

1: Let $C = C(0, r)$ be the circle in \mathbb{R}^2 of radius r centred at the origin.

- Given $a \in \mathbb{R}$ with $0 < a < r$, find the centre $(b, 0)$ and radius s of the circle which passes through the point $(a, 0)$ and intersects the circle C orthogonally.
- Let $u = (0, r)$ and let $v = (x, y)$ be a point on C with $v \neq u$. Find the point of intersection $w = (a, 0)$ of the line through u and v with the x -axis.
- Let a, b, c and d be any 4 distinct points on C such that the line segment $[a, c]$ intersects with the line segment $[b, d]$ at a point p inside C . Show that $|a - p||p - c| = |b - p||p - d|$.

2: (a) Let $u = (1, 0)$, $v = (4, 1)$ and $w = (6, 5)$. Find the exact values of the interior angles α , β and γ in the triangle $[u, v, w]$.

- Let $u = (-1, 1)$ and $v = (2, 0)$. Find a point $w \in \mathbb{R}^2$ such that the triangle $[u, v, w]$ is positively oriented with $\alpha = \frac{\pi}{4}$ and $\gamma = \tan^{-1} \frac{1}{3}$.
- Let $a = \sqrt{5}$, $b = \sqrt{10}$ and $c = \sqrt{13}$. Find the exact area of the triangle with sides of length a , b and c .

3: (a) Let $u = (6, 7)$, $v = (-2, 3)$ and $w = (7, 0)$. Find the centre o and the radius r of the circumscribed circle of triangle $[u, v, w]$.

- Let $u = (0, 9)$, $v = (12, 0)$ and $w = (12, 14)$. Find the centre i and the radius r of the inscribed circle of triangle $[u, v, w]$.
- Let $u = (-2, 9)$, $v = (2, 1)$ and $w = (7, 6)$. Find the centres o , g and h of the triangle $[u, v, w]$ and verify that $h = 3g - 2o$.

4: (a) Let $u = (3, 1)$, $v = (3, 6)$ and $i = (2, 3)$. Find the point w in \mathbb{R}^2 such that i is the incentre of triangle $[u, v, w]$.

- Let $u = (7, 4)$, $o = (1, 1)$ and $g = (1, 2)$. Find points v and w in \mathbb{R}^2 such that o is the circumcentre and g is the centroid of triangle $[u, v, w]$.

5: (a) Let L be the line $x + y = 1$, let M be the line $3y = 2x + 6$, and let N be the line $2x + y = 6$. Find points $u, v, w \in \mathbb{R}^2$ such that, in the triangle $[u, v, w]$, L is the perpendicular bisector of $[u, v]$, M is the median from u , and N is the altitude from v .

- Let L be the line $2y = x + 4$, let M be the line $x + y = 4$, and let N be the line $y + 8 = 3x$. Find points $u, v, w \in \mathbb{R}^2$ such that, in the triangle $[u, v, w]$, L is the angle bisector at u , M is the altitude from v , and N is the median from w .

6: (a) Let $u = (1, 1, 2)$, $v = (2, 1, 3)$ and $x = (4, 1, -1)$. Find $\text{Proj}_U(x)$ where $U = \text{Span}\{u, v\}$.

- Let $a = (2, 1, 3)$, $b = (1, 2, 1)$, $u = (1, 3, 2)$ and $v = (2, 0, 1)$. Find the distance between the line $x = a + tu$ and the line $x = b + tv$.
- Referring to Theorem 1.22 in the Lecture Notes (Properties of the Cross Product), use Properties 1, 2, 3 and 5 to prove Property 4.

7: Let $u_1 = (1, 0, 1, -1)$, $u_2 = (2, 1, 1, 0)$, $u_3 = (1, -3, 2, 1)$, $\mathcal{B} = \{u_1, u_2, u_3\}$, $U = \text{Span}(\mathcal{B})$, and $x = (1, 1, 7, 3)$. Find $\text{Proj}_U(x)$ in the following three ways.

- Let $A = (u_1, u_2, u_3) \in M_{4 \times 3}$ so $\text{Proj}_U(x) = At$ where t is the solution to $A^T A t = A^T x$.
- Apply the Gram-Schmidt Procedure to the basis \mathcal{B} to obtain an orthogonal basis $\mathcal{C} = \{v_1, v_2, v_3\}$ for U , so that $\text{Proj}_U(x) = \sum_{i=1}^3 \frac{x \cdot v_i}{|v_i|^2} v_i$.
- Find $w \in \mathbb{R}^4$ so $\{w\}$ is a basis for U^\perp , so $\text{Proj}_U(x) = x - \text{Proj}_w(x) = x - \frac{x \cdot w}{|w|^2} w$.

8: (a) Let $a = (2, 1, 3)$, $b = (4, 1, 2)$ and $c = (1, -1, 5)$. Find the area of the triangle in \mathbb{R}^3 with vertices at a , b and c .

- Let $a = (1, 0, 1)$, $b = (2, 2, 1)$, $c = (0, 1, 4)$ and $d = (-1, 1, 2)$. Find the volume of the tetrahedron with vertices at a , b , c and d (given that the volume of a tetrahedron is equal to $\frac{1}{3}Ah$ where A is the base area and h is the altitude).
- Find the volume of the regular icosahedron whose 12 vertices are at $\pm(1, \pm a, 0)$, $\pm(0, 1, \pm a)$ and $\pm(\pm a, 0, 1)$, where $a > 0$ is chosen so that the edges all have equal length.

9: Let x and p be points in \mathbb{R}^3 , let u and v be unit vectors in \mathbb{R}^3 with $v \neq \pm u$, and let P and Q be the planes in \mathbb{R}^3 through p with unit normal vectors u and v . The (Euclidean) **distance** between x and P is $d(x, P) = |\text{Proj}_u(x - p)| = |(x - p) \cdot u|$, the **angle** between P and Q is $\theta(P, Q) = \cos^{-1} |u \cdot v| \in [0, \frac{\pi}{2}]$, and the **angle bisectors** of P and Q are the two planes in \mathbb{R}^3 through p with normal vectors $u + v$ and $u - v$.

- (a) Show that x lies on one of the two angle bisectors of P and Q if and only if we have $d(x, P) = d(x, Q)$.
- (b) Let B be a plane in \mathbb{R}^3 . Show that B is equal to one of the two angle bisectors of P and Q if and only if we have $P \cap Q \subseteq B$ and $\theta(B, P) = \theta(B, Q)$.
- (c) Let $a = (-4, -3, 1)$, $b = (8, 3, 1)$, $c = (2, 6, 1)$ and $d = (4, 3, 3)$. Find the centre of the inscribed sphere of the tetrahedron with vertices at a , b , c and d .

10: (a) Let $u = (1, 8)$, $v = (2, 1)$ and $w = (3, 4)$. Find the image of the triangle $[u, v, w]$ under the isometry $G_{(-2, -6), y=3x-8} R_{(3, 8), \frac{\pi}{2}}$.

- (b) Let $a = (2, -1)$ and $b = (3, 2)$. Draw a picture, or give an accurate description of the set

$$\{p \in \mathbb{R}^2 \mid R_{p, \theta}(a) = b \text{ for some } \theta \in \mathbb{R}\}.$$

- (c) Let $a = (-1, 2)$ and $b = (3, 4)$. Draw a picture, or give an accurate description, of the set

$$\{0 \neq u \in \mathbb{R}^2 \mid G_{u, L}(a) = b \text{ for some line } L \text{ with direction vector } u\}.$$

11: (a) Let L be the line $x + 3y = 2$. Find the equation of the line M such that $F_M F_L = T_{(1, 3)}$.

- (b) Let L be the line $2x - 3y = 1$. Find the equation of the line M with $F_M F_L = R_{(2, 1), \frac{\pi}{2}}$.

- (c) Let $p \in \mathbb{R}^2$ and let L , M and N be any lines in \mathbb{R}^2 with $p \in L \cap M \cap N$. Show that $F_N F_M F_L = F_L F_M F_N$.

12: (a) Express the isometry $R_{(4, 4), \frac{\pi}{2}} F_{x+3y=6}$ as a glide reflection.

- (b) Express the isometry $F_{y=3x} T_{(-2, 3)} G_{(2, 1), x+2=2y}$ as a rotation.

- (c) Express the isometry $G_{(2, 0), y=\sqrt{3}} F_{\sqrt{3}x+y=2\sqrt{3}}$ as a rotation.

13: Given a point $p \in \mathbb{R}^2$ and a real number $k \neq 0, 1$, we define the **dilation** about p with scaling factor k to be the map $D_{p, k} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $D_{p, k}(x) = p + k(x - p)$ for $x \in \mathbb{R}^2$.

- (a) Show that if $q = p$ and $k\ell = 1$ then $D_{q, \ell} D_{p, k}$ is the identity.

- (b) Show that if $q \neq p$ and $k\ell = 1$ then $D_{q, \ell} D_{p, k}$ is a translation.

- (c) Show that if $q \neq p$ and $k\ell \neq 1$ then $D_{q, \ell} D_{p, k}$ is a dilation.

14: (a) Show that the composite of a translation and a dilation is a dilation.

- (b) Show that given $k \in \mathbb{R}$ with $k \neq 0, 1$ and given $a, b, c, d \in \mathbb{R}^2$ with $(d - c) = k(b - a)$ there exists a unique point $p \in \mathbb{R}^2$ such that $D_{p, k}(a) = c$ and $D_{p, k}(b) = d$.

- (c) Show that a dilation maps a circle to a circle, and find two dilations which send the circle $(x - 2)^2 + y^2 = 5$ to the circle $(x - 6)^2 + (y - 2)^2 = 20$.