Chapter 4. Introduction to Derivatives

In this chapter, we give an informal introduction to differentiation of vector-valued func-
tions of several variables. We state some definitions and theorems, and we provide some
computational examples, but the proofs are postponed until the following chapter.

4.1 Definition: Let U C R"™ be open in R™, let f: U C R" — R, and let at a € U, say
a= (a1, --,a,). We define the k' partial derivative of f at a to be

2L (a) = gi'(ax) , where gi(t) = f(ar, -+, ar—1,t,ar11, - an),
or equivalently,
2L (a) = hy'(0) , where hy(t) = f(ar, -, ag_1,ak + b, gy, - an)

provided that the derivatives exist. Note that g; and hj are functions of a single variable.

Sometimes 86 L is written as fa, or as fr. When we write u = f(x), we can also write

of ou

oxy, as oxy,’ Uz,

: of of Bf of of of
partial derivatives D507 Das and 52, Are written as 3, By and 37, or as fz, fy and f..

When n = 1 so there is only one variable x = z; we have 8f( ) = ?; (a) = f'(a).

or uix. When n = 3 and we write x, y and z instead of x1, o and z3, the

4.2 Example: Let f(z,y) = 23y + 2zy>. Find g—£(1,2) and ﬂ(1,2).

Solution: Let g (t) = f(t,2) = 2t3 +8t. Then g} (t) = 6t> + 8 so 8f(l 2) =¢'(1) = 14. Let
g2(t) = f(1,1) =t + 22 Then g5(t) = 1+4t so 5L(1,2) = g5(2) = 9.

4.3 Note: Rather than explicitly determining the functions gx(t) as we did in the above
solution, we can calculate the partial derivative 88 (a) by simply treating the variables z;
with ¢ # k as constants, and differentiating f as if it were a function of the single variable
T

4.4 Example: Let f(x,y,2) = (z — 2?)sin(z?y + 2). Find f(x y,z) and g—i(?), 5,0).

Solution: Treating y and z as constants, we obtain

a5 (@,y,2) = sin(2y + 2) + (& — 2°) cos(a?y + z)(2zy)

and so 20(3,7,0) = sin 2 + 3cos L (37) = 1.

4.5 Definition: Let U C R” be open in R", let f : U C R" — R and let a € U.

Write u = f(z) = (fl(x),fg(x),--~,fm(x))T with z = (21,22, ++,7,)T. We define the
derivative matrix, or the Jacobian matrix, of f at a to be the matrix

of1 9f1 Of1
a—j;(a) a—ffz(a) e %(a)
02 (q) Oh(g) ... (g
Df(a) = 8:1:1.( ) 8272'( ) 8:1:”'( )
Ofmm Ofum O fm
a%l(a) 3%2(@) e &J;—n(a)

and we define the linearization of f at a to be the affine map L : R™ — R™ given by

L(z) = f(a) + Df (a)(z — a)
provided that all the partial derivatives 8—f’“(a) exist.



4.6 Definition: Let U be open in R™ and let f : U C R® — R™. We say that f is C! in
U when all the partial derivatives % exist and are continuous in U. The second order

partial derivatives of f are the functions

9f;
%f _ 8(8_3;)
8xk6xl 8xk .

We also write 204 = _2fi_ We say that f is C? when all the partial derivatives 2.0
€ also write 0zn2 — Ozpozh” € say a f 1S when a € partia erivatives e LT

exist and are continuous in U. Higher order derivatives can be defined similarly, and we

ok £, . . .
Ji exist and are continuous in U.
i1 8(177;2 8x1k

4.7 Definition: Let a € U where U is an open set in R, and let f : U C R — R™, say
z = f(t) = (z1(t), z2(t), -+, 1 (t)). Then we write f'(a) = Df(a) and we have
% (a) 1'(a)
f'(a) = Df(a) = : = :
% (a) Tm'(a)
The vector f’(a) is called the tangent vector to the curve z = f(t) at the point f(a). In

the case that ¢ represents time and f(t) represents the position of a moving point, f’(a) is
also called the velocity of the moving point at time t = a.

say f is C¥ when all the k™ order derivatives -

4.8 Definition: Let a € U where U is an open set in R™ and let f: U C R®™ — R. We
define the gradient of f at a to be the vector

of o v [
Vi(@) = Df(0)" = (-(@). g @) = |
o (a)

4.9 Definition: Let U C R™ be open in R”, let f: U C R™ — R™, and let a € U. We
say that f is differentiable at a when there exists an affine map L : R™ — R” such that

Ve>0 35>0 Vm€U<|ac —a| <6 = |f(z) — L(z)| < elz — a|>.
We say that f is differentiable in U when f is differentiable at every point a € U.

4.10 Theorem: Let U C R"™ be open, let f: U CR"™ — R™ and let a € U. Then

(1) If f is differentiable at a then the partial derivatives of f at a all exist, and the affine
map L which appears in the definition of the derivative is the linearization of f at a.

(2) If f is differentiable in U then f is continuous in U.

(3) If f is C! in U then f is differentiable in U.

(4) If f is C?> in U then 682fj — 24 for all j, k, /.

. 0xp ~ Oxe0Tk

Proof: The proof will be given in the next two chapters.



4.11 Note: Let a € U where U is open in R™ and let f : U C R™ — R™ be differentiable
at a. The definition of the derivative, together with Part (1) of the above theorem, imply
that the function f is approximated by its linearization near x = a, that is when x = a we
have

f(x) = L(z) = f(a) + Df(a)(x — a).

The geometric objects (curves and surfaces etc) Graph(f), Null(f), f~*(k) and Range(f)
are all approximated by the affine spaces Graph(L), Null(L), L~ (k) and Range(L). Each
of these affine spaces is called the (affine) tangent space of its corresponding geometric
object: the space Graph(L) is called the (affine) tangent space of the set Graph(f) at
the point (a, f(a)); when f(a) = 0, the space Null(L) is called the (affine) tangent space
of Null(f) at the point a, and more generally when f(a) = k, so that a € f~1(k), the
space L™1(k) is called the (affine) tangent space to f~1(k) at the point a; and the space
Range(L) is called the (affine) tangent space of the set Range(f) at the point f(a). When
a tangent space is 1-dimensional we call it a tangent line and when a tangent space is
2-dimensional we call it a tangent plane.

4.12 Example: Find an explicit, an implicit and a parametric equation for the tangent
line to the curve in R? which is defined explicitly by the equation y = f(z), implicitly by
the equation g(z,y) = k, and parametrically by the equation (z,y) = a(t) = (z(t),y(t)).
Solution: The curve in R? defined explicitly by y = f(x) has a tangent line at the point
(a, f(a)) which is given explicitly by y = L(x), that is

y = f(a)+ f'(a)(z —a).

When g(a,b) = k, the curve in R? defined implicitly by the equation g(z,y) = k has a
tangent line at the point (a,b) which is given implicitly by the equation L(z,y) = k, that

is by f(a,b) + (%(a, b), 6—5(@, b))(:v —a,y —b)T =k, or equivalently by

8 (a,b) (@ — a) + %L (a,b)(y — b) = 0.

The curve in R? defined parametrically by (z,y) = a(t) = (z(t),y(t)) or, more accurately,

by (z,9)T = at) = (m(t),y(t))T has a tangent line at the point a(a) = (x(a)7y(a))T
which is given parametrically by (z,y)T = L(t) = a(a) + o/(a)(t — a), that is

()=o)~ (o)) =

4.13 Example: Find an explicit, an implicit, and a parametric equation for the tan-
gent line to the curve in R? which is defined explicitly by (z,y) = f(z) = (a:(z),y(z)),
implicitly by u(z,y,z) = k and v(z,y,2) = [, and parametrically by (z,y,z) = a(t) =
(=(t), y(1), 2(1))-

Solution: The curve in R? given explicitly by (z,y) = f(z) = (:L’(z),y(z)) or, more accu-

rately, by (z,y)T = f(z) = (ar(z),y(z))T, has a tangent plane at the point (z(c),y(c),c)
which is given explicitly by (z,y)” = L(z) = f(¢) + Df(c)(z — ¢), that is by

()= Ga)+ (v e

When u(a,b,c¢) = k and v(a,b,c) = ¢ and we write g(z,y,2) = (u(m,y,z),v(m,y,z))T,
the curve in R? given implicitly by g(z,y,2) = (k,£)T, has a tangent line at (a, b, ¢) given

3



implicitly by L(z,y,2) = (k,£)T, that is b g(a, b, c) + Dg(a, b, c) (:z:—a,y—b, z—c)T = (k,0)T,
or equivalently by

(%@wm)%ﬁm&@ %wwmw roa _(0)
S2(a,b,c) Fu(a,bc) G

The curve in R?® given parametrically by (x,v,z)7

tangent line at «(a) which is given parametrically by (z,y,2)" = L(t) = a(a)+d/(a)(t—a),
that is

x x(a) x'(a)
y | =|v@ [+]y)]E-a)
z z(a) Z'(a)

4.14 Example: Find an explicit, an implicit and a parametric equation for the tan-
gent plane to the surface in R® which is defined explicitly by z = f(x,y), implicitly by
g(z,y,z) = k, and parametrically by (z,y,z) = o(s,t) = (a:(s,t),y(s,t),z(s,t)).

Solution: The surface in R? given explicitly by z = f(z,y) has a tangent plane at the point
(a,b, f(a,b)) given explicitly by z = L(z,y) = f(a,b) + Df (a,b)(z—a, y—b)T, that is

2= f(a,b) + 5L(a,b)(x — a) + G (a,b)(y — b).

When g(a, b, c) = k, the surface in R? given implicitly by g(z, vy, 2) = k has tangent plane at
(a, b, c) given implicitly by L(x,y, z) = k, that is g(a, b, c)+ Dg(a, b, c) (m—a, y—b, z—c)T =k
or equivalenty

29 (a,b,¢)(z — a) + 92 (a,b,)(y — b) + 32(a,b,c)(2 — ¢) = 0.

The surface in R® defined parametrically by (z,y,2) = o(s,t) = (z(s,t),y(s,t), 2(s,t)) or
more accurately, by (z,y,2)T = o(s,t) = (x(s,t),y(s,t),z(s,t))T has a tangent plane at
o(a, b) which is given parametrically by (z,y, 2)7 = L(s,t) = o(a,b)+ Do (a,b)(s—a, t—b)T,

that is
T x(a,b) %(a,b) %f (a,b) s—a
y | = vab) | +| b %(ab) (t—b)'
e 2(a,b) F(a,0)  Fi(a,b)

4.15 Example: Find a parametric equation for the tangent line to the helix given by
(7,y,2) = (2cost,2sint,t) at the point where ¢t = %, and find the point where this tangent
line crosses the zz-plane.

Solution: Let f(t) = (2cost,2sint,t) and note that f'(¢) = ( — 2sint,2cost,1). We have
f(%) = (1,\/§, %) and f’(%) = (—=+/3,1,1) and so the tangent line at the point f(”) i
given parametrically by (z,y,2) = L(t) = (1, V3, %) + ( V3,1, 1) (t — —) The point of

intersection with the zz-plane occurs when y = 0, that is when V3 +t — 5 = 0, so we take

t =2 —+V3toobtain (z,y,2) = L(£-v3) = (1,v3,2) —v3(—v3,1,1) = (4,0,2—3).



6m2+2xy

4.16 Example: Find an explicit equation for the tangent plane to the surface z =

24y

at the point (2, —1).
Solution: Let f(z,y) = f/;iy Then

) e” T (2242

O (a,y) = &2

x +2y(2m)\/m eoc +2acu
9 i
5, (7:9) = o

so we have f(2,—1) =1, and 8f ~(2, —1) =2 and 8f(2 —1) = I. Thus the equation to the
tangent plane is z = 1 + 2(z — 2) + Z(y + 1), or equivalently 4z + 7y — 2z = —1.

4.17 Example Flnd an implicit equation for the tangent line to the curve given by

2y + 2?2 4+ In(y ) = 6 at the point (2,5).
Solution: Let g(x,y) = 21/y + 22 + In(y — 2?) and note that ¢(2,5) = 2v/9+1n1 = 6. We
2 2z 4

have %(ﬂc, y) =

9 0
y+a2 y—x2 and 8_Z<$7 y) - \/ﬁ + L so that 82‘ (2, 5)

3
and 3—3(27 5) = 5+ 1 = %, so the tangent line at (2,5) is given by —3(z —2)+ 5 (y—5) =
or, equivalently, by 2(x —2) = (y — 5) or by y = 2z + 1.

y—a?

4.18 Example: Find a parametric equation for the tangent line to the curve of intersection
of the paraboloid z = 2 — 22 — y? with the cone y = v/22 + 22 at the point p = (1,1,0).

Solution: Note that the paraboloid is given by 22 + y? + 2 = 2 and the cone is given by
22 —y? 4+ 22 =0, Withy > 0. Let u(az y,2) = 22 +y?>+z and v(z,y,2) = 22 —y? + 22 and

let g(z,y,2) = (u(a: y,2),v(x,y, 2 ) so that the curve of intersection is given implicitly
by g(z,y,z) = (2,0)T. Note that g(1,1,0) = (2,0)T and

Ju  Ju 2 2y 1
Dg(l',y, ): (g gy gz) - ( )
% 8—1; 8—;’ 20 -2y 2z

2 2 1
Dg(1,1,0)2(2 -9 0)

The tangent line at (1,1, 0) is given implicitly by Dg(1,1,0)(z—1,y—1, z)T = (0,0)T that

is
2 2 1\ ("~ i (0
2 —2 0)|"Y —\o
z
This is equivalent to the pair of equations 2(x—1)+2(y—1)4+2z = 0 and 2(z—1)—2(y—1) = 0.
We remark that these are the equations of the tangent planes to the two given surfaces at
(1,1,0). The two equations are equivalent to 2x 4+ 2y +z =4 and x —y = 0. We let y =,

then the second equation gives = y = t, and the first equation gives z = 4 — 2z — 2y =
4 — 4t, so the line is given parametrically by (z,y, z) = (0,0,4) + t(1,1, —4).

4.19 Exercise: Find an explicit equation for the tangent plane to the surface given by

(r,y,2) = (7“ cost, rsint, 1+ ) at the point where (r,t) = (\/5, %)



4.20 Theorem: (The Chain Rule) Let f : U CR® -V CR™ let g: V C R™ — R/,
and let h(x) = g(f(z)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: A proof will be given in the next chapter.

4.21 Exercise: Let z = f(z,y) = 42 — 8zy + 5y, (u,v) = g(z) = (Vz—1, 5Inz) and
h(zx,y) = g(f(x,y)) Find Dh(2,1).

4.22 Exercise: Let (z,y) = f(r,0) = (rcosf, rsinf), let z = g(z,y) and let z = h(r,§) =
g(f(r,0)). It h(r,0) = r2eV3@=%) then find Vg(v/3,1).

LR _ _ : ou
4.23 Exercise: Let (z,y,2) = f(s,t) and (u,v) = g(,y, 2). Find a formula for 3.

4.24 Definition: Let a € U where U is an open set in R™, let f : U C R™ — R be
differentiable at a, and let v € R™. We define the directional derivative of f at a
with respect to v, written as D, f(a), as follows: pick any differentiable curve a(t) with
@(0) = a and o/(0) = v (for example, we could pick a(t) = a + vt), and define D, f(a)
to be the rate of change of the function f at ¢ = 0 as we move along the curve a. To be
precise, let 3(t) = f(a(t)), note that 5'(¢t) = Df (a(t))a’(t), and then define D, f(a) to be
D, f(a) = 5'(0)

= Df(2(0)) o’ (0)

= Df(a)v

=Vf(a)-v.
Notice that the formula for D, f(a) does not depend on the choice of the curve «(t). The

(directional) derivative of f in the direction of v is defined to be D,, f(a) where w is
the unit vector in the direction of v, that is w = ﬁ

4.25 Exercise: Let f(x,y,2) = zsin(y? — 2xz) and let a(t) = (\/f, 5t e(t*4)/4). Find
the rate of change of f as we move along the curve «(t) when ¢t = 4.

4.26 Theorem: Let f : U C R™ — R be differentiable at a € U. Say f(a) = b. The
gradient Vf(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: The proof will be given in the next chapter.

4.27 Note: Let a € U where U is an open set in R”, and let f : U C R® — R™ be
differentiable. The k' column vector of the derivative matrix Df(a) is the vector

T
for(@) = 2L(a) = (52 (@), () e R™,

which is the tangent vector to the curve i (t) = f(ax(t)) at ¢ = 0, where ay, is the curve
through a in the direction of the standard basis vector ey given by a(t) = a + teg.

The /" column vector of the derivative matrix Df(a) is the vector

Vhila) = (% (@), g ()

which is orthogonal to the level set f;(x) = f¢(a), and points in the direction in which f,
increases most rapidly, and its length is the rate of increase of f, in that direction.



