
Chapter 1. Euclidean Geometry

The Dot Product

1.1 Definition: For vectors u, v ∈ Rn we define the dot product of u and v to be

u.v =
n∑
i=1

uivi .

1.2 Theorem: (Properties of the Dot Product) For all u, v, w ∈ Rn and all t ∈ R we have

(1) (Bilinearity) (u+ v).w = u.w + v.w , (tu).v = t(u.v)
u.(v + w) = u.v + u.w , u.(tv) = t(u.v),

(2) (Symmetry) u.v = v.u, and
(3) (Positive Definiteness) u.u ≥ 0 with u.u = 0 if and only if u = 0.

Proof: The proof is left as an exercise.

1.3 Definition: For a vector u ∈ Rn, we define the length (or norm) of u to be

|u| =
√
u.u =

√
n∑
i=1

ui
2.

We say that u is a unit vector when |u| = 1.

1.4 Theorem: (Properties of Length) Let u, v ∈ Rn and let t ∈ R. Then

(1) (Positive Definiteness) |u| ≥ 0 with |u| = 0 if and only if u = 0,
(2) (Scaling) |tu| = |t||u|,
(3) |u± v|2 = |u|2 ± 2(u.v) + |v|2.
(4) (The Polarization Identities) u.v = 1

2

(
|u+ v|2 − |u|2 − |v|2

)
= 1

4

(
|u+ v|2 − |u− v|2

)
,

(5) (The Cauchy-Schwarz Inequality) |u.v| ≤ |u| |v| with |u.v| = |u| |v| if and only if the
set {u, v} is linearly dependent, and
(6) (The Triangle Inequality) |u+ v| ≤ |u|+ |v|.

Proof: We leave the proofs of Parts 1, 2 and 3 as an exercise, and we note that 4 follows
immediately from 3. To prove part 5, suppose first that {u, v} is linearly dependent. Then
one of u and v is a multiple of the other, say v = tu with t ∈ R. Then

|u.v| = |u.(tu)| = |t(u.u)| = |t| |u|2 = |u| |tu| = |u| |v|.

Suppose next that {u, v} is linearly independent. Then for all t ∈ R we have u + tv 6= 0
and so

0 6= |u+ tv|2 = (u+ tv).(u+ tv) = |u|2 + 2t(u.v) + t2|v|2.

Since the quadratic on the right is non-zero for all t ∈ R, it follows that the discriminant
of the quadratic must be negative, that is

4(u.v)2 − 4|u|2|v|2 < 0.

Thus (u.v)2 < |u|2|v|2 and hence |u.v| < |u| |v|. This proves part 5.
Using part 5 note that

|u+ v|2 = |u|2 + 2(u.v) + |v|2 ≤ |u|2 + 2|u.v|+ |v|2 ≤ |u|2 + 2|u| |v|+ |v|2 =
(
|u|+ |v|

)2
and so |u+ v| ≤ |u|+ |v|, which proves part 6.
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1.5 Definition: For points u, v ∈ Rn, we define the (Euclidean) distance between u and
v to be

dE(u, v) = |v − u|.

1.6 Theorem: (Metric Properties of Euclidean Distance) Let u, v, w ∈ Rn. Then

(1) (Positive Definiteness) dE(u, v) ≥ 0 with dE(u, v) = 0 if and only if u = v,
(2) (Symmetry) dE(u, v) = dE(v, u), and
(3) (The Triangle Inequality) dE(u,w) ≤ dE(u, v) + dE(v, w).

Proof: The proof is left as an exercise.

1.7 Definition: For nonzero vectors 0 6= u, v ∈ Rn, we define the (unoriented) angle
between u and v to be the angle θ(u, v) ∈ [0, π] such that

cos θ(u, v) =
u.v
|u| |v|

.

Note that θ(u, v) = π
2 if and only if u.v = 0. For vectors u, v ∈ Rn, we say that u and v

are orthogonal when u.v = 0.

1.8 Theorem: (Properties of Angle) Let 0 6= u, v ∈ Rn. Then

(1) θ(u, v) ∈ [0, π] with

{
θ(u, v) = 0 if and only if v = tu for some t > 0, and

θ(u, v) = π if and only if v = tu for some t < 0,

(2) (Symmetry) θ(u, v) = θ(v, u),

(3) (Scaling) θ(tu, v) = θ(u, tv) =

{
θ(u, v) if 0 < t ∈ R,

π − θ(u, v) if 0 > t ∈ R,
(4) (The Law of Cosines) |v − u|2 = |u|2 + |v|2 − 2|u| |v| cos θ(u, v),
(5) (Pythagoras’ Theorem) θ(u, v) = π

2 if and only if |v − u|2 = |u|2 + |v|2, and

(6) (Trigonometric Ratios) if (v − u).u = 0 then cos θ(u, v) = |u|
|v| and sin θ(u, v) = |v−u|

|v| .

Proof: We leave the proofs of Parts 1-5 as an exercise. Note that the Law of Cosines follows
from the identity |v − u|2 = |v|2 − 2(v.u) + |u|2 and the definition of θ(u, v). Pythagoras’
Theorem is a special case of the Law of Cosines. We Prove Part (6). Let 0 6= u, v ∈ Rn
and write θ = θ(u, v). Suppose that (v − u).u = 0. Then we have v.u− u.u = 0 so that
u.v = |u|2, and so we have

cos θ =
u.v
|u| |v|

=
|u|2

|u| |v|
=
|u|
|v|

.

Also, by Pythagoras’ Theorem we have |u|2 + |v − u|2 = |v|2 so that |v|2 − |u|2 = |v − u|2,
and so

sin2 θ = 1− cos2 θ = 1− |u|
2

|v|2
=
|v|2 − |u|2

|v|2
=
|v − u|2

|v|2
.

Since θ ∈ [0, π] we have sin θ ≥ 0, and so taking the square root on both sides gives

sin θ =
|v − u|
|v|

.
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Orthogonal Projections

1.9 Definition: Let U ⊆ Rn be a subspace. We define the orthogonal complement of
U in Rn to be

U⊥ =
{
x ∈ Rn

∣∣x.u = 0 for all u ∈ U
}
.

1.10 Theorem: (Properties of the Orthogonal Complement) Let U ⊆ Rn be a subspace,
let B ⊆ U and let A ∈Mk×n(R). Then

(1) U⊥ is a vector space,
(2) If U = Span(B) then U⊥ =

{
x ∈ Rn

∣∣x.u = 0 for all u ∈ B
}

,
(3) (RowA)⊥ = NullA.
(4) dim(U) + dim(U⊥) = n
(5) U ⊕ U⊥ = Rn,
(6) (U⊥)⊥ = U ,
(7) (NullA)⊥ = RowA.

Proof: Note that 0 ∈ U⊥ since 0.u = 0 for all u ∈ U . If x, y ∈ U⊥ so that x.u = 0
and y.u = 0 for all u ∈ U then we have (x + y).u = x.u + y.u = 0 for all u ∈ U
and so x + y ∈ U⊥. If x ∈ U⊥ so that x.u = 0 for all u ∈ U and t ∈ R then we have
(tx).u = t(x.u) = 0 for all u ∈ U and so tu ∈ U⊥. This shows that U⊥ is a subspace of
Rn, proving part 1.

To prove part 2, let V =
{
x ∈ Rn

∣∣x.u = 0 for all u ∈ B
}

. It is clear that U⊥ ⊆ V .

Let x ∈ V . Let u ∈ U = Span(B), say u =
m∑
i=1

tiui with each ti ∈ R and each ui ∈ B. Then

x.u = x.
m∑
i=1

tiui =
m∑
i=1

ti(x.ui) = 0. Thus x ∈ U⊥ and so we have V ⊆ U⊥.

To prove part 3, let v1, v2, · · · , vk be the rows of A. Note that Ax =

 x.v1
...

x.vk

 so we

have x ∈ NullA ⇐⇒ x.vi = 0 for all i ⇐⇒ x ∈ Span{v1, v2, · · · , vk}⊥ = (RowA)⊥ by
part 2.

Part 4 follows from part 3 since if we choose A so that RowA = U then we have
dim(U) + dim(U⊥) = dim RowA+ dim(RowA)⊥ = dim RowA+ dim NullA = n.

To prove part 5, in light of part 4, it suffices to show that U ∩ U⊥ = {0}. Let
x ∈ U ∩ U⊥. Since x ∈ U⊥ we have x.u = 0 for all u ∈ U . In particular, since x ∈ U we
have x.x = 0, and hence x = 0. Thus U ∩ U⊥ = {0} and so U ⊕ U⊥ = Rn.

To prove part 6, let x ∈ U . By the definition of U⊥ we have x.v = 0 for all v ∈ U⊥.
By the definition of (U⊥)⊥ we see that x ∈ (U⊥)⊥. Thus U ⊆ (U⊥)⊥. By part 4 we
know that dimU + dimU⊥ = n and also that dimU⊥ + dim(U⊥)⊥ = n. It follows that
dimU = n − dimU⊥ = dim(U⊥)⊥. Since U ⊆ (U⊥)⊥ and dimU = dim(U⊥)⊥ we have
U = (U⊥)⊥, as required.

By parts 3 and 6 we have (NullA)⊥ =
(
(RowA)⊥

)⊥
= RowA, proving Part 7.

1.11 Definition: For a subspace U ⊆ Rn and a vector x ∈ Rn, we define the orthogonal
projection of x onto U , denoted by ProjU (x), as follows. Since Rn = U ⊕ U⊥, we can
choose unique vectors u, v ∈ Rn with u ∈ U , v ∈ U⊥ and x = u+ v. We then define

ProjU (x) = u.

Note that since U = (U⊥)⊥, for u and v as above we have ProjU⊥(x) = v. When u ∈ Rn
and U = Span{u}, we also write Proju(x) = ProjU (x) and Proju⊥(x) = ProjU⊥(x).
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1.12 Theorem: Let U ⊆ Rn be a subspace and let x ∈ Rn. Then ProjU (x) is the unique
point in U which is nearest to x.

Proof: Let u, v ∈ Rn with u ∈ U , v ∈ U⊥ and u + v = x so that ProjU (x) = u. Let
w ∈ U with w 6= u. Since v ∈ U⊥ and u,w ∈ U we have v.u = v.w = 0 and so
v.(w − u) = v.w − v.u = 0. Thus we have

|x− w|2 = |u+ v − w|2 = |v − (w − u)|2 =
(
v − (w − u)

).(v − (w − u)
)

= |v|2 − 2 v.(w − u) + |w − u|2 = |v|2 + |w − u|2 = |x− u|2 + |w − u|2 .

Since w 6= u we have |w − u| > 0 and so |x− w|2 > |x− u|2. Thus |x− w| > |x− u|, that
is dE(x,w) > dE(x, u), so u is the vector in U nearest to x, as required.

1.13 Theorem: For any matrix A ∈ Mn×l(R) we have Null(ATA) = Null(A) and
Col(ATA) = Col(AT ) so that nullity(ATA) = nullity(A) and rank(ATA) = rank(A).

Proof: If x ∈ Null(A) then Ax = 0 so ATAx = 0 hence x ∈ Null(ATA). This shows
that Null(A) ⊆ Null(ATA). If x ∈ Null(ATA) then we have ATAx = 0 which implies that
|Ax|2 = (Ax)T (Ax) = xTATAx = 0 and so Ax = 0. This shows that Null(ATA) ⊆ Null(A).
Thus we have Null(ATA) = Null(A). It then follows that

Col(AT )=Row(A)=Null(A)⊥=Null(ATA)⊥=Row(ATA)=Col
(
(ATA)T

)
=Col(ATA).

1.14 Theorem: Let A ∈Mn×l(R), let U = Col(A) and let x ∈ Rn. Then

(1) the matrix equation ATA t = ATx has a solution t ∈ Rl, and for any solution t we have

ProjU (x) = At,

(2) if rank(A) = l then ATA is invertible and

ProjU (x) = A(ATA)−1ATx.

Proof: Note that U⊥ = (ColA)⊥ = Row(AT )⊥ = Null(AT ). Let u, v ∈ Rn with u ∈ U ,
v ∈ U⊥ and u+ v = x so that ProjU (x) = u. Since u ∈ U = ColA we can choose t ∈ Rl so
that u = At. Then we have x = u+v = At+v. Multiply by AT to get ATx = ATAt+AT v.
Since v ∈ U⊥ = Null(AT ) we have AT v = 0 so ATA t = ATx. Thus the matrix equation
ATA t = ATx does have a solution t ∈ Rl.

Now let t ∈ Rl be any solution to ATA t = Atx. Let u = At and v = x− u. Note that
x = u+ v, u = At ∈ Col(A) = U , and AT v = AT (x−u) = AT (x−At) = ATx−ATA t = 0
so that v ∈ Null(AT ) = U⊥. Thus ProjU (x) = u = At, proving part (1).

Now suppose that rank(A) = l. Since ATA ∈Ml×l(R) with rank(ATA) = rank(A) = l,
the matrix ATA is invertible. Since ATA is invertible, the unique solution t ∈ Rl to the
matrix equation ATA t = ATx is the vector t = (ATA)−1ATx, and so from Part (1) we
have ProjU (x) = At = A(ATA)−1ATx, proving Part (2).

1.15 Definition: Let B ⊆ Rn. We say B is orthogonal when x.y = 0 for all x, y ∈ B
with x 6= y. We say B is orthonormal when B is orthogonal and |x| = 1 for every x ∈ B.

1.16 Note: When u1, · · · , ul ∈ Rn, B = {u1, · · · , ul} and A = (u1, · · · , ul) ∈Mn×l(R), we
have

ATA =

u1
T

...
ul
T

(u1, · · · , ul) =

u1.u1 u1.u2 · · · u1.ul
...

...
...

ul.u1 ul.u2 · · · ul.ul

 .

It follows that B is orthogonal if and only if ATA is diagonal, in which case we have
ATA = diag(|u1|2, |u2|2, · · · , |ul|2), and B is orthonormal if and only if ATA = I.
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1.17 Note: Recall that when B = {u1, u2, · · · , ul} is a basis for a vector space U ⊆ Rn,

a vector x ∈ U can be written uniquely as a linear combination x =
l∑
i=1

tiui with each

ti ∈ R, and then we define the coordinate vector of x with respect to B to be

[x]B = t =
(
t1, t2, · · · , tl

)T ∈ Rl.

1.18 Theorem: Let u1, u2, · · · , ul∈Rn, B={u1, · · · , ul} and U=Span(B), and let x ∈ Rn.

(1) If B is orthogonal and each ui 6= 0 then B is a basis for U and [x]B =
(
x.u1

|u1|2 , · · · ,
x.ul

|ul|2
)T

.

(2) If B is orthonormal then B is a basis for U and [x]B =
(
x.u1, x.u2, · · · , x.ul

)T
.

Proof: Suppose B is orthogonal with each ui 6= 0. Let A = (u1, u2, · · · , ul) ∈ Mn×l(R)
so that U = Col(A). Since B is orthogonal we have ATA = diag(|u1|2, · · · , |ul|2). Since
each ui 6= 0 we see that ATA is invertible. Since rank(A) = rank(ATA) = l, the columns
of A are linearly independent, so B is a basis for U . Write x as a linear combination

x =
l∑
i=1

tiui = At with t ∈ Rl. Then we have ATx = ATA t and so

[x]B = t = (ATA)−1ATx = diag
(
|u1|2, · · · , |ul|2

)−1u1
T

...
ul
T

x

= diag
(

1
|u1|2 , · · · ,

1
|ul|2

)x.u1
...

x.ul

 =


x.u1

|u1|2
...

x.ul

|ul|2


This proves Part 1, and Part 2 follows immediately from part 1.

1.19 Theorem: Let u1, u2, · · · , ul ∈ Rn, let B = {u1, u2, · · · , ul}, let U = SpanB, and let
x ∈ Rn.

(1) If B is orthogonal with each ui 6= 0 then we have ProjU (x) =
l∑
i=1

x.ui

|ui|2 ui.

(2) If B is orthonormal then ProjU (x) =
l∑
i=1

(x.ui)ui.

Proof: Suppose that B is orthogonal with each ui 6= 0. Let A = (u1, u2, · · · , ul) ∈Mn×l(R)
so that U = Col(A) and we have ATA = diag(|u1|2, · · · , |ul|2), which is invertible. Then

ProjU (x) = A (ATA)−1ATx =
(
u1, · · · , ul

)
diag

(
1
|u1|2 , · · · ,

1
|ul|2

)u1
T

...
ul
T

x

=
(

u1

|u1|2 , · · · ,
ul

|ul|2

)x.u1
...

x.ul

 = x.u1

|u1|2 u1 + · · ·+ x.ul

|ul|2 ul.

This proves Part 1, and Part 2 follows immediately from Part 1.

1.20 Remark: Note that as a particular case of Part 1 of the above theorem, when u ∈ Rn
we have

Proju(x) = x.u
|u|2 u.
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The Cross Product

1.21 Definition: For vectors u, v ∈ R3 we define the cross product of u with v to be
the vector

u× v =
(
u2v3 − u3v2 , u3v1 − u1v3 , u1v2 − u2v1

)T
.

1.22 Theorem: (Properties of the Cross Product) For all u, v, w, x ∈ R3 and t ∈ R,

(1) (Bilinearity) (u+ v)× w = u× w + v × w , (tu)× v = t(u× v)
u× (v + w) = u× v + u× w , u× (tv) = t(u× v).

(2) (Skew-Symmetry) u× v = −v × u,
(3) (Cross With Cross) (u× v)× w = (u.w) v − (v.w)u,
(4) (Cross With Dot) (u× v).(w × x) = (u.w)(v.x)− (v.w)(u.x),
(5) (Triple Product) (u× v).w = u.(v × w) = det(u, v, w),

(6) (Angle Sine) When u 6= 0 and v 6= 0 we have sin θ(u, v) =
|u× v|
|u||v|

,

(7) (Degeneracy) u× v = 0 if and only if {u, v} is linearly dependent,
(8) (Orthogonality) (u× v).u = 0 and (u× v).v = 0,
(9) (Area of Parallelogram) |u× v| is equal to the area of the parallelogram with vertices
0, u, v and u+ v, and
(10) (Right-Hand Rule) When u × v 6= 0, the vector u × v points in the direction of the
thumb of the right hand when the fingers point from u towards v.

Proof: Parts 1 to 5 can all be proven, somewhat tediously, by expanding both sides. To
prove Part 6, we let θ = θ(u, v) and then, using Part 4, we have

sin2 θ = 1− cos2 θ = 1− (u.v)2

|u|2|v|2
=
|u|2|v|2 − (u.v)2

|u|2|v|2

=
(u.u)(v.v)− (u.v)(u.v)

|u|2|v|2
=

(u× v).(u× v)

|u|2|v|2
=
|u× v|2

|u|2|v|2
.

Parts 7 and 9 follow easily from Part 6, and Part 8 follows easily from Part 5.
Part 10 is not actually a rigorous mathematical statement because the right hand

is not a mathematically defined object, but we can justify the statement informally as
follows. Given two linearly independent vectors u and v, we can construct continuous
functions U, V : [0, 1] → R3 with U(0) = u, U(1) = e1, V (0) = v and V (1) = e2 so that{
U(t), V (t)

}
is linearly independent for all values of t with 0 ≤ t ≤ 1

(
for 0 ≤ t ≤ 1

4 rotate

the vectors until U
(
1
4

)
points in the direction of the positive x-axis, then for 1

4 ≤ t ≤ 1
2

hold the first vector fixed and rotate the second vector until V
(
1
2

)
lies in the xy-plane on

the same side of the x-axis as the positive y-axis, then for 1
2 ≤ t ≤ 3

4 hold the first vector
fixed and alter the angle between the vectors until V

(
3
4

)
points in the direction of the

positive y-axis, then for 3
4 ≤ t ≤ 1 scale the two vectors until U(1) = e1 and V (1) = e2

)
.

Let W (t) = U(t)×V (t) for 0 ≤ t ≤ 1. For each value of t, since W (t) is orthogonal to U(t)
and V (t), either it points in the direction of the right thumb or it points in the direction of
the left thumb when the fingers point from U(t) to V (t). Since W (t) is varies continuously
and is never equal to zero, it cannot suddenly jump from one direction to the opposite
direction, and so either it points in the direction of the right thumb for all values of t or it
points in the direction of the left thumb for all values of t. Since U(1) = e1, V (1) = e2 and
W (1) = e1 × e2 = e3 we see that W (1) points in the direction of the right thumb when
the fingers point from U(1) to V (1), and hence W (t) points in the direction of the right
thumb for all t. In particular, u × v = W (0) points in the direction of the right thumb
when the fingers point from u = U(0) to v = V (0).
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1.23 Example: Let u, v, x ∈ R3 and let U = Span{u, v}. Then we have

ProjU (x) = x− ProjU⊥(x) = x− Proju×v(x).

Also, since ProjU (x) is the point in U nearest to x, the distance from x to U is equal to

dE(x, U) = dE
(
x,ProjU (x)

)
=
∣∣x− ProjU (x)

∣∣ =
∣∣Proju×v(x)

∣∣ =
|x.(u×v)|
|u×v|

.

1.24 Definition: For vectors u, v, w ∈ R3, the (scalar) triple product of u, v and w is
defined to be

det(u, v, w) = (u× v).w = u.(v × w).

1.25 Theorem: (Properties of the Triple Product) For all u, v, w ∈ R3 we have

(1) (Permutations) det(u, v, w) = det(v, w, u) = det(w, u, v)
= −det(u,w, v) = −det(w, v, u) = −det(v, u, w),

(2) (Degeneracy) det(u, v, w) = 0 if and only if {u, v, w} is linearly dependent, and
(3) (Volume of Parallelotope)

∣∣det(u, v, w)
∣∣ is equal to the volume of the parallelotope with

vertices 0, u, v, w, u+ v, v + w, w + u and u+ v + w.

Proof: All three parts follow immediately from well-known properties of the determinant.
Here is a proof of Part 3. The base of the parallelotope is the parallelogram with vertices
at 0, u, v and u+ v which has area equal to A = |u× v|. The height of the parallelotope,
measured in the direction of u×v which is orthogonal to the base, is equal to h = |w|| cos θ|
where θ = θ(u× v, w). Thus the volume of the parallelotope is

V = Ah = |u× v| |w| cos θ = |u× v||w| |(u× v).w|
|u× v||w|

=
∣∣(u× v).w∣∣ =

∣∣det(u, v, w)
∣∣.

1.26 Definition: Let {u, v, w} be a basis for R3 and note that det(u, v, w) 6= 0. When
det(u, v, w) > 0 we say that {u, v, w} is a positively oriented basis for R3 and when
det(u, v, w) < 0 we say that {u, v, w} is a negatively oriented basis for R3. One can
argue informally, as in our proof of Part 9 of the above theorem, that {u, v, w} is positively
oriented when the vector w lies on the same side of the plane spanned by u and v as the
thumb of the right hand when the fingers point from u to v.

1.27 Notation: Given a vector x ∈ Rn, from now on we shall often write x as a row
vector

x = (x1, x2, · · · , xn)

when it should be understood that, strictly speaking, x is the column vector

x = (x1, x2, · · · , xn)T =

 x1
...
xn

 .

It is sometimes important to keep this in mind when formulas involve linear algebra oper-
ations (for example, when a formula involves an expression of the form Ax where A is a
matrix). It is common to abuse notation in this way simply because row vectors are easier
to typeset and easier to read than column vectors.
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Some Geometry in the Euclidean Plane

1.28 Note: For u = (u1, u2) ∈ R2 and v = (v1, v2) ∈ R2 we have

u.v = u1v1 + u2v2

|u| =
√
u12 + u22

dE(u, v) =
√

(v1 − u1)2 + (v2 − u2)2

θ(u, v) = cos−1
u1v1 + u2v2
|u||v|

1.29 Definition: A real number modulo 2π is a set of the form
{
θ + 2πk

∣∣k ∈ Z
}

for some θ ∈ R. The set of all real numbers modulo 2π is denoted by R/2π (or by
R/2πZ). When θ ∈ R we often denote the set

{
θ + 2πk

∣∣k ∈ Z
}

simply as θ ∈ R/2π.
Note that when θ ∈ R/2π the trigonometric values sin θ and cos θ are well-defined, and
the element θ ∈ R/2π is uniquely determined from the values sin θ and cos θ. For a
nonzero vector 0 6= u ∈ R2, we define the oriented angle of u to be the (unique) element
θo = θo(u) ∈ R/2π for which

u =
(
|u| cos θo , |u| sin θo

)
.

For nonzero vectors 0 6= u, v ∈ R2, the oriented angle in R2 from u to v is

θo(u, v) = θo(v)− θo(u).

1.30 Theorem: Let 0 6= u, v ∈ R2. For θo = θo(u, v) ∈ R/2π we have

cos θo =
u.v
|u||v|

and sin θo =
u1v2 − u2v1
|u||v|

=
det(u, v)

|u||v|
and for θ = θ(u, v) ∈ [0, π] we have

cos θ = cos θo and sin θ =
∣∣ sin θo∣∣.

Proof: The proof is left as an exercise.

1.31 Definition: Let u ∈ R2 and let 0 < r ∈ R. The circle in R2 and the (closed) disc
in R2 centred at u of radius r are the sets

C(u, r) =
{
x ∈ R2

∣∣dE(x, u) = r
}

and

D(u, r) =
{
x ∈ R2

∣∣dE(x, u) ≤ r
}
.

1.32 Theorem: (The Circumference of a Circle and the Area of a Disc) Let u ∈ R2 and
let 0 < r ∈ R. An arc along the circle C(u, r) which subtends an angle θ at u has length
L = rθ so, in particular, the circumference of C(u, r) is equal to L = 2πr. A sector of the
disc D(u, r) which subtends an angle θ at u has area A = 1

2 r
2θ so, in particular, the area

of D(u, r) is equal to A = πr2.

Proof: An arc along the circle C(u, r) which subtends an angle θ at u is given parametrically
by (x, y) = u+

(
r cos t, r sin t

)
with say α ≤ t ≤ α+ θ, and its length is

L =

∫ α+θ

t=α

√
x′(t)2 + y′(t)2 dt =

∫ α+θ

t=α

√
r2 cos2 t+ r2 sin2 t dt =

∫ α+θ

t=α

r dt = rθ,

Using polar coordinates, a sector of the disc D(u, r) which subtends an angle θ has area

A =

∫ α+θ

t=α

∫ r

s=0

s ds dt =

∫ α+θ

t=α

1
2 r

2 dt = 1
2 r

2 θ.
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1.33 Definition: A line in R2 is a set of the form L =
{

(x, y) ∈ R2
∣∣ax + by = c

}
for some a, b, c ∈ R with (a, b) 6= (0, 0) ∈ R2. Equivalently, a line is a set of the form
L =

{
x ∈ R2

∣∣x.n = c
}

for some number c ∈ R and some nonzero vector 0 6= n ∈ R2.

1.34 Theorem: (Parametric Representation of a Line) A line in R2 is a set of the form
L =

{
x ∈ R2

∣∣x = p+ tu for some t ∈ R
}

for some point p ∈ R2 and some nonzero vector
0 6= u ∈ R2.

Proof: The proof is left as an exercise.

1.35 Definition: When c ∈ R and 0 6= n ∈ R2 and L =
{
x ∈ R2

∣∣x · n = c
}

, we say
that L is the line x.n = c and we say that n is a normal vector for L. When p ∈ R2

and 0 6= u ∈ R2 and L =
{
x ∈ R2

∣∣x = p + tu for some t ∈ R
}

, we say that L is the line
x = p+ tu and we say that u is a direction vector for L.

1.36 Theorem: Let p, q ∈ R2, let 0 6= u, v ∈ R2, let L be the line x = p + tu and let M
be the line x = q + tv. Then L = M if and only if q ∈ L and v = su for some 0 6= s ∈ R.

Proof: The proof is left as an exercise.

1.37 Definition: Let L and M be lines in R2 with direction vectors u and v. We say
that L and M are parallel when L 6= M and u and v are parallel, that is v = su for some
0 6= s ∈ R, and we say that L and M are perpendicular (or orthogonal) when u and v
are perpendicular (or orthogonal), that is u.v = 0.

1.38 Theorem: (Properties of Lines in the Euclidean Plane)

(1) Given lines L,M in R2, either L = M or L ∩M = ∅ or L ∩M = {p} for some p ∈ R2.
(2) Given points p, q ∈ R2 with p 6= q, there is a unique line in R2 through p and q.
(3) Given a point p ∈ R2 and a line L in R2 with p /∈ L, there is a unique line in R2 which
passes through p and is parallel to L.
(4) Given a point p ∈ R2 and a line L in R2, there is a unique line which passes through
p and is perpendicular to L.

Proof: The proof is left as an exercise.

1.39 Definition: Let u, v ∈ R2 with u 6= v and note that the line L through u and v is
the set L =

{
u + t(v − u)

∣∣t ∈ R
}

. The ray from u through v (or the ray from u in the

direction of the vector v − u) is the set R =
{
u+ t(v − u)

∣∣0 ≤ t ∈ R
}

. The line segment
between u and v is the set

[u, v] =
{
u+ t(v − u)

∣∣0 ≤ t ≤ 1
}

=
{
su+ tv

∣∣0 ≤ s, 0 ≤ t, s+ t = 1
}
.

For x ∈ R2, we say that x is between u and v when x ∈ [u, v].

1.40 Definition: Let u, v, w ∈ R2. Let R be the ray from u through v and let S be the
ray from u through w. The oriented angle ∠owuv, also called the oriented angle from
[u, v] to [u,w], or the oriented angle from R to S, is defined to be

∠owuv = ∠o
(
[u, v], [u,w]

)
= θo(R,S) = θo

(
v − u,w − u

)
.

The (unoriented) angle ∠wuv, also called the (unoriented) angle between [u, v] and [u,w],
or the (unoriented) angle between R and S is defined to be

∠wuv = θ
(
[u, v], [u,w]

)
= ∠(R,S) = θ

(
v − u,w − u

)
.
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1.41 Definition: Let p ∈ R2 and let 0 6= u, v ∈ R2. Let L be the line x = p+ tu and let
M be the line x = p+ tv. The oriented angle from L to M is defined to be

θo(L,M) = min
(
θo(u, v), θo(u,−v)

)
∈ [0, π)

where θo(u, v) and θo(u,−v) are being considered as real numbers in [0, 2π), and the
(unoriented) angle between L and M is defined to be

θ(L,M) = min
(
θ(u, v), θ(u,−v)

)
∈
[
0, π2

]
.

1.42 Remark: The oriented angle θo(L,M) can be considered as an element of R/π.

1.43 Theorem: Let p ∈ R2 and let 0 6= u, v ∈ R2. Let L be the line x = p + tu and let
M be the line x = p+ tv. Then

θ(L,M) = cos−1
|u.v|
|u||v|

.

Proof: The proof is left as an exercise.

1.44 Theorem: (Addition of Angles, Supplementary Angles, and Parallel Lines)

(1) If R, S and T are rays from p ∈ R2 then θo(R,S) + θo(S, T ) = θo(R, T ).
(2) If p ∈ R2 and L and M are lines with L ∩M = {p} then θo(L,M) + θo(M,L) = π.
(3) If p, q ∈ R2 with p 6= q and L, M and N are lines with L∩N = {p} and M ∩N = {q}
then L ‖M ⇐⇒ θo(L,N) = θo(M,N) ⇐⇒ θo(L,N) + θo(N,M) = π.

Proof: The proof is left as an exercise.

1.45 Definition: A triangle in R2 is determined by 3 non-colinear points u, v, w ∈ R2,
which we call the vertices of the triangle. We can think of the triangle T determined
by u, v and w in several different ways. For example, we could consider T to be the set
T = {u, v, w}, or we can keep track of the order of the vertices and consider T to be the
ordered triple T = (u, v, w). Alternatively, we could consider T to be the union of its three
edges, that is T = [v, w] ∪ [w, u] ∪ [u, v], or we can think of the triangle as including its
interior points so that T is the closed solid triangle

[u, v, w] =
{
u+ s(v − u) + t(w − u)

∣∣0 ≤ s, 0 ≤ t, s+ t ≤ 1
}

=
{
ru+ sv + tw

∣∣0 ≤ r, 0 ≤ s, 0 ≤ t, r + s+ t = 1
}
.

An ordered triangle in R2 consists of an ordered triple (u, v, w) of non-colinear points
u, v, w ∈ R2, together with the closed solid triangle [u, v, w].

Given an ordered triangle [u, v, w] in R2, the edge lengths of the triangle will be
denoted by a, b, c ∈ R with

a = |w − v| , b = |u− w| , c = |v − u| ,

the oriented angles of the triangle will be denoted by αo, βo, γo ∈ R/2π with

αo = θo(v − u,w − u) , βo = θo(w − v, u− v) , γo = θo(u− w, v − w) ,

and the (unoriented) angles (or the interior angles) of the triangle will be denoted by
α, β, γ ∈ (0, π) with

α = θ(v − u,w − u) , β = θ(w − v, u− v) , γ = θ(u− w, v − w) .
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1.46 Theorem: (The Sum of the Angles in a Triangle) The sum of the interior angles in
any triangle in R2 is equal to π.

Proof: The proof is left as an exercise.

1.47 Theorem: Let [u, v, w] be an ordered triangle in R2. Then

sinαo =
det(u, v) + det(v, w) + det(w, u)

|v − u||u− w|

sinβo =
det(u, v) + det(v, w) + det(w, u)

|w − v||v − u|

sin γo =
det(u, v) + det(v, w) + det(w, u)

|u− w||w − v|
Proof: The proof is left as an exercise.

1.48 Corollary: Let [u, v, w] be an ordered triangle in R2. Then sinαo, sinβo and sin γo
all have the same sign.

1.49 Definition: Let [u, v, w] be an ordered triangle in R2. When sinαo, sinβo and sin γo
are all positive, we say that the triangle [u, v, w] is positively oriented, and when sinαo,
sinβo and sin γo are all negative, we say that the triangle [u, v, w] is negatively oriented.

1.50 Corollary: (The Sine Law) Let [u, v, w] be an ordered triangle in R2. Then

sinα

a
=

sinβ

b
=

sin γ

c
.

1.51 Corollary: (The Area of a Triangle) Then the area of the triangle [u, v, w] in R2 is

A = 1
2

∣∣∣det(u, v) + det(v, w) + det(w, u)
∣∣∣.

1.52 Corollary: (Similar Triangles) Let [u, v, w] and [u′, v′, w′] be two ordered triangles
in R2. Suppose that the corresponding angles of the two triangles are equal, that is α′ = α,
β′ = β and γ′ = γ. Then there exists s > 0 such that a′ = sa, b′ = sb and c′ = sc.

1.53 Theorem: (The Cosine Law) Let [u, v, w] be an ordered triangle in R2. Then

cosα =
b2 + c2 − a2

2bc
, cosβ =

c2 + a2 − b2

2ca
and cos γ =

a2 + b2 − c2

2ab
.

Proof: The proof is left as an exercise.

1.54 Corollary: Let [u, v, w] be an ordered triangle in R2.

(1) (Side-Side-Side) Given the lengths of the three sides we can determine the angles.
(2) (Side-Angle-Side) Given the lengths of two sides and the angle at the common vertex,
we can determine the length of the other side and the other two angles.
(3) (Angle-Side-Angle) Given the length of one edge of the triangle and the angles at both
ends of the edge, we can determine the third angle and the lengths of the other two sides.
(4) (The Isoceles Triangle Theorem) We have β = γ ⇐⇒ b = c.

1.55 Corollary: (The Angle Subtended by a Chord in a Circle) Let p ∈ R2, let C be a
circle in R2 centred at p, and let [u, v, w] be a triangle in R2 with u, v, w ∈ C. Then

∠ovpu = 2∠ovwu .
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Triangle Centres

1.56 Definition: Let u, v ∈ R2 with u 6= v. The midpoint of the line segment [u, v] is
the point m ∈ [u, v] such that dE(m,u) = dE(m, v), that is the point

m = u+ 1
2 (v − u) = 1

2 (u+ v).

1.57 Definition: In an triangle in R2, a median is a line from a vertex to the midpoint
of the opposite side. In the triangle [u, v, w], the median from u is the line through u and
1
2 (v + w), the median from v is the line through v and 1

2 (w + u), and the median from w
is the line through w and 1

2 (u+ v).

1.58 Theorem: (The Centroid) The three medians in a triangle meet at a point g, which
is called the centroid of the triangle. The centroid lies two thirds of the way along each
of the medians, from a vertex to the midpoint of the opposite side.

Proof: Let [u, v, w] be an ordered triangle in R2. The point which lies 2
3 of the way along

the median from u to v+w
2 is the point u+ 2

3

(
v+w
2 − u

)
= 1

3u+ 1
3 (v + w) = 1

3 (u+ v + w).
Similarly, the point which lies 2

3 of the way along the median from v to w+u
2 is the point

v = 2
3

(
w+u
2 − v

)
= 1

3 (u + v + w) and the point which lies 2
3 of the way from w to u+v

2 is

the point w + 2
3

(
u+v
2 −w

)
= 1

3 (u+ v +w). Thus the point g = 1
3 (u+ v +w) lies 2

3 of the
way along all 3 medians.

1.59 Definition: Let u, v ∈ R2 with u 6= v. The perpendicular bisector of the line
segment [u, v] is the line through the midpoint u+v

2 with normal vector v − u, that is the
line (

x− u+v
2

).(v − u) = 0.

1.60 Theorem: Let u, v ∈ R2 with u 6= v and let L be the perpendicular bisector of the
line segment [u, v]. Then for x ∈ R2 we have x ∈ L ⇐⇒ dE(x, u) = dE(x, v).

Proof: We have

x ∈ L ⇐⇒
(
x− u+v

2

).(v − u) = 0 ⇐⇒ (2x− (v + u)).(v − u) = 0

⇐⇒ 2x.(v − u) = (v + u).(v − u) ⇐⇒ 2x.(v − u) = |v|2 − |u|2

and
dU (x, u) = dE(x, v) ⇐⇒ |x− u| = |x− v| ⇐⇒ |x− u|2 = |x− v|2

⇐⇒ (x− u).(x− u) = (x− v).(x− v)

⇐⇒ |x|2 − 2x.u+ |u|2 = |x|2 − 2x.v + |v|2

⇐⇒ 2x.(v − u) = |v|2 − |u|2 ⇐⇒ x ∈ L.
1.61 Theorem: (The Circumcentre) The three perpendicular bisectors of the edges of
a triangle intersect at a point o which is called the circumcentre of the triangle. The
circumcentre is equidistant from the three vertices of the triangle so it is the centre of
the circle which passes through the three vertices, which we call the circumcircle (or the
circumscribed circle) of the triangle.

Proof: Let [u, v, w] be an ordered triangle in R2. Let L, M and N be the perpendicular
bisectors of the edges [v, w], [w, u] and [u, v] respectively. Let o be the point of intersection
of L and M . By the previous theorem, since o ∈ L we have |o − v| = |o − w| and since
o ∈M we have |o−w| = |o−u|. It follows that |o−u| = |o−v| = |o−w|. By the previous
theorem again, since |o − u| = |o − v| we also have o ∈ N , so the point o lies on all three
perpendicular bisectors.
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1.62 Definition: In a triangle in R2, an altitude is a line through a vertex which is
perpendicular to the opposite side. In the triangle [u, v, w], the altitude from u is the line
through u with normal vector w− v, the altitude from v is the line through v with normal
vector u− w, and the altitude from w is the line through w with normal vector v − u.

1.63 Theorem: (The Orthocentre) The three altitudes of a triangle meet at a point h
which is called the orthocentre of the triangle. The points o, g and h lie on a line, called
the Euler line of the triangle, with g lying 1

3 of the way from o to h.

Proof: Let [u, v, w] be an ordered triangle in R2. Let g be the centroid and let o be the
circumcentre. Let h be the point on the line through o and g such that g lies 1

3 of the
way from o to h, in other words, let h be the point such that g = o + 1

3 (h− o). Then we
have h = 3g − 2o. We need to show that h lies on all three altitudes of [u, v, w]. We shall
show that h lies on the altitude from w (the proof that h lies on the other two altitudes is
similar). The altitude from w is given by the equation (x−w).(v− u) = 0, so we need to
show that (h− w).(v − u) = 0. Since g = 1

3 (u+ v + w) we have 3g − w = u+ v and so

(h− w).(v − u) =
(
(3g − 2o)− w

).(v − u) = (3g − w).(v − u)− 2o.(v − u)

= (u+ v).(v − u)− 2o.(v − u).

Since o lies on the perpendicular bisector of [u, v] we have
(
o − u+v

2

).(v − u) = 0 and so
2o.(v − u) = (u+ v).(v − u) and hence

(h− w).(v − u) = (u+ v).(v − u)− 2o.(v − u) = 0,

as required.

1.64 Remark: Given u, v and w, we can find explicit formulas for the circumcentre o and
the orthocentre h of the triangle [u, v, w]. Let Pv and Pw be the perpendicular bisectors
of the edges [u,w] and [u, v]. For x ∈ R2 we have

x ∈ Pw ⇐⇒
(
x− u+v

2

).(v − u) = 0 ⇐⇒ x.(v − u) = 1
2 (u+ v).(v − u).

and similarly x ∈ Pv ⇐⇒ x.(w − u) = 1
2 (u + w).(w − u). It follows that o is the

point which satisfies both of these two equations. By writing the pair of equations in

matrix form, we obtain Ao = b where A is the 2 × 2 matrix A =
(
v − u,w − u

)T
and

b =
(
1
2 (u+ v).(v−u), 12 (u+w).(w−u)

)T
. Since [u, v, w] is a triangle, the points u, v and

w are non-colinear, and so the vectors v− u and w− u are linearly independent hence the
matrix A is invertible. Thus o is given by the formula

o = A−1b = 1
2

(
(v − u)T

(w − u)T

)−1(
(v + u).(v − u)
(w + u).(w − u)

)
.

Let Hv and Hw be the altitudes of the triangle [u, v, w] from v and w. For x ∈ R2 we
have x ∈ Hw ⇐⇒ (x − w).(v − u) = 0 ⇐⇒ x.(v − u) = w.(v − u) and similarly
x ∈Mv ⇐⇒ x.(w− u) = v.(w− u). It follows that h is the point which satisfies both of

these equations, so we have Ah = c where A is as above and c =
(
w.(v− u), v.(w− u)

)T
.

Thus the point h is given by the formula

h = A−1c =

(
(v − u)T

(w − u)T

)−1(
w.(v − u)
v.(w − u)

)
.

As an exercise, use these explicit formulas to show that g lies 1
3 of the way from o to h.
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1.65 Definition: Let p ∈ R2 and let L and M be lines in R2 with L∩M = {p}. The angle
bisectors of L and M are the lines A and B through p such that θo(L,A) = 1

2θo(L,M)
and θo(M,B) = 1

2θo(M,L). If the lines L and M have direction vectors u and v with
|u| = |v| then the two angle bisectors have direction vectors u+ v and u− v. Likewise, if
the lines L and M have normal vectors ` and m with |` | = |m| then the two angle bisectors
have normal vectors `+m and `−m. Note that the two angle bisectors are orthogonal to
each other, indeed when |u| = |v| we have (u+ v).(u− v) = |u|2 − |v|2 = 0.

1.66 Definition: Let x ∈ R2 and let L be a line in R2. The (Euclidean) distance between
x and L, denoted by dE(x, L), is the distance between x and the point a ∈ L which is
nearest to x. This point a is the point of intersection of L with the line through x which
is perpendicular to L. When L is the line (x − p).n = 0, the point a ∈ L nearest to x is

given by the formula a = x+ Projn(x− p) = x+ (x−p).n
|n|2 n and so the distance between x

and L is given by

dE(x, L) =
∣∣∣Projn(x− p)

∣∣∣ =
|(x− p).n∣∣
|n|

.

1.67 Exercise: Show that when L is the line ax+ by + c = 0 we have

dE
(
(x, y), L

)
=
|ax+ by + c|√

a2 + b2
.

1.68 Theorem: Let L and M be lines in R2 with L∩M = {p}. Let A and B be the two
angle bisectors of L and M at p. Then for x ∈ R2 we have

x ∈ A ∪B ⇐⇒ dE(x, L) = dE(x,M).

Proof: Let L and M have normal vectors ` and m with |` | = |m|. Then two angle bisectors
A and B have normal vectors `±m and are given by the equations (x− p).(`±m) = 0.
Since |` | = |m| we have

dE(x, L) = dE(x,M) ⇐⇒
|(x− p).`∣∣
|`|

=

∣∣(x− p).m|
|m|

⇐⇒ |(x− p).`| = |(x− p).m|
⇐⇒ (x− p).` = ±(x− p).m
⇐⇒ (x− p).(`−m) = 0 or (x− p).(`+m) = 0

⇐⇒ x ∈ A or x ∈ B.

1.69 Definition: For a vector (a, b) ∈ R2, we write (a, b)× = (−b, a). In a triangle
[u, v, w], the edges have direction vectors w−v, u−w and v−u and they have unit normal

vectors ` = (w−v)×
|w−v| , m = (u−w)×

|u−w| and n = (v−u)×
|v−u| When [u, v, w] is positively oriented the

vectors `, m and n are called the inward normal vectors and the vectors −`, −m and
−n are called the outward normal vectors, and when [u, v, w] is negatively oriented the
situation is reversed. The three external angle bisectors of the triangle [u, v, w] are the
line through u with normal vector m+n, the line through v with normal vector n+ `, and
the line through w with normal vector `+m, and the three internal angle bisectors are
the line through u with normal vector m−n, the line through v with normal vector n− `,
and the line through w with normal vector `−m.
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1.70 Theorem: (The Incentre) The three internal angle bisectors of a triangle meet
at a point which is called the incentre of the triangle. The incentre of the triangle is
equidistant from the three edges of the triangle, so it is the centre of the circle which lies
inside the triangle and is tangent to all three edges of the triangle. This circle is called the
incircle (or the inscribed circle) of the triangle.

Proof: Let [u, v, w] be an ordered triangle in R2. Let L, M and N be the lines which
contain the edges [v, w], [w, u] and [u, v], respectively. A, B and C be the internal angle
bisectors from u, v and w, respectively. Let i be the point of intersection of A and B and
note that i lies inside the triangle. Since i ∈ A we have dE(i,M) = dE(i,N) and since
i ∈ B we have dE(i,N) = dE(i, L). It follows that dE(i, L) = dE(i,M) = dE(i,N). Since
dE(i, L) = dE(i,M) it follows that i lies on one of the two angle bisectors of the lines L
and M , and since i lies inside the triangle it must lie on the internal angle bisector, that
is i ∈ C.
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Some Geometry in Euclidean Space

1.71 Remark: We do not intend to provide a detailed study of geometry in Euclidean
space, but let us describe briefly how some of the aspects of geometry in the plane can be
extended to R3 or to Rn.

For 0 6= u, v ∈ R2, we obtained formulas for both the (unoriented) angle θ(u, v)
between u and v, and also for the oriented angle θo(u, v) from u counterclockwise to v.
For vectors 0 6= u, v ∈ Rn we consider only the (unoriented) angle θ(u, v) as there is no
natural way to decide on an orientation.

For u ∈ R2 and r > 0, we have the circle C(u, r) and the disc D(u, r). These extend
naturally to R3, or more generally to Rn. For u ∈ Rn and r > 0, we have the sphere
S(u, r) =

{
x ∈ Rn

∣∣ dE(x, u) = r
}

and the (closed) ball B(u, r) =
{
x ∈ Rn

∣∣ dE(x, u) ≤ r
}

.
Just as we found the circumference of the circle and the area of the disc (in Theorem
1.32), one can calculate the area A of the sphere and the volume V of the ball in R3

using formulas from calculus for areas and volumes of surfaces and solids of revolution:
the sphere x2 + y2 + z2 = r2 is obtained by revolving the curve y =

√
r2 − x2, −r ≤ x ≤ r

about the y-axis, so its area is

A =

∫ r

x=−r
2πy(x)

√
1 + y′(x)2 dx =

∫ r

x=−r
2π
√
r2 − x2

√
1 +

( −x√
r2−x2

)2
dx

=

∫ r

x=−r
2π
√
r2 − x2 r√

r2−x2
dx =

∫ r

x=−r
2πr dx = 4πr2

and the ball x2 + y2 + z2 ≤ r2 is obtained by revolving the region given by 0 ≤ x ≤ r,
−
√
r2 − x2 ≤ y ≤

√
r2 − x2 about the y-axis, so (using the shell method) its volume is

V =

∫ r

x=0

2πx(y1(x)− y2(x)) dx =

∫ r

x=−r
2πx · 2

√
r2 − x2 dx

=
[
− 4

3π(r2 − x2)3/2
]r
x=0

= 4
3πr

3.

These formulas can be generalized to give higher dimensional volumes for spheres and balls
in Rn.

After mentioning circles and spheres in R2, we discussed lines and rays and line seg-
ments and various related angles and oriented angles between them. These all generalize
easily enough to Rn, but we only consider unoriented angles. A line in Rn is a set of the
form L =

{
p+ tu

∣∣ t ∈ R
}

for some p ∈ Rn and some 0 6= u ∈ Rn, and we say that L is the
line x = p + tu. Given u, v ∈ Rn with u 6= v, the line in Rn through u and v is the line
x = u + t(v − u). The ray in Rn from u through v is the set R =

{
u + t(v − u)

∣∣ t ≥ 0
}

,
and the line segment between u and v is the set

[u, v] =
{
u+ t(v − u)

∣∣ 0 ≤ t ≤ 1
}

=
{
su+ tv

∣∣ 0 ≤ s, 0 ≤ t s+ t = 1
}
.

We will leave it as an exercise to determine formulas for the angle between two lines or
between two rays or between two line segments.

When working in R3, in addition to lines we can consider planes. More generally,
when working in Rn we can consider affine spaces: an affine space in Rn is a set of the
form P = p + U =

{
p + u

∣∣u ∈ U} for some p ∈ Rn and some vector space U ⊆ Rn, and
we say that P is the affine space through p with associated vector space U . We leave it
as an entertaining optional exercise to try to come up with a reasonable definition for the
angle between two affine spaces in Rn. The angle between the two planes P = p+ U and
Q = p + V in Rn is equal to the angle between their associated vector spaces U and V ,
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and when U 6= V , this is equal to the angle between the two lines L = U ∩ (U ∩ V )⊥ and
M = V ∩ (U ∩ V )⊥.

Next we discussed triangles in R2 (which have 3 vertices and 3 edges). The analogous
object in R3 is a tetrahedron (which has 4 vertices, 6 edges, and 4 triangular faces).
Recall that given 3 non-colinear points u, v, w ∈ R2, the closed solid triangle with vertices
u, v and w is the set [u, v, w] =

{
u+ s(v−u) + t(w−u)

∣∣ 0 ≤ s, 0 ≤ t, s+ t ≤ 1
}

. Similarly,
given 4 non-coplanar points u, v, w, z ∈ R3, the closed solid tetrahedron in R3 is the set

[u, v, w, z] =
{
u+ r(v − u) + s(w − u) + t(z − u)

∣∣ r, s, t ≥ 0 , r+s+t ≤ 1
}

=
{
qu+ rv + sw + tz

∣∣ q, r, s, t ≥ 0 , q+r+s+t = 1
}
.

A triangle in R2 has 3 internal angles. For a tetrahedron in R3, we have a richer variety of
angles that we can consider. Each triangular face has 3 interior (unoriented) angles. For
each pair of faces, the faces meet along an edge, and there is an interior angle between the
two faces. Given a face and given one of the 3 edges which is not in the face, there is an
angle between the edge and the face. There is also another kind of angle, called the solid
angle, at each vertex of the tetrahedron. The solid angle at the vertex u in the tetrahedron
[u, v, w, z] is the area of the portion of the unit sphere S(u, 1) which lies in the solid cone{
u+ r(v − u) + s(w − u) + t(z − u)

∣∣ r, s, t ≥ 0
}

(which is the cone obtained by extending
the tetrahedron away from u). Such a region on the sphere is called a spherical triangle,
and we shall find a formula for its area in Chapter 2. Triangles in R2 and tetrahedra in
R3 are both special cases of a simplex in Rn.

Finally, we remark that all of the centres of triangles in R2, which we discussed above,
can be generalized to obtain various centres of tetrahedra in R3 (and, more generally,
centres of simplices in Rn). For example, if we define a medial line in a tetrahedron to
be a line from a vertex to the centroid of the opposite face, then one can show that the 4
medial lines of a tetrahedron meet at a point, which we call the centroid. Alternatively,
we can define a medial plane in a tetrahedron to be a plane which contains one of the
6 edges and passes through the midpoint of the opposite edge, and then one can show
that the 6 medial planes all intersect at the centroid. As another example, we can define
the perpendicular bisector of the line segment [u, v] in R3 to be the plane through the
midpoint u+v

2 which is perpendicular to the vector v − u, and then one can show that the
6 perpendicular bisectors of the edges of a tetrahedron all intersect at a point, called the
circumcentre, which is equidistant from each of the vertices.
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Isometries

1.72 Definition: An n × n matrix A ∈ Mn(R) is called orthogonal when ATA = I or
equivalently, when its columns form an orthonormal basis for Rn. The set of all orthogonal
n× n matrices is denoted by On(R). An orthogonal map on Rn is a map F : Rn → Rn
of the form F (x) = Ax for some A ∈ On(R).

1.73 Definition: For a map S : Rn → Rn, we say that S preserves distance when∣∣S(x)− S(y)
∣∣ = |x− y|

for all x, y ∈ Rn. An isometry on Rn is an invertible map S : Rn → Rn which preserves
distance. The set of all isometries on Rn is denoted by Isom(Rn).

1.74 Theorem: Isom(Rn) is a group. This means that the identity map is an isometry, the
composite of two isometries is an isometry, and the inverse of an isometry is an isometry.

Proof: The identity map I : Rn → Rn is an isometry because
∣∣I(x) − I(y)

∣∣ = |x − y| for
all x, y ∈ Rn. Note that if S, T ∈ Isom(Rn) then we have ST ∈ Isom(Rn) because for
x, y ∈ Rn we have ∣∣S(T (x))− S(T (y))

∣∣ =
∣∣T (x)− T (y)

∣∣ = |x− y|.

Finally, note that if S ∈ Isom(Rn) then S−1 ∈ Isom(Rn) because given u, v ∈ Rn, if we let
x = S−1(u) and y = S−1(v) so that u = S(x) and v = S(y) then we have∣∣S−1(u)− S−1(v)

∣∣ = |x− y| = |S(x)− S(y)| = |u− v|.

1.75 Example: For a vector u ∈ Rn, the translation by u is the map Tu : Rn → Rn
given by Tu(x) = x+ u. Note that Tu is an isometry on Rn because∣∣Tu(x)− Tu(y)

∣∣ =
∣∣(u+ x)− (u+ y)

∣∣ = |x− y| .

1.76 Example: If A ∈ On(R), so that ATA = I, then the map S : Rn → Rn given by
S(x) = Ax is an isometry because for x, y ∈ Rn we have∣∣Ax−Ay∣∣2 =

∣∣A(x− y)
∣∣2 =

(
A(x− y)

)T (
A(x− y)

)
= (x− y)TATA(x− y) = (x− y)T (x− y) = |x− y|2.

1.77 Example: For a vector space U in Rn, the reflection in U is the map FU : Rn → Rn
given by

FU (x) = x− 2 ProjU⊥(x)

where ProjU⊥(x) is the orthogonal projection of x onto U⊥. When {u1, u2, · · · , uk} is an
orthonormal basis for U⊥ and A =

(
u1, u2, · · · , uk

)
∈Mn×k(R), we have

ProjU⊥(x) =
n∑
i=1

(x.ui)ui = AATx ,

FU (x) = x− 2AATx = (I − 2AAT )x.

Note that since {u1, u2, · · · , uk} is orthonormal, we have A ∈ On(R), that is ATA = I, and
it follows that (I − 2AAT ) ∈ On(R) because

(I−2AAT )T (I − 2AAT ) = I − 2AAT − 2AAT + 4AATAAT

= I − 4AAT + 4A(ATA)AT = I − 4AAT + 4AAT = I.
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This shows that FU ∈ On(R) and hence FU ∈ Isom(Rn). In particular, when U is a
hyperspace (that is a vector space of dimension n − 1) and u is a non-zero vector in U⊥,
we have

ProjU⊥(x) = Proju(x) =
x.u
|u|2

u and FU (x) = x− 2
x.u
|u|2

u.

1.78 Example: For the affine space P = p + U =
{
p + u

∣∣u ∈ U}, where p ∈ Rn and
U ⊆ Rn is a subspace, the reflection in P is the map FP : Rn → Rn given by

FP (x) = p+ FU (x− p).

Note that FP ∈ Isom(Rn) because FP is equal to the composite FP = TpFUT−p.

1.79 Theorem: (The Algebraic Classification of Isometries on Rn) A map S : Rn → Rn
preserves distance if and only if S is of the form S(x) = Ax + b for some A ∈ On(R) and
some b ∈ Rn.

Proof: First note that if S(x) = Ax + b where A ∈ On(R) and b ∈ Rn, then S is the
composite S = TbA, which is an isometry.

Conversely, suppose that S is an isometry. Let b = S(0) and define L : R → R by
L(x) = S(x)− b. Note that L(0) = 0 and that for x ∈ Rn we have∣∣L(x)

∣∣ =
∣∣L(x)− L(0)

∣∣ =
∣∣(S(x)− b)− (S(0)− b)

∣∣ = |S(x)− S(0)| = |x− 0| = |x|.

For x, y ∈ Rn, we have

|x− y|2 = (x− y).(x− y) = x.x− x.y − y.x+ y.y = |x|2 − 2x.y + |y2|

from which we obtain the following version of the Polarization Identity:

x.y = 1
2

(
|x|2 + |y|2 − |x− y|2

)
.

For x, y ∈ Rn, using the Polarization Identity, we have

L(x).L(y) = 1
2

(
|L(x)|2 + |L(y)|2 − |L(x)− L(y)|2

)
= 1

2

(
|x|2 + |y|2 − |x− y|2

)
= x.y.

In particular, L(ei).L(ej) = ei.ej = δi,j for all i, j, so the set
{
L(e1), L(e2), · · · , L(en)

}
is

an orthonormal basis for Rn. For x ∈ Rn, if we write x =
n∑
i=1

xiei and L(x) =
n∑
i=1

tiL(ei)

then we have
tk = L(x).L(ek) = x.ek = xk

and so we have L(x) =
∑
xkL(ek) = Ax where A =

(
L(e1), L(e2), · · · , L(en)

)
∈ Mn(R).

Since
{
L(e1), L(e2), · · · , L(en)

}
is an orthonormal set, it follows that ATA = I so we have

A ∈ On(R). Thus S(x) = Ax+ b with A ∈ On(R) and b ∈ Rn, as required.

1.80 Corollary: Every distance preserving map S : Rn → Rn is an isometry.

Proof: If S : Rn → Rn preserves distance then S is invertible; indeed if S is given by
S(x) = Ax+ b with A ∈ On(R) and b ∈ Rn then S−1 is given by S−1(x) = A−1x−A−1b.

1.81 Definition: Let S ∈ Isom(Rn), say S(x) = Ax + b with A ∈ On(R) and b ∈ Rn.
Note that since ATA = I we have det(A) = ±1. We say that S preserves orientation
when det(A) = 1, and we say that S reverses orientation when det(A) = −1.
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1.82 Example: The following maps are all isometries on R2.

(1) The identity map is the map I : R2 → R2 given by I(x) = x.

(2) For u ∈ R2, the translation by u is the map Tu : R2 → R2 given by Tu(x) = x+ u.

(3) For p ∈ R2 and θ ∈ R, the rotation about p by θ is the map Rp,θ : R2 → R2 given by

Rp,θ(x) = p+Rθ(x− p) where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

(4) For a line L in R2, the reflection in L is the map FL : R2 → R2 which is given
by any of the following three equivalent formulas. When L is the line in R2 through p
perpendicular to u, we have

FL(x) = x− 2(x− p).u
|u|2

u.

When L is the line ax+ by + c = 0, the above formula becomes

FL(x, y) = (x, y)− 2(ax+ by + c)

a2 + b2
(a, b).

When L is the line through p in the direction of the vector
(

cos θ2 , sin
θ
2

)
, FL is given by

FL(x) = p+ Fθ(x− p) where Fθ =

(
cos θ sin θ
sin θ − cos θ

)
.

(5) For a vector u ∈ R2 and a line L in R2 which is parallel to u, the glide reflection
Gu,L : R2 → R2 is the composite

Gu,L = TuFL = FLTu

(when L is not parallel to u, the composites TuFL and FLTu are not equal, and they are
not called glide reflections).

Of the above examples, the maps I, Tu and Rp,θ all preserve orientation, while the maps
FL and Gu,L reverse orientation.

1.83 Theorem: (Composites of Reflections in R2) Let L and M be lines in R2.

(1) If L = M then FMFL = I.

(2) If L is parallel to M then FMFL=T2u where u is the vector from L orthogonally to M .

(3) If L∩M={p} then FMFL=Rp,2θ where θ is the angle from L counterclockwise to M .

Proof: Suppose first that L = M . Say L is the line through p in the direction of(
cos θ2 , sin

θ
2

)
so that FL(x) = p+ Fθ(x− p). Then for all x ∈ R2 we have

FLFL(x) = FL
(
p+ Fθ(x− p)

)
= p+ Fθ

(
Fθ(x− p)

)
= p+ x− p = x = I(x).

Next, suppose that L is parallel to M . Let u be the vector from L orthogonally to M , let

p ∈ L and let q = p + u ∈ M . Then for x, y ∈ R2 we have FL(x) = x − 2(x−p).u
|u|2 u and
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FM (y) = y − 2(y−p−u).u
|u|2 u and so

FMFL(x) = FM

(
x− 2(x−p).u

|u|2 u
)

=
(
x− 2(x−p).u

|u|2 u
)
−

2
(
x−p−u− 2(x−p).u

|u|2
u
).u

|u|2 u

= x− 2(x−p).u
|u|2 u− 2(x−p).u

|u|2 u+ 2u.u
|u|2 u+

4
(
(x−p).u)(u.u)

|u|4 u

= x+ 2u = T2u(x).

Finally, suppose that L ∩M = {p}. Say L is in the direction of
(

cos α2 , sin
α
2

)
and M is

in the direction of
(

cos β2 , sin
β
2

)
. Then for x, y ∈ R2 we have FL(x) = p+ Fα(x− p) and

FM (y) = p+ Fβ(y − p) and so

FMFL(x) = FM
(
p+ Fα(x− p)

)
= p+ Fβ

(
Fα(x− p)

)
= p+Rβ−α(x− p) = Rp,2θ(x)

where θ = β
2 −

α
2 , which is the angle from L to M .

1.84 Theorem: (The Geometric Classification of Isometries on R2) Every isometry on R2

is equal to one of the maps I , Tu , Rp,θ , FL , Gu,L.

Proof: Let S ∈ Isom(R2), say S(x) = Ax + b with A ∈ O2(R) and b ∈ R2. Recall that
the elements in O2(R) are the rotation and reflection matrices Rθ and Fθ, and so with
S = TuRθ or S = TuFθ where u = −b. First suppose that S = TuRθ. Let M be the
line through the origin perpendicular to u. Let L = R−θ/2(M) so that FMFL = Rθ. Let
N = Tu/2(M) so that Tu = FNFM . Then S = TuRθ = FNFMFMFL = FNFL. By the
above theorem, S is equal to the identity, a translation, or a rotation.

Now suppose that S = TuFθ. Let L be the line through the origin in the direction of(
cos θ2 , sin

θ
2

)
so that Fθ = FL. Let M be the line through the origin which is perpendicular

to u and let N = Tu/2(M) so that Tu = FnFM . Then we have S = FNFMFL. Note that
FMFL = R2α where α is the angle from L to M . Let N ′ = N , let M ′ be the line through
(0, 0) which is perpendicular to N ′, and let L′ = R−α(M ′) so that FM ′FL′ = R2α. Then
S = FNFMFL = FNR2α = FN ′FM ′FL′ = Rp,πFL′ where p is the point of intersection
of M ′ and N ′ (which are perpendicular). Let L′′ = L′, let M ′′ be the line through
p parallel to L′ and let N ′′ = Rp.π/2(M ′′) so that Rp,π = FN ′′FM ′′ . Then we have
S = Rp,πFL′ = FN ′′FM ′′FL′′ . Since L′′ is parallel to M ′′ we have FM ′′FL′′ = T2v where
v is the vector from L′′ to M ′′. Since L′′ and M ′′ are perpendicular to N ′′, the vector v
is parallel to N ′′ and so S = FN ′′Tv is a glide reflection (or a reflection in the case that
v = 0).
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1.85 Example: The following maps are all isometries on R3.

(1) the identity map is the map I : R3 → R3 given by I(x) = x.
(2) For u ∈ R3, the translation by u is the map Tu : R3 → R3 given by Tu(x) = x+ u.
(3) For a point p ∈ R3, a nonzero vector 0 6= u ∈ R3 and an angle θ ∈ R the rotation
Rp,u,θ : R3 → R3 is given by

Rp,u,θ(x) = p+Ru,θ(x− p)

where Ru,θ is the rotation in R3 about the vector u by the angle θ; if {u, v, w} is a positively

oriented orthogonal basis for R3 with all three vectors u, v and w of the same length, then
R = Ru,θ is given by R(u) = u, R(v) = (cos θ)v+(sin θ)w and R(w) = −(sin θ)v+(cos θ)w.

(4) For a point p ∈ R3, a nonzero vector 0 6= u ∈ R3 and an angle θ ∈ R the twist
Wp,u,θ : R3 → R3 is the composite Wp,u,θ = TuRp,u,θ = Rp,u,θTu.

(5) For a plane P in R3, the reflection in P is the map FP : R3 → R3 described in
Example 1.78.
(6) For a vector u ∈ R3 and a plane P in R3 which is parallel to u, the glide reflection
Gu,P : R3 → R3 is the composite Gu,P = TuFP = FPTu.

(7) For a point p ∈ R3, a nonzero vector 0 6= u ∈ R3 and an angle θ ∈ R , the rotary
reflection Hp,u,θ : R3 → R3 is the composite Hp,u,θ = Rp,u,θFP = FPRp,u,θ where P is
the plane through p perpendicular to u.

1.86 Theorem: (The Geometric Classification of Isometries in R3) Every isometry on R3

is equal one of the following

I , Tu , Rp,u,θ , Wp,u,θ , FP , Gu,P , Hp,u,θ .

Proof: We omit the proof.
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