Chapter 2. Spherical Geometry

The Sphere, Spherical Distance, and Spherical Circles and Lines

2.1 Definition: The (unit) sphere is defined to be the set
S? = {u € R?||u| = 1}.

If u € S? then we also have —u € S?, and we say that the two points +u are antipodal.
Given points u,v € S?, we define the (spherical) distance between u and v to be

ds(u,v) = 0(u,v) = cos™*(u-v).
Note that 0 < dg(u,v) < 7w with dg(u,v) = 0 when v = v and dg(u,v) = m when v = —u.

2.2 Theorem: (Euclidean and Spherical Distance) Given points u,v € S?, the spherical
distance dg(u,v) determines and is determined by the Euclidean distance dg(u,v).

Proof: First we note that since u,v € S? we have dg(u,v) € [0,7] and dg(u,v) € [0,2].
Applying the Law of Cosines to the triangle in R?® with vertices at 0, u and v gives

dp(u,v)? =2 — 2cosf(u,v) = 2 — 2cosds(u,v).

Thus we have

de(u,v) = /2 — 2cosdg(u,v) and
ds(u,v) = cos™' (1 — 2dg(u,v)?).
2.3 Theorem: (Metric Properties of Spherical Distance) For all u,v,w € S? we have
(1) (Positive Definiteness) dg(u,v) € [0,7] with ds(u,v) = 0 if and only if u = v and
ds(u,v) = 7 if and only if u = —v,
(2) (Symmetry) ds(u,v) = dg(v,u), and
(3) (Triangle Inequality) dg(u,w) < dg(u,v) + dg(v, w).
Proof: We leave the proofs of Parts (1) and (2) as an exercise. To prove Part (3), note

that
cos (0(u,v) + 0(v,w)) = cos B(u, v) cos (v, w) — sin O(u, v)sin O(v, w)

(
= (u-v)(
< () (0-w) — (ux v)- (v x w)

= () (- w) — (- v) (v-w) ~ (u-w)(0-0))

=u-w = cos O(u,w).

vew) — lu X v||v X w

Since cos 6 is decreasing with 6, it follows that 0(u,w) < 0(u,v) + 6(v, w).

2.4 Theorem: (Spherical Area) Given two parallel planes which intersect with S?, the
area of the portion of S? which lies between the two planes is equal to 2m/A where A is the
distance between the two planes. In particular, the total area of S? is equal to 4.

Proof: Rotate the sphere about the origin so that the two parallel planes have equations
xr=aand x = b with —1 < a < b <1 and note that the distance between the two planes
is A = b — a. Recall, from calculus, that the area of the surface which is obtained by
revolving the graph of z = f(z) for a < x < b about the z-axis is equal to

A:/ 2 f(x)\/1+ f'(x)? dx.
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We apply this formula with f(z) =1 — 22 and f/'(z) = =% to get

1—x2

b [ 2 b 1 b
A:/a27'('\/1—372 1+ﬁd$:/a2ﬂ\/l—$2ﬁd$: a27Td$:27T(b—CL).

2.5 Definition: For u € S? and r € [0, 7], the (spherical) circle of radius r centred at w,
and the (closed spherical) disc of radius r centred at u are the sets

C(u,r) = {x € $*|ds(z,u) =} and
D(u,r) ={z € Sz‘ds(x,u) <r}.

Note that when r» = 0 we have C(u,r) = {u} and D(u,r) = {u} and when r = 7 we have
C(u,r) = {—u} and D(u,r) = S

2.6 Theorem: (Spherical Circles) A circle in S? is a set of the form C' = S* N P where P
is a plane in R® whose Euclidean distance from the origin is at most 1.

Proof: For u € S and r € [0, 7] we have

Clu,r) = {x € $*|ds(z,u) =1} = {x € S*| cosds(z,u) = cosr}
={ze SQ‘az-u =cosr} = S’npP

where P = {x € R3|:1;-u = oS 7’}, which is the plane in R? perpendicular to the vector u
whose nearest point to the origin is the point (cosr)u.

2.7 Theorem: (Circumference and Area of Spherical Circles and Discs) Let u € S* and
r € [0, 7]. Then the circumference L of C(u,r) and the area A of D(u,r) are given by

L =27wsinr , and
A =2n(1—cosr).

Proof: Let P = {x € R3|x-u = cos 7"} so that P is the plane whose nearest point to the
origin is (cosr)u. Note that for each point x € C(u,r), the triangle in R? with vertices 0,
(cosT)u and x is a right-angle triangle with its right-angle at (cosr)u whose angle at 0 is
equal to 6 = 0(z,u) = cos™(z-u) = r. and whose sides are of length cosr, sinr and 1.
The spherical circle C(u,r) is equal to the Euclidean circle in the plane P centred at the
point (cosr)u of Euclidean radius sinr, and so its circumference is L = 27 sinr.

Let Q = {x € R3 ‘:1: ‘U= 1} so that @) is the plane whose nearest point to the origin is
the point u (Q is the tangent plane to S? at the point u). Note that the distance between
P and Q is A =1 — cosr. The spherical disc D(u,) is equal to the portion of S? which
lies between the parallel planes P and @, and so its area is A = 27A = 27(1 — cos 7).

2.8 Definition: A (spherical) line (also called a great circle) in S? is a spherical circle
of the form L = S2 N P for some plane P through the origin. Note that each plane P
through the origin has two unit normal vectors +u € S?, and these two normal vectors
are called the poles of the line L = S? N P. Given u € S?, the line in S? with poles +u is
denoted by L,, so we have

L, = {:L‘ € S2|x-u:0} = C’(u,%).

Two lines in S? are said to be orthogonal (or perpendicular) when their poles are
orthogonal (or equivalently when their associated planes are orthogonal).
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2.9 Theorem: (Properties of Spherical Lines)

(1) Given u,v € S? with v # +u, there is a unique line in S? through u and v.

(2) The intersection of any two distinct lines in S? consists of two antipodal points.

(3) Given a point u € S? and a line L in S®> with L # L., there is a unique line in S* which
passes through u and is perpendicular to L.

(4) There is a unique line which is perpendicular to any two distinct given lines.

Proof: To prove Part 1, let u,v € S? with u # 4wv. Since |u| = |[v| = 1 and u # +wv, it
follows that {u, v} is linearly independent, so there is a unique plane P through 0 which
contains both u and v, namely P = Span{u, v}, so there is a unique (spherical) line in S
which contains v and v, namely L = S? N P. We note that L = L,, with w = + |Z§Z‘ .

To prove Part 2, let L and M be two distinct (spherical) lines in S?, say L = S> N P
and M = S? N Q where P and Q are distinct planes through 0. The two planes intersect
in a line N though 0, and N intersects the unit sphere at two antipodal points, say +w,
and we have LN M =S?’NPNQ =S?>NN = {F+w}. Note that if L = L, and M = L,
so that v and v are unit normal vectors for P and ), then uxv € PN = N and so
LN M = {£w} where w = Z5.

To prove Part 3, let v € S? and let L be a line in S? with L # L, say L = L, with
v # +u. We have L = S? N P where P is the plane through 0 with unit normal vector v.
The planes @ through 0 which are perpendicular to P are the planes through 0 which pass
through v, and so the lines M = S? N Q which are perpendicular to L = S? N P = L, are
the lines in S? through v. Thus the (unique) line which is perpendicular to L and passes
through w is the same as the (unique) line through v and w (which exists and is unique by
Part a). We note that this unique line is the line L,, with w = ﬁ

To prove Part 4, let L and M be two distinct lines, say L = L,, and M = L, where
u,v € S? with u # 4v. As is our proof of Part 3, the lines in S? which are perpendicular to
L = L, are precisely the lines in S? through u, and the lines in S? which are perpendicular to
M = L, are precisely the lines in S? through v, and so the (unique) line in S? perpendicular
to both L = L, and M = L, is the (unique) line in S? through « and v. We note that the

unique line perpendicular to L = L,, and M = L, is the line N = L,, where w = |Z§Z| .




Oriented Angles

2.10 Definition: For u € S?, the tangent space to S? at u is the 2-dimensional vector
space T, which is orthogonal to u, that is the space

T, = {z € R®|z-u=0}.

2.11 Definition: For v € S? and 0 # v,w € T, we define the oriented angle from v
to w to be the angle 6,(v,w) € [0,27) from v counterclockwise to w when looking at the
plane T;, with the vector u pointing towards us. The (unoriented) angle between u and
v is the same as the (unoriented) angle 0(u,v) = cos™! e Detween u and v in R3. We

have 0(u,v) = 0,(u,v) if 6,(u,v) € [0, 7], and O(u,v) = 27 — O,(u,v) if O,(u,v) € [7,27).
2.12 Theorem: (Angle Formula) Let u € S® and let 0 # v, w € T,,. Then

Vew

cosf,(v,w) = —— and
|v[|w]
_ det(u, v, w)
SIHQO(U,U)) = W

Proof: When v x w = 0 so that {v,w} is linearly dependent, if w = tv with ¢ > 0 then
0o(v,w) = 6(v,w) = 0 and if w = tv with ¢ < 0 then 0,(v,w) = 6(v,w) = 7, and in both
cases we have sinf, (v, w) = det(u, v, w) = 0.

Suppose that v x w # 0. Since v, w € T, so that v and w are orthogonal to u it follows
that the vector v x w points either in the direction of u or in the direction of —u. When
0o(v,w) € (0, ), the Right-Hand Rule implies that v x w points in the direction of u so that
O(u,v x w) = 0, and in this case we have 0,(v,w) = 8(v,w). When 6,(v,w) € (m,2r), the
Right-Hand Rule implies that v X w points in the direction of —u so that 6(u,v x w) = m,
and in this case we have 0,(v,w) = 27 — 6(v, w). Note that

u-(vxw) det(u,v,w) <o that

cosf(u,v X w) = =
lul|v x w] v x wl
lv x w| if §,(v,w) € (0,7),
det(u, v, w) = |v X w|cosO(u,v X w) =
—|v x w| if 8,(v,w) € (m, 2m).

In the case that 6,(v, w) € (0,7) we have
vew

cos b,(v,w) = cosB(v,w) = o] and
vl||w

det
sin 6, (v, w) = sin f(v, w) = v x w|  det(u,v,w)

I

and in the case that 0,(v,w) € (7, 27) we have

cos b,(v, w) = cos (2m — O(v,w)) = cosf(v,w) = Tollal
v||w

—|v xw|  det(u,v,w)

sin 6, (v, w) = sin (2m — (v, w)) sin (v, w) T[] T[]
2.13 Remark: Definition 2.11 is not actually a rigorous mathematical definition, and the
proof of the above theorem is not actually a rigorous mathematical proof (since the words
“counterclockwise” and “right-hand rule” are not rigorously defined). To be rigorous, we
would simply take the formulas in Theorem 2.12 as our definition for the oriented angle,
and then the above so-called proof can be taken as an informal motivation for the definition.



2.14 Definition: Let u,v € S? with v # 4u. The line in S? through v and v is cut, at
the points v and v, into two arcs from u to v. The shorter of the two arcs is called the
(spherical) line segment from u to v and is denoted by [u, v]. Note that

[u,v] = {& € $*|& = su + tv for some 0 < 5,t € R}.

The vector from u to v, denoted by u,, is the unit tangent vector to the arc [u,v] at the
point u. By the Right Hand Rule, applied twice, we see that u, is the unit vector in the
direction of the vector (u x v) x u. Note that since (u x v)-u = 0 so that 0(u x v,u) = 7,
we have |(u x v) x u| = |u x v||u|sin6(u x v,u) = |u x v|, and so

v:(uxv)xu_v—(u-v)u

luxv|  |uxovl
Given u,v,w € S? with v # du and w # fu, we define the oriented angle Z,vuw to be
Zo0uw = 0 Uy, Uy )-

The (unoriented) angle Zvuw is given by Zvuw = 6(uy,uy). We have Zvuw = Z,vuw
when Z,vuw € [0, 7], and Zvuw = 271 — Z,vuw when Z,vuw € [m, 27).

2.15 Theorem: (Angle Formula) Let u,v,w € S? with v # d+u and w # +u, and let
o, = Zovuw. Then

(uxv)-(uxw) _ (v-w) = (wv)(u-w)

CoS (atp = -
lu X v||lu x w| lu x v|ju x w|
. det(u, v, w)

sinq, = ———————.
lu X v|ju x w

Proof: We have
(v—(u-v)u) - (w— (u-w)u)

lu X v||u x w|

COS Ay = €OS Oy (U, Upy) = Uy * Uy =

 (vew) = (uev)(uew)  (uwx ) (u X w)

lu X v|ju x w|  |uxvl|u x w)
and

- <(v — (u-v)u) x (w— (uw)u)>

lu X v||u x w|

sin o, = sin 0, (g, Uy ) = det(u, Uy, Uy ) =

u(vxXw—(u-w)vxu— (u-v)ux w) det(u, v, w)

lu X v]|u X w| o x v|u x w|”




Spherical Triangles

2.16 Definition: A (non-degenerate spherical) triangle in S? is determined by three
non-colinear points u, v, w € S?, which we call the vertices of the triangle. Requiring that
u, v and w are non-colinear in S? is equivalent to requiring that u, v and w do not all
lie on the same plane through the origin in R?, or equivalently that {u,v,w} is linearly
independent, or equivalently that det(u,v,w) # 0.

We can think of the triangle with vertices u, v and w in several different ways. For
example, we can think of the triangle simply as the set of three points {u,v,w}, or if we
wish we can keep track of the the order of the points and think of the triangle as the
ordered triple (u,v,w). Alternatively, since u, v and w are non-colinear, no two of the
three points are antipodal and so the edges [u,v], [v,w] and [w,u] of the triangle are
well-defined and, if we want, we can think of the triangle as the union of its three edges.
As another alternative, we can think of the triangle as including its interior points, that is
we can consider the triangle to be the solid triangle

[u, v, w] = {QZGSZ’:E:TU—{-SU—Ftw for someOSr,s,tER}.

An ordered triangle in S? consists of an ordered triple (u,v,w) of non-colinear points
u,v,w € S?, together with the set [u,v,w]. When det(u,v,w) > 0, so that {u,v,w} is a
positively oriented basis for R3, we say that the triangle [u,v,w] is positively oriented,
and when det(u,v,w) < 0 we say the triangle [u, v, w] is negatively oriented.

2.17 Definition: Given an ordered triangle [u,v,w] in S?, we shall let a, b and ¢ denote
the lengths of the edges [v, w], [w,u]| and [u, v] respectively, so that

a=dg(v,w), b=ds(w,u) and c=dg(u,v),
and we shall let a,, 5, and 7,, and «, # and v be the oriented and unoriented angles
Qo = Lovuw , By = Lowvu , Yo = Louwv , a = Louww , = Lwvu , v = Luwv.

When [u, v, w] is positively oriented, the angles «,, 8, and 7, all lie in the interval (0, )
so we have a = ag, f = (B, and v = v,. When [u, v, w] is negatively oriented, the angles
Q,, B, and 7, all lie in the interval (m,27), so we have a = 27 — ay,, 8 = 27 — B, and
v = 27 — 7,. In either case, the angles «, § and ~ are called the interior angles of the
triangle, and the angles 2w — o, 2w — 8 and 27w — ~ are called the exterior angles.

2.18 Theorem: (Area of Spherical Triangles) Let [u, v, w] be a positively oriented triangle
in S? with interior angles c, 3 and . Then the area of [u,v,w)] is equal to (a+ B +7) —

Proof: Let H, be the hemisphere which contains u whose boundary is the line through
v and w, and let —H, be the antipodal hemisphere. Define Hg, —Hg, H, and —H,
similarly. Let W, = (H 5N HW) U ( —Hgn —HW), and define Wg and W, similarly. By
looking at the Sphere with the vector v pointing towards us, we can see that the double
wedge W, covers £ of the entire sphere and so its area is A, -4m = 4. Similarly the
areas of the double wedges Ws and W, are equal to Ag = 46 and A, = 4~. Notice that
when we shade each of the double Wedges Wea, Wg and W, the trlangle [u, v, w] and its
antipodal triangle [—u, —v, —w]| are each shaded three times while the rest of the sphere is
shaded once. It follows that if we let S = 47 be the area of the entire sphere and we let
T be the area of the triangle [u, v, w] (which is equal to the area of the antipodal triangle
[—u, —v, —w]) then we have A, + Ag + Ay = S + 4T, that is 4da + 40 + 4y = 4w + 4T,
hence T = (o + B +7) — 7.



2.19 Definition: For an ordered triangle [u,v,w]|, the polar triangle of [u,v,w] is the
ordered triangle [u’,v’, w'] where

,  UXw ,  wXu

=, U = and w’ = .

v X w| lw X ul lu x v
We denote the side lengths and the angles of the polar triangle [u/,v", w'] by o', V', ¢/ and
ai)a 5/7 ’Yén and OCI, 6/ and ’)//.

2.20 Theorem: (The Polar Triangle) Let [u,v,w] be a positively oriented triangle in S?
with polar triangle [v',v', w']. Then

(1) [, 0", w"] = [u,v,w],

(2) [u',v",w'] is positively oriented,

(3)d =m—a, b/ =7— and ¢ =m —, and

() =7 —a, /' =m—band~y =7 —c.

Proof: We have

o % — (wxu)x(uxv) w-(uxv)u—u-(uxv)w det(u,v,w)u

lw < ulluxv] lw X ullu x vl |w x ul|u x v|
This is a positive multiple of the vector v and so
, v xaw
= — =1U
[v/ x w!|
Similarly, we have v = v and w” = w. This shows that [u",v" w"] = [u, v, w].
Now let us determine the orientation of [u/, v, w’]. We have
vxw det(u,v,w)u det(u,v,w)?

det(e/ v/, ') = ol (v x ) = _
lv x w| |wxulluxvl |uxo||lvxw||wx ul

which is positive. This shows that [u/, v, w'] is positively oriented.
Next, let us find the lengths of the edges of the polar triangle. We have
(w X u)-(uxv)

cosa = -w = = —cos a.
lw X ul|lu x vl

It follows that ¢’ = m £ «. Since [u, v, w] is positively oriented, we have a € (0,7) and so
we must have a’ = 7 — . Similarly, we have b =7 — f and ¢/ =7 — 7.
Finally, let us calculate the angles of the polar triangle. We have
(u' x V')« (u xw)

cosa’ = o ] w”(=v") = —w-v = —cosa.

It follows that o' = 7 £+ a. But since [u/,v’,w'] is positively oriented so that o’ € (0, ),
we must have o/ = 7 — a. Similarly, 5/ =7 —band v =7 —c.

2.21 Exercise: Determine how Parts 1, 2, 3 and 4 of the above theorem must be modified
when [u, v, w] is a negatively oriented triangle in S2.



2.22 Theorem: (The Sine Law) For any ordered triangle [u,v,w| we have

sina sinb sin ¢

sina sinfB  siny’
Proof: We have
| det(uyv,w)] _ | det(u,v,w)
lu x v||lu xw|  sincsinb

sina =

and similar formulas hold for sin 8 and sin~y, so we obtain
| det(u, v, w)| = sinasinbsin ¢ = sinasin fsin ¢ = sinasin bsin 7.
2.23 Theorem: (The First Law of Cosines) For any ordered triangle [u,v,w]| we have

cosa — cosbceosc cosb — cosacosc cosc — cosacosb
coso = - - , cosfB = - - and cosy =
sinbsin ¢ sina sin ¢

Proof: We have

sinasin b

cos o = (uxwv)-(uxw) (vew)—(u-w)(v-u) cosa—cosbcosc

lu x v|luxw| lu X v||u x w| B sincsinb
The other two formulas may be proven similarly.

2.24 Corollary: (Side-Side-Side and Side-Angle-Side)

(1) If we know the lengths of the three sides of a triangle then we can find the three angles.
(2) If we know the lengths of two sides and the angle at the common vertex, then we can
find the length of the third side (hence also the other two angles).

2.25 Theorem: (The Second Law of Cosines) For any ordered triangle [u,v,w] we have

cos « + cos 3 cosy
cosa = - - , cosb =
sin 8 siny

cos 3 + cosy cos €oS 7y + cos a cos 3

- - and cosc = - -
sin 7y sin « sin asin 3

Proof: Suppose that [u,v,w] is positively orented, and let [u/,v", w’] be its polar triangle.
Then we have ¢’ = 7 — o and o/ = ™ — a and so on. We apply the First Law of Cosines to
the polar triangle to get

—cosa’ +cosb' cosc  cosa + cos 3cosy

cosa = —cosa’ = YR = : :
sin b’ sin ¢ sin 3 sin y

The case in which [u, v, w] is negatively oriented is left as an exercise.

2.26 Corollary: (Angle-Angle-Angle and Angle-Side-Angle)

(1) If we know the three angles of a triangle then we can find the lengths of the three sides.
(2) If we know the length of one edge of a triangle and the angles at either end of the edge,
then we can find the third angle (hence also the lengths of the other two sides).



Isometries

2.27 Definition: An n x n matrix A € M,,(R) is called orthogonal when ATA = T or
equivalently, when its columns form an orthonormal basis for R™. The set of all orthogonal
n X n matrices is denoted by O,,(R). An orthogonal map on R” is a map F : R” — R"
of the form F(x) = Az for some A € O, (R).

2.28 Definition: An isometry on S? is a bijective map F : S — S? which preserves
distance, that is such that for all u,v € S* we have dg(F(u), F(v)) = ds(u,v).

2.29 Theorem: (Algebraic Classification of Isometries) Every orthogonal map on R3
restricts to an isometry on S?, and every isometry on S? extends to an orthogonal map on
R3. Thus the group of isometries on S? can be identified with the group O3z(R).

Proof: Let A € O3(R) and define F : R® — R3 by F(z) = Az. Note that F is bijective
with inverse given by F~1(zx) = A~lx = ATz. Also note that F preserves Euclidean
distance because for all z,y € R? we have

[Fa)=Fy)[° = |4z — AyP* = 4w = y)|" = (Alw 1)) Az )
=@ -y ATA@ —y) =@ -y Ila-y) =@ -y (@-y) =]z -y
Since spherical distance is determined by Euclidean distance, it follows that
ds(F(u), F(v)) = dg(u,v) for all u,v €S

and so F restricts to an isometry on S2.

Now suppose that F : S? — S? is an isometry on S?. Since Euclidean distance is
determined by spherical distance, we have |F(u) — F(v)| = |u— v for all u,v € S?. By the
Polarization Identity, it follows that for all u,v € S?

F(u)-F(v) = L(|[F(w)]? + |F(v)]? = |F(u) — F(0)[*) =

= (Jul? + o ju = vP) = u-o

(12412~ u—of)

and so the map F preserves the dot product between elements of S?. In particular, if we
let {e1,e2,e3} be the standard basis for R3 then we have F(ey)-F(e;) = er-e; = O for

all k,1 and so the set {F(e1), F(e2), F(e3)} is also an orthonormal basis for R3.
3
Given any element v € S?, we can write v uniquely in the form v = 3 ¢, F(ex), and
k=1
3 3
then for each index | we have v-F(e;) = Y. cxF(ex)-F(e;) = > cxdp; = ¢;. Thus for
k=1 k=1
3
every v € S? we have v = Y (v-F(ey))F(e). Replacing v by F(u), we see that for all
k=1
u = (u1,us,u3) € S? we have
3 3 3
F(u) = 3 (F(u)-Flex)) Flex) = 3= (u-ex)Flex) =

k=1 -

k=1 k

ukF(ek)
1

Let A be the orthogonal matrix with columns F(ey), F(es) and F(e3). Then for all u € S?
3
we have F(u) = Y wupF(er) = Au. Thus the isometry F' : S? — S? extends to the
k=1

orthogonal map F : R? — R? given by F (r) = Az for all x € R3.



2.30 Note: From now on, we shall not distinguish notationally between an orthogonal
matrix A € O3(R), the corresponding orthogonal map A : R3 — R3 given by A(z) = Ax,
and the corresponding isometry A : S? — S? obtained by restricting the map A to S2.

2.31 Definition: The inversion (or antipodal map on S? is the isometry N : §? — §?
given by N(z) = —z. Given u € S?, the reflection on S? in the line L, is the isometry
F, : S — S? obtained by restricting the orthogonal reflection F,, : R® — R3 on R? in
the plane z-u = 0. When L = L, we also write F,, = Fy. Given v € S? and 0 € R,
the rotation on S? about u by @ is the map R, ¢ : S* — S? obtained by restricting the
rotation R, ¢ : R® — R3 by the angle 6 in the direction of the fingers of the right hand
when the thumb is pointing in the direction of the vector w.

2.32 Note: As a matrix, the inversion is given by N = —I. Let us describe the maps F,,
and R, ¢ as matrices. Given u, choose a unit vector v which is orthogonal to u and then
let w = u X v so that {u,v,w} is an orthonormal basis for R®. Then the rotation R, g is
given by Ry, g(u) = u, Ry 9(v) =cosfv +sinfw and R, g(w) = —sinfv + cos§ w. Thus,
as a matrix, we have

1 0 0
Ry = PAPT where P = (u,v,w)and A= | 0 cosf —sinf
0 sinf coséb

Similarly, the reflection F), is given by Fy,(u) = —u, F,(v) = v and F,(w) = w so that, as
a matrix, we have

-1 0
F, = PAPT where P = (u,v,w)and A= | 0 1
0 O
Alternatively, using the orthogonal projection map given by Proj,, (z) = (z-u)u, we have

Fy(z) =2 —2Proj,(z) =z — 2(zu)u =z — 2u(z-u) = z — 2w’z = (I — 2uu’ )z

and so, as a matrix, we have
F,=1-2uu”.

2.33 Theorem: (The Product of Two Reflections is a Rotation) Let u,v,w € S? with
v,w € T,. Then
FuF, = Ru,200(v,w)'

Proof: Let # = u X v so that {u,v,z} is a positively oriented orthonormal basis for R3.
Let 0, = 0,(v,w) so that
w = cosb,v+sinb, z.

Then F,(u) =u—2u-vv=u, F,(v)=v—2v.vv=—vand F,(z) =2 —2z-vv =z and
SO
FuFy(u) = Fy(u) =u—2u-ww=u= Ry, (u),
F,F,(v) = Fy(—v) = —v+2v-ww = —v + 2 cos 0,(cos 0,0 + sin 0, x)
= (2cosf, — 1)v + 2sinb, cos b, z = cos 20, v + sin 260, x = Ry, 29, (v), and
Fy,Fy(x) =Fy(x) =2 —2z-ww=x — 2sin,(cos 0, v + sin b, x)
= —2sinf,cosb,v + (1 — 2sinb,)r = —sin 260, v + cos 20, x = Ry, 20, ().
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2.34 Definition: Given two points a,b € R? with a # b, recall that the perpendicular
bisector of a and b in R? is the plane P in R? which passes through the midpoint %t
and is orthogonal to the vector b — a, that is the plane

P= {.%’ERB‘(lC— by . (b —a) :O}.
Note that (as in the proof of Theorem 1.60) for z € R3 we have
x € P < dg(x,a) =dg(x,b).

Let u,v € S? with u # v and let P be the perpendicular bisector of v and v in R3. Note that
since dg(0,u) =1 = dg(0,v), we have 0 € P. We define the perpendicular bisector of
uw and v in S? to be the line L = S?N P. Since P is the plane in R? through 0 orthogonal to
the vector v—u, it follows that L = L,, where w = \5:Z| . Note that since spherical distance

is determined by Euclidean distance, for x € S* we have z € L <= dg(z,u) = dg(z,v).

2.35 Lemma: (Reflection in Perpendicular Bisector) Let u,v € S with u # v, let P be
the perpendicular bisector of u and v in R3, and let Fp be the orthogonal reflection in P.
Then

(1) Fp(u) =v and Fp(v) = u, and

(2) x € P <= Fp(x)=ux.

Proof: Let w = %=%. Note that the plane P has equation z-w = 0 and the orthogonal

 Jo—uf”
reflection F'p is given by Fp(z) =z — 2(x-w)w. We have

2(u-v — [ul?)

2u-(v—u)
u? = 2(u-v) + [v]?

Fp(u)=u—2u-w)w=u

(v—u)=u (v —u)

v —ul?
2(u-v—1)

:U—m(U—U):U+<U—U):U

and similarly Fp(v) = u. Also, for z € R3 we have
Fp)=2 <= z-2(z-w)w=2 < 2(z-w)w=0 <= z-w=0 < z€P.

2.36 Theorem: (Congruent Triangles and Isometries) Given two ordered triangles [u, v, w]
and [u',v',w'] witha =a’, b =10 and c = ¢, there exists a unique isometry F : S? — S?
with F(u) = v/, F(v) =v" and F(w) = w'.

Proof: First we note that if such an isometry exists then it is unique because {u, v, w} is a
basis for R3. We now construct the required isometry as a composite of reflections. If u = u/
then let F; = I and if u # «’ the let F} be the orthogonal reflection in the perpendicular
bisector of u and u' so that we have Fj(u) = u/. Let uy = Fi(u) =/, v; = Fi(v) and
wy = F1(w). Note that if a1, by and ¢; are the edge lengths of triangle [u, vy, wq] then we
have a1 = a, by = b and ¢; = ¢ since F} is an isometry. If v; = v’ then let F5, = I and if
vy # v’ then let F5 be the orthogonal reflection in the perpendicular bisector of v; and v’
so that we have Fy(v1) = v'. Note that in the case that vy # v/, the point u; = u’ lies on
the perpendicular bisector of v; and v’ because |v; —u1| = b = |0/ —u/| = [v/ — uy|, and
so we have Fy(u1) = uy3 = u'. Let ug = Fo(uy) = v/, vo = Fa(vy) = v and wy = Fy(wq).
Note that if ag, b2 and co are the edge lengths of triangle [us, v, ws| then we have as = a,
by = band ¢y = c. If wy = w’ then let F3 = I and if wy # w’ then let F3 be the orthogonal
reflection in the perpendicular bisector of wy and w’ so that F3(ws) = w’. As above, note
that F3(uz) = uy = v and F5(vg) = ve = v’. Thus the isometry F = F3FyF) satisfies
F(u) =14/, F(v) =v" and F(w) = w'.
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2.37 Definition: A rotary reflection on S? is an isometry on S? of the form Fu.R,0
for some u € S? and # € R. A rotary inversion on S? is an isometry on S? of the form
N R, ¢ for some u € S? and 0 € R.

2.38 Theorem: Let u € S? and § € R. Then

(1) NRygy =—Rup = RuoN, and
(2) FuRu,G = Ru,GFu = —Ru79_|_7r.

Proof: Part 1 holds because N Ry, 9 = (—I)Ry,9 = —Rup = Ruo(—1I) = R, oN. To prove
Part 2, choose v,w € S? so that {u, v, w} is a positively oriented orthonormal basis for R3.
Then we have

FuRu 0(
FuRu 9(
FuRu,g(w)

and we have

u) = Fu(u) = —u,
v) = F,((cos0) v + (sinf) w) = (cosf) v+ (sinf) w
F,(— (sinf)v+ (cosf) w) = —(sinf) v + (cos ) w

Ry oFu(u) = Ry p(—u) = —u,
Ry oF,(v) = Ry 9(v) = (cosf) v+ (sinf) w
Ry oFy(w) = Ry 9(w) = —(sinf) v + (cosf) w
and we have

— Ry g4n (u) =
—Ryp+x(v) = (COS(9+7r) v+ sin(f+7) w) = (cosf) v + (sinf) w
—Ryg+r(w) = —(—sin(0+7) v+ cos(0+7) w) = —(sind) v + (cos ) w

2.39 Theorem: (The Geometric Classification of Isometries) Every isometry on S? is
either a rotation, a reflection, or a rotary inversion.

Proof: Let S be an isometry on S?. By Theorem 2.36, S is the unique isometry which
sends the standard basis vectors ej, e; and e3 to the points S(eq), S(e2) and S(es), and
the proof of that theorem shows that S is of the form S = F3F5F where each F}, is either
the identity or a reflection. Thus either S is the identity, or S is a reflection, or S is the
product of two reflections, or S is the product of three reflections. By Theorem 2.33, the
product of two reflections is a rotation (or the identity, when the two reflections are equal),
so it suffices to consider the product of three reflections. Suppose that S = F,, F, F,, where
u,v,w € S%. If u = +v then F,F, = I so that S = F,,, which is a reflection. Suppose that
u # +v, so we have L, N L, = {£p} where p = ‘Zﬁ'. By Theorem 2.33, F,F,, = Ry
where we have u,v € T}, and § = 26,(u,v), and so S = F,F,F,, = FyRyp. If w = %p
then S = Fy,R, 9 = F,R, ¢, which is a rotary reflection. Suppose w # £p. Let w’ = w, let
v =2 le € T, (so that L, is the unique line through p which is perpendicular to L,,),

|p><w

and let «’ be the point in 7}, such that §=26,(v’,v’) so that we have R, 9 = F,/F,,. Then
S = FyRpg = FuFyFy = RyoFy where ¢ = X% (so that Ly N Ly = {£q}). If

[v/ xw’|
uw' = +q then S = R, F\y = R, F,, which is a rotary reflection. Suppose that v’ # +gq.

un/

Let v’ = 4/, let w”’ = ] (so that L, is the line through ¢ perpendicular to L)
and let v” be the vector in T, such that 7 = 26,(v”, w”) so that we have R, = Fyyr Fyrr.
Then S = Ry Fyw = Fy FyrFyr. Since w” is perpendicular to both «” and v” so that
u’ v" € Ty, we have Fn Fyyr = Ry ¢ where ¢ = 20,(u”,v"”), and S = F,,» R, ¢, which
is a rotary reflection. In all cases, either S is the identity, or S is a reflection, or S is a
rotary reflection, and every rotary reflection is a rotary inversion, by Theorem 2.38.
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Projections

2.40 Definition: Let H be the upper hemisphere H = {(w,y,z) € S2|z > 0} and let D
be the disc D = {(u, v) € R2|u2 +0v? < 1}. The orthogonal projection from H to D is
the map ¢ : H — D given by

(u,v) = ¢(2,y,2) = (2,y).

Note that this map is invertible and its inverse is the map ¢ : D — H given by

(z,y,2) =Y(u,v) = (u,v, V1—u?— vz).

2.41 Note: A curve in H given by (z,y,2) = a(t) for a < t < b is mapped by the
orthogonal projection ¢ to the curve in D given by (u,v) = f(t) = ¢(a(t)). If we are given
a formula for S(t ) say 6( ) (u(t), v(t)), then we can calculate the length L of the curve

(x,y,2) = at) = = ( v(t), /1 —u(t)? — v(t)2> using the formula

L= /tia |/ ()| dt.

When f(t) is given in polar coordinates by 8(t) = (r(t) cos8(¢),r(t) sinf(t)), we can cal-
culate the length L of the curve (z,y, z) = a(t) as follows.

at) = (Tcose, rsinf, /1 —r2>

o/(t) = (1 cosf —rsing -0/, 1'sin6 + reos 00, ')

b
:/ \/(r’cosﬁ—fr‘sinﬁﬁ’)Q+(r’sin9—|—rcos€9’)2+( TT r')zdt
2
/ V2 + 120072 + 2 ()2 dt
:/ T ()2 4 (02 dt.
t=a

2.42 Note: When R C {(r,@)‘O <r<1,0<6< 27r} and o : R — H, by using
some vector calculus, one can show that the region in H which is given parametrically by

(x,y,2) =0o(r,0) = <7’ cosf, rsinf, V1 — 7’2) has area

= // ’ar X agldrdQ
R

:// ’(cose, sin @, —\/%) x (—rsind, rcosé, O)‘drde
— r cos 12 smG

_// Vi-r? V- drda_//mdrde
://Rmdrd&

2.43 Remark: We can project orthogonally onto any plane through the origin. When
weS* H=Duw3%) ={reS*z-u>0}and D= {z € R¥z-u=0,lz <1}, the
orthogonal projection ¢ : H — D and its inverse v : D — H are given by

y=¢(r)=x— (r-u)u and z=19(y) =y++/1-[yl*u

13



2.44 Definition: Let S = $%\ {#(0,0,1)} and R = {(0,2)[0 <6 < 27,—-1 < z < 1}. The
Lambert cylindrical equal-area projection is the map from S to R which is obtained
by first projecting radially outwards from the z-axis to the cylinder z? + y? = 1 and then
cutting the cylinder along the line x = 1, y = 0 and unrolling it into the rectangle R. The
map ¢ : S — R is given by

¢(\/1—z26089 V1—22sin6, z) (0, 2)
and its inverse v : R — S is given by
P(0,z) = (\/1 —2z2cosf, \/1— z2sind, z)

2.45 Theorem: The Lambert cylindrical equal area projection preserves area.

Proof: This can be seen to be a consequence of Theorem 2.4 (The Spherical Area Theorem),
but we shall provide a proof which uses some vector calculus. The area A of a region
DCR-= {(r,@)‘o <O<2m,-1<2z< 1} is given by

A:// 1dfdz.
D

The area of its inverse mage under ¢ is the area of its image under v which is

:/ W@ x 1| df dz

V1= 22sinf, /1 — 22cosd 0) (ﬁCOSO,V%SiHO,l)'dOdZ

://‘( 1—z2c050,\/1—z2sin9,z)
D

:// \/(1—22)+22d0dz:// 1dfdz = A.
D

D

db dz

2.46 Remark: We can obtain an alternate equal-area projection by composing ¢ with a
map that scales the rectangle R by a scaling factor of ¢ in the 6 direction and by % in the
z-direction. We can also choose to project radially outwards from any line through the
origin to the cylinder centred along that line (we can choose a line other than the z-axis).

2.47 Definition: Let H be the open hemisphere H = {(m, Y, z) € 82}2 > 0}. The gnomic
projection (or the gnomonic projection) from H to R? is the map ¢ : H — R? obtained
by projecting radially outwards from the origin to the plane z = 1 which we identify with
R2. The line through (0,0,0) and (z,y, z) meets the plane z = 1 at the point (f, 4, 1),
and so the map ¢ is given by

(u,v) = ¢(z,y,2) = (fv y)

z z
Its inverse is the map 1 : R? — H given by
(u,v,1) ( u v 1 )
x,y,z) =YP(u,v) = = , , .
(@,9,2) = ¥(u,0) {(u,v,l)‘ VuZz +02 +1° Vu2+02+1 Va2 +02+1

2.48 Remark: We could, if we wanted, also define gnomic projections from other open
hemispheres, for example from the hemisphere {(a;,y, z) € §? | x > 0} or from the hemi-

sphere {(a:,y,z) € s? ‘ x < 0}.
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2.49 Theorem: The gnomic projection maps great circles on S?, intersected with the
open upper hemisphere H, to lines in R?.

Proof: When L is a line in S? with pole not equal to +(0,0,1), and P is the plane in R3
which contains L so that L = S?N P, and M is the intersection of P with the plane z = 1,
it is easy to see with the help of a picture that ¢ maps L N H to M. Here is an analytic
proof. Let L = S? N P where P is the plane ax + by + cz = 0 with ¢ # 0. The line of
intersection of P with the plane z = 1 is the line given by ax + by +¢c =0, 2z = 1. We
show that ¢ maps L N H to the line M in the uv-plane with equation au + bv+ ¢ = 0. Let
(r,y,2z) € LNH. Then we have ax +by+cz =0 and z > 0. For (u,v) = ¢(x,y, z) we have

aut+bvt+e=al bl 4= artlute -0

z

and so the point (u,v) lies on the line M. Conversely, let (u,v) € M so that au+bv+c =0

and let (z,y,z) = ¥ (u,v). Then z = m > 0 so that (z,y,2) € H and we have
ax + by ‘I‘ CZ = uz_fﬁg_kl + u2+b;)2_|_1 + u2+22+1 = Zg—_tsg——::i = O

so the point (x,y,z) € L.

2.50 Definition: Let S = S?\ {(0,0,1)}. The stereographic projection from S to
R? is the map ¢ : S — R? which sends the point (z,y,2) on the sphere to the point of
intersection (u,v) of the line through (0,0,1) and (x,y, z) with the plane z = 0. Given
(z,y,z) € S, the line through (0,0,1) and (z,y, 2) is given by

(u,v,w) = a(t) =(0,0,1) + t(z,y,z — 1) = (tz, ty, 1+ t(z — 1)) for t € R.

The point of intersection of this line with the plane z=0 occurs when w=1+t(z—1) =0,
that is when ¢ = 1/(1 — 2z). The point of intersection is a(liz) = (%, 7%,0), so the
map ¢ is given by

<u,v>=¢<x,y,z>:( v Y )

1—2"1-2
Given (u,v) € R?, the line through (0,0, 1) and (u,v) is given by
(x,y,2) = B(t) =(0,0,1) + t(u,v,—1) = (tu,tv,1 — t) for t € R.

The point of intersection with the unit sphere occurs when |3(¢)| = 1, that is when we
have (tu)?+ (tv)? + (1 —1)? = 1, that is t?u?® +t2v? — 2t +t2 = 0, or t (tu® +tv? +t—2) = 0.
The intersection occurs when ¢t = m, and so the inverse 1 : R? — S is given by
21 20 u? + 02 -1
(2,9, 2) = Plu,0) = (u2+v2 +17u2+ 02+ 1 w2+ 02+ 1) '

2.51 Note: Let f: U C R®™ — R™ be differentiable at a € R™ and let w € R™. Choose
a differentiable map o« : A C R — U C R"™ (where A is an open interval in R with
0 € A) with (0) = a and ¢/(0) = w and let 3(t) = f(a(t)). By the Chain Rule we have
B'(t) = Df (a(t))a/(t) so in particular 5'(0) = Df (a(0))a/(0) = Df (a)w. Thus the map f
sends the vector w to the vector Df(a)w.

2.52 Definition: Let f: U C R™ — R™ be differentiable at a € U and let ¢ > 0. We say
that f is a local scaling near the point a of scaling factor ¢ when the columns of Df(a)
are orthogonal and of length ¢, in other words when Df(a)? Df(a) = ¢*I. We say that f
is conformal at a when f preserves the angles between vectors at a, that is when

(Df(a)wl) . (Df(a)wg) _ W1-w2
| Df (a)w: || Df (a)ws| w1 |[we]

for all vectors 0 # wq,wy € R™.




2.53 Note: When f: U C R"™ — R™ is a local scaling near a € U of scaling factor ¢ > 0,
f is conformal at a because for 0 # w1, wy € R™ we have

(Df (a)w1) - (Df (a)ws) = (Df(a)wg)T(Df(a)wl) = wi (*Dwy = wy ~wy
hence ’Df(a)wi’2 = (Df(a)wi) . (
f

Df(a
and so
(Df (a)wr) - (Df (a)ws) e wq - wo Wy - Wo

(a)w;) = |w;|? so that | Df (a)w;| = c|w;| for i = 1,2,

|Df (a)w:||Df (a)ws| — clwi| - clwa| — Jw:l|wa|

2.54 Theorem: The inverse stereographic projection map is a local scaling near (u,v) of

scaling factor ¢ = m
Proof: We have
Ty Ty 9 —u?2 + 02 +1 —2uv
D=1\ 9. 9 | = 5 5 3 —2uv u? —v?+1
Zu  Zu (u? + 0% +1) 2u 2v

and a quick calculation yields

. 4 1 0
(D)™ (DY) = (u2 + v2 + 1)2 (0 1).

2.55 Theorem: The stereographic projection maps circles through (0,0,1) in S?, with
the point (0,0, 1) removed, to lines in R?, and it sends circles not through (0,0, 1) in S? to
circles in R?.

Proof: Let n = (0,0,1). We leave the first part of the theorem as an exercise, and we show
that the image under ¢ of each circle in S? \ {n} is a circle in R?. Let C be a circle on
S2\ {n}. Say C is the intersection of S? with the plane P given by ax + by + cz +d = 0.
Since n ¢ C' we have n ¢ P and so ¢+ d # 0. Since the distance from P to the origin is

less than 1 we have dist(0, P)? = % < 1. For (u,v) € R? we have
2u 2v u? +0v? -1
) C) — , P = ( , ) ) P
(u,v) € ¢(C) P(u,v) € W2 +1 w2+ 02 +1" w2+ 02 —1 <
DRI R SR RPN sk bk SRR
a- . C' =
u?4+v2 41 u? +vtl u?4+v2 41

= 2au+2bv+cu+vi—1)+du?+v>+1)=0
— (c+du®+2au+ (c+dv* +2bv=c—d

c+ c+ c+d
2 2 2 2 2,12, 2 2
S a b __c—d a b __a“+b"+c“—d
(u + c+d) + (1} + c—l—d) — c+d + (c+d)2 + (c+d)? — (c+d)?
. . —a —b . o a2+b2+62—d2
<= (u,v) lies on the circle centred at (—C+d, —C+d) of radius r = ¥e=HEr—=E,

2.56 Remark: We defined the stereographic projection from S? \ {n} to R? where n
is the north pole n = (0,0,1), but we could, if we wanted, also define the stereographic
projection from S? \ {u} to R? for any point u € S%.
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