Chapter 4. Hyperbolic Geometry

Reflections in Circles

4.1 Definition: When L is the line in R? through the point a € R? perpendicular to the
vector 0 # u € R?, the reflection in the line L is the map Fr, : R? — R? given by
2z —a)-
Fr(z)=2—2Proj,(x —a) =z — % u.
u
When C is the circle in R? centred at the point a € R? of radius 7 > 0, the reflection (or
inversion) in the circle C is the map F¢ : R? \ {a} — R?\ {a} given by

7“2

Fo(x) =a+ (x —a).

|z — al?
x

4.2 Example: When S is the unit circle S = {z € R?||z| = 1}, we have Fs(z) = ik
x

4.3 Note: For any line L we have Fy,2 = I and for any circle C' we have Fo? = 1.

4.4 Note: When C is the circle centred at a € R? of radius r > 0 note that for z € R?\ {a}
we have

(1) |z —a| <r < |Fc(z) —a| >,

(2) |z —a| >r < |Fo(z) —a| <7 and

(3) |z —al=r < |Fo(z) - a| =r.

In other words, F sends points inside C' to points outside C' and vice versa, and F¢ fixes
points on the circle C.

4.5 Note: For u € R?, let T}, : R?> — R? be the translation defined by T, (z) = x + u.
For 0 #t € R, let D; : R? — R? be the dilation (or scaling map) given by D;(z) = tx.
Note that when C is the circle of radius r > 0 centred at a € R? and S is the unit circle,
the reflection F¢ is equal to the composite

Fo =T,DyFsD,;, T,
because for z € R? \ {a} we have

“(x—a) )

ToD,FsDs ), T_o(z) = ToD;FsD1(z — a) = T,D, Fs(1(z — a)) = T,D, (= p—F
Ll —

2 2
r r (x—a))za—k r

:TaDr<m(ac—a)> :Ta<m m(az—a) = Fo(x).



4.6 Theorem: (Reflections Preserve Lines and Circles) A reflection in a line or a circle
sends lines and circles to lines and circles. When C is the circle centred at a € R? of radius
r >0, and b € R? with b # a and ¢ = a + t(b — a) with 0 # t € R, we have the following.

(1) Any line through the point a is mapped by F¢ to the same line.

(2) The line whose nearest point to a is b is mapped to the circle with diameter a, F(b),
(3) The circle with diameter a,b is mapped to the line whose nearest point to a is Fc(b),
(4) The circle with diameter b, ¢ is mapped to the circle with diameter F(b), F(c).

Proof: We prove Parts (2) and (4) and note that (3) follows from (2) because Fo? = I so
that Fo = Fo~'. To prove Part (2), let L be the line whose nearest point to a is b, and

2

let D be the circle with diameter from a to Fo(b) = a + |bf—alg(b —a). For z € R?\ {a}

and y = Fo(z) =a+ #(LE — a) we have

r€e€Ll < (x—b)-(b—a)=0

and
yeD = (y—a)-(y—Fo(b) =0
<~ ‘mia|2($—a)-<‘mi—a|2(x—a)—wz—ap(b—a)) :0
= i = b (@ —a) (b= a) =0

— |b—a*~(z—a)-(b—a)=0 <= (b—a)-(b—a)—(x—a)-(b—a)=0
— (b—a)—(z—a))(b—a)=0 < (b—=x)-(b—a)=0 < z€ L.
To prove Part (4), note that since F is equal to the composite Fo = T, D, FsD1 /. T_,,
where S is the unit circle S = S!, it suffices to prove Part (4) in the case that C = S. We

need to show that when 0 # b € R? and 0 # t € R, the circle D with diameter from b to tb
is mapped by Fg to the circle E with diameter from Fg(b) = # to Fg(th) = by = b

[EB2 — b2
When z € R?\ {0} and y = Fs(z) = @z We have

r€D = (x—0b)-(z—th) =0 < |z]* — (1 +t)z-b+tb*=0

and

4.7 Example: Let C be the circle centred at a = (2,1) of radius r = v/10. Let L be the
line y = x — 1, and let M be the line y = = + 1. Find the images of the lines L and M
under the reflection F¢.

4.8 Example: Let C be the circle centred at a = (1,2) of radius » = v/5. Let D be the
circle with diameter from (—1,4) to (2,3) and let E be the circle (x — 3)% + (y — 2)? = 9.
Find the images of circles D and E under the reflection Fc.



4.9 Theorem: (Reflections are Conformal) Every reflection in a line or a circle is a
conformal map. When C' is the circle of rad1us r > 0 centred at a € R?, the scaling factor
of Fo at the point x € R? \ {a} is equal to

Iw a\z

Proof: When L is a line in R?, the reflection Fy, is an isometry and hence is a conformal
map of scaling factor 1. Change the notation used in the statement of the theorem, and
let C' be the circle centred at (a,b) of radius r > 0. Then

7“2

u,v) = Fo(z,y) = (a,b s —a,y—0>
() = Fole) = (@0 + 1D (e 0=
e r?(z — a) r2(y — b)

= (T T G o)

Recall that F is conformal at (z, %) with scaling factor ¢ when DF” DF = ¢2I. Writing
s=x—aand t =y — b we have

(2= +(y=b7~2(a—a)’) _2r%(s—a)(y=b)
DF, — (ux uy) _ ((@—a)2+(y-0)2) (@-a)2(y-1)?)
Uy Uy 22 (w—a) (y—b) r? ((@—a)+(y—b)%—2(y—b)?)
((e-a)2(y-1)2)" (@-a)2+(y-b)2)

2 t? — s —2st
- (S2+t2)2 _2St 82 _ t2

and so

2
T ! 2 —s2  —2st ! 52 +t2 0 P4
DFo DFCZW( ot s2o2) T\ o0 g2ge) T wwerh

. . ) 2 2 .
Thus F¢ is conformal at (x,y) with scaling factor sgz_tg = (w_a);;r(y_b)g. Reverting to
the notation used in the statement of the theorem, F¢ is conformal at x of scaling factor
2
N
lz—al?"



The Poincaré Disc Model of the Hyperbolic Plane

4.10 Definition: We define the hyperbolic plane (also called the Poincaré Disc) to
be the set

={z e R?||z| <1} = {(z,y) e R?*|2® + y* < 1}.
The boundary of H? is the unit circle
= {z e R?||z| =1} = {(z,y) e R?|2” +y* = 1}.

and points in S! are called points at infinity or asymptotic points. In the hyperbolic
plane, (hyperbolic) length and area are measured infinitesimally in terms of Euclidean
length and area, by

2 4
———dgl , dgA = ————=
N

This means that the (hyperbolic) length of a curve given parametrically by = = «(t)
where « : [a,b] — H? is given by

b b 2 b 2 ,
L = dL:/ —d L=/ — o' ()| dt
LmH T = ) T e @

and the (hyperbolic) area of a region given in Cartesian coordinates by z € D C H? or by
(z,y) € D C H2, or in polar coordinates by (r,0) € R, is equal to

4
A:[/@ﬂ:// S
D vep (1 —|z]?)?
4 4r
= dxdyz// ————drdf.
//(m,y)ED (I —a?—y?)? (royer (1 —12)?

The (hyperbolic) angle between two curves at a point in H? and the (hyperbolic) oriented
angle from one curve to another at a point in H? are the same as the Euclidean angle
between the two curves and the Euclidean oriented angle from one curve to the other.

dgL = dpA.

4.11 Example: Let u € H?. Find the hyperbolic length of the line segment from 0 to w.

Solution: The line segment is given by z = «(t) = tu for 0 < ¢ < 1 and we have o/(t) = u,
so the hyperbolic length is

1 / 1 1
2 t 2 2
S TR IR S
t—o 1 — |a(t)] t—o 1 — |tul t—o 1 — t2|u]

1 1
1 t 1
[ e )
v—o L+ |ult  1—ult L—Jult],_, 1 — |ul

4.12 Example: Find the hyperbolic area of the disc {x € H2’|x| < a}.

Solution: The hyperbolic area is

2T a 2
2 2 4
/ / B drd@—/ |:—21 d9:27'('( 5 _2) _ 7Ta2.
0= r=0 1_T) 0=0 1_71 r=0 1_a ].—a,

4.13 Definition: A (hyperbolic) line in H? is set which is either of the form L = M NH?
for some line M in R? through 0, or of the form L = C' NH? for some circle C' in R? which
intersects the unit circle S' orthogonally.




4.14 Note: Let C be the circle centred at a € R? of radius r > 0. The circle C' intersects
St orthogonally at b when the radius of S' from 0 to b is perpendicular to the radius of
C from a to b. This occurs when a lies outside S' and the triangle 0, a, b is a right-angled
triangle with hypotenuse of length |a| and legs of length r and 1. Thus C intersects S*
orthogonally when |a| > 1 and r? = |a|? — 1.

4.15 Note: Let C be a circle which intersects S' orthogonally. Since F¢ sends S! to a
circle, and F fixes the two intersection points in C' NS, and F preserves the right angles
at the two intersection points, we see that F sends S' to itself. It follows that the map
F¢ restricts to a bijection F : H? — HZ2.

4.16 Definition: When L = M N H? where M is a line through 0 in R?, we define the
reflection in L to be the bijective map F;, = Fj; : H? — H2. When L = C NH? where C
is a circle in R? which intersects S' orthogonally, we define the reflection in L to be the
bijective map Fr, = F¢o : H? — H?2.

4.17 Theorem: (Reflections are Isometries) Let L be a line in H2. Then Fy, : H? — H?
is an isometry on H?2.

Proof: This is (reasonably) clear when L is given by a line through the origin. Suppose
that L = C N H? where C is the circle centred at a € R? of radius r = |a|?> — 1. The

r?2  _ Ja?-1
lz—al> 7 |z—al?”
map Fr, : H? — H? to be an isometry, this scaling factor must exactly compensate for
the change in the scaling factor from the point z to the point Fy(z) in the infinitesimal

element of hyperbolic arclength, so we need to prove that when y = F(z)

jal> =1 _ 1—y?
[z —al* 1|zl

In order for the

scaling factor of the map F, at a point x is equal to

al?—1

Let € H? so that |z| < 1, and let y = F(z) = a + ﬁ(x—a) =a+ m(m—a).
Then

a2 — a2 —
1|y =1~ (a + ||x_|a|12 ( — a)> . (a + ||x_|a|12 (z — a)>

=1—|a* -2 |a|i71 a-(x—a)— (lal’~1)® |z — al?

|z—al? |z—al*
21
= 2=t (~Jz —af — 20+ (z — a) = (|af? - 1))
la|*—1

as required.

4.18 Theorem: Given u,v € H? US! with u # v. there is a unique line L in H? which
contains (or, in the case of points at infinity, is asymptotic to) u and v.

Proof: Let p € R? and let C be the circle in R? centred at p with radius r = /|p|?2 — 1 so
that C intersects S' orthogonally. Note that

2 [u|?+1
—s

uelC <= jlu—p=r* <= |u —2p-utipP=p?-1 < p-u=

2
Similarly, we have v € C <= p-v = MTH When {u, v} is linearly independent, there is
no line in R? through 0 which passes through u and v and there is a unique point p such
that the above circle C' passes through u and v, (namely the point of intersection of the

5



lul>+1 lv®+1

two lines z.u = and x-v = , which are are not parallel). Suppose that {u, v}
is linearly dependent, say v # 0 and v = tu with ¢ € R. Then there is a unique line in R?
through 0 which passes through u and v, namely the line L = Span{u}, but we claim that
the above circle C' cannot pass through both u and v. Suppose, for a contradiction, that
u,v € C'. Then

t2|ul?24+1 _ Jtul?41
2 - 2

241 241
— |v|2+ :p.y:p.(tu):t(p.u):tMT—i_

so that

0=~t"ul®* —t(juf>+1) +1= (Juft —1)(t — 1)
soeithertzlort:ﬁ. But iftzlthenv:tu:uandift:ﬁthenv:tu: |;|2
so that |v| = ﬁ > 1 in which case v ¢ H?.

4.19 Definition: When two hyperbolic lines meet at a point in H?, we say the lines
intersect, when two lines are asymptotic at a point in S, we say the lines are asymptotic
(or critically parallel), and when two lines do not intersect and are not asymptotic, we
say they are parallel (or ultraparallel).

4.20 Theorem: (Perpendicular Bisector) Given u,v € H? with u # v, there is a unique
line L in H?, called the perpendicular bisector of u and v, for which Fr(u)= v.

Proof: Let p € R? with [p| > 1 and let C be the circle in R? centred at p with radius
r = /|p|> — 1. In order to have F(u) = v, the points u and v must lie on the same
ray from p, so we must have p = u + t(v — u) for some ¢ € R with ¢t ¢ [0,1]. When
p=u+t(v—u)with t ¢ [0,1] we have
Fo(u) =v < |u—p|lv—p| =r?
= (o —w)|[(1 = )0 —w)| = |p> — 1
12 —t|jv —ul® = ‘u—l—t(v—u)‘2 -1
(2 =)o —uf* = |u)®* + 2tu- (v —u) + v —ul® — 1
—tlv —ul* = [ul* +2tu- (v —u) — 1
—tlv2 + 2tu-v —tlu* = |ul* + 2tu-v — 2t [u? — 1
t(ul? = Jof?) = fuf? — 1

1— 2
lu| # |v| and t = ﬁ

rreorey

Also note that the unique line M in R? for which Fi;(u) = v is the perpendicular bisector
of u and v. When |u| = |v| there is no point p for which F¢(u) = v, but the perpendicular
bisector M passes through 0. When |u| # |v|, there is a unique point p for which F(u) = v,
namely the point p = u 4 t(v — u) with t = %, and the perpendicular bisector M
does not pass through 0.

4.21 Example: In the case that v = 0, in the above proof we have t = % = — 1|_u||1§|2
andp=u+tlv—u)=u—tu=(1-thu= (1+ 1‘_u||1§|2)u = fuz- Thus the unique line L
in H? for which Fy(u) = 0 (or equivalently for which Fy(0) = u) is the line L = C' N H?
where C' is the circle centred at p = iz of radius 7 = /|p|* — L.

4.22 Remark: Given u,v € H? with u # v, if L is the line through v and v and M is
the perpendicular bisector of u and v, then, because Fj;(u) = v and Fy(v) = u, it follows
that Fis sends the line L to itself, and so the lines L and M intersect orthogonally.



Geodesics and Distance

4.23 Definition: A geodesic in H? is a smooth curve in H? which minimizes the hyper-
bolic arclength between any two points on the curve.

4.24 Theorem: The geodesics in H? are the hyperbolic lines.

Proof: First consider a curve C' from 0 to u in H. Represent C' in polar coordinates by
z = (r(t) cosO(t), r(t) sinf(t)) where r(t) and 6(t) are smooth functions with r(t) > 0 for
all t € [0,1]. Note that |a(t)|?> = r(¢)? and we have

o/ (t) = (r'cos§ —rsinf -0, r'sinf+r cosd-0)
|/ (t)]? = (' cos0)* — 271" sinfcos@ -0 + (rsind - §')?
+ (r'sin0)? + 271 sin@cos @ - 6 + (r cosf - 0)?

= (r")? + (r0')?
and so the length of C' from 0 to w is

Loy — / 200’ (t) / O O AGE

—laE ™~ 1= (1)
Layr? [t 2@ Lo2r()
= /t_o e N R /t_o T2 ™

|ul lul |ul
:/ 2ds :/ 1 N 1 s — 1nl—l—s :1n1—|—|u]‘
s—p 1 — 82 o l+s 1-—s 1—5],, 1 — |ul

By comparing this with the result from Example 4.11, we see that the length of C is greater
than or equal to the length of the straight line segment from 0 to u. Furthermore, the two
inequalities in the above calculation only become equalities in the case that r(¢)0'(t) = 0
and 7'(t) > 0 for all ¢. When this happens we have ¢'(t) = 0 whenever r(t) > 0, and so 0
is constant for » > 0, which implies that C' is the straight line segment from 0 to u.

Now consider a smooth curve C' from u to v in H?. Let L be the line such that
F1,(0) = u. Since F1.?> = I we also have F,(u) = 0. Use the isometry F;, to move the curve
C to the curve D = F(C) from 0 = F(u) to w = Fp(v). Let M be the straight line from
0 to w and let N = F,(M). Notice that IV is the unique hyperbolic line through v and v.
The hyperbolic arclength along C' from u to v is equal to the hyperbolic arclength along
D = Fp,(C) from 0 to w which is greater than or equal to the hyperbolic arclength along
the straight line M from 0 to w, which is equal to the hyperbolic arclength along N from
u to v. It follows that the hyperbolic line N through u and v is the geodesic from u to v.

4.25 Definition: For u,v € H we define the (hyperbolic) distance between u and v,
denoted by dg(u,v), to be equal to the hyperbolic arclength along the (unique) line from
u to v. The hyperbolic line segment between u and v, that is the arc between u and
v along the hyperbolic line through w and v, is denoted by [u,v] (we do not normally
distinguish notationally between the Euclidean line segment [u, v] and the hyperbolic line
segment [u, v], so it is sometimes necessary to specify).



4.26 Theorem: Let u,v € H2. Then

= cosh™! Q‘U_UF
i (u;v) = cosh (1 TP - IvP)) '

Proof: Let L be the line in H? such that Fp(u) = 0 and let w = Fy(v). Since Fy, is an
isometry, we have

dH(u,v) = dH(FL(U),FL(U)) = dH(O,w).

1+|w|

1—fw]”

1 1/1 1
coshy dy (u,v) = coshdy (0, w) = cosh (ln + \w|> _ 1 ( + |w N ]wl)

From Example 4.11, we have dg (0,w) = In and so

1— |wl 2\1—|wl 1+ v
B e e 7 W e TG 1
2 1— |w|? 1= |wl? 1— |w?
Thus to prove the theorem, it suffices to prove that
2|w|? 2lu — vl?
1+ -——— =1+ :
1 — Jwl|? (1= Jul?)(1 = |v[?)

Recall from Example 4.20 that L = C N H? where C is the circle centred at p = # of

radius r = 1/|p|?2 — 1. Recall from Theorem 4.9 that Fy, is conformal and scales by the

2
factor ||1'Z |_;|% when it sends v to w. Recall from Theorem 4.17 that Fj is an isometry

because this scaling factor compensates for the change in scaling factor from v to w in the
p?~1 _ 1-|w|?

. Thus we have

definition of dg L so we have

[v—pl® — TI=[o]?
1
Ip]* -1 ez~ 1 (1—Jul®)(1 = [v]*)
1—‘11)‘2: _ 2(1_|U’2): u_ 2(1—‘U|2): 200, |2
v — p| v — p| ul?|v — p|
1— |ul2)(1 — |v|?
wf=1— (1 fu?) =1 LT DAZ1F)
|ul?|v — p
2
Pl —pl2 = (1= u)(1 = o?)  [lulv =T = (= )@ [of?)
[ul?|v — pl|? |u|?[v — p|?
_ (Pl = 2(u-v) +1) = (1= Juf® — o + [uf*|v]?)
|ul?|v — pl?
CuP 2w+ )2 Ju—of?
|ul?|v — p|? [ul?|v — pl?
2 2
so that [w] = [u— o , as required.

L—fwl® (1= |ul?)(1 = [0]*)



4.27 Definition: For v € H? and r > 0, the (hyperbolic) circle centred at u of radius r
and the (hyperbolic) disc centred at u of radius r are the sets

Cr(u,r) = {a € H?|dg (2, u) = r},
Dy (u,r) = {x € H2’dH(9U,U) < 7“}

4.28 Note: Every hyperbolic circle is equal to a Euclidean circle (but with a different
centre and radius). We can see this as follows. Consider the hyperbolic circle Cg(u, 7). Let
L be the line in H? such that Fr(u) = 0. Since Fy, is an isometry, the image of Cg (u, 1)
under F7, is equal to C’H(O r). By Example 4.11 the hyperbolic circle Cy(0,7) is equal to
the Euclidean circle 22 4+ y? = a® where r = In Ha The orlglnal circle C'y (u, ) is equal to

the image under Fj, of the Euclidean circle z2 —|— y? = a?, which is also a Euclidean circle
by Theorem 4.6.

4.29 Theorem: Let u € H? and let r > 0. The circumference L of the circle Cy (u,T)
and the area A of the disc Dy (u,r) are given by

L = 2msinhr,
A= 27r(coshr — 1).

Proof: By the above note, the required circumference and area are the same as the hyper-

bolic circumference and area of the circle 22 +y? = a? With r=du((0,0), (a,0)) = In 12

Note that coshr = 1(e" +e™") = (12 + h—g) =1+ 5 a2, and by Example 4.12, the
area of Dy (u,r) is

4dma?
1—a?

A= = 27(coshr — 1).

From r = In 1% we have e” = {2 = e" —ae” = l+a=e"—1 =a(e"+1)=>a = 2::1
The hyperbohc "circumference L of C 1 (u,7) is equal to the Euclidean circumference of the
circle £2 4 y? = a? scaled by the factor _2 s to give

I dra 4”(27‘4_&) _ dAm(e" —1)(e" + 1)
o 42 er—1\2 r 2 __ ro__ 2
l1—a 1 (eT—l—l) (er4+1)2 —(em — 1)
4 27"_1 r__ ,—T
:M:2ﬂ‘-1:2ﬂ'sinh’f’.
4e” 2

4.30 Definition: As mentioned above, a Euclidean circle which is contained in H? is also
a hyperbolic circle (but with a different centre and radius). When a Euclidean circle £
is contained in H? U S! and is tangent at one point in S!, the intersection C = E N H? is
called a horocycle in H2. When a Euclidean circle E intersects S! at two distinct points,
the intersection C' = E NH? is called a hypercycle in H?.



Angles and Triangles

4.31 Definition: Angles between curves in H?, and oriented angles from one directed
curve in H? to another, are the same as the corresponding Euclidean angles in R2. For
example, given two smooth parametric curves x = «(t) and y = B(t) in H? with say
a(0) = B(0) = p € H?, the oriented angle at p from the curve x = «(t) to the curve
z = B(t) is equal to 6, (a’(0), 5(0)) = 6,(58'(0)) —6,(a’(0)) € [0,27), as in Definition 1.29,
and it is determined by

a’(0)-5'(0)

N AT . ey det (@/(0), 8(0))
cos b, (a’(0), 8(0)) = @ () 13(0)] and sinf,(o/(0), 8'(0)) = o (0)]13'(0)

|
as in Theorem 1.30, and the unoriented angle at p between the curves z = «a(t) and
x = B(t) is given by

Y

—1_(0)-5(0)
[/ (0)[ 157(0)]

Given u,v,w € H? (or more generally, given u,v,w € H? US!) with v # v and u # w,
we define the oriented and unoriented hyperbolic angles Z,vuw and Zvuw as follows: let
U, be the unit tangent vector (or any tangent vector) at u to the arc along the hyperbolic
line from w to v, and let u,, be the unit tangent vector (or any tangent vector) at u to the
arc along the hyperbolic line from u to w, and define

(/' (t), ' (0)) = cos € [0, 7].

Zovuw = 0p(Uy, Uy) and  Zvuw = 6y, Uy)-

For u,v,w € H? (or, more generally, for u,v,w € H? US!) we say that u, v and w are
noncolinear when there is no hyperbolic line which contains (or is asymptotic) to all
three points. A (non-degenerate, hyperbolic) triangle in H? (or in H? US?) is determined
by three noncolinear points u, v, w € H? (or u,v,w € H? US') which we call the vertices
of the triangle. When one or more of the vertices of a hyperbolic triangle lies in S', the
triangle is called an asymptotic triangle (we say it is doubly asymptotic when two
of its vertices lie in S! and triply asymptotic when all three vertices lie in S!). As with
Euclidean or spherical triangles, we could think of a hyperbolic triangle in several ways:
we could think of the triangle as being equal to its set of vertices {u,v,w}, or we can keep
track of the order of the points and think of the triangle as an ordered triple (u,v,w),
or we could think of the triangle as being the union of its three hyperbolic edges [v, w],
[w,u] and [u,v], (where for example [u,v]| denotes the arc along the hyperbolic line from
u to v), or we can think of the hyperbolic triangle as the region [u, v, w] C H? US! which
is bounded by the three edges. We shall agree that an ordered triangle in H? (or in
H? U S') consists of an ordered triple (u,v,w) of noncolinear points in H? (or in H? US?)
together with the region [u,v,w] which is bounded by the three edges [v,w], [w,u] and
[u, v]. For this triangle, we shall normally denote the hyperbolic edge lengths by a, b and
c with
a=dyg(v,w), b=dg(w,u), ¢=dyg(u,v)

and we shall normally denote the oriented and unoriented angles at the vertices by «,,
B, and v, and «, § and v with

Qo = Lovuw , By = Lowvu , v, = Louwv , a = Louww , = Lwvu , v = Luwv.

The unoriented angles «, § and - are also called the interior angles of the triangle, and
the exterior angles are given by 7 — o, 7 — § and 7w — ~.

10



4.32 Example: Let u = (%, O), v = (;, %) and w = (— %, ——) In the hyperbolic triangle

[u, v, w], find the edge length b = dy(w,u) and the oriented angle 8, = Z,wvu.
Solution: The edge length b is given by

w]?)(1—[ul?) 3

To find the oriented angle 3, at the vertex v, we shall find v, and v,,. The hyperbolic line
L through v and w is the same as the Euclidean line L through v and w (since it passes
through the origin), namely the line y = x. Since L has slope 1, we have v,, = (—1,—1)
(or some positive multiple of that). Let N be the hyperbolic line through v and w, say
N = Cg(p,r) NH? with p = (x,y). To have u € N, as in the proof of Theorem 4.18 we

b= dp(w,u) = cosh™ (1 + (1_|2|w7“‘2 > — cosh™! (1 + i—%_;) —cosh™ 123,
2 4

1
need p-u = |“|2 , that is 1z = 4T+1 = 2 (1). To have v € N we need p-v = |U|22+1,
1
that is 0 = y = 2+1 = 3, or equivalently z +y = 3 (2). Solve Equations (1) and
(2) to get p = (z,y) = (2,1). We also remark (even though we do not need it for our
calculations) that as in Note 4.14, we must have r = /[p|2 — 1 = @. Since the radius

v—p= (— %, i) has slope —%, the tangent to N at v has slope 3, so we have v,, = (—1,—3)

(or any positive multiple of that). Thus ﬁo = 0,(vw,vy) = 05((—1,-1),(—1,-3)). Since

w* Uy . (—1,—1 1,-3) _ -1 -1\ __
008 B = [y = [EEoDNEo] = vavi = ve and det(vy,v,) = det (2] Z3) = 250

that sin 8, > 0, we have 3, = cos™! \/lg =sin~! \/%;) =tan~' 1.

4.33 Theorem: For a triangle in H? with side lengths a, b and ¢ and interior angles o, 3
and vy, we have

inh inh b inh
(1) (The Sine Law) 51.11 ¢ _ s1.n = s1.n c}
sin « sin 3 sin 7y
cosh a — cosh bcosh e

2) (The Fi ine L =
(2) (The First Cosine Law) cos b bsinhe , and

cosa + cos 3 cosy.

Th ine L ha =
(3) (The Second Cosine Law) cosha Sn Fsing

Similar rules hold with a,b,c and «, 3,y permuted.

Proof: Use a hyperbolic reflection to move the vertex u to the position (0,0), then use
another reflection to move the vertex v to position (s,0) with 0 < s < 1, and use a third
reflection to move the vertex w to the upper half of H? at position (tcos a,tsina) with
0 <t < 1. Note that the reflections preserve the edge lengths and angles, so it suffices to
prove that the Sine Law and Cosine Laws hold for a triangle with vertices at u = (0,0),
v =(s,0) and w = (tcos o, tsin «v). For this triangle, v is the angle at u and we have

coshb = cosh (dp(w,u)) =1+ = |2w||w)(7f| ey =1+ = tQ — 4t

1—¢2
/ 27 1422434 412 _ 2t
sinhb = /cosh™ b = \/1 e Vi v T il pr

Eiz 1355 5. Also, by the Euclidean Law of Cosines, we

have |v — w|? = s + 2 — 2st cos a so that

and sinh ¢ =

and similarly coshc =

iy = 1+ 2etiesse)
_ (=) —t)+2(s’ %) —4stcosa _ (1+s°)(1+t%)—4stcosa
(1—s2)(1—t2) (1—s2)(1—t2)

cosha = cosh (dg(v,w)) =1+ =

11



Thus we have

(1+t2)(1+32) . (1452)(14+t%)—4st cos o

cosh bcosh ¢ — cosha -2 ) \1=s2 (1=s2)(1=12) o
= — o
sinh bsinh ¢ (252)(25)

proving the First Cosine Law.

To prove the Sine Law, let us find sin and siny. Let L be the hyperbolic line
through v and w, say L = Cg(p,r) with p = (z,y) and r = /|p|> — 1. To get v € L

2 . 2 2
we need p.v = MTH, that is sx = %, so we have x = 1;—; To have w € L we need
2 2 2
prw = |w|2+1, that is (tcosa)z + (tsina)y = Y52 so we have y = 1 (4L — zcosa) =
2 2
(4L — 45 cosa). Thus we have
1+s2 1 (142 1452
p=(ry) = (2, e (52— 42 cosa)) and r= /P 1.
2 2 . .
Note also that t—s = 1‘5—;—3 = 15—; > 0. The radius vector from v to pis p—v = (x—s, y)
and so we have v,, = (—y,x — s) with |v,| = [p — v| = r. We also have v, = (—1,0) with
|vw| = 1, so that
_ Uy 'Uy _ Y
€08} = TuuThee] = -

Also note that 72 = |p — v|? = (z — s)? + 2, so we have

. 2 r2_q2 (z—s)2 r—s 1—g2
smﬁzﬂl—cosQB:\/l—g{—Q:\/ - = =8 = 28

By symmetry, that is by interchanging the roles of v and w, we also have siny =
that

1—¢2
2rt

SO

2t 2s

sinhb 1527 2rst _ 1-s2 _ sinhe
; T 182 T (1 —$2)(1 —¢2) 1= T g
sin 3 T (1-s2)(1—-1¢2) = sin y

proving the Sine Law.

For the Second Cosine Law, let us also find cosvy. The radius vector from p to w is
w—p = (t cos a—x , tsin a—y) so we have w,, = (y—t sin «, t cos a—x) with |w,| = |lw—p| =1,
and we have w,, = (— cos o, —sin ) with |w,| = 1, and hence

_ wyw, __ Tsina—ycosa
COSy = [walwe] — - .

Thus, making use of many of the above formulas, including the formulas (z — s)? + 3% = r?

2 2
and y = =~ (4 — 2 cosa) and z = 5 so that 2sz — s? = 1, we have
sin « t 2s ’

T sin a—y cos a

s 4r? st cos at+4st zy sin a—4sty2 cos o

y.
cosa +cosfBcosy  cosa+

sin 3 sin ~y N 12*:: . 1275 (1—s2)(1—t2)
- 4st((m—s)2 cosa—|—m(1§:2 —x cos a)) . 4st(:c 1;52 —(28:3—82)00805)
o (1—s2)(1—t2) - (1—s2)(1—t2)
_ 48'5((11;582)(12:2)_00504) (148 (14t?)—4stcosa cosh a
N (1—s2)(1—t2) o (1—s2)(1—t2) o

proving the Second Cosine Law.
4.34 Exercise: Let u = (%,0), v = (%, %) and w = (— %, —%) (as in Example 4.32). In
the hyperbolic triangle [u, v, w], find a, b and ¢, then find cos 5 using the First Cosine Law.
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4.35 Lemma: The area of a doubly asymptotic triangle in H? U S' with interior angle «
at its non-asymptotic vertex is equal to A = m — a.

Proof: Consider a doubly asymptotic triangle with angle « = 2 at its non-asymptotic ver-
tex. We can use hyperbolic reflections to move the triangle so that the non-asymptotic ver-
tex is at the origin and the asymptotic vertices are u = (cos 3, sin ) and v = (cos ,— sin ).
Note that the hyperbolic line L which is asymptotic to u and v is equal to L = C N H?
where C' is the circle of radius » = tanf centred at a = (sec3,0). For a point z =
(rcos@,rsinf) € L with —5 < 6 < S and 0 < r < 1, the Law of Cosines applied to the
triangle with vertices at 0, a,x and the Quadratic Formula give

tan? 8 = 12 + sec? 5 — 2rsec 3 cos 6
r? —2rsecfcosf+1=0
r = sec B cosf & v/sec2 Bcos2 0 — 1.

For —p < 6 < 8 we have cosf > cos 3 so that sec S cos@ > 1, and so in order to have r <1
we must use the negative sign. Thus the line L is given in polar coordinates by

r = sec B cosf — y/sec? Bcos? 0 — 1.

Thus the area of the doubly asymptotic triangle is

sec 3 cos O— sec2 B cos2 6—1 Ay
/ / dr df
-8B (1 - )

9 sec B cos @—+/sec? Bcos2 6—1
[ ] "
0=—p

B 2
. o
0=—p 1 — (secﬁcos@— \/sec26(:0320— 1)

B
:/ 2 —2.df
0=—p51— (2sec2ﬂcos20 — 1 — 2sec Bcos fy/sec2 3 cos? 0 — 1)

p 1
:/ —2df
0=—p —(secQBcos2 0 — 1) + sec 3 cos 0/sec? Bcos? f — 1

_//8 —(sec? Bcos? @ — 1) — sec B cos B/sec? Bcos? O — 1 940
6=—p (sec? Bcos? 0 — 1)2 — sec? B cos? f( sec? B cos? 6 — 1)
A —(sec? Bcos? 0 — 1) — sec 3 cos 0/sec? B cos? 6 — 1
:/ —2do
9=—3 (secQﬂCOSQH—1)(sec2600s29—1—se02ﬂc0820)

B B
:/ 14 sec 3 cos 0 —2d9:/ cos T
- V/sec? Bcos? 6 — 1 6=—p \/cos? 0 — cos? 3

:/5 cos & 95— /2 sin.ﬂcos¢d¢ =T — &

9=—p \/s.in2 b — sin” @ p=—m/2 sin 3 cos ¢

where on the last line we made the trigonometric substitution sin Ssin¢ = sinf so that
\/sin2 S — sin® 0 = sin B cos ¢ and cos @ df = sin 3 cos ¢ dé.
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4.36 Theorem: The area of a triangle in H? (or H? US!) with interior angles c, 3 and

is equal to
A=m—(a+B+7).

This includes asymptotic triangles with one or more vertices on S! (the interior angles at
asymptotic points are equal to zero).

Proof: This follows from the above lemma because a triply asymptotic triangle can be
cut into two doubly asymptotic triangles, and given a singly asymptotic triangle we can
add a doubly asymptotic triangle to form a doubly asymptotic triangle, and given a non-
asymptotic triangle, we can add three doubly asymptotic triangles to form a triply asymp-
totic triangle.

14



Isometries

4.37 Definition: Let L and M be two distinct lines in H?. When L and M intersect
at a point p € H? and # = 2¢ where ¢ is the oriented angle from L counterclockwise to
M at p, the isometry R, ¢ = FyFp, is called the rotation about p by ¢ in H2. When L
and M are asyptotic at the point p € S!, the isometry P = Fj;Fy, is called a horolation
(or a parallel displacement) about p in H2. When L and M do not intersect and are
not asymptotic, and N is the unique line which intersects orthogonally with L and M, the
isometry T' = Fj/Fy, is called a translation along N in H?, and the isometry Fy FaFJ,
is called a glide reflection along N in H?2.

4.38 Remark: A rotation on H? is also called an elliptic isometry on H?, a horolation
on H? is also called a parabolic isometry on H?, and a translation on H? is also called
a hyperbolic isometry on H?.

4.39 Remark: A rotation about the point p € H? moves each point along a (hyperbolic)
circle centred at p. A horolation about the point p € S' moves each point along a horocycle
at p (that is a Euclidean circle in H? which is tangent to S* at p). A translation along the
line L in H? which is asymptotic to u,v € S!, moves each point along a hypercycle from u
to v (that is along an arc of a Euclidean circle through u and v).

4.40 Theorem: Let u,v € H? with u # v. Let L be the perpendicular bisector of u and
v in H2. Then for x € H? we have dy(x,u) = dy(z,v) <= x € L.

Proof: If x € L then Fp(xz) = = (from Definition 4.1 or from Part 1 of Theorem 4.6) and
so, since Fy, is an isometry, we have dy(z,u) = dy (Fr(z), Fr(u)) = du(z,v).

Recall that (in the statement of Theorem 4.20) we defined the perpendicular bisector
L to be the hyperbolic line such that F7(u) = v. Let M be the hyperbolic line through
u and v and let m be the point of intersection of L with M. Note that since m € L, we
have dgy(m,u) = dg(m,v) (as shown above), and so m is the hyperbolic midpoint of the
hyperbolic line segment [u,v]. Since Fr(u) = v and Fr(m) = m, we have Fr (M) = M
and F7, sends the hyperbolic line segment [u, m| to the hyperbolic line segment [v, m| with
Zumuv = 7. Since Fy, preserves angles, the angle between L and M at m is equal to 7 (for
p € L with p # m we have Zump = Zvmp and Zump + Zvmp = 7). This shows that the
perpendicular bisector L can also be described as the line through the hyperbolic midpoint
m of [u,v] which is orthogonal to [u, v].

Let x € H? with dy(x,u) = dg(z,v). Note that in the two hyperbolic triangles
[z, u, m] and [z, v, m], the corresponding edge lengths are all equal and hence, by the First
Law of Cosines, the corresponding interior angles are all equal. In particular, we have
Zumzx = Zvmz. Since m lies between u and v, we also have Zumz + Zvmax = m, and so
Zumx = Zvmz = 5. Thus z lies on the line through m which is orthogonal to [u,v], so
x € L, as required.

4.41 Theorem: Let [u,v,w] be a triangle in H? (so the points u,v,w € H? are non-
colinear). Then a point x € H? is uniquely determined by the distances dg (z,u), dg(z,v)
and dg (z,w).

Proof: Let z,y € H? with x # y and suppose, for a contradiction, that dg (z,u) = dg(y, u)
and dy(z,v) = dg(y,v) and dy(z,w) = dg(y,w). Let L be the perpendicular bisector of
[z,y] in H. By the above theorem, since dy(x,u) = dy(y,u) we have u € L, and since
dp(z,v) = dg(y,v) we have v € L, and since dy(z,w) = dg(y, w) we have w € L, which
contradicts the fact that u, v and w are non-colinear.

15



4.42 Theorem: Let [u,v,w] and [u/,v',w’'] be ordered triangles in H? with corresponding
edge lengths equal, that is with a = a’, b = b’ and ¢ = ¢/. Then there exists a unique
isometry F' on H? such that F(u) = u', F(v) = v and F(w) = w'.

Proof: The uniqueness of such an isometry follows from the previous theorem. Indeed
assuming that such an isometry F' exists, then given any point 2 € H?, the point y = F(x)
is the unique point y € H? such that dy(y,v') = dy(z,u), dg(y,v") = dy(x,v) and
dy(y,w') = dy(z,w).

It remains to show that such an isometry on H? exists. If u = v/ then let F; be the iden-
tity map, and if u # v’ then let F; be the hyperbolic reflection in the perpendicular bisector
L of uw and v'. Let uy = Fy(u) = v/, v1 = Fi(v) and w; = Fy(w). If v = v’ then let F» be
the identity map, and if v; # v’ then let F5 be the hyperbolic reflection in the perpendicular
bisector M of v; and v’. Note that since dg(u1,v1) = dg(u,v) = dy(v',v") = dg(uq,v’)
we have u; € M so that Fyy(uy) =up =u'. Let us = Fo(uy) = v/, vo = Fo(v1) = 0" and
we = Fy(wy). If wy = w' then let F3 be the identity map, and if we # w’ then let F3 be
the hyperbolic reflection in the perpendicular bisector N of wy and w’. As above, since
dp(ug,we) = dy(u,w) = dy (v, w") = dg(uz, w') we have ug € N so that Fiy(ug)=us=1’,
and since dg(ve,ws) = dy(v,w) = dg(v',w’') = dy(ve,w’) we have v € N so that
Fn(v2) = vg = v'. Thus we can let F' be the composite F' = F3F»F} and then we have
F(u) =4/, F(v) =" and F(w) = w’, as required.

4.43 Theorem: Every isometry on H? is equal to a product of 0, 1, 2 or 3 reflections.

Proof: Let F' be any isometry on H2. Let u = (0,0), v = (%,O) and w = (0, %), and
let v = F(u), v = F(v) and w’" = F(w). The proof of the previous theorem shows that
F = F3F5F; where each Fj, is equal either to the identity map or to a hyperbolic reflection
(the product of zero reflections is the identity map, which occurs when all three of the
maps FJ, is the identity map).

4.44 Theorem: Every isometry on H? is equal to the identity, a rotation, a translation,
a parallel displacement, or a reflection or a glide reflection.

Proof: Every isometry is the product of 0, 1, 2 or 3 reflections, and the product of 0
reflections is the identity map, the product of 1 reflections is a reflection, and the product
of 2 reflections (by definition) is a rotation, a translation or a parallel displacement. It
remains to consider the product of 3 reflections. Suppose that F' = FyFy Fr. If M = L
then we have F' = F, which is a reflection. Suppose that M # L. There are three cases
to consider: either M and L intersect in H?, or M and L are asymptotic, or M and L are
parallel. We shall consider only the first case, and leave the other two cases as an exercise.

Case 1: suppose that LN M = {a} and FyrFr, = R, 5. Let N' = N, let M’ be the
(unique) hyperbolic line through a which is perpendicular to N = N, say M’ intersects N’
at b, and let L’ be the (unique) hyperbolic line through a such that the oriented angle from
L' to M’ is equal to § so that R, s = Fy; Fp,. Then we have F = FyFyF = FNR, 4 =
FyFyFr = Ry, Fro. Let L" = L', let N” be the (unique) hyperbolic line through b
perpendicular to L”, and let M” be the (unique) hyperbolic line through b perpendicular
to N so that R, . = FyuFy. Then we have F' = R, [ F;, = FnuFyp Fr where L”
and M’ are both perpendicular to N”. If L” = M" then F = Fy~ which is a reflection,
and if L” # M" the F is a glide refection along N”.

For the other cases, first show that given a line L through u € S' and a parallel
displacement P about u, there is a line M such that P = F);F);, and given orthogonal
lines L and K and a translation T along K, there is a line M such that T = F, F,.
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The Half-Plane Model, the Minkowski Model, and the Klein Model

We have described the Poincaré disc model of the hyperbolic plane, but there are
several other models of the hyperbolic plane that are sometimes used: there are alternate
ways of constructing a geometry (a set with a an abstract way of measuring distance
between points) in which we can define lines and circles and triangles which have have the
same properties and satisfy the same formulas as lines circles and triangles in the Poincaré
disc (for example the formula for the area of a disc, the laws of cosines, and the formula
for the area of a triangle). Here is a brief description of three such models.

The Poincaré upper half plane model of the hyperbolic plane is constructed as
follows. Let U? be the upper half plane U? = {(m,y)|y > 0}. Let C be the Euclidean
circle C = Cg((0,1),v?2) and let L be the Euclidean line y = 0 (that is the z-axis).
Note that F¢ sends the unit circle S! (with the point (0,1) removed) to the z-axis with
Fe(1,0) = (1,0), Fe(—1,0) = (—1,0), Fc(0,—1) = (0,0) and F(0, 1) undefined, and Fg
sends the disc H? to the lower half plane y < 0. The composite S = F;Fo sends the
disc H? to the upper half plane U?. The inverse of S is given by T'= S~! = FoF;. In
the upper half plane model of the hyperbolic plane, we define the distance between two
points in the upper half plane in order to make the map S an isometry, so for u,v € H? we
define dy (u,v) = dy (T'(u), T(v)). The maps S and T are conformal (they preserve angles
between the curves), so the angles between two curves in U? are equal to the Euclidean
angles between the curves. The geodesics (lines which minimize distance) in H? are mapped
by S to the geodesics in U?. The geodesics in H? are the straight lines through 0 and the
arcs along circles which are orthogonal to S!, and the geodesics in U? are the vertical lines
and the upper half circles which intersect orthogonally with the r—axis.

The Minkowski model, also called the hyperboloid model, of the hyperbolic
plane is one half of a hyperboloid in 3-dimensional Minkowski space. The 3-dimensional
Minkowski space is the set R3 using a different norm. The standard Euclidean quadratic
form in R? (the square of the norm) is given by N (z,v, 2) = 22+y*+22, and the Minkowski
quadratic form in R? is given by Q(z,y,t) = 2 +y? —t> (which can take negative values).
Let M? be the upper sheet of the hyperboloid Q(z,y,t) = —1, that is let

M2 = {(x,y,t) € R3‘az2+y2—t2 =—1,t> 0}.

We can define a projection S : M? — H?, similar to the stereographic projection, as follows:
given (z,y,t) € M2, we let (u,v) € H? be the point such that the line in R® through
(0,0,—1) and (z,y,t) intersects the xy-plane at the point (u,v,0). In the Minkowski
model of the hyperbolic plane, we define the distance between two points in M? in order
to make the map S an isometry. The geodesics in M? are the curves of intersection of M?
with a plane in R? through the origin.

The Klein model of the hyperbolic plane is constructed as follows. Let K2 be the unit
disc K2 = {x, y)‘ 22 +9? < 1} (so in fact K? = H?, but the distance between two points in
K2 is not the same as the distance between the same two points in H? or between the same
two points in R?). Define another projection S : M? — K2, similar to the stereographic
projection, as follows: given (x,y,t) € M? we let (u,v) € K? be the point such that the
line in R? through (0,0,0) and (z,y,t) intersects the plane z = 1 at the point (u,v,1). We
define distance in K2 so that the map S is an isometry. The geodesics in K? are segments
along straight lines (but the hyperbolic angle between two lines in K? is not the same as
the hyperbolic angle between the same two lines in R?).
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Tilings

This topic will not be covered (but I may include notes later).

18



