
Chapter 4. Introduction to Derivatives

In this chapter, we give an informal introduction to differentiation of vector-valued func-
tions of several variables. We state some definitions and theorems, and we provide some
computational examples, but the proofs are postponed until the following chapter.

4.1 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → R, and let at a ∈ U , say
a = (a1, · · · , an). We define the kth partial derivative of f at a to be

∂f
∂xk

(a) = gk
′(ak) , where gk(t) = f(a1, · · · , ak−1, t, ak+1, · · · an) ,

or equivalently,

∂f
∂xk

(a) = hk
′(0) , where hk(t) = f(a1, · · · , ak−1, ak + t, ak+1, · · · an) ,

provided that the derivatives exist. Note that gk and hk are functions of a single variable.
Sometimes ∂f

∂xk
is written as fxk or as fk. When we write u = f(x), we can also write

∂f
∂xk

as ∂u
∂xk

, uxk or uk. When n = 3 and we write x, y and z instead of x1, x2 and x3, the

partial derivatives ∂f
∂x1

, ∂f
∂x2

and ∂f
∂x3

are written as ∂f
∂x , ∂f

∂y and ∂f
∂z , or as fx, fy and fz.

When n = 1 so there is only one variable x = x1 we have ∂f
∂x (a) = df

dx (a) = f ′(a).

4.2 Example: Let f(x, y) = x3y + 2xy2. Find ∂f
∂x (1, 2) and ∂f

∂y (1, 2).

Solution: Let g1(t) = f(t, 2) = 2t3 + 8t. Then g′1(t) = 6t2 + 8 so ∂f
∂x (1, 2) = g′(1) = 14. Let

g2(t) = f(1, t) = t+ 2t2. Then g′2(t) = 1 + 4t so ∂f
∂y (1, 2) = g′2(2) = 9.

4.3 Note: Rather than explicitly determining the functions gk(t) as we did in the above
solution, we can calculate the partial derivative ∂f

∂xk
(a) by simply treating the variables xi

with i 6= k as constants, and differentiating f as if it were a function of the single variable
xk.

4.4 Example: Let f(x, y, z) = (x− z2) sin(x2y + z). Find ∂f
∂x (x, y, z) and ∂f

∂x (3, π2 , 0).

Solution: Treating y and z as constants, we obtain

∂f
∂x (x, y, z) = sin(x2y + z) + (x− z2) cos(x2y + z)(2xy)

and so ∂f
∂x (3, π2 , 0) = sin 9π

2 + 3 cos 9π
2 (3π) = 1.

4.5 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → Rm and let a ∈ U .

Write u = f(x) =
(
f1(x), f2(x), · · · , fm(x)

)T
with x = (x1, x2, · · · , xn)T . We define the

derivative matrix, or the Jacobian matrix, of f at a to be the matrix

Df(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)

...
...

...
∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)


and we define the linearization of f at a to be the affine map L : Rn → Rm given by

L(x) = f(a) +Df(a)(x− a)

provided that all the partial derivatives ∂fk
∂xl

(a) exist.

1



4.6 Definition: Let U be open in Rn and let f : U ⊆ Rn → Rm. We say that f is C1 in
U when all the partial derivatives ∂fk

∂fl
exist and are continuous in U . The second order

partial derivatives of f are the functions

∂2fj
∂xk∂xl

=
∂
(∂fj
∂xl

)
∂xk

.

We also write
∂2fj
∂xk2 =

∂2fj
∂xk∂xk

. We say that f is C2 when all the partial derivatives
∂2fj
∂xk∂xl

exist and are continuous in U . Higher order derivatives can be defined similarly, and we

say f is Ck when all the kth order derivatives
∂kfj

∂xi1∂xi2 ···∂xik
exist and are continuous in U .

4.7 Definition: Let a ∈ U where U is an open set in R, and let f : U ⊆ R → Rm, say
x = f(t) =

(
x1(t), x2(t), · · · , xm(t)

)
. Then we write f ′(a) = Df(a) and we have

f ′(a) = Df(a) =


∂x1

∂t (a)
...

∂xm
∂t (a)

 =

 x1
′(a)
...

xm
′(a)

 .

The vector f ′(a) is called the tangent vector to the curve x = f(t) at the point f(a). In
the case that t represents time and f(t) represents the position of a moving point, f ′(a) is
also called the velocity of the moving point at time t = a.

4.8 Definition: Let a ∈ U where U is an open set in Rn and let f : U ⊆ Rn → R. We
define the gradient of f at a to be the vector

∇f(a) = Df(a)T =
( ∂f
∂x1

(a), · · · , ∂f
∂xn

(a)
)T

=


∂f
∂x1

(a)

...
∂f
∂xn

(a)

 .

4.9 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → Rm, and let a ∈ U . We
say that f is differentiable at a when there exists an affine map L : Rn → Rn such that

∀ε>0 ∃δ>0 ∀x∈U
(
|x− a| ≤ δ =⇒

∣∣f(x)− L(x)
∣∣ ≤ ε|x− a|).

We say that f is differentiable in U when f is differentiable at every point a ∈ U .

4.10 Theorem: Let U ⊆ Rn be open, let f : U ⊆ Rn → Rm and let a ∈ U . Then

(1) If f is differentiable at a then the partial derivatives of f at a all exist, and the affine
map L which appears in the definition of the derivative is the linearization of f at a.
(2) If f is differentiable in U then f is continuous in U .
(3) If f is C1 in U then f is differentiable in U .

(4) If f is C2 in U then
∂2fj
∂xk∂x`

=
∂2fj
∂x`∂xk

for all j, k, `.

Proof: The proof will be given in the next two chapters.
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4.11 Note: Let a ∈ U where U is open in Rn and let f : U ⊆ Rn → Rm be differentiable
at a. The definition of the derivative, together with Part (1) of the above theorem, imply
that the function f is approximated by its linearization near x = a, that is when x ∼= a we
have

f(x) ∼= L(x) = f(a) +Df(a)(x− a) .

The geometric objects (curves and surfaces etc) Graph(f), Null(f), f−1(k) and Range(f)
are all approximated by the affine spaces Graph(L), Null(L), L−1(k) and Range(L). Each
of these affine spaces is called the (affine) tangent space of its corresponding geometric
object: the space Graph(L) is called the (affine) tangent space of the set Graph(f) at
the point

(
a, f(a)

)
; when f(a) = 0, the space Null(L) is called the (affine) tangent space

of Null(f) at the point a, and more generally when f(a) = k, so that a ∈ f−1(k), the
space L−1(k) is called the (affine) tangent space to f−1(k) at the point a; and the space
Range(L) is called the (affine) tangent space of the set Range(f) at the point f(a). When
a tangent space is 1-dimensional we call it a tangent line and when a tangent space is
2-dimensional we call it a tangent plane.

4.12 Example: Find an explicit, an implicit and a parametric equation for the tangent
line to the curve in R2 which is defined explicitly by the equation y = f(x), implicitly by
the equation g(x, y) = k, and parametrically by the equation (x, y) = α(t) =

(
x(t), y(t)

)
.

Solution: The curve in R2 defined explicitly by y = f(x) has a tangent line at the point
(a, f(a)) which is given explicitly by y = L(x), that is

y = f(a) + f ′(a)(x− a).

When g(a, b) = k, the curve in R2 defined implicitly by the equation g(x, y) = k has a
tangent line at the point (a, b) which is given implicitly by the equation L(x, y) = k, that
is by f(a, b) +

(
∂f
∂x (a, b) , ∂f∂y (a, b)

)
(x− a, y − b)T = k, or equivalently by

∂f
∂x (a, b)(x− a) + ∂f

∂y (a, b)(y − b) = 0.

The curve in R2 defined parametrically by (x, y) = α(t) =
(
x(t), y(t)

)
or, more accurately,

by (x, y)T = α(t) =
(
x(t), y(t)

)T
has a tangent line at the point α(a) =

(
x(a), y(a)

)T
which is given parametrically by (x, y)T = L(t) = α(a) + α′(a)(t− a), that is(

x
y

)
=

(
x(a)
y(a)

)
+

(
x′(a)
y′(a)

)
(t− a).

4.13 Example: Find an explicit, an implicit, and a parametric equation for the tan-
gent line to the curve in R3 which is defined explicitly by (x, y) = f(z) =

(
x(z), y(z)

)
,

implicitly by u(x, y, z) = k and v(x, y, z) = l, and parametrically by (x, y, z) = α(t) =(
x(t), y(t), z(t)

)
.

Solution: The curve in R3 given explicitly by (x, y) = f(z) =
(
x(z), y(z)

)
or, more accu-

rately, by (x, y)T = f(z) =
(
x(z), y(z)

)T
, has a tangent plane at the point (x(c), y(c), c)

which is given explicitly by (x, y)T = L(z) = f(c) +Df(c)(z − c), that is by(
x
y

)
=

(
x(c)
y(c)

)
+

(
x′(c)
y′(c)

)
(z − c)

When u(a, b, c) = k and v(a, b, c) = ` and we write g(x, y, z) =
(
u(x, y, z), v(x, y, z)

)T
,

the curve in R3 given implicitly by g(x, y, z) = (k, `)T , has a tangent line at (a, b, c) given
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implicitly by L(x, y, z) = (k, `)T , that is b g(a, b, c)+Dg(a, b, c)
(
x−a, y−b, z−c

)T
= (k, `)T ,

or equivalently by( ∂u
∂x (a, b, c) ∂u

∂y (a, b, c) ∂u
∂z (a, b, c)

∂v
∂x (a, b, c) ∂v

∂y (a, b, c) ∂v
∂z (a, b, c)

)x− a
y − b
z − c

 =

(
0
0

)
The curve in R3 given parametrically by (x, y, z)T = α(a) =

(
x(a), y(a), z(a)

)T
has a

tangent line at α(a) which is given parametrically by (x, y, z)T = L(t) = α(a)+α′(a)(t−a),
that is x

y
z

 =

x(a)
y(a)
z(a)

+

x′(a)
y′(a)
z′(a)

 (t− a).

4.14 Example: Find an explicit, an implicit and a parametric equation for the tan-
gent plane to the surface in R3 which is defined explicitly by z = f(x, y), implicitly by
g(x, y, z) = k, and parametrically by (x, y, z) = σ(s, t) =

(
x(s, t), y(s, t), z(s, t)

)
.

Solution: The surface in R3 given explicitly by z = f(x, y) has a tangent plane at the point(
a, b, f(a, b)

)
given explicitly by z = L(x, y) = f(a, b) +Df(a, b)

(
x−a, y−b

)T
, that is

z = f(a, b) + ∂f
∂x (a, b)(x− a) + ∂f

∂y (a, b)(y − b).

When g(a, b, c) = k, the surface in R3 given implicitly by g(x, y, z) = k has tangent plane at

(a, b, c) given implicitly by L(x, y, z) = k, that is g(a, b, c)+Dg(a, b, c)
(
x−a, y−b, z−c

)T
= k

or equivalenty

∂g
∂x (a, b, c)(x− a) + ∂g

∂y (a, b, c)(y − b) + ∂g
∂z (a, b, c)(z − c) = 0.

The surface in R3 defined parametrically by (x, y, z) = σ(s, t) =
(
x(s, t), y(s, t), z(s, t)

)
or,

more accurately, by (x, y, z)T = σ(s, t) =
(
x(s, t), y(s, t), z(s, t)

)T
has a tangent plane at

σ(a, b) which is given parametrically by (x, y, z)T = L(s, t) = σ(a, b)+Dσ(a, b)
(
s−a, t−b

)T
,

that is x
y
z

 =

x(a, b)
y(a, b)
z(a, b)

+

 ∂x
∂s (a, b) ∂x

∂t (a, b)
∂y
∂s (a.b) ∂y

∂t (a, b)
∂z
∂s (a, b) ∂z

∂t (a, b)

( s− a
t− b

)
.

4.15 Example: Find a parametric equation for the tangent line to the helix given by
(x, y, z) = (2 cos t, 2 sin t, t) at the point where t = π

3 , and find the point where this tangent
line crosses the xz-plane.

Solution: Let f(t) = (2 cos t, 2 sin t, t) and note that f ′(t) =
(
− 2 sin t, 2 cos t, 1

)
. We have

f
(
π
3

)
=
(
1,
√

3, π3
)

and f ′
(
π
3

)
= (−

√
3, 1, 1) and so the tangent line at the point f

(
π
3

)
is

given parametrically by (x, y, z) = L(t) =
(
1,
√

3, π3
)

+
(
−
√

3, 1, 1
)(
t − π

3

)
. The point of

intersection with the xz-plane occurs when y = 0, that is when
√

3 + t− π
3 = 0, so we take

t = π
3 −
√

3 to obtain (x, y, z) = L
(
π
3 −
√

3
)

=
(
1,
√

3, π3
)
−
√

3
(
−
√

3, 1, 1
)

=
(
4, 0, π3−

√
3
)
.
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4.16 Example: Find an explicit equation for the tangent plane to the surface z =
ex

2+2xy

√
2 + y

at the point (2,−1).

Solution: Let f(x, y) = ex
2+2xy
√
2+y

. Then

∂f
∂x (x, y) = ex

2+2y(2x+2y)√
2+y

∂f
∂y (x, y) =

ex
2+2y(2x)

√
2+y−ex

2+2xy 1

2
√

2+y

2+y

so we have f(2,−1) = 1, and ∂f
∂x (2,−1) = 2 and ∂f

∂y (2,−1) = 7
2 . Thus the equation to the

tangent plane is z = 1 + 2(x− 2) + 7
2 (y + 1), or equivalently 4x+ 7y − 2z = −1.

4.17 Example: Find an implicit equation for the tangent line to the curve given by
2
√
y + x2 + ln(y − x2) = 6 at the point (2, 5).

Solution: Let g(x, y) = 2
√
y + x2 + ln(y− x2) and note that g(2, 5) = 2

√
9 + ln 1 = 6. We

have ∂g
∂x (x, y) = 2x√

y+x2
− 2x
y−x2 and ∂g

∂y (x, y) = 1√
y+x2

+ 1
y−x2 so that ∂g

∂x (2, 5) = 4
3−

4
1 = − 8

3

and ∂g
∂y (2, 5) = 1

3 + 1
1 = 4

3 , so the tangent line at (2, 5) is given by − 8
3 (x−2) + 4

3 (y−5) = 0

or, equivalently, by 2(x− 2) = (y − 5) or by y = 2x+ 1.

4.18 Example: Find a parametric equation for the tangent line to the curve of intersection
of the paraboloid z = 2− x2 − y2 with the cone y =

√
x2 + z2 at the point p = (1, 1, 0).

Solution: Note that the paraboloid is given by x2 + y2 + z = 2 and the cone is given by
x2− y2 + z2 = 0, with y ≥ 0. Let u(x, y, z) = x2 + y2 + z and v(x, y, z) = x2− y2 + z2 and

let g(x, y, z) =
(
u(x, y, z), v(x, y, z)

)T
so that the curve of intersection is given implicitly

by g(x, y, z) = (2, 0)T . Note that g(1, 1, 0) = (2, 0)T and

Dg(x, y, z) =

( ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

)
=

(
2x 2y 1
2x −2y 2z

)
Dg(1, 1, 0) =

(
2 2 1
2 −2 0

)
The tangent line at (1, 1, 0) is given implicitly by Dg(1, 1, 0)

(
x−1, y−1, z

)T
= (0, 0)T that

is (
2 2 1
2 −2 0

)x− 1
y − 1
z

 =

(
0
0

)
This is equivalent to the pair of equations 2(x−1)+2(y−1)+z = 0 and 2(x−1)−2(y−1) = 0.
We remark that these are the equations of the tangent planes to the two given surfaces at
(1, 1, 0). The two equations are equivalent to 2x+ 2y+ z = 4 and x− y = 0. We let y = t,
then the second equation gives x = y = t, and the first equation gives z = 4 − 2x − 2y =
4− 4t, so the line is given parametrically by (x, y, z) = (0, 0, 4) + t(1, 1,−4).

4.19 Exercise: Find an explicit equation for the tangent plane to the surface given by
(x, y, z) =

(
r cos t , r sin t , 3

1+r2

)
at the point where (r, t) =

(√
2, π4

)
.
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4.20 Theorem: (The Chain Rule) Let f : U ⊆ Rn → V ⊆ Rm, let g : V ⊆ Rm → Rl,
and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: A proof will be given in the next chapter.

4.21 Exercise: Let z = f(x, y) = 4x2 − 8xy + 5y2, (u, v) = g(z) =
(√
z − 1 , 5 ln z

)
and

h(x, y) = g
(
f(x, y)

)
. Find Dh(2, 1).

4.22 Exercise: Let (x, y) = f(r, θ) =
(
r cos θ , r sin θ

)
, let z = g(x, y) and let z = h(r, θ) =

g
(
f(r, θ)

)
. If h(r, θ) = r2e

√
3(θ−π6 ) then find ∇g(

√
3, 1).

4.23 Exercise: Let (x, y, z) = f(s, t) and (u, v) = g(x, y, z). Find a formula for ∂u
∂t .

4.24 Definition: Let a ∈ U where U is an open set in Rn, let f : U ⊆ Rn → R be
differentiable at a, and let v ∈ Rn. We define the directional derivative of f at a
with respect to v, written as Dvf(a), as follows: pick any differentiable curve α(t) with
α(0) = a and α′(0) = v

(
for example, we could pick α(t) = a + v t

)
, and define Dvf(a)

to be the rate of change of the function f at t = 0 as we move along the curve α. To be
precise, let β(t) = f

(
α(t)

)
, note that β′(t) = Df

(
α(t)

)
α′(t), and then define Dvf(a) to be

Dvf(a) = β′(0)

= Df(α(0))α′(0)

= Df(a) v

= ∇f(a) . v .
Notice that the formula for Dvf(a) does not depend on the choice of the curve α(t). The
(directional) derivative of f in the direction of v is defined to be Dwf(a) where w is
the unit vector in the direction of v, that is w = v

|v| .

4.25 Exercise: Let f(x, y, z) = x sin(y2 − 2xz) and let α(t) =
(√
t , 1

2 t , e
(t−4)/4). Find

the rate of change of f as we move along the curve α(t) when t = 4.

4.26 Theorem: Let f : U ⊆ Rn → R be differentiable at a ∈ U . Say f(a) = b. The
gradient ∇f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: The proof will be given in the next chapter.

4.27 Note: Let a ∈ U where U is an open set in Rn, and let f : U ⊆ Rn → Rm be
differentiable. The kth column vector of the derivative matrix Df(a) is the vector

fxk(a) = ∂f
∂xk

(a) =
(
∂f1
∂xk

(a), · · · , ∂fm∂xk
(a)
)T
∈ Rm,

which is the tangent vector to the curve βk(t) = f
(
αk(t)

)
at t = 0, where αk is the curve

through a in the direction of the standard basis vector ek given by αk(t) = a+ tek.

The `th column vector of the derivative matrix Df(a) is the vector

∇f`(a) =
(
∂f`
∂x1

(a), · · · , ∂f`∂xn
(a)
)T

which is orthogonal to the level set f`(x) = f`(a), and points in the direction in which f`
increases most rapidly, and its length is the rate of increase of f` in that direction.
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