
Chapter 3. Projective Geometry

The Projective Plane

3.1 Note: The rudiments of projective geometry were first studied by artists who were
interested in perspective drawing. Imagine drawing a picture of a scene as follows. Set up
a system of coordinates with the artist’s eye at the origin, the z-axis pointing upwards,
so that the artist is looking in the direction of the y-axis. Erect a plane of glass along
the plane y = 1. All points in space which lie along the same ray through the origin will
appear to be at the same position relative to the artist’s eye. An object at position (x, y, z)
with y > 0 appears to be at the same position as the point at position

(
x
y , 1,

z
y

)
which lies

on the pane of glass so the artist draws a spot at this point on the plane of glass.

3.2 Example: An artist views a railway track which lies in the plane z = −1 with rails
along the lines x = ±1 and ties along the line segments −1 ≤ x ≤ 1, y = k, k ∈ Z+. The
artist sets up a pane of glass along the plane y = 1. The endpoints of the ties, which are at
(x, y, z) = (±1, k,−1) , will be represented by spots at position (x, z) = (± 1

k ,−
1
k

)
, y = 1.

On the pane of glass, the rails are represented by the rays z = ±x, z < 0 and the ties are
represented by the line segments from (x, z) =

(
− 1

k ,−
1
k

)
to (x, z) =

(
1
k ,−

1
k

)
.

3.3 Note: From the point of view of producing a perspective drawing, all points which
lie along the same ray from the origin can be identified as being the same point. Each ray
through the origin intersects a unique point on the sphere, so we can identify the set of all
such rays with the sphere S2. The rays which are visible to an artist looking in the direction
of the positive y-axis are then identified with the hemisphere H =

{
(x, y, z) ∈ S2

∣∣y > 0},
Notice that the map which sends a ray, or a point in H, to the corresponding point drawn
by the artist on the pane of glass at y = 1 is the gnomic projection φ(x, y, z) =

(
x
y ,

z
y

)
.

In projective geometry, rather than considering the set of all rays through the origin,
we consider instead the set of all lines through the origin.

3.4 Definition: The real projective plane, denoted by P2, is the set of lines through
the origin in R3. Given 0 6= x ∈ R3 we let [x] denote the line in R3 through 0 and x, that
is [x] = Span{x}, so we have

P2 =
{

[x]
∣∣0 6= x ∈ R3

}
.

A line through the origin in R3 is called a point in P2. Given two lines u and v through
the origin in R3, we define the (projective) distance between the points u and v in P2,
denoted by dP (u, v), to be the angle between the lines u and v in R3. When u = [x] and
v = [y] with 0 6= x, y ∈ R3, we have

dP (u, v) = min
{
θ(x, y) , θ(x,−y)

}
= min

{
θ(x, y) , π − θ(x, y)

}
= cos−1

|x.y|
|x||y|

= sin−1
|x× y|
|x||y|

.

3.5 Note: A line u through the origin in R3 intersects the sphere S2 in two antipodal
points ±x, and these points determine the line, indeed u = [x] = [−x]. We often identify
the line u with the pair of antipodal points ±x and consider P2 to be the set of all pairs
of antipodal points in S2, that is

P2 =
{
{±x}

∣∣x ∈ S2
}
.
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3.6 Theorem: (Metric Properties of Distance) Let u, v, w ∈ P2. Then

(1) (Positive Definiteness) dP (u, v) ∈
[
0, π2

]
with dP (u, v) = 0 if and only if u = v,

(2) (Symmetry) d(u, v) = dP (v, u), and

(3) (Triangle Inequality) dP (u, v) + dP (v, w) ≥ dP (u,w).

Proof: We prove Part (3). Choose x, y, z ∈ S2 so that u = [x], v = [y] and w = [z] and also
(by replacing x and z by ±x and ±z if necessary) such that x.y ≥ 0 and y.z ≥ 0. Then

cos
(
dP (u, v), dP (v, w)

)
= cos dP (u, v) cos dP (v, w)− sin dP (u, v) sin dP (v, w)

= (x.y)(y.z)− |x× y||y × z| , since x.y ≥ 0 and y.z ≥ 0,

≤ (x.y)(y.z)− ∣∣(x× y).(y × z)∣∣ , by the Cauchy-Schwearz Inequality

≤ (x.y)(y.z)− (x× y).(y × z)
= (x.y)(y.z)− (x.y)(y.z) + (x.z)
= (x.z) ≤ |x.z| = cos dP (u,w)

3.7 Definition: For u ∈ P2 and r ∈
[
0, π2

]
, the (projective) circle centred at u of radius

r and the (closed projective) disc centred at u of raduis r are the sets

C(u, r) =
{
v ∈ P2

∣∣dP (u, v) = r
}

and

D(u, r) =
{
v ∈ P2

∣∣dP (u, v) ≤ r
}
.

3.8 Note: Let a ∈ S2 and let u = [a]. The union of the lines v ∈ C(u, r) ⊆ P2 forms a
double cone in R3 with vertex at the origin, and this double cone intersects S2 in the pair
of antipodal spherical circles C(a, r) and C(−a, r) = C(a, π− r). The circumference of the
projective circle C(u, r) ⊆ P2 is equal to that of the spherical circle C(a, r) ⊆ S2, and the
area of the projective disc D(u, r) ⊆ P2 is equal to that of the spherical disc D(a, r) ⊆ S2.

3.9 Definition: A (projective) line in P2 is the set of all lines through the origin in R3

which lie in some given plane through the origin in R3. Note that a projective line L ⊆ P2

determines and is determined by a Euclidean plane P ⊆ R3 through the origin; given a
plane P , the corresponding line L is given by L =

{
u ∈ P2

∣∣u ⊆ P
}

, and given a line L,
the corresponding plane P is given by P =

⋃
u∈L

u. Given a projective line L ⊆ P2 and its

corresponding Euclidean plane P ⊆ R3, the pole of L is the point u ∈ P2 which, as a line
through 0 in R3, is perpendicular to the plane P . Given a point u ∈ P2, we write Lu to
denote the projective line with pole u. We remark that a projective line is the same thing
as a projective circle of radius π

2 , indeed for u ∈ P2 we have Lu = C
(
u, π2

)
.

3.10 Theorem: (Properties of Projective Lines)

(1) Given two distinct points u, v ∈ P2, there is a unique line L ⊆ P2 containing u and v.

(2) Given two distinct lines L,M ⊆ P2 there is a unique point u∈P2 with u ∈ L ∩M .

(3) Given a point u ∈ P2 and a line L ⊆ P2 with L 6= Lu, there is a unique line in P2 which
passes through u and is perpendicular to L.

(4) Given two distinct lines L,M ⊆ P2 there exists a unique line in P2 which is perpendic-
ular to L and M .

Proof: All parts of this theorem follow immediately from properties of lines and planes
through the origin in R3.
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3.11 Definition: A (projective) triangle is determined by a spherical triangle. Three
non-colinear points u, v, w ∈ S2 determine an ordered spherical triangle [u, v, w] ⊆ S2.
The corresponding solid projective triangle consists of all lines through 0 in R3 which pass
through the solid spherical triangle [u, v, w] ⊆ S2. Note that the union of all the lines
in the projective triangle forms a double cone, with triangular cross-section, which passes
through the solid triangle [u, v, w] and also the antipodal triangle [−u,−v,−w]. When
[u, v, w] is positively oriented, the area, angles, and side lengths of the projective triangle
are the same as those of the spherical triangle [u, v, w].

3.12 Note: We do not consider a projective triangle to have an orientation because an
ordered spherical triangle [u, v, w] and its antipodal triangle [−u,−v,−w] each determine
the same projective triangle, but these two spherical triangles have the opposite orientation.

3.13 Note: For a spherical triangle [u, v, w], the edge lengths are the same as the dis-
tances between the vertices, for example a = dS(v, w), but this is not necessarily the case
for the corresponding projective triangle. Indeed when a = dS(v, w) > π

2 we find that
dP
(
[v], [w]

)
= dS(v,−w) = π − dS(v, w) = π − a.

3.14 Definition: An isometry on P2 is a bijective map F : P2 → P2 which preserves
distance, that is such that for all u, v ∈ P2 we have dP

(
F (u), F (v)

)
= dP (u, v). Note

that every isometry on S2 determines an isometry on P2 as follows. Given an isometry
F : S2 → S2, extend F to the orthogonal map F : R3 → R3 and note that F (tx) = tF (x)
for all x ∈ R3. We define the induced isometry F : P2 → P2 by

F
(
[x]
)

=
[
F (x)

]
.

3.15 Theorem: Every isometry on P2 is (induced by) a rotation Rp,θ for some p ∈ S2
and θ ∈ R. The set of isometries on P2 can be identified with

SO(3,R) =
{
A ∈M3(R)

∣∣ATA = I , detA = 1
}
.

Proof: Let F : P2 → P2 be an isometry on P2. Choose u1, u2, u3 ∈ S2 so that we have
F ([e1]) = [u1], F ([e2]) = [u2] and F ([e3]) = [u3]. Then for all k, l we have

|uk.ul| = cos dP
(
[u1], [u2]

)
= cos dP

(
F ([ek]), F ([el])

)
= cos dP ([ek], [el]

)
= |ek.el| = δk,l.

When k 6= l we have |uk.ul| = 0 so that uk.ul = 0, and when k = l we have |uk.ul| = 1
and uk.ul = uk.uk ≥ 0 so that uk.ul = 1. Thus uk.ul = δk,l for all k, l so that {u1, u2, u3}
is an orthonormal basis for R3. Let x = (x1, x2, x3) ∈ S2 (so that [x] is an arbitrary element
in P2. Choose y ∈ S2 so that f([x]) = [y]. For each index k we have

|y.uk| = cos dP
(
[y], [uk]

)
= cos dP

(
F [x], F [ek]

)
= cos dP

(
[x], [ek]

)
= |xk.ek| = |xk|.

Since {u1, u2, u3} is orthonormal, we have

y =
3∑
k=1

(y.uk)uk =
3∑
k=1

±xkuk = Ax

where A = A(x) is one of the 8 matrices
(
± u1,±u2,±u3

)
. Thus we have

F ([x]) = [y] =
[
Ax
]

where A = A(x) is one of the 4 matrices
(
± u1,±u2,±u3

)
with determinant equal to 1.

Finally we remark, without providing a rigorous proof, that every isometry is contin-
uous and that the matrix A = A(x) must be constant for all x ∈ S2, otherwise F would
not be continuous.
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Zero Sets of Polynomials

3.16 Definition: For (x, y, z) ∈ R3 with (x, y, z) 6= (0, 0, 0), we write

[x, y, z] = Span{(x, y, z)
}
∈ P2.

Let U1 =
{

[x, y, z]
∣∣x 6= 0

}
, U2 =

{
[x, y, z]

∣∣y 6= 0
}

and U3 =
{

[x, y, z]
∣∣z 6= 0

}
. Note that

P2 = U1 ∪ U2 ∪ U3. We define three gnomic projections φk : Uk → R2 by

φ1
(
[x, y, z]

)
=
(
y
x ,

z
x

)
, φ2

(
[x, y, z]

)
=
(
x
y ,

z
y

)
, φ3

(
[x, y, z]

)
=
(
x
z ,

y
z

)
.

Sometimes we identify Uk with R2 using φk, and then we can consider P2 to be a union of
three copies of R2. For each index k, let Lk be the projective line Lk = P2 \ Uk and note
that P2 is the disjoint union P2 = Uk ∪ Lk. When we use the gnomic projection φk, the
line Lk is called the line at infinity. When we identify Uk with R2 using φk, we consider
P2 to be the disjoint union of R2 with the line at infinity.

We remark that more generally, given any projective line L in P2 we can define a
gnomic projection φ : U=P2\L→ R2 as follows: let u∈S2 be a pole for L, choose v, w∈S2
so that {u, v, w} is an orthonormal basis for R3, then define φ(xu+ yv + zw) =

(
y
x ,

z
x

)
.

3.17 Definition: Given a polynomial f(x, y) in two variables, we define the zero set of
f in R2 to be the set

Z(f) =
{

(x, y) ∈ R2
∣∣f(x, y) = 0

}
⊆ R2.

Given a polynomial F (x, y, z) in three variables, we define the zero set of F in R3 to be
the set

Z(F ) =
{

(x, y, z) ∈ R3
∣∣F (x, y, z) = 0

}
⊆ R3.

3.18 Example: When f(x, y) = y − x2, the zero set Z(f) is the parabola y = x2. When
g(x, y) = y − p(x), where p(x) is a polynomial in one variable, the zero set Z(f) is the
graph y = p(x). When h(x, y) = x2 + y2 − 1 the zero set Z(f) is the circle x2 + y2 = 1.
When F (x, y, z) = x2 + y2 + z2 − 1 we have Z(F ) = S2.

3.19 Definition: A polynomial F (x, y, z) is called homogeneous of degree n when
for every term c xiyjzk appearing in F we have i + j + k = n. Notice that when F is
homogeneous of degree n we have

F (tx, ty, tz) = tnF (x, y, z) for all t ∈ R

so that for all (x, y, z) ∈ R3 we have

(x, y, z) ∈ Z(F ) =⇒ t(x, y, z) ∈ Z(F ) for all t ∈ R=⇒ [x, y, z] ⊆ Z(F ).

In this case we define the zero set of the homogeneous polynomial F in P2 to be the set

Z(F ) =
{

[x, y, z] ∈ P2
∣∣F (x, y, z) = 0

}
⊆ P2.

We do not distinguish notationally between the zero sets Z(F ) ⊆ R3 and Z(F ) ⊆ P2.

3.20 Exercise: Let F (x, y, z) = x2 + y2 − z2. Draw a picture of Z(F ).

3.21 Definition: Let F (x, y, z) be a homogeneous polynomial. Define

f1(y, z) = F (1, y, z) , f2(x, z) = F (x, 1, z) and f3(x, y) = F (x, y, 1).

The polynomials f1, f2 and f3 are called the dehomogenizations of F .
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3.22 Example: Let F (x, y, z) = yz − x2. Use the zero sets Z(f1), Z(f2) and Z(f3) to
find the intersection of Z(F ) with each of the planes x = 1, y = 1 and z = 1, then draw a
picture of Z(F ).

Solution: The dehomogenizations are given by f1(y, z) = yz − 1, f2(x, z) = z − x2 and
f3(x, y) = y − x2. We draw a picture of the zero sets Z(f1), Z(f2) and Z(f3). Then, to
draw a picture of Z(f), we draw a cube whose faces are given by x = ±1, y = ±1 and
z = ±1, then we draw the zero set Z(f1) on the face x = 1, the zero set Z(f2) on the face
y = 1, and the zero set Z(f3) on the face z = 1, in order to obtain a curve on the front,
right and top faces of the cube. The points in Z(f) are the points on the lines through 0
which pass through the points on this curve along the surface of the cube.

z z y

y x x

Z(f1) Z(f2) Z(f3)

z = 1

x = 1

y = 1

Z(F )

3.23 Remark: For a homogeneous polynomial F (x, y, z), when we regard R2 as a subset of
P2 by identifying the point (x, y) ∈ R2 with the point [x, y, 1] ∈ P2, the zero set Z(f3) ⊆ R2

is the restriction of the zero set Z(F ) ⊆ P2 to the subset R2 ⊆ P2.

3.24 Definition: Given a polynomial f(x, y) in two variables of degree n, we define the
homogenization of f to be the homogeneous polynomial F (x, y, z) obtained by replacing
each term c xiyj in f by the term c xiyjzk with k = n− i− j. Equivalently, we define

F (x, y, z) = znf
(
x
z ,

y
z

)
.

The zero set Z(F ) ⊆ P2 is called the projective completion of the zero set Z(f) ⊆ R2.
The points of the form [x, y, 0] ∈ P2 which lie in Z(F ) are called the zeros of f at infinity.

3.25 Remark: When F (x, y, z) is the homogenization of f(x, y), note that f is equal to
the dehomogenization f3 of F , so Z(f) ⊆ R2 is the restriction of Z(F ) ⊆ P2 to R2 ⊆ P2.

3.26 Example: Let f(x, y) = xy − 1. Find the zeros of f at infinity.

Solution: We homogenize to get F (x, y, z) = xy−z2. The zeros of f(x, y) at infinity are the
zeros of F (x, y, z) with z = 0. We have F (x, y, 0) = xy and xy = 0 when x = 0 or y = 0,
and so the zeros at infinity are the lines x = z = 0 and y = z = 0. Using homogeneous
coordinates, the zeros at infinity are the points [0, 1, 0] and [1, 0, 0].

3.27 Exercise: Let f(x, y) = y − x3. Draw the projective completion of Z(f) and find
the zeros of f at infinity.
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Conic Sections

3.28 Definition: For p ∈ R3, u ∈ S2 and φ ∈
(
0, π2

)
, the double cone with vertex at p

and axis in the direction u ∈ S2, which makes the angle φ with its axis, is the set

V = V (p, u, φ) =
{
x ∈ R3

∣∣∣ ∣∣(x−p).u∣∣ = |x−p| cosφ
}
.

The intersection of a double cone in R3 with the xy-plane is called a conic section in R2.
When the vertex of the cone lies in the xy-plane, the intersection can be a point or a line
or a pair of intersecting lines, and these are called degenerate conic sections.

3.29 Note: The double cone V with vertex (a, b, c) ∈ R3 and axis direction (u, v, w) ∈ S2
and angle φ is given by the equation(

(x−a, y−b, z−c).(u, v, w)
)2

=
(
(x−a)2 + (y−b)2 + (z−c)2

)
cos2 φ.

This equation is of degree 2 in x, y and z. The curve of intersection of V with the xy-plane
is obtained by setting z = 0 in the above equation to obtain a degree 2 equation in x and
y. Thus every conic section in R2 is given by a degree 2 equation in x and y.

3.30 Note: There is a theorem in linear algebra which states that every symmetric matrix
is orthogonally diagonalizable. It follows from this theorem that the solution set of every
degree 2 equation in x and y is either empty, or is a point, a line, a pair of lines, a parabola,
a circle, an ellipse, or a hyperbola. By diagonalizing a symmetric matrix, we can find a
rotation and a translation of the xy-plane to move the conic section into standard position.

3.31 Example: Diagonalize a symmetric matrix to describe the conic section

8x2 − 12xy + 17y2 − 36x+ 2y = 47.

Solution: We can write 8x2 − 12xy + 17y2 = (x, y)A
( x
y

)
where A =

(
8 −6
−6 17

)
. The

characteristic polynomial of A is

fA(λ) = (8− λ)(17− λ)− 36 = λ2 − 25λ+ 100 = (λ− 5)(λ− 20)

so the eigenvalues are λ = 5 and λ = 20. Performing row operations gives

A− 5I =

(
3 −6
−6 12

)
∼
(

1 −2
0 0

)
and A− 20I =

(
−12 −6
−6 3

)
∼
(

2 1
0 0

)
and so unit vectors for the eigenvalues 5 and 20 are 1√

5
(2, 1)T and 1√

5
(−1, 2)T . We change

coordinates (scaling by
√

5 and rotating by tan−1 1
2

)
by letting x = 2u− v and y = u+ 2v.

We have

8x2 − 12xy + 17y2 − 36x+ 2y = 47

⇐⇒ 8(2u− v)2 − 12(2u− v)(u+ 2v) + 17(u+ 2v)2 − 36(2u− v) + 2(u+ 2v) = 47

⇐⇒ 25u2 + 100 v2 − 70u+ 40 v = 47

⇐⇒ 25
(
u− 7

5

)2
+ 100

(
v + 1

5

)2
= 100

⇐⇒ (u− 7
5 )

2

4 +
(v+ 1

5 )
2

1 = 1.

This is the ellipse in the uv-plane centred at
(
7
5 ,−

1
5

)
with vertices

(
7
5 ,−

1
5

)
± (2, 0) and(

7
5 ,−

1
5

)
± (0, 1). Changing back to the coordinates x and y (by rotating and scaling), we

obtain the ellipse centred at (x, y) = (3, 1) with vertices at (3, 1)±(4, 2) and (3, 1)±(−1, 2).
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3.32 Lemma: Consider the double cone V (p, u, φ).

(1) When p = (0, 0,−h) with h > 0 and u = 1√
2
(0, 1, 1) and φ = π

4 , the intersection of

V (p, u, φ) with the xy-plane is the parabola y = 1
2h x

2.

(2) When p = (0, 0, h) with h > 0 and u = (1, 0, 0) and φ ∈
(
0, π2

)
, the intersection of

V (p, u, φ) with the xy-plane is the hyperbola x2

h2 cot2 φ −
y2

h2 = 1.

(3) When p = (0, 0, h) with h > 0, and u = (sin θ, 0, cos θ) with θ ∈
[
0, π4

)
, and φ = π

4 , the

intersection of V
(
p, u, φ

)
with the xy-plane is the ellipse (x+h tan 2θ)2

h2 sec2 2θ + y2

h2 sec 2θ = 1.

Proof: To prove Part 1, let p = (0, 0,−h) with h > 0, let u = 1√
2
(0, 1, 1), and let φ = π

4 .

The double cone V (p, u, φ) is given by
(
(x, y, z+h). 1√

2
(0, 1, 1)

)2
= (x2+y2+(z+h)2

)(
1√
2

)2
,

that is (y + z + h)2 = x2 + y2 + (z + h)2. The intersection of V (p, u, φ) with the xy-plane
is given by setting z = 0 to get (y + h)2 = x2 + y2 + h2, that is y = 1

2h x
2.

To prove Part 2, let p = (0, 0, h) with h > 0, let u = (1, 0, 0), and let φ ∈
(
0, π2

)
. The

double cone V (p, u, φ) is given by
(
(x, y, z−h).(1, 0, 0)

)2
=
(
x2+y2+(z−h)2

)
cos2φ, that

is x2 = (x2 + y2 + (z−h)2) cos2φ. The intersection of V (p, u, φ) with the xy-plane is given
by setting z = 0 to get x2 = (x2+y2+h2) cos2φ, that is x2(1−cos2φ)−y2 cos2φ = h2 cos2φ.

Dividing by h2 cos2φ gives x2 sin2φ
h2 cos2φ −

y2

h2 = 1, that is x2

h2 cot2φ −
y2

h2 = 1.

To prove Part 3, let p = (0, 0, h) with h > 0, let u = (sin θ, 0, cos θ) with θ ∈
[
0, π4

)
,

and let φ = π
4 . The double cone V (p, u, φ) is given by(

(x, y, z − h).(sin θ, 0, cos θ)
)2

=
(
x2 + y2 + (z−h)2

)
cos2φ

that is (
x sin θ + (z−h) cos θ

)2
=
(
x2+y2+(z − h)2

)
· 12 .

The intersection of the cone with the xy-plane is given by setting z = 0 to obtain

(x sin θ − h cos θ)2 = (x2 + y2 + h2) · 12
2
(
x2 sin2 θ − 2xh sin θ cos θ + h2 cos2 θ

)
= x2 + y2 + h2

x2(1− 2 sin2 θ) + 4xh sin θ cos θ + y2 = h2(2 cos2 θ − 1)

cos 2θ x2 + 2h sin 2θ x+ y2 = h2 cos 2θ

x2 + 2h tan 2θ x+ sec 2θ y2 = h2(
x+ h tan 2θ

)2 − h2 tan2 2θ + sec 2θ y2 = h2(
x+ h tan 2θ

)2
+ sec 2θ y2 = h2 sec2 2θ

(x+ h tan 2θ)2

h2 sec2 2θ
+

y2

h2 sec 2θ
= 1

3.33 Corollary: Given any curve C in the xy-plane which is a point, a line, a pair of
intersecting lines, a parabola, a circle, an ellipse, or a hyperbola, one can find a double
cone in R3 whose intersection with the xy-plane is equal to the given curve.

3.34 Definition: A conic in P2 is the zero set of a homogenous polynomial of degree 2
in x, y and z. Note that for at least one of the variables, when we dehomogenize on that
variable we obtain a degree 2 polynomial in the other 2 variables, so a conic in P2 is the
projective completion of a conic section in R2. The completion of the empty set, a point,
a line or a pair of lines is a degenerate conic, and the completion of a parabola, a circle,
an ellipse, or a hyperbola is a non-degenerate conic.

7



3.35 Theorem: (Desargue’s Theorem) Let u, v, w, u′, v′ and w′ be distinct points in
P2 with u, v and w noncolinear and with u′, v′ and w′ noncolinear. Suppose that the
line u, u′, the line v, v′ and the line w,w′ all intersect at a point p. Let a be the point of
intersection of lines v, w and v′w′, let b be the point of intersection of lines w, u and w′u′,
and let c be the point of intersection of lines u, v and u′v′. Then the points a, b and c are
colinear.

Proof: Choose a (projective) line M in P2 which does not pass through any of the given
points, and use a gnomic projection from P2\M to R2 to project all of the given points and
lines to corresponding points and lines in the xy-plane. Use the same variables u, v, w, · · ·
to denote the corresponding points in the xy-plane. Then [u, v, w] and [u′, v′, w′] are two
Euclidean triangles in the xy-plane, and the three lines containing line segments [u, u′],
[v, v′] and [w,w′] all intersect at the point p, as shown in the diagram below. Raise the
points w and w′ vertically out of the xy-plane so that the line in R3 through w and w′

still passes through the point p (which is still in the xy-plane). The diagram remains
unchanged when we are looking at the xy-plane with the z-axis pointing towards us, but
now the triangles [u, v, w] and [u′, v′, w′] are no longer contained in the xy-plane. Let P
and P ′ be the planes in R3 which contain [u, v, w] and [u′v′w′]. Note that the planes P and
P ′ are not equal because, for example, we have u ∈ P but u /∈ P ′ (the intersection of the
plane P ′ with the xy-plane is the line containing [u′, v′], which does not contain u). Since
the planes P and P ′ are not equal, they intersect in a line L in R3. Since the line through
[v, w] is contained in P we have a ∈ P , and since the line through [v′, w′] is contained in
P ′ we have a ∈ P ′, and so we have a ∈ P ∩ P ′ = L. Similarly, b ∈ L and c ∈ L.

•

•
•

•
•

•
• • •

•

b

u′

u

p
w

v
a

v′ w′

c
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3.36 Theorem: (Pappus’ Theorem) Let L and L′ be two distinct lines in P2. Let u, v
and w be points on L and let u′, v′ and w′ be points on L′ with all 6 points distinct. Let
a be the point of intersection of lines v, w′ and w, v′, let b be the point of intersection of
lines w, u′ and u,w′, and let c be the point of intersection of lines u, v′ and v, u′. Then the
points a, b and c are colinear.

Proof: Let p be the point of intersection of L and L′. Choose a line M in P2 which does
not pass through any of the points p, u, v, w, u′, v′, w′, a, b, c and use a gnomic projection
from P2 \M to R2 to project all of the points and lines to corresponding points and lines in
the xy-plane. Use the same variables to denote the corresponding points and lines in the
xy-plane. Note that we can use a translation to send p to the origin, and then we can use a
linear map to send the line L to the x-axis and the line L′ to the y-axis, so we may assume
that p = (0, 0), u = (r, 0), v = (s, 0), w = (t, 0), u′ = (0, k), v′ = (0, `) and w′ = (0,m). It
is then straightforward (but tedious) to calculate the coordinates of the points a, b and c,
and to verify that they are colinear. Here are some of the steps. The line v, w′ has equation
y = m−m

s x, or mx+sy = ms. The line w, v′ has equation y = `− `
t x, or `x+ty = `t. The

point of intersection of these two lines is a = 1
mt−`s

(
st(m−`), `m(t−s)

)
. Similarly, we have

b = 1
kr−mt

(
rt(k−m), km(r−t)

)
and c = 1

`s−kr
(
sr(`−k), kl(s−r)

)
. Verify that three points

(x1, y1), (x2, y2) and (x3, y3) are colinear when (y2 − y1)(x3 − x1) = (y3 − y1)(x2 − x1). In
particular, the points a, b and c are colinear when(

km(r−t)
kr−mt −

`m(t−s)
mt−`s

)(
sr( −̀k)
`s−kr −

st(m−̀ )
mt−`s

)
=
(
k`(s−r)
`s−kr −

`m(t−s)
mt−`s

)(
rt(k−m)
kr−mt −

st(m−̀ )
mt−`s

)
.

By multiplying both sides by (kr −mt)(mt− `s)(`s− kr)(mt− `s) then expanding both
sides (which is tedious), one finds that equality does hold and so a, b and c are colinear.

• •

••
•

• • •

•

•

L′

b v′

u′

c
w

w′
v a

u

p
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3.37 Note: Let us pause to mention some useful facts about geometry in R2. Note that
given three points a, b, c ∈ R2, the points are colinear when ∠oabc = 0 or π (mod 2π),
that is when 2∠oabc = 0 (mod 2π). Given four points a, b, c, d ∈ R2, note that [a, b]
and [c, d] are parallel when ∠ocab=∠oacd or ∠ocab=∠oacd + π (mod 2π), that is when
2∠ocab = 2∠oacd (mod 2π). We also recall that given four points a, b, c, p, we can add
oriented angles to get ∠oapb+∠obpc = ∠oapc (mod 2π). Let us use these facts to prove a
pleasing lemma (which we use to prove Pascal’s Theorem, below).

3.38 Lemma: Let C and D be two circles in R2 which intersect at p and q. Let a, b ∈ C.
Suppose line a, p meets D at c and line b, q meets D at d with all the points a, b, c, d, p, q
distinct. Then [a, b] is parallel to [c, d].

Proof: Working modulo 2π, we have

2∠ocab = 2
(
∠ocap+ ∠opab

)
, by adding angles

= 2∠opab , since c, a, p are colinear (so 2∠ocap = 0)

= 2∠opqb , these angles are subtended by the chord [p, b] in C

= 2
(
∠opqd+ ∠odqb

)
, by adding angles

= 2∠opqd , since p, q, b are colinear

= 2∠opcd , these angles are subtended by the chord [p, d] in D

= 2
(
∠opca+ ∠oacd

)
by adding angles

= 2∠oacd , since p, c, a are colinear.

•

• •

• • •

• • • •

• •

d

q
c

b
p

a

c

d

q

b
p

a

∠ocab = π + ∠oacd ∠ocab = ∠oacd
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3.39 Theorem: (Pascal’s Theorem) Let C be a conic in P2. Let u1, u2, · · · , u6 be six
distinct points on C. Let a be the point of intersection of lines u1, u2 and u4, u5, let b be
the point of intersection of lines u2, u3 and u5, u6, and let c be the point of intersection of
lines u3, u4 and u6, u1. Then a, b and c are colinear.

Proof: The case in which C is empty, or C is a single point cannot occur, the case in which
C is a single line is obvious, and the case that C is a pair of lines is Pappus’ Theorem.
Suppose that C is a non-degenerate conic. Choose a projective line M which does not
pass through any of the points uk, a, b, c, and use a gnomic projection from P2 \M to R2

to project all of the points and lines to corresponding points and lines in R2. Use the
same variables to represent the corresponding curve and points in R2. The new curve C
is a parabola, a circle, an ellipse or a hyperbola in R2. Choose a double cone V in R3

whose intersection with the xy-plane is equal to the curve C. Consider the projective space
centred at the vertex p of the cone, consisting of all the lines in R3 through p. Replace C
by its projective completion in the projective space centred at p, which consists of all the
lines through p in V . Use another gnomic projection, this time from p to a plane which is
perpendicular to the axis of the double cone V so that C is replaced by a circle. At this
stage, C is a circle in R2 and u1, · · · , u6 are six distinct points on C, the (Euclidean) line
through [u1, u2] intersects the line through [u4, u5] at a, the line through [u2, u3] intersects
the line through [u5, u6] at b, and the line through [u3.u4] intersects the line through [u6, u1]
at c. We need to show that a, b and c are colinear in R2.

Let D be the circle through u2, u5 and a. Say the line u2, u3 meets D at u2 and
p, and say the line u5, u6 meets D at u5 and q. By the above lemma, [u1, u6] is parallel
to [a, q], and [u3, u4] is parallel to [p, a], and [u3, u6] is parallel to [p, q], so the edges of
triangle [u3, u6, c] are parallel to the corresponding edges of triangle [p, a, q], and also, the
edges of triangle [u3, u6, b] are parallel to the corresponding edges of [p, q, b]. It follows that

[u3, u6, c] is similar to [p, q, a] with scaling ratio r = |u3−u6|
|p−q| , and that [u3, u6, b] is similar

to [p, q, b] with the same scaling ratio r. By scaling by the factor r and applying the Side
Angle Side Theorem (Corollary 1.54) it follows that [u6, b, c] is similar to [q, b, a], because
the angle at u6 in [u6, b, c] is equal to the angle at q in [q, b, a], and the adjacent sides are

scaled by r = |q−b
|u6−b| = |q−a|

|u6−c| . Because u6, b, q are colinear, and the angle at b in [u6, b, c]

is equal to the angle at b in [q, b, a], it follows that c, b, a are colinear.

•

•

• • • •
•

•

• • •

p

c

u6 u5 b
q

u4

u3

u1 u2 a
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3.40 Remark: The Fundamental Theorem of Algebra states that every polynomial p(x)
in one variable can be factored over the complex numbers into linear factors, so that if p(x)
is of degree n then we have p(x) = c(x− a1)m1(x− a2)m2 · · · (x− al)ml for some distinct
ai ∈ C with m1 +m2 + · · ·+ml = n. The numbers ai ∈ C are called the roots of p and,
for each index i, the positive integer mi is called the multiplicity of the root ai. Thus
every polynomial of degree n has exactly n roots in C provided that the roots are counted
with multiplicity (so the root ai is counted mi times). Geometrically, the Fundamental
Theorem of Algebra states that given any polynomial p of degree n, the curve y = p(x)
intersects the line y = 0 at exactly n points, provided the points are allowed to be complex
and are counted with multiplicity.

There is a very nice generalization of the Fundamental Theorem of Algebra, called
Bézout’s Theorem, which states that, given any two polynomials f(x, y) and g(x, y), with
no common factors, of degrees m and n, the zero sets Z(f) and Z(g) intersect at exactly
nm points, provided that the points are allowed to be complex and are counted with mul-
tiplicity, and we also count points at infinity. We shall not prove Bézout’s Theorem here,
and in fact we shall not even describe precisely what is meant by the term“multiplicity”.
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