
Chapter 4. Hyperbolic Geometry

Reflections in Circles

4.1 Definition: When L is the line in R2 through the point a ∈ R2 perpendicular to the
vector 0 6= u ∈ R2, the reflection in the line L is the map FL : R2 → R2 given by

FL(x) = x− 2 Proju(x− a) = x− 2(x− a).u
|u|2

u.

When C is the circle in R2 centred at the point a ∈ R2 of radius r > 0, the reflection (or
inversion) in the circle C is the map FC : R2 \ {a} → R2 \ {a} given by

FC(x) = a+
r2

|x− a|2
(x− a).

4.2 Example: When S is the unit circle S =
{
x ∈ R2

∣∣|x| = 1
}

, we have FS(x) =
x

|x|2
.

4.3 Note: For any line L we have FL
2 = I and for any circle C we have FC

2 = I.

4.4 Note: When C is the circle centred at a ∈ R2 of radius r > 0 note that for x ∈ R2\{a}
we have

(1) |x− a| < r ⇐⇒
∣∣FC(x)− a

∣∣ > r,

(2) |x− a| > r ⇐⇒
∣∣FC(x)− a

∣∣ < r and

(3) |x− a| = r ⇐⇒
∣∣FC(x)− a

∣∣ = r.

In other words, FC sends points inside C to points outside C and vice versa, and FC fixes
points on the circle C.

4.5 Note: For u ∈ R2, let Tu : R2 → R2 be the translation defined by Tu(x) = x + u.
For 0 6= t ∈ R, let Dt : R2 → R2 be the dilation (or scaling map) given by Dt(x) = tx.
Note that when C is the circle of radius r > 0 centred at a ∈ R2 and S is the unit circle,
the reflection FC is equal to the composite

FC = TaDrFSD1/rT−a

because for x ∈ R2 \ {a} we have

TaDrFSD1/rT−a(x) = TaDrFSD1/r(x− a) = TaDrFS
(
1
r (x− a)

)
= TaDr

( 1
r (x− a)
1
r2 |x− a|2

)
= TaDr

( r

|x− a|2
(x− a)

)
= Ta

( r2

|x− a|2
(x− a)

)
= a+

r2

|x− a|2
(x− a) = FC(x).
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4.6 Theorem: (Reflections Preserve Lines and Circles) A reflection in a line or a circle
sends lines and circles to lines and circles. When C is the circle centred at a ∈ R2 of radius
r > 0, and b ∈ R2 with b 6= a and c = a+ t(b− a) with 0 6= t ∈ R, we have the following.

(1) Any line through the point a is mapped by FC to the same line.
(2) The line whose nearest point to a is b is mapped to the circle with diameter a, FC(b),
(3) The circle with diameter a, b is mapped to the line whose nearest point to a is FC(b),
(4) The circle with diameter b, c is mapped to the circle with diameter F (b), F (c).

Proof: We prove Parts (2) and (4) and note that (3) follows from (2) because FC
2 = I so

that FC = FC
−1. To prove Part (2), let L be the line whose nearest point to a is b, and

let D be the circle with diameter from a to FC(b) = a + r2

|b−a|2 (b − a). For x ∈ R2 \ {a}
and y = FC(x) = a+ r2

|x−a|2 (x− a) we have

x ∈ L ⇐⇒ (x− b).(b− a) = 0

and

y ∈ D ⇐⇒ (y − a).(y − FC(b)
)

= 0

⇐⇒ r2

|x−a|2 (x− a).
(

r2

|x−a|2 (x− a)− r2

|b−a|2 (b− a)
)

= 0

⇐⇒ r4

|x−a|2 −
r4

|x−a|2|b−a|2 (x− a).(b− a) = 0

⇐⇒ |b− a|2 − (x− a).(b− a) = 0 ⇐⇒ (b− a).(b− a)− (x− a).(b− a) = 0

⇐⇒
(
(b− a)− (x− a)

).(b− a) = 0 ⇐⇒ (b− x).(b− a) = 0 ⇐⇒ x ∈ L.

To prove Part (4), note that since FC is equal to the composite FC = TaDrFSD1/rT−a,
where S is the unit circle S = S1, it suffices to prove Part (4) in the case that C = S. We
need to show that when 0 6= b ∈ R2 and 0 6= t ∈ R, the circle D with diameter from b to tb
is mapped by FS to the circle E with diameter from FS(b) = b

|b|2 to FS(tb) = tb
|tb|2 = b

t|b|2 .

When x ∈ R2 \ {0} and y = FS(x) = x
|x|2 we have

x ∈ D ⇐⇒ (x− b).(x− tb) = 0 ⇐⇒ |x|2 − (1 + t)x.b+ t|b|2 = 0

and
y ∈ E ⇐⇒

(
y − FS(b)

).(y − FS(tb)
)

= 0

⇐⇒
(
x
|x|2 −

b
|b|2
).( x

|x|2 −
b

t|b|2
)

= 0

⇐⇒ 1
|x|2 −

(
1
t + 1

)
x.b
|x|2|b|2 + 1

t|b|2 = 0

⇐⇒ t|b|2 − (1 + t)x.b+ |x|2 = 0

⇐⇒ x ∈ D.

4.7 Example: Let C be the circle centred at a = (2, 1) of radius r =
√

10. Let L be the
line y = x − 1, and let M be the line y = x + 1. Find the images of the lines L and M
under the reflection FC .

4.8 Example: Let C be the circle centred at a = (1, 2) of radius r =
√

5. Let D be the
circle with diameter from (−1, 4) to (2, 3) and let E be the circle (x− 3)2 + (y − 2)2 = 9.
Find the images of circles D and E under the reflection FC .
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4.9 Theorem: (Reflections are Conformal) Every reflection in a line or a circle is a
conformal map. When C is the circle of radius r > 0 centred at a ∈ R2, the scaling factor

of FC at the point x ∈ R2 \ {a} is equal to r2

|x−a|2 .

Proof: When L is a line in R2, the reflection FL is an isometry and hence is a conformal
map of scaling factor 1. Change the notation used in the statement of the theorem, and
let C be the circle centred at (a, b) of radius r > 0. Then

(u, v) = FC(x, y) = (a, b) +
r2∣∣(x− a, y − b)∣∣2 (x− a, y − b)

=
(
a+

r2(x− a)

(x− a)2 + (y − b)2
, b+

r2(y − b)
(x− a)2 + (y − b)2

)
.

Recall that FC is conformal at (x, y) with scaling factor c when DFC
TDFC = c2I. Writing

s = x− a and t = y − b we have

DFC =

(
ux uy
vx vy

)
=


r2
(
(x−a)2+(y−b)2−2(x−a)2

)(
(x−a)2+(y−b)2

)2 −2r2(x−a)(y−b)(
(x−a)2(y−b)2

)2
−2r2(x−a)(y−b)(
(x−a)2(y−b)2

)2 r2
(
(x−a)2+(y−b)2−2(y−b)2

)(
(x−a)2+(y−b)2

)2


= r2

(s2+t2)2

(
t2 − s2 −2st
−2st s2 − t2

)
and so

DFC
TDFC = r4

(s2+t2)4

(
t2 − s2 −2st
−2st s2 − t2

)2

= r4

(s2+t2)4

(
s2 + t2 0

0 s2 + t2

)
= r4

(s2+t2)2 I.

Thus FC is conformal at (x, y) with scaling factor r2

s2+t2 = r2

(x−a)2+(y−b)2 . Reverting to

the notation used in the statement of the theorem, FC is conformal at x of scaling factor
r2

|x−a|2 .
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The Poincaré Disc Model of the Hyperbolic Plane

4.10 Definition: We define the hyperbolic plane (also called the Poincaré Disc) to
be the set

H2 =
{
x ∈ R2

∣∣|x| < 1
}

=
{

(x, y) ∈ R2
∣∣x2 + y2 < 1

}
.

The boundary of H2 is the unit circle

S1 =
{
x ∈ R2

∣∣|x| = 1
}

=
{

(x, y) ∈ R2
∣∣x2 + y2 = 1

}
.

and points in S1 are called points at infinity or asymptotic points. In the hyperbolic
plane, (hyperbolic) length and area are measured infinitesimally in terms of Euclidean
length and area, by

dHL =
2

1− |x|2
dEL , dHA =

4

(1− |x|2)2
dEA.

This means that the (hyperbolic) length of a curve given parametrically by x = α(t)
where α : [a, b]→ H2 is given by

L =

∫ b

t=a

dHL =

∫ b

t=a

2

1− |x|2
dEL =

∫ b

t=a

2

1− |α(t)|2
|α′(t)| dt

and the (hyperbolic) area of a region given in Cartesian coordinates by x ∈ D ⊆ H2 or by
(x, y) ∈ D ⊆ H2, or in polar coordinates by (r, θ) ∈ R, is equal to

A =

∫∫
D

dHA =

∫∫
x∈D

4

(1− |x|2)2
dEA

=

∫∫
(x,y)∈D

4

(1− x2 − y2)2
dx dy =

∫∫
(r,θ)∈R

4r

(1− r2)2
dr dθ.

The (hyperbolic) angle between two curves at a point in H2 and the (hyperbolic) oriented
angle from one curve to another at a point in H2 are the same as the Euclidean angle
between the two curves and the Euclidean oriented angle from one curve to the other.

4.11 Example: Let u ∈ H2. Find the hyperbolic length of the line segment from 0 to u.

Solution: The line segment is given by x = α(t) = tu for 0 ≤ t ≤ 1 and we have α′(t) = u,
so the hyperbolic length is

L =

∫ 1

t=0

2 |α′(t)|
1− |α(t)|2

dt =

∫ 1

t=0

2 |u|
1− |tu|2

dt =

∫ 1

t=0

2 |u|
1− t2|u|2

dt

=

∫ 1

t=0

|u|
1 + |u| t

+
|u|

1− |u| t
dt =

[
ln

1 + |u| t
1− |u| t

]1
t=0

= ln
1 + |u|
1− |u|

.

4.12 Example: Find the hyperbolic area of the disc
{
x ∈ H2

∣∣|x| ≤ a}.

Solution: The hyperbolic area is

A =

∫ 2π

θ=0

∫ a

r=0

4r

(1− r2)2
dr dθ =

∫ 2π

θ=0

[
2

1− r2

]a
r=0

dθ = 2π
( 2

1− a2
− 2
)

=
4π a2

1− a2
.

4.13 Definition: A (hyperbolic) line in H2 is set which is either of the form L = M ∩H2

for some line M in R2 through 0, or of the form L = C ∩H2 for some circle C in R2 which
intersects the unit circle S1 orthogonally.
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4.14 Note: Let C be the circle centred at a ∈ R2 of radius r > 0. The circle C intersects
S1 orthogonally at b when the radius of S1 from 0 to b is perpendicular to the radius of
C from a to b. This occurs when a lies outside S1 and the triangle 0, a, b is a right-angled
triangle with hypotenuse of length |a| and legs of length r and 1. Thus C intersects S1
orthogonally when |a| > 1 and r2 = |a|2 − 1.

4.15 Note: Let C be a circle which intersects S1 orthogonally. Since FC sends S1 to a
circle, and FC fixes the two intersection points in C∩S1, and FC preserves the right angles
at the two intersection points, we see that FC sends S1 to itself. It follows that the map
FC restricts to a bijection FC : H2 → H2.

4.16 Definition: When L = M ∩ H2 where M is a line through 0 in R2, we define the
reflection in L to be the bijective map FL = FM : H2 → H2. When L = C ∩H2 where C
is a circle in R2 which intersects S1 orthogonally, we define the reflection in L to be the
bijective map FL = FC : H2 → H2.

4.17 Theorem: (Reflections are Isometries) Let L be a line in H2. Then FL : H2 → H2

is an isometry on H2.

Proof: This is (reasonably) clear when L is given by a line through the origin. Suppose
that L = C ∩ H2 where C is the circle centred at a ∈ R2 of radius r = |a|2 − 1. The

scaling factor of the map FL at a point x is equal to r2

|x−a|2 = |a|2−1
|x−a|2 . In order for the

map FL : H2 → H2 to be an isometry, this scaling factor must exactly compensate for
the change in the scaling factor from the point x to the point FL(x) in the infinitesimal
element of hyperbolic arclength, so we need to prove that when y = FL(x)

|a|2 − 1

|x− a|2
=

1− |y|2

1− |x|2
.

Let x ∈ H2 so that |x| < 1, and let y = FL(x) = a + r2

|x−a|2 (x − a) = a + |a|2−1
|x−a|2 (x − a).

Then
1− |y|2 = 1−

(
a+ |a2|−1

|x−a|2 (x− a)
)
.
(
a+ |a2|−1

|x−a|2 (x− a)
)

= 1− |a|2 − 2 |a|
2−1

|x−a|2 a.(x− a)− (|a|2−1)2
|x−a|4 |x− a|

2

= |a|2−1
|x−a|2

(
−|x− a|2 − 2 a.(x− a)− (|a|2 − 1)

)
= |a|2−1
|x−a|2

(
− |x|2 + 2x.a− |a|2 − 2 a.x+ 2 |a|2 − |a|2 + 1

)
= |a|2−1
|x−a|2

(
1− |x|2

)
,

as required.

4.18 Theorem: Given u, v ∈ H2 ∪ S1 with u 6= v. there is a unique line L in H2 which
contains (or, in the case of points at infinity, is asymptotic to) u and v.

Proof: Let p ∈ R2 and let C be the circle in R2 centred at p with radius r =
√
|p|2 − 1 so

that C intersects S1 orthogonally. Note that

u ∈ C ⇐⇒ |u− p|2 = r2 ⇐⇒ |u|2 − 2 p.u+ |p|2 = |p|2 − 1 ⇐⇒ p.u = |u|2+1
2 .

Similarly, we have v ∈ C ⇐⇒ p.v = |v|2+1
2 . When {u, v} is linearly independent, there is

no line in R2 through 0 which passes through u and v and there is a unique point p such
that the above circle C passes through u and v, (namely the point of intersection of the
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two lines x.u = |u|2+1
2 and x.v = |v|2+1

2 , which are are not parallel). Suppose that {u, v}
is linearly dependent, say u 6= 0 and v = tu with t ∈ R. Then there is a unique line in R2

through 0 which passes through u and v, namely the line L = Span{u}, but we claim that
the above circle C cannot pass through both u and v. Suppose, for a contradiction, that
u, v ∈ C. Then

t2|u|2+1
2 = |tu|2+1

2 = |v|2+1
2 = p.v = p.(tu) = t(p.u) = t |u|

2+1
2

so that
0 = t2|u|2 − t

(
|u|2 + 1

)
+ 1 =

(
|u|2t− 1

)
(t− 1)

so either t = 1 or t = 1
|u|2 . But if t = 1 then v = tu = u and if t = 1

|u|2 then v = tu = u
|u|2

so that |v| = 1
|u| > 1 in which case v /∈ H2.

4.19 Definition: When two hyperbolic lines meet at a point in H2, we say the lines
intersect, when two lines are asymptotic at a point in S1, we say the lines are asymptotic
(or critically parallel), and when two lines do not intersect and are not asymptotic, we
say they are parallel (or ultraparallel).

4.20 Theorem: (Perpendicular Bisector) Given u, v ∈H2 with u 6= v, there is a unique
line L in H2, called the perpendicular bisector of u and v, for which FL(u)= v.

Proof: Let p ∈ R2 with |p| > 1 and let C be the circle in R2 centred at p with radius
r =

√
|p|2 − 1. In order to have FC(u) = v, the points u and v must lie on the same

ray from p, so we must have p = u + t(v − u) for some t ∈ R with t /∈ [0, 1]. When
p = u+ t(v − u)with t /∈ [0, 1] we have

FC(u) = v ⇐⇒ |u− p||v − p| = r2

⇐⇒
∣∣− t(v − u)

∣∣∣∣(1− t)(v − u)
∣∣ = |p|2 − 1

⇐⇒ |t2 − t||v − u|2 =
∣∣u+ t(v − u)

∣∣2 − 1

⇐⇒ (t2 − t)|v − u|2 = |u|2 + 2t u.(v − u) + t2|v − u|2 − 1

⇐⇒ −t|v − u|2 = |u|2 + 2t u.(v − u)− 1

⇐⇒ −t|v|2 + 2t u.v − t|u|2 = |u|2 + 2t u.v − 2t |u|2 − 1

⇐⇒ t
(
|u|2 − |v|2

)
= |u|2 − 1

⇐⇒ |u| 6= |v| and t = 1−|u|2
|v|2−|u|2 .

Also note that the unique line M in R2 for which FM (u) = v is the perpendicular bisector
of u and v. When |u| = |v| there is no point p for which FC(u) = v, but the perpendicular
bisector M passes through 0. When |u| 6= |v|, there is a unique point p for which FC(u) = v,

namely the point p = u + t(v − u) with t = 1−|u|2
|v|2−|u|2 , and the perpendicular bisector M

does not pass through 0.

4.21 Example: In the case that v = 0, in the above proof we have t = 1−|u|2
|v|2−|u|2 = − 1−|u|2

|u|2

and p = u+ t(v − u) = u− tu = (1− t)u =
(
1 + 1−|u|2

|u|2
)
u = u

|u|2 . Thus the unique line L

in H2 for which FL(u) = 0 (or equivalently for which FL(0) = u) is the line L = C ∩ H2

where C is the circle centred at p = u
|u|2 of radius r =

√
|p|2 − 1.

4.22 Remark: Given u, v ∈ H2 with u 6= v, if L is the line through u and v and M is
the perpendicular bisector of u and v, then, because FM (u) = v and FM (v) = u, it follows
that FM sends the line L to itself, and so the lines L and M intersect orthogonally.
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Geodesics and Distance

4.23 Definition: A geodesic in H2 is a smooth curve in H2 which minimizes the hyper-
bolic arclength between any two points on the curve.

4.24 Theorem: The geodesics in H2 are the hyperbolic lines.

Proof: First consider a curve C from 0 to u in H. Represent C in polar coordinates by
x =

(
r(t) cos θ(t), r(t) sin θ(t)

)
where r(t) and θ(t) are smooth functions with r(t) ≥ 0 for

all t ∈ [0, 1]. Note that |α(t)|2 = r(t)2 and we have

α′(t) =
(
r′ cos θ − r sin θ · θ′ , r′ sin θ + r cos θ · θ′

)
|α′(t)|2 = (r′ cos θ)2 − 2 rr′ sin θ cos θ · θ′ + (r sin θ · θ′)2

+ (r′ sin θ)2 + 2 rr′ sin θ cos θ · θ′ + (r cos θ · θ′)2

= (r′)2 + (rθ′)2

and so the length of C from 0 to u is

L(C) =

∫ 1

0

2|α′(t)|
1− |α(t)|2

dt =

∫ 1

t=0

2
√
r′(t)2 + r(t)2θ′(t)2

1− r(t)2
dt

≥
∫ 1

t=0

2
√
r′(t)2

1− r(t)2
dt =

∫ 1

t=0

2|r′(t)|
1− r(t)2

dt ≥
∫ 1

t=0

2 r(t)

1− r(t)2
dt

=

∫ |u|
s=0

2 ds

1− s2
=

∫ |u|
s=0

1

1 + s
+

1

1− s
ds =

[
ln

1 + s

1− s

]|u|
s=0

= ln
1 + |u|
1− |u|

.

By comparing this with the result from Example 4.11, we see that the length of C is greater
than or equal to the length of the straight line segment from 0 to u. Furthermore, the two
inequalities in the above calculation only become equalities in the case that r(t)θ′(t) = 0
and r′(t) ≥ 0 for all t. When this happens we have θ′(t) = 0 whenever r(t) > 0, and so θ
is constant for r > 0, which implies that C is the straight line segment from 0 to u.

Now consider a smooth curve C from u to v in H2. Let L be the line such that
FL(0) = u. Since FL

2 = I we also have FL(u) = 0. Use the isometry FL to move the curve
C to the curve D = FL(C) from 0 = FL(u) to w = FL(v). Let M be the straight line from
0 to w and let N = FL(M). Notice that N is the unique hyperbolic line through u and v.
The hyperbolic arclength along C from u to v is equal to the hyperbolic arclength along
D = FL(C) from 0 to w which is greater than or equal to the hyperbolic arclength along
the straight line M from 0 to w, which is equal to the hyperbolic arclength along N from
u to v. It follows that the hyperbolic line N through u and v is the geodesic from u to v.

4.25 Definition: For u, v ∈ H we define the (hyperbolic) distance between u and v,
denoted by dH(u, v), to be equal to the hyperbolic arclength along the (unique) line from
u to v. The hyperbolic line segment between u and v, that is the arc between u and
v along the hyperbolic line through u and v, is denoted by [u, v] (we do not normally
distinguish notationally between the Euclidean line segment [u, v] and the hyperbolic line
segment [u, v], so it is sometimes necessary to specify).
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4.26 Theorem: Let u, v ∈ H2. Then

dH(u, v) = cosh−1
(

1 +
2|v − u|2

(1− |u|2)(1− |v|2)

)
.

Proof: Let L be the line in H2 such that FL(u) = 0 and let w = FL(v). Since FL is an
isometry, we have

dH(u, v) = dH
(
FL(u), FL(v)

)
= dH(0, w).

From Example 4.11, we have dH(0, w) = ln 1+|w|
1−|w| , and so

coshH dH(u, v) = cosh dH(0, w) = cosh

(
ln

1 + |w|
1− |w|

)
=

1

2

(
1 + |w|
1− |w|

+
1− |w|
1 + |w|

)
=

1

2

(
(1 + |w|)2 + (1− |w|)2

1− |w|2

)
=

1 + |w|2

1− |w|2
= 1 +

2|w|2

1− |w|2
.

Thus to prove the theorem, it suffices to prove that

1 +
2|w|2

1− |w|2
= 1 +

2|u− v|2

(1− |u|2)(1− |v|2)
.

Recall from Example 4.20 that L = C ∩ H2 where C is the circle centred at p = u
|u|2 of

radius r =
√
|p|2 − 1. Recall from Theorem 4.9 that FL is conformal and scales by the

factor |p|
2−1

|v−p|2 when it sends v to w. Recall from Theorem 4.17 that FL is an isometry

because this scaling factor compensates for the change in scaling factor from v to w in the

definition of dHL so we have |p|
2−1

|v−p|2 = 1−|w|2
1−|v|2 . Thus we have

1− |w|2 =
|p|2 − 1

|v − p|2
(1− |v|2) =

1
|u|2 − 1

|v − p|2
(1− |v|2) =

(1− |u|2)(1− |v|2)

|u|2|v − p|2

|w|2 = 1−
(
1− |w|2

)
= 1− (1− |u|2)(1− |v|2)

|u|2|v − p|2
and

=
|u|2|v − p|2 − (1− |u|2)(1− |v|2)

|u|2|v − p|2
=

∣∣|u|v − u
|u|
∣∣2 − (1− |u|2)(1− |v|2)

|u|2|v − p|2

=

(
|u|2|v|2 − 2(u.v) + 1

)
−
(
1− |u|2 − |v|2 + |u|2|v|2

)
|u|2|v − p|2

=
|u|2 − 2u.v + |v|2

|u|2|v − p|2
=
|u− v|2

|u|2|v − p|2

so that
|w|2

1− |w|2
=

|u− v|2

(1− |u|2)(1− |v|2)
, as required.

8



4.27 Definition: For u ∈ H2 and r > 0, the (hyperbolic) circle centred at u of radius r
and the (hyperbolic) disc centred at u of radius r are the sets

CH(u, r) =
{
x ∈ H2

∣∣dH(x, u) = r
}
,

DH(u, r) =
{
x ∈ H2

∣∣dH(x, u) ≤ r
}

4.28 Note: Every hyperbolic circle is equal to a Euclidean circle (but with a different
centre and radius). We can see this as follows. Consider the hyperbolic circle CH(u, r). Let
L be the line in H2 such that FL(u) = 0. Since FL is an isometry, the image of CH(u, r)
under FL is equal to CH(0, r). By Example 4.11 the hyperbolic circle CH(0, r) is equal to
the Euclidean circle x2 +y2 = a2 where r = ln 1+a

1−a . The original circle CH(u, r) is equal to

the image under FL of the Euclidean circle x2 + y2 = a2, which is also a Euclidean circle
by Theorem 4.6.

4.29 Theorem: Let u ∈ H2 and let r > 0. The circumference L of the circle CH(u, r)
and the area A of the disc DH(u, r) are given by

L = 2π sinh r,

A = 2π
(

cosh r − 1
)
.

Proof: By the above note, the required circumference and area are the same as the hyper-
bolic circumference and area of the circle x2 + y2 = a2 with r = dH((0, 0), (a, 0)) = ln 1+a

1−a .

Note that cosh r = 1
2 (er + e−r) = 1

2

(
1+a
1−a + 1−a

1+a

)
= 1 + 2a2

1−a2 , and by Example 4.12, the
area of DH(u, r) is

A =
4πa2

1− a2
= 2π(cosh r − 1).

From r = ln 1+a
1−a we have er = 1+a

1−a =⇒ er−aer = 1+a=⇒ er−1 = a(er+1) =⇒ a = er−1
er−1 .

The hyperbolic circumference L of CH(u, r) is equal to the Euclidean circumference of the
circle x2 + y2 = a2 scaled by the factor 2

1−a2 to give

L =
4π a

1− a2
=

4π
(
er−1
er+1

)
1−

(
er−1
er+1

)2 =
4π(er − 1)(er + 1)

(er + 1)2 − (er − 1)2

=
4π(e2r − 1)

4er
= 2π · e

r − e−r

2
= 2π sinh r.

4.30 Definition: As mentioned above, a Euclidean circle which is contained in H2 is also
a hyperbolic circle (but with a different centre and radius). When a Euclidean circle E
is contained in H2 ∪ S1 and is tangent at one point in S1, the intersection C = E ∩ H2 is
called a horocycle in H2. When a Euclidean circle E intersects S1 at two distinct points,
the intersection C = E ∩H2 is called a hypercycle in H2.
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Angles and Triangles

4.31 Definition: Angles between curves in H2, and oriented angles from one directed
curve in H2 to another, are the same as the corresponding Euclidean angles in R2. For
example, given two smooth parametric curves x = α(t) and y = β(t) in H2 with say
α(0) = β(0) = p ∈ H2, the oriented angle at p from the curve x = α(t) to the curve
x = β(t) is equal to θo

(
α′(0), β′(0)

)
= θo

(
β′(0)

)
−θo

(
α′(0)

)
∈ [0, 2π), as in Definition 1.29,

and it is determined by

cos θo
(
α′(0), β′(0)

)
=

α′(0).β′(0)

|α′(0)| |β′(0)|
and sin θo

(
α′(0), β′(0)

)
=

det
(
α′(0), β′(0)

)
|α′(0)| |β′(0)|

,

as in Theorem 1.30, and the unoriented angle at p between the curves x = α(t) and
x = β(t) is given by

θ
(
α′(t), β′(0)

)
= cos−1

α′(0).β′(0)

|α′(0)| |β′(0)|
∈ [0, π].

Given u, v, w ∈ H2 (or more generally, given u, v, w ∈ H2 ∪ S1) with u 6= v and u 6= w,
we define the oriented and unoriented hyperbolic angles ∠ovuw and ∠vuw as follows: let
uv be the unit tangent vector (or any tangent vector) at u to the arc along the hyperbolic
line from u to v, and let uw be the unit tangent vector (or any tangent vector) at u to the
arc along the hyperbolic line from u to w, and define

∠ovuw = θo(uv, uw) and ∠vuw = θ(uv, uw).

For u, v, w ∈ H2 (or, more generally, for u, v, w ∈ H2 ∪ S1) we say that u, v and w are
noncolinear when there is no hyperbolic line which contains (or is asymptotic) to all
three points. A (non-degenerate, hyperbolic) triangle in H2 (or in H2 ∪S1) is determined
by three noncolinear points u, v, w ∈ H2 (or u, v, w ∈ H2 ∪ S1) which we call the vertices
of the triangle. When one or more of the vertices of a hyperbolic triangle lies in S1, the
triangle is called an asymptotic triangle (we say it is doubly asymptotic when two
of its vertices lie in S1 and triply asymptotic when all three vertices lie in S1). As with
Euclidean or spherical triangles, we could think of a hyperbolic triangle in several ways:
we could think of the triangle as being equal to its set of vertices {u, v, w}, or we can keep
track of the order of the points and think of the triangle as an ordered triple (u, v, w),
or we could think of the triangle as being the union of its three hyperbolic edges [v, w],
[w, u] and [u, v], (where for example [u, v] denotes the arc along the hyperbolic line from
u to v), or we can think of the hyperbolic triangle as the region [u, v, w] ⊆ H2 ∪ S1 which
is bounded by the three edges. We shall agree that an ordered triangle in H2 (or in
H2 ∪ S1) consists of an ordered triple (u, v, w) of noncolinear points in H2 (or in H2 ∪ S1)
together with the region [u, v, w] which is bounded by the three edges [v, w], [w, u] and
[u, v]. For this triangle, we shall normally denote the hyperbolic edge lengths by a, b and
c with

a = dH(v, w) , b = dH(w, u) , c = dH(u, v)

and we shall normally denote the oriented and unoriented angles at the vertices by αo,
βo and γo and α, β and γ with

αo = ∠ovuw , βo = ∠owvu , γo = ∠ouwv , α = ∠vuw , β = ∠wvu , γ = ∠uwv.

The unoriented angles α, β and γ are also called the interior angles of the triangle, and
the exterior angles are given by π − α, π − β and π − γ.
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4.32 Example: Let u =
(
1
2 , 0
)
, v =

(
1
2 ,

1
2

)
and w =

(
− 1

2 ,−
1
2

)
. In the hyperbolic triangle

[u, v, w], find the edge length b = dH(w, u) and the oriented angle βo = ∠owvu.

Solution: The edge length b is given by

b = dH(w, u) = cosh−1
(

1 + 2|w−u|2
(1−|w|2)(1−|u|2)

)
= cosh−1

(
1 +

2· 54
1
2 ·

3
4

)
= cosh−1 23

3 .

To find the oriented angle βo at the vertex v, we shall find vu and vw. The hyperbolic line
L through v and w is the same as the Euclidean line L through v and w (since it passes
through the origin), namely the line y = x. Since L has slope 1, we have vw = (−1,−1)
(or some positive multiple of that). Let N be the hyperbolic line through u and w, say
N = CE(p, r) ∩ H2 with p = (x, y). To have u ∈ N , as in the proof of Theorem 4.18 we

need p.u = |u|2+1
2 , that is 1

2x =
1
4+1

2 = 5
8 (1). To have v ∈ N we need p.v = |v|2+1

2 ,

that is 1
2x = 1

2y =
1
2+1

2 = 3
4 , or equivalently x + y = 3

2 (2). Solve Equations (1) and
(2) to get p = (x, y) =

(
5
4 ,

1
4

)
. We also remark (even though we do not need it for our

calculations) that as in Note 4.14, we must have r =
√
|p|2 − 1 =

√
10
4 . Since the radius

v−p =
(
− 3

4 ,
1
4

)
has slope − 1

3 , the tangent to N at v has slope 3, so we have vu = (−1,−3)

(or any positive multiple of that). Thus βo = θo(vw, vu) = θo
(
(−1,−1), (−1,−3)

)
. Since

cosβo = vw.vu
|vw| |vu| = (−1,−1).(−1,−3)

|(−1,−1)| |(−1,−1)| = 4√
2
√
10

= 2√
5
, and det(vw, vu) = det

(−1
−1
−1
−3
)

= 2 so

that sinβo > 0, we have βo = cos−1 2√
5

= sin−1 1√
5

= tan−1 1
2 .

4.33 Theorem: For a triangle in H2 with side lengths a, b and c and interior angles α, β
and γ, we have

(1) (The Sine Law)
sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
,

(2) (The First Cosine Law) cosα =
cosh a− cosh b cosh c

− sinh b sinh c
, and

(3) (The Second Cosine Law) cosh a =
cosα+ cosβ cos γ

sinβ sin γ
.

Similar rules hold with a, b, c and α, β, γ permuted.

Proof: Use a hyperbolic reflection to move the vertex u to the position (0, 0), then use
another reflection to move the vertex v to position (s, 0) with 0 < s < 1, and use a third
reflection to move the vertex w to the upper half of H2 at position (t cosα, t sinα) with
0 < t < 1. Note that the reflections preserve the edge lengths and angles, so it suffices to
prove that the Sine Law and Cosine Laws hold for a triangle with vertices at u = (0, 0),
v = (s, 0) and w = (t cosα, t sinα). For this triangle, α is the angle at u and we have

cosh b = cosh
(
dH(w, u)

)
= 1 + 2|w−u|2

(1−|w|2)(1−|u|2) = 1 + 2t2

1−t2 = 1+t2

1−t2

sinh b =
√

cosh2 b− 1 =
√

1+2t2+t4

1−2t2+t4 − 1 =
√

4t2

1−2t2+t4 = 2t
1−t2

and similarly cosh c = 1+s2

1−s2 and sinh c = 2s
1−s2 . Also, by the Euclidean Law of Cosines, we

have |v − w|2 = s2 + t2 − 2st cosα so that

cosh a = cosh
(
dH(v, w)

)
= 1 + 2|v−w|2

(1−|v|2)(1−|w|2) = 1 + 2(s2+t2−2st cosα)
(1−s2)(1−t2)

= (1−s2)(1−t2)+2(s2+t2)−4st cosα
(1−s2)(1−t2) = (1+s2)(1+t2)−4st cosα

(1−s2)(1−t2) .
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Thus we have

cosh b cosh c− cosh a

sinh b sinh c
=

(
1+t2

1−t2
)(

1+s2

1−s2
)
− (1+s2)(1+t2)−4st cosα

(1−s2)(1−t2)(
2t

1−t2
)(

2s
1−s2

) = cosα

proving the First Cosine Law.

To prove the Sine Law, let us find sinβ and sin γ. Let L be the hyperbolic line
through v and w, say L = CE(p, r) with p = (x, y) and r =

√
|p|2 − 1. To get v ∈ L

we need p.v = |v|2+1
2 , that is sx = s2+1

2 , so we have x = 1+s2

2s . To have w ∈ L we need

p.w = |w|2+1
2 , that is (t cosα)x+ (t sinα)y = t2+1

2 so we have y = 1
sinα

(
1+t2

2t − x cosα
)

=
1

sinα

(
1+t2

2t −
1+s2

2s cosα
)
. Thus we have

p = (x, y) =
(

1+s2

2s , 1
sinα

(
1+t2

2t −
1+s2

2s cosα
))

and r =
√
|p|2 − 1.

Note also that x−s = 1+s2

2s −s = 1−s2
2s > 0. The radius vector from v to p is p−v = (x−s, y)

and so we have vw = (−y, x− s) with |vw| = |p− v| = r. We also have vu = (−1, 0) with
|vu| = 1, so that

cosβ = vw.vu
|vw| |vu| = y

r .

Also note that r2 = |p− v|2 = (x− s)2 + y2, so we have

sinβ =
√

1− cos2 β =
√

1− y2

r2 =
√

r2−y2
r2 =

√
(x−s)2
r2 = x−s

r = 1−s2
2rs .

By symmetry, that is by interchanging the roles of v and w, we also have sin γ = 1−t2
2rt so

that
sinh b

sinβ
=

2t
1−t2
1−s2
2rs

=
2rst

(1− s2)(1− t2)
=

2s
1−s2
1−t2
2rt

=
sinh c

sin γ

proving the Sine Law.

For the Second Cosine Law, let us also find cos γ. The radius vector from p to w is
w−p =

(
t cosα−x , t sinα−y

)
so we have wv =

(
y−t sinα, t cosα−x

)
with |wv| = |w−p| = r,

and we have wu = (− cosα,− sinα) with |wu| = 1, and hence

cos γ = wu·wv

|wu| |wv| = x sinα−y cosα
r .

Thus, making use of many of the above formulas, including the formulas (x−s)2 +y2 = r2

and y = 1
sinα

(
1+t2

2t − x cosα
)

and x = 1+s2

2s so that 2sx− s2 = 1, we have

cosα+ cosβ cos γ

sinβ sin γ
=

cosα+ y
r ·

x sinα−y cosα
r

1−s2
2rs ·

1−t2
2rt

=
4r2st cosα+4st xy sinα−4sty2 cosα

(1−s2)(1−t2)

=
4st
(
(x−s)2 cosα+x

(
1+t2

2t −x cosα
))

(1−s2)(1−t2)
=

4st
(
x 1+t2

2t −(2sx−s
2) cosα

)
(1−s2)(1−t2)

=
4st
((

1+s2

2s

)(
1+t2

2t

)
−cosα

)
(1−s2)(1−t2)

= (1+s2)(1+t2)−4st cosα
(1−s2)(1−t2)

= cosh a

proving the Second Cosine Law.

4.34 Exercise: Let u =
(
1
2 , 0
)
, v =

(
1
2 ,

1
2

)
and w =

(
− 1

2 ,−
1
2

)
(as in Example 4.32). In

the hyperbolic triangle [u, v, w], find a, b and c, then find cosβ using the First Cosine Law.
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4.35 Lemma: The area of a doubly asymptotic triangle in H2 ∪ S1 with interior angle α
at its non-asymptotic vertex is equal to A = π − α.

Proof: Consider a doubly asymptotic triangle with angle α = 2β at its non-asymptotic ver-
tex. We can use hyperbolic reflections to move the triangle so that the non-asymptotic ver-
tex is at the origin and the asymptotic vertices are u = (cosβ, sinβ) and v = (cosβ,− sinβ).
Note that the hyperbolic line L which is asymptotic to u and v is equal to L = C ∩ H2

where C is the circle of radius r = tanβ centred at a = (secβ, 0). For a point x =
(r cos θ, r sin θ) ∈ L with −β ≤ θ ≤ β and 0 ≤ r ≤ 1, the Law of Cosines applied to the
triangle with vertices at 0, a, x and the Quadratic Formula give

tan2 β = r2 + sec2 β − 2r secβ cos θ

r2 − 2r secβ cos θ + 1 = 0

r = secβ cos θ ±
√

sec2 β cos2 θ − 1.

For −β ≤ θ ≤ β we have cos θ ≥ cosβ so that secβ cos θ ≥ 1, and so in order to have r ≤ 1
we must use the negative sign. Thus the line L is given in polar coordinates by

r = secβ cos θ −
√

sec2 β cos2 θ − 1.

Thus the area of the doubly asymptotic triangle is

A =

∫ β

θ=−β

∫ sec β cos θ−
√

sec2 β cos2 θ−1

r=0

4r

(1− r2)2
dr dθ

=

∫ β

θ=−β

[
2

1− r2

]sec β cos θ−
√

sec2 β cos2 θ−1

r=0

dθ

=

∫ β

θ=−β

2

1−
(

secβ cos θ −
√

sec2 β cos2 θ − 1
)2 − 2 dθ

=

∫ β

θ=−β

2

1−
(
2 sec2 β cos2 θ − 1− 2 secβ cos θ

√
sec2 β cos2 θ − 1

) − 2 dθ

=

∫ β

θ=−β

1

−
(

sec2 β cos2 θ − 1
)

+ secβ cos θ
√

sec2 β cos2 θ − 1
− 2 dθ

=

∫ β

θ=−β

−(sec2 β cos2 θ − 1)− secβ cos θ
√

sec2 β cos2 θ − 1(
sec2 β cos2 θ − 1

)2 − sec2 β cos2 θ
(

sec2 β cos2 θ − 1
) − 2 dθ

=

∫ β

θ=−β

−
(

sec2 β cos2 θ − 1
)
− secβ cos θ

√
sec2 β cos2 θ − 1(

sec2 β cos2 θ − 1
)(

sec2 β cos2 θ − 1− sec2 β cos2 θ
) − 2 dθ

=

∫ β

θ=−β
1 +

secβ cos θ√
sec2 β cos2 θ − 1

− 2 dθ =

∫ β

θ=−β

cos θ√
cos2 θ − cos2 β

− 1 dθ

=

∫ β

θ=−β

cos θ√
sin2 β − sin2 θ

dθ − 2β =

∫ π/2

φ=−π/2

sinβ cosφ dφ

sinβ cosφ
− α = π − α

where on the last line we made the trigonometric substitution sinβ sinφ = sin θ so that√
sin2 β − sin2 θ = sinβ cosφ and cos θ dθ = sinβ cosφdφ.
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4.36 Theorem: The area of a triangle in H2 (or H2 ∪ S1) with interior angles α, β and γ
is equal to

A = π − (α+ β + γ).

This includes asymptotic triangles with one or more vertices on S1 (the interior angles at
asymptotic points are equal to zero).

Proof: This follows from the above lemma because a triply asymptotic triangle can be
cut into two doubly asymptotic triangles, and given a singly asymptotic triangle we can
add a doubly asymptotic triangle to form a doubly asymptotic triangle, and given a non-
asymptotic triangle, we can add three doubly asymptotic triangles to form a triply asymp-
totic triangle.
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Isometries

4.37 Definition: Let L and M be two distinct lines in H2. When L and M intersect
at a point p ∈ H2 and θ = 2ϕ where ϕ is the oriented angle from L counterclockwise to
M at p, the isometry Rp,θ = FMFL is called the rotation about p by θ in H2. When L
and M are asyptotic at the point p ∈ S1, the isometry P = FMFL is called a horolation
(or a parallel displacement) about p in H2. When L and M do not intersect and are
not asymptotic, and N is the unique line which intersects orthogonally with L and M , the
isometry T = FMFL is called a translation along N in H2, and the isometry FNFMFL
is called a glide reflection along N in H2.

4.38 Remark: A rotation on H2 is also called an elliptic isometry on H2, a horolation
on H2 is also called a parabolic isometry on H2, and a translation on H2 is also called
a hyperbolic isometry on H2.

4.39 Remark: A rotation about the point p ∈ H2 moves each point along a (hyperbolic)
circle centred at p. A horolation about the point p ∈ S1 moves each point along a horocycle
at p (that is a Euclidean circle in H2 which is tangent to S1 at p). A translation along the
line L in H2 which is asymptotic to u, v ∈ S1, moves each point along a hypercycle from u
to v (that is along an arc of a Euclidean circle through u and v).

4.40 Theorem: Let u, v ∈ H2 with u 6= v. Let L be the perpendicular bisector of u and
v in H2. Then for x ∈ H2 we have dH(x, u) = dH(x, v) ⇐⇒ x ∈ L.

Proof: If x ∈ L then FL(x) = x (from Definition 4.1 or from Part 1 of Theorem 4.6) and
so, since FL is an isometry, we have dH(x, u) = dH

(
FL(x), FL(u)

)
= dH(x, v).

Recall that (in the statement of Theorem 4.20) we defined the perpendicular bisector
L to be the hyperbolic line such that FL(u) = v. Let M be the hyperbolic line through
u and v and let m be the point of intersection of L with M . Note that since m ∈ L, we
have dH(m,u) = dH(m, v) (as shown above), and so m is the hyperbolic midpoint of the
hyperbolic line segment [u, v]. Since FL(u) = v and FL(m) = m, we have FL(M) = M
and FL sends the hyperbolic line segment [u,m] to the hyperbolic line segment [v,m] with
∠umv = π. Since FL preserves angles, the angle between L and M at m is equal to π

2 (for
p ∈ L with p 6= m we have ∠ump = ∠vmp and ∠ump+ ∠vmp = π). This shows that the
perpendicular bisector L can also be described as the line through the hyperbolic midpoint
m of [u, v] which is orthogonal to [u, v].

Let x ∈ H2 with dH(x, u) = dH(x, v). Note that in the two hyperbolic triangles
[x, u,m] and [x, v,m], the corresponding edge lengths are all equal and hence, by the First
Law of Cosines, the corresponding interior angles are all equal. In particular, we have
∠umx = ∠vmx. Since m lies between u and v, we also have ∠umx + ∠vmx = π, and so
∠umx = ∠vmx = π

2 . Thus x lies on the line through m which is orthogonal to [u, v], so
x ∈ L, as required.

4.41 Theorem: Let [u, v, w] be a triangle in H2 (so the points u, v, w ∈ H2 are non-
colinear). Then a point x ∈ H2 is uniquely determined by the distances dH(x, u), dH(x, v)
and dH(x,w).

Proof: Let x, y ∈ H2 with x 6= y and suppose, for a contradiction, that dH(x, u) = dH(y, u)
and dH(x, v) = dH(y, v) and dH(x,w) = dH(y, w). Let L be the perpendicular bisector of
[x, y] in H. By the above theorem, since dH(x, u) = dH(y, u) we have u ∈ L, and since
dH(x, v) = dH(y, v) we have v ∈ L, and since dH(x,w) = dH(y, w) we have w ∈ L, which
contradicts the fact that u, v and w are non-colinear.
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4.42 Theorem: Let [u, v, w] and [u′, v′, w′] be ordered triangles in H2 with corresponding
edge lengths equal, that is with a = a′, b = b′ and c = c′. Then there exists a unique
isometry F on H2 such that F (u) = u′, F (v) = v′ and F (w) = w′.

Proof: The uniqueness of such an isometry follows from the previous theorem. Indeed
assuming that such an isometry F exists, then given any point x ∈ H2, the point y = F (x)
is the unique point y ∈ H2 such that dH(y, u′) = dH(x, u), dH(y, v′) = dH(x, v) and
dH(y, w′) = dH(x,w).

It remains to show that such an isometry on H2 exists. If u = u′ then let F1 be the iden-
tity map, and if u 6= u′ then let F1 be the hyperbolic reflection in the perpendicular bisector
L of u and u′. Let u1 = F1(u) = u′, v1 = F1(v) and w1 = F1(w). If v1 = v′ then let F2 be
the identity map, and if v1 6= v′ then let F2 be the hyperbolic reflection in the perpendicular
bisector M of v1 and v′. Note that since dH(u1, v1) = dH(u, v) = dH(u′, v′) = dH(u1, v

′)
we have u1 ∈ M so that FM (u1) =u1 =u′. Let u2 = F2(u1) = u′, v2 = F2(v1) = v′ and
w2 = F2(w1). If w1 = w′ then let F3 be the identity map, and if w2 6= w′ then let F3 be
the hyperbolic reflection in the perpendicular bisector N of w2 and w′. As above, since
dH(u2, w2) = dH(u,w) = dH(u′, w′) = dH(u2, w

′) we have u2∈N so that FN (u2)=u2 =u′,
and since dH(v2, w2) = dH(v, w) = dH(v′, w′) = dH(v2, w

′) we have v2 ∈ N so that
FN (v2) = v2 = v′. Thus we can let F be the composite F = F3F2F1 and then we have
F (u) = u′, F (v) = v′ and F (w) = w′, as required.

4.43 Theorem: Every isometry on H2 is equal to a product of 0, 1, 2 or 3 reflections.

Proof: Let F be any isometry on H2. Let u = (0, 0), v =
(
1
2 , 0
)

and w =
(
0, 12
)
, and

let u′ = F (u), v′ = F (v) and w′ = F (w). The proof of the previous theorem shows that
F = F3F2F1 where each Fk is equal either to the identity map or to a hyperbolic reflection
(the product of zero reflections is the identity map, which occurs when all three of the
maps Fk is the identity map).

4.44 Theorem: Every isometry on H2 is equal to the identity, a rotation, a translation,
a parallel displacement, or a reflection or a glide reflection.

Proof: Every isometry is the product of 0, 1, 2 or 3 reflections, and the product of 0
reflections is the identity map, the product of 1 reflections is a reflection, and the product
of 2 reflections (by definition) is a rotation, a translation or a parallel displacement. It
remains to consider the product of 3 reflections. Suppose that F = FNFMFL. If M = L
then we have F = FN , which is a reflection. Suppose that M 6= L. There are three cases
to consider: either M and L intersect in H2, or M and L are asymptotic, or M and L are
parallel. We shall consider only the first case, and leave the other two cases as an exercise.

Case 1: suppose that L ∩M = {a} and FMFL = Ra,θ. Let N ′ = N , let M ′ be the
(unique) hyperbolic line through a which is perpendicular to N = N ′, say M ′ intersects N ′

at b, and let L′ be the (unique) hyperbolic line through a such that the oriented angle from
L′ to M ′ is equal to θ

2 so that Ra,θ = FM ′FL′ . Then we have F = FNFMFL = FNRa,θ =
FN ′FM ′FL′ = Rb,πFL′ . Let L′′ = L′, let N ′′ be the (unique) hyperbolic line through b
perpendicular to L′′, and let M ′′ be the (unique) hyperbolic line through b perpendicular
to N ′′ so that Rb,π = FN ′′FM ′′ . Then we have F = Rb,πFL′ = FN ′′FM ′′FL′′ where L′′

and M ′′ are both perpendicular to N ′′. If L′′ = M ′′ then F = FN ′′ which is a reflection,
and if L′′ 6= M ′′ the F is a glide refection along N ′′.

For the other cases, first show that given a line L through u ∈ S1 and a parallel
displacement P about u, there is a line M such that P = FMFM , and given orthogonal
lines L and K and a translation T along K, there is a line M such that T = FMFL.

16



The Half-Plane Model, the Minkowski Model, and the Klein Model

We have described the Poincaré disc model of the hyperbolic plane, but there are
several other models of the hyperbolic plane that are sometimes used: there are alternate
ways of constructing a geometry (a set with a an abstract way of measuring distance
between points) in which we can define lines and circles and triangles which have have the
same properties and satisfy the same formulas as lines circles and triangles in the Poincaré
disc (for example the formula for the area of a disc, the laws of cosines, and the formula
for the area of a triangle). Here is a brief description of three such models.

The Poincaré upper half plane model of the hyperbolic plane is constructed as
follows. Let U2 be the upper half plane U2 =

{
(x, y)

∣∣y > 0
}

. Let C be the Euclidean

circle C = CE
(
(0, 1),

√
2
)

and let L be the Euclidean line y = 0 (that is the x-axis).
Note that FC sends the unit circle S1 (with the point (0, 1) removed) to the x-axis with
FC(1, 0) = (1, 0), FC(−1, 0) = (−1, 0), FC(0,−1) = (0, 0) and FC(0, 1) undefined, and FC
sends the disc H2 to the lower half plane y < 0. The composite S = FLFC sends the
disc H2 to the upper half plane U2. The inverse of S is given by T = S−1 = FCFL. In
the upper half plane model of the hyperbolic plane, we define the distance between two
points in the upper half plane in order to make the map S an isometry, so for u, v ∈ H2 we
define dU

(
u, v
)

= dH
(
T (u), T (v)

)
. The maps S and T are conformal (they preserve angles

between the curves), so the angles between two curves in U2 are equal to the Euclidean
angles between the curves. The geodesics (lines which minimize distance) in H2 are mapped
by S to the geodesics in U2. The geodesics in H2 are the straight lines through 0 and the
arcs along circles which are orthogonal to S1, and the geodesics in U2 are the vertical lines
and the upper half circles which intersect orthogonally with the x–axis.

The Minkowski model, also called the hyperboloid model, of the hyperbolic
plane is one half of a hyperboloid in 3-dimensional Minkowski space. The 3-dimensional
Minkowski space is the set R3 using a different norm. The standard Euclidean quadratic
form in R3 (the square of the norm) is given by N(x, y, z) = x2+y2+z2, and the Minkowski
quadratic form in R3 is given by Q(x, y, t) = x2 + y2− t2 (which can take negative values).
Let M2 be the upper sheet of the hyperboloid Q(x, y, t) = −1, that is let

M2 =
{

(x, y, t) ∈ R3
∣∣x2+y2−t2 = −1 , t > 0

}
.

We can define a projection S : M2 → H2, similar to the stereographic projection, as follows:
given (x, y, t) ∈ M2, we let (u, v) ∈ H2 be the point such that the line in R3 through
(0, 0,−1) and (x, y, t) intersects the xy-plane at the point (u, v, 0). In the Minkowski
model of the hyperbolic plane, we define the distance between two points in M2 in order
to make the map S an isometry. The geodesics in M2 are the curves of intersection of M2

with a plane in R3 through the origin.

The Klein model of the hyperbolic plane is constructed as follows. Let K2 be the unit
disc K2 =

{
x, y)

∣∣x2 + y2 < 1
}

(so in fact K2 = H2, but the distance between two points in
K2 is not the same as the distance between the same two points in H2 or between the same
two points in R2). Define another projection S : M2 → K2, similar to the stereographic
projection, as follows: given (x, y, t) ∈ M2 we let (u, v) ∈ K2 be the point such that the
line in R3 through (0, 0, 0) and (x, y, t) intersects the plane z = 1 at the point (u, v, 1). We
define distance in K2 so that the map S is an isometry. The geodesics in K2 are segments
along straight lines (but the hyperbolic angle between two lines in K2 is not the same as
the hyperbolic angle between the same two lines in R2).
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Tilings

This topic will not be covered (but I may include notes later).
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