u = S(a) - F_L(a) = (6, 0) - (2, -2) = (4, 2)$. Thus $S = G_{(4,2),x-2y=1}$.

(b) Express the isometry $F_{y=3x}T_{(-2,3)}G_{(2,1),x+2=2y}$ as a rotation.

Solution: Note that for a rotation $S = R_{p,\theta}$ and a point $a \in \mathbb{R}^2$, since a and $S(a)$ are equidistant from p , the point rotation p must lie on the perpendicular bisector of $[a, S(a)]$. Let $S = F_{y=3x}T_{(-2,3)}G_{(2,1),x+2=2y}$. Choose $a = (0, 1)$ and $b = (2, 2)$. We have

$$\begin{aligned} S(a) &= F_{y=3x}T_{(-2,3)}G_{(2,1),x+2=2y}(0, 1) = F_{y=3x}T_{(-2,3)}(2, 2) = F_{y=3x}(0, 5) = (3, 4), \\ S(b) &= F_{y=3x}T_{(-2,3)}G_{(2,1),x+2=2y}(2, 2) = F_{y=3x}T_{(-2,3)}(4, 3) = F_{y=3x}(2, 6) = (2, 6). \end{aligned}$$

The perpendicular bisector of a and $S(a)$ is the line $x + y = 4$, and the perpendicular bisector of b and $S(b)$ is the line $y = 4$. As explained above, the rotation point is the point of intersection of these two perpendicular bisectors, which is the point $p = (0, 4)$. The rotation angle θ is the angle from the vector $b - a = (2, 1)$ to the vector $S(b) - S(a) = (-1, 2)$, that is $\theta = \frac{\pi}{2}$. Thus $S = R_{(0,4),\frac{\pi}{2}}$.

(c) Express the isometry $G_{(2,0),y=\sqrt{3}}F_{\sqrt{3}x+y=2\sqrt{3}}$ as a rotation.

Solution: To help to visualize the relative points and lines in this problem, it helps to draw a grid of equilateral triangles with vertices at points $s(2, 0) + t(1, \sqrt{3})$ with $s, t \in \mathbb{Z}$. Let $S = G_{(2,0),y=\sqrt{3}}F_{\sqrt{3}x+y=2\sqrt{3}}$. Choose $a = (2, 0)$ and $b = (0, 2\sqrt{3})$ (these two points lie on the line $\sqrt{3}x + y = 2\sqrt{3}$). Then

$$\begin{aligned} S(a) &= G_{(2,0),y=\sqrt{3}}F_{\sqrt{3}x+y=2\sqrt{3}}(2, 0) = G_{(2,0),y=\sqrt{3}}(2, 0) = F_{y=\sqrt{3}}(4, 0) = (4, 2\sqrt{3}), \\ S(b) &= G_{(2,0),y=\sqrt{3}}F_{\sqrt{3}x+y=2\sqrt{3}}(0, 2\sqrt{3}) = G_{(2,0),y=\sqrt{3}}(0, 2\sqrt{3}) = F_{y=\sqrt{3}}(2, 2\sqrt{3}) = (2, 0). \end{aligned}$$

The perpendicular bisector of a and $S(a)$ is the line $x + \sqrt{3}y = 6$ (1) and the perpendicular bisector of b and $S(b)$ is the line $x - \sqrt{3}y = -2$ (2). As explained in Part (b), the rotation point p is the point of intersection of these two perpendicular bisectors, so we solve (1) and (2) to get $p = (2, \frac{4}{3}\sqrt{3})$. The rotation angle θ is the oriented angle from the vector $b - a = 2(-1, \sqrt{3})$ to the vector $S(b) - S(a) = 2(-1, -\sqrt{3})$, that is $\theta = \frac{2\pi}{3}$.

13: Given a point $p \in \mathbb{R}^2$ and a real number $k \neq 0, 1$, we define the **dilation** about p with scaling factor k to be the map $D_{p,k} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $D_{p,k}(x) = p + k(x - p)$ for $x \in \mathbb{R}^2$.

(a) Show that if $q = p$ and $k\ell = 1$ then $D_{q,\ell}D_{p,k}$ is the identity.

Solution: Suppose that $q = p$ and that $k\ell = 1$. Then for $x \in \mathbb{R}^2$ we have

$$D_{q,\ell}D_{p,k}(x) = D_{q,\ell}(p + k(x - p)) = p + \ell(p + k(x - p) - p) = p + \ell k(x - p) = p + x - p = x$$

(b) Show that if $q \neq p$ and $k\ell = 1$ then $D_{q,\ell}D_{p,k}$ is a translation.

Solution: Suppose that $q \neq p$ and that $k\ell = 1$. Then for $x \in \mathbb{R}^2$ we have

$$\begin{aligned} D_{q,\ell}D_{p,k}(x) &= D_{q,\ell}(p + k(x - p)) = q + \ell(p + k(x - p) - q) \\ &= q + \ell(p - q) + (x - p) = x + (1 - \ell)(q - p) = T_u(x) \end{aligned}$$

where $u = (1 - \ell)(q - p)$.

(c) Show that if $q \neq p$ and $k\ell \neq 1$ then $D_{q,\ell}D_{p,k}$ is a dilation.

Solution: Suppose that $k\ell \neq 1$. Then for $x \in \mathbb{R}^2$ we have

$$\begin{aligned} D_{q,\ell}D_{p,k}(x) &= D_{q,\ell}(p + k(x - p)) = q + \ell(p + k(x - p) - q) \\ &= q + \ell(p - q) - k\ell p + k\ell x \end{aligned}$$

and for $r \in \mathbb{R}^2$ we have

$$D_{r,k\ell}(x) = r + k\ell(x - r) = r(1 - k\ell) + k\ell x.$$

and so we obtain $D_{q,\ell}D_{p,k}(x) = D_{r,k\ell}(x)$ by choosing

$$r = \frac{q + \ell(p - q) - k\ell p}{1 - k\ell}.$$

14: (a) Show that the composite of a translation and a dilation is a dilation.

Solution: Given $u \in \mathbb{R}^2$, $p \in \mathbb{R}^2$ and $k \in \mathbb{R}$ with $k \neq 0, 1$, we have

$$T_u D_{p,k}(x) = T_u(p + k(x - p)) = p + k(x - p) + u = u + p - kp + kx$$

and given $r \in \mathbb{R}^2$ we have

$$D_{r,k}(x) = r + k(x - r) = r(1 - k) + kx$$

and so we obtain $T_u D_{p,k}(x) = D_{r,k}(x)$ by choosing

$$r = \frac{u + p - kp}{1 - k} = p + \frac{1}{1 - k}u.$$

Similarly, one can obtain $D_{p,k} T_u(x) = D_{r,k}(x)$ when $r = \frac{p + ku - kp}{1 - k} = p + \frac{k}{1 - k}u$.

(b) Show that given $k \in \mathbb{R}$ with $k \neq 0, 1$ and given $a, b, c, d \in \mathbb{R}^2$ with $(d - c) = k(b - a)$ there exists a unique point $p \in \mathbb{R}^2$ such that $D_{p,k}(a) = c$ and $D_{p,k}(b) = d$.

Solution: Let $k \in \mathbb{R}$ with $k \neq 0, 1$, let $a, b, c, d \in \mathbb{R}^2$ with $0 \neq (d - c) = k(b - a)$. We have $D_{p,k}(a) = c$ when $c = p + k(a - p) = p(1 - k) + ka$ and this occurs when $p = \frac{c - ka}{1 - k}$. We must check that with this choice of p we also have $D_{p,k}(b) = d$. Indeed, when $p = \frac{c - ka}{1 - k}$ we have

$$\begin{aligned} D_{p,k}(b) &= p + k(b - p) = \frac{c - ka}{1 - k} + k\left(b - \frac{c - ka}{1 - k}\right) = \frac{c - ka}{1 - k} + k\left(\frac{b - kb - c + ka}{1 - k}\right) \\ &= \frac{c - ka + kb - k^2b - kc + k^2a}{1 - k} = \frac{(c - ka + kb)(1 - k)}{1 - k} \\ &= c - ka + kb = c + k(b - a) = c + (d - c) = c. \end{aligned}$$

(c) Show that a dilation maps a circle to a circle, and find two dilations which send the circle $(x - 2)^2 + y^2 = 5$ to the circle $(x - 6)^2 + (y - 2)^2 = 20$.

Solution: We claim that the dilation $D_{p,k}$ maps the circle C centred at a of radius r to the circle C' centred at $D_{p,k}(a)$ of radius $|k|r$. For $x \in \mathbb{R}^2$ we have

$$\left|D_{p,k}(x) - D_{p,k}(a)\right| = \left|(p + k(x - p)) - (p + k(a - p))\right| = |k(x - a)| = |k||x - a|$$

and so

$$x \in C \iff |x - a| = r \iff \left|D_{p,k}(x) - D_{p,k}(a)\right| = |k|r \iff D_{p,k}(x) \in C'.$$

Thus the dilation $D_{p,k}$ maps the circle C to the circle C' , as claimed.

Now let C be the circle $(x - 2)^2 + y^2 = 5$ and let C' be the circle $(x - 6)^2 + (y - 2)^2 = 20$. The circle C has centre $a = (2, 0)$ and radius $r = \sqrt{5}$ and the circle C' has centre $b = (6, 2)$ and radius $s = 2\sqrt{5}$. By our above calculation, in order for $D_{p,k}$ to send C to C' we must have $s = |k|r$, that is $2\sqrt{5} = |k|\sqrt{5}$, that is $k = \pm 2$, and in this case the dilation $D_{p,k}$ sends C to C' provided that $D_{p,k}(a) = b$. As we just showed in Part (b), we have $D_{p,k}(a) = b$ when $b = p + k(a - p) = (1 - k)p + ka$, that is when $p = \frac{b - ka}{1 - k}$. In the case that $k = 2$ we obtain $p = \frac{b - ka}{1 - k} = \frac{b - 2a}{-1} = 2a - b = 2(2, 0) - (6, 2) = (-2, -2)$. In the case that $k = -2$ we obtain $p = \frac{b - ka}{1 - k} = \frac{b + 2a}{3} = \frac{1}{3}((6, 2) + 2(2, 0)) = \left(\frac{10}{3}, \frac{2}{3}\right)$. Thus the two dilations which send the circle C to the circle C' are the dilations $D_{(-2, -2), 2}$ and $D_{\left(\frac{10}{3}, \frac{2}{3}\right), -2}$.