

Chapter 4. Introduction to Derivatives

In this chapter, we give an informal introduction to differentiation of vector-valued functions of several variables. We state some definitions and theorems, and we provide some computational examples, but the proofs are postponed until the following chapter.

4.1 Definition: Let $U \subseteq \mathbb{R}^n$ be open in \mathbb{R}^n , let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$, and let at $a \in U$, say $a = (a_1, \dots, a_n)$. We define the k^{th} **partial derivative** of f at a to be

$$\frac{\partial f}{\partial x_k}(a) = g_k'(a_k), \text{ where } g_k(t) = f(a_1, \dots, a_{k-1}, t, a_{k+1}, \dots, a_n),$$

or equivalently,

$$\frac{\partial f}{\partial x_k}(a) = h_k'(0), \text{ where } h_k(t) = f(a_1, \dots, a_{k-1}, a_k + t, a_{k+1}, \dots, a_n),$$

provided that the derivatives exist. Note that g_k and h_k are functions of a single variable.

Sometimes $\frac{\partial f}{\partial x_k}$ is written as f_{x_k} or as f_k . When we write $u = f(x)$, we can also write $\frac{\partial f}{\partial x_k}$ as $\frac{\partial u}{\partial x_k}$, u_{x_k} or u_k . When $n = 3$ and we write x , y and z instead of x_1 , x_2 and x_3 , the partial derivatives $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$ and $\frac{\partial f}{\partial x_3}$ are written as $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$, or as f_x , f_y and f_z . When $n = 1$ so there is only one variable $x = x_1$ we have $\frac{\partial f}{\partial x}(a) = \frac{df}{dx}(a) = f'(a)$.

4.2 Example: Let $f(x, y) = x^3y + 2xy^2$. Find $\frac{\partial f}{\partial x}(1, 2)$ and $\frac{\partial f}{\partial y}(1, 2)$.

Solution: Let $g_1(t) = f(t, 2) = 2t^3 + 8t$. Then $g_1'(t) = 6t^2 + 8$ so $\frac{\partial f}{\partial x}(1, 2) = g_1'(1) = 14$. Let $g_2(t) = f(1, t) = t + 2t^2$. Then $g_2'(t) = 1 + 4t$ so $\frac{\partial f}{\partial y}(1, 2) = g_2'(2) = 9$.

4.3 Note: Rather than explicitly determining the functions $g_k(t)$ as we did in the above solution, we can calculate the partial derivative $\frac{\partial f}{\partial x_k}(a)$ by simply treating the variables x_i with $i \neq k$ as constants, and differentiating f as if it were a function of the single variable x_k .

4.4 Example: Let $f(x, y, z) = (x - z^2) \sin(x^2y + z)$. Find $\frac{\partial f}{\partial x}(x, y, z)$ and $\frac{\partial f}{\partial x}(3, \frac{\pi}{2}, 0)$.

Solution: Treating y and z as constants, we obtain

$$\frac{\partial f}{\partial x}(x, y, z) = \sin(x^2y + z) + (x - z^2) \cos(x^2y + z)(2xy)$$

and so $\frac{\partial f}{\partial x}(3, \frac{\pi}{2}, 0) = \sin \frac{9\pi}{2} + 3 \cos \frac{9\pi}{2}(3\pi) = 1$.

4.5 Definition: Let $U \subseteq \mathbb{R}^n$ be open in \mathbb{R}^n , let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ and let $a \in U$. Write $u = f(x) = (f_1(x), f_2(x), \dots, f_m(x))^T$ with $x = (x_1, x_2, \dots, x_n)^T$. We define the **derivative matrix**, or the **Jacobian matrix**, of f at a to be the matrix

$$Df(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \frac{\partial f_m}{\partial x_2}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix}$$

and we define the **linearization** of f at a to be the affine map $L : \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by

$$L(x) = f(a) + Df(a)(x - a)$$

provided that all the partial derivatives $\frac{\partial f_k}{\partial x_l}(a)$ exist.

4.6 Definition: Let U be open in \mathbb{R}^n and let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$. We say that f is \mathcal{C}^1 in U when all the partial derivatives $\frac{\partial f_k}{\partial f_l}$ exist and are continuous in U . The **second order partial derivatives** of f are the functions

$$\frac{\partial^2 f_j}{\partial x_k \partial x_l} = \frac{\partial}{\partial x_k} \left(\frac{\partial f_j}{\partial x_l} \right).$$

We also write $\frac{\partial^2 f_j}{\partial x_k^2} = \frac{\partial^2 f_j}{\partial x_k \partial x_k}$. We say that f is \mathcal{C}^2 when all the partial derivatives $\frac{\partial^2 f_j}{\partial x_k \partial x_l}$ exist and are continuous in U . Higher order derivatives can be defined similarly, and we say f is \mathcal{C}^k when all the k^{th} order derivatives $\frac{\partial^k f_j}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_k}}$ exist and are continuous in U .

4.7 Definition: Let $a \in U$ where U is an open set in \mathbb{R} , and let $f : U \subseteq \mathbb{R} \rightarrow \mathbb{R}^m$, say $x = f(t) = (x_1(t), x_2(t), \dots, x_m(t))$. Then we write $f'(a) = Df(a)$ and we have

$$f'(a) = Df(a) = \begin{pmatrix} \frac{\partial x_1}{\partial t}(a) \\ \vdots \\ \frac{\partial x_m}{\partial t}(a) \end{pmatrix} = \begin{pmatrix} x_1'(a) \\ \vdots \\ x_m'(a) \end{pmatrix}.$$

The vector $f'(a)$ is called the **tangent vector** to the curve $x = f(t)$ at the point $f(a)$. In the case that t represents time and $f(t)$ represents the position of a moving point, $f'(a)$ is also called the **velocity** of the moving point at time $t = a$.

4.8 Definition: Let $a \in U$ where U is an open set in \mathbb{R}^n and let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$. We define the **gradient** of f at a to be the vector

$$\nabla f(a) = Df(a)^T = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a) \right)^T = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix}.$$

4.9 Definition: Let $U \subseteq \mathbb{R}^n$ be open in \mathbb{R}^n , let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$, and let $a \in U$. We say that f is **differentiable** at a when there exists an affine map $L : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that

$$\forall \epsilon > 0 \exists \delta > 0 \forall x \in U \left(|x - a| \leq \delta \implies |f(x) - L(x)| \leq \epsilon |x - a| \right).$$

We say that f is differentiable in U when f is differentiable at every point $a \in U$.

4.10 Theorem: Let $U \subseteq \mathbb{R}^n$ be open, let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ and let $a \in U$. Then

- (1) If f is differentiable at a then the partial derivatives of f at a all exist, and the affine map L which appears in the definition of the derivative is the linearization of f at a .
- (2) If f is differentiable in U then f is continuous in U .
- (3) If f is \mathcal{C}^1 in U then f is differentiable in U .
- (4) If f is \mathcal{C}^2 in U then $\frac{\partial^2 f_j}{\partial x_k \partial x_\ell} = \frac{\partial^2 f_j}{\partial x_\ell \partial x_k}$ for all j, k, ℓ .

Proof: The proof will be given in the next two chapters.

4.11 Note: Let $a \in U$ where U is open in \mathbb{R}^n and let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be differentiable at a . The definition of the derivative, together with Part (1) of the above theorem, imply that the function f is approximated by its linearization near $x = a$, that is when $x \cong a$ we have

$$f(x) \cong L(x) = f(a) + Df(a)(x - a).$$

The geometric objects (curves and surfaces etc) $\text{Graph}(f)$, $\text{Null}(f)$, $f^{-1}(k)$ and $\text{Range}(f)$ are all approximated by the affine spaces $\text{Graph}(L)$, $\text{Null}(L)$, $L^{-1}(k)$ and $\text{Range}(L)$. Each of these affine spaces is called the (affine) **tangent space** of its corresponding geometric object: the space $\text{Graph}(L)$ is called the (affine) tangent space of the set $\text{Graph}(f)$ at the point $(a, f(a))$; when $f(a) = 0$, the space $\text{Null}(L)$ is called the (affine) tangent space of $\text{Null}(f)$ at the point a , and more generally when $f(a) = k$, so that $a \in f^{-1}(k)$, the space $L^{-1}(k)$ is called the (affine) tangent space to $f^{-1}(k)$ at the point a ; and the space $\text{Range}(L)$ is called the (affine) tangent space of the set $\text{Range}(f)$ at the point $f(a)$. When a tangent space is 1-dimensional we call it a **tangent line** and when a tangent space is 2-dimensional we call it a **tangent plane**.

4.12 Example: Find an explicit, an implicit and a parametric equation for the tangent line to the curve in \mathbb{R}^2 which is defined explicitly by the equation $y = f(x)$, implicitly by the equation $g(x, y) = k$, and parametrically by the equation $(x, y) = \alpha(t) = (x(t), y(t))$.

Solution: The curve in \mathbb{R}^2 defined explicitly by $y = f(x)$ has a tangent line at the point $(a, f(a))$ which is given explicitly by $y = L(x)$, that is

$$y = f(a) + f'(a)(x - a).$$

When $g(a, b) = k$, the curve in \mathbb{R}^2 defined implicitly by the equation $g(x, y) = k$ has a tangent line at the point (a, b) which is given implicitly by the equation $L(x, y) = k$, that is by $f(a, b) + \left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right)(x - a, y - b)^T = k$, or equivalently by

$$\frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b) = 0.$$

The curve in \mathbb{R}^2 defined parametrically by $(x, y) = \alpha(t) = (x(t), y(t))$ or, more accurately, by $(x, y)^T = \alpha(t) = (x(t), y(t))^T$ has a tangent line at the point $\alpha(a) = (x(a), y(a))^T$ which is given parametrically by $(x, y)^T = L(t) = \alpha(a) + \alpha'(a)(t - a)$, that is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x(a) \\ y(a) \end{pmatrix} + \begin{pmatrix} x'(a) \\ y'(a) \end{pmatrix}(t - a).$$

4.13 Example: Find an explicit, an implicit, and a parametric equation for the tangent line to the curve in \mathbb{R}^3 which is defined explicitly by $(x, y) = f(z) = (x(z), y(z))$, implicitly by $u(x, y, z) = k$ and $v(x, y, z) = l$, and parametrically by $(x, y, z) = \alpha(t) = (x(t), y(t), z(t))$.

Solution: The curve in \mathbb{R}^3 given explicitly by $(x, y) = f(z) = (x(z), y(z))$ or, more accurately, by $(x, y)^T = f(z) = (x(z), y(z))^T$, has a tangent plane at the point $(x(c), y(c), c)$ which is given explicitly by $(x, y)^T = L(z) = f(c) + Df(c)(z - c)$, that is by

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x(c) \\ y(c) \end{pmatrix} + \begin{pmatrix} x'(c) \\ y'(c) \end{pmatrix}(z - c)$$

When $u(a, b, c) = k$ and $v(a, b, c) = \ell$ and we write $g(x, y, z) = (u(x, y, z), v(x, y, z))^T$, the curve in \mathbb{R}^3 given implicitly by $g(x, y, z) = (k, \ell)^T$, has a tangent line at (a, b, c) given

implicitly by $L(x, y, z) = (k, \ell)^T$, that is $g(a, b, c) + Dg(a, b, c)(x-a, y-b, z-c)^T = (k, \ell)^T$, or equivalently by

$$\begin{pmatrix} \frac{\partial u}{\partial x}(a, b, c) & \frac{\partial u}{\partial y}(a, b, c) & \frac{\partial u}{\partial z}(a, b, c) \\ \frac{\partial v}{\partial x}(a, b, c) & \frac{\partial v}{\partial y}(a, b, c) & \frac{\partial v}{\partial z}(a, b, c) \end{pmatrix} \begin{pmatrix} x-a \\ y-b \\ z-c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

The curve in \mathbb{R}^3 given parametrically by $(x, y, z)^T = \alpha(a) = (x(a), y(a), z(a))^T$ has a tangent line at $\alpha(a)$ which is given parametrically by $(x, y, z)^T = L(t) = \alpha(a) + \alpha'(a)(t-a)$, that is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x(a) \\ y(a) \\ z(a) \end{pmatrix} + \begin{pmatrix} x'(a) \\ y'(a) \\ z'(a) \end{pmatrix} (t-a).$$

4.14 Example: Find an explicit, an implicit and a parametric equation for the tangent plane to the surface in \mathbb{R}^3 which is defined explicitly by $z = f(x, y)$, implicitly by $g(x, y, z) = k$, and parametrically by $(x, y, z) = \sigma(s, t) = (x(s, t), y(s, t), z(s, t))$.

Solution: The surface in \mathbb{R}^3 given explicitly by $z = f(x, y)$ has a tangent plane at the point $(a, b, f(a, b))$ given explicitly by $z = L(x, y) = f(a, b) + Df(a, b)(x-a, y-b)^T$, that is

$$z = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x-a) + \frac{\partial f}{\partial y}(a, b)(y-b).$$

When $g(a, b, c) = k$, the surface in \mathbb{R}^3 given implicitly by $g(x, y, z) = k$ has tangent plane at (a, b, c) given implicitly by $L(x, y, z) = k$, that is $g(a, b, c) + Dg(a, b, c)(x-a, y-b, z-c)^T = k$ or equivalently

$$\frac{\partial g}{\partial x}(a, b, c)(x-a) + \frac{\partial g}{\partial y}(a, b, c)(y-b) + \frac{\partial g}{\partial z}(a, b, c)(z-c) = 0.$$

The surface in \mathbb{R}^3 defined parametrically by $(x, y, z) = \sigma(s, t) = (x(s, t), y(s, t), z(s, t))$ or, more accurately, by $(x, y, z)^T = \sigma(s, t) = (x(s, t), y(s, t), z(s, t))^T$ has a tangent plane at $\sigma(a, b)$ which is given parametrically by $(x, y, z)^T = L(s, t) = \sigma(a, b) + D\sigma(a, b)(s-a, t-b)^T$, that is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x(a, b) \\ y(a, b) \\ z(a, b) \end{pmatrix} + \begin{pmatrix} \frac{\partial x}{\partial s}(a, b) & \frac{\partial x}{\partial t}(a, b) \\ \frac{\partial y}{\partial s}(a, b) & \frac{\partial y}{\partial t}(a, b) \\ \frac{\partial z}{\partial s}(a, b) & \frac{\partial z}{\partial t}(a, b) \end{pmatrix} \begin{pmatrix} s-a \\ t-b \end{pmatrix}.$$

4.15 Example: Find a parametric equation for the tangent line to the helix given by $(x, y, z) = (2 \cos t, 2 \sin t, t)$ at the point where $t = \frac{\pi}{3}$, and find the point where this tangent line crosses the xz -plane.

Solution: Let $f(t) = (2 \cos t, 2 \sin t, t)$ and note that $f'(t) = (-2 \sin t, 2 \cos t, 1)$. We have $f\left(\frac{\pi}{3}\right) = (1, \sqrt{3}, \frac{\pi}{3})$ and $f'\left(\frac{\pi}{3}\right) = (-\sqrt{3}, 1, 1)$ and so the tangent line at the point $f\left(\frac{\pi}{3}\right)$ is given parametrically by $(x, y, z) = L(t) = (1, \sqrt{3}, \frac{\pi}{3}) + (-\sqrt{3}, 1, 1)(t - \frac{\pi}{3})$. The point of intersection with the xz -plane occurs when $y = 0$, that is when $\sqrt{3} + t - \frac{\pi}{3} = 0$, so we take $t = \frac{\pi}{3} - \sqrt{3}$ to obtain $(x, y, z) = L\left(\frac{\pi}{3} - \sqrt{3}\right) = (1, \sqrt{3}, \frac{\pi}{3}) - \sqrt{3}(-\sqrt{3}, 1, 1) = (4, 0, \frac{\pi}{3} - \sqrt{3})$.

4.16 Example: Find an explicit equation for the tangent plane to the surface $z = \frac{e^{x^2+2xy}}{\sqrt{2+y}}$ at the point $(2, -1)$.

Solution: Let $f(x, y) = \frac{e^{x^2+2xy}}{\sqrt{2+y}}$. Then

$$\begin{aligned}\frac{\partial f}{\partial x}(x, y) &= \frac{e^{x^2+2y}(2x+2y)}{\sqrt{2+y}} \\ \frac{\partial f}{\partial y}(x, y) &= \frac{e^{x^2+2y}(2x)\sqrt{2+y}-e^{x^2+2xy}\frac{1}{2\sqrt{2+y}}}{2+y}\end{aligned}$$

so we have $f(2, -1) = 1$, and $\frac{\partial f}{\partial x}(2, -1) = 2$ and $\frac{\partial f}{\partial y}(2, -1) = \frac{7}{2}$. Thus the equation to the tangent plane is $z = 1 + 2(x - 2) + \frac{7}{2}(y + 1)$, or equivalently $4x + 7y - 2z = -1$.

4.17 Example: Find an implicit equation for the tangent line to the curve given by $2\sqrt{y+x^2} + \ln(y-x^2) = 6$ at the point $(2, 5)$.

Solution: Let $g(x, y) = 2\sqrt{y+x^2} + \ln(y-x^2)$ and note that $g(2, 5) = 2\sqrt{9} + \ln 1 = 6$. We have $\frac{\partial g}{\partial x}(x, y) = \frac{2x}{\sqrt{y+x^2}} - \frac{2x}{y-x^2}$ and $\frac{\partial g}{\partial y}(x, y) = \frac{1}{\sqrt{y+x^2}} + \frac{1}{y-x^2}$ so that $\frac{\partial g}{\partial x}(2, 5) = \frac{4}{3} - \frac{4}{1} = -\frac{8}{3}$ and $\frac{\partial g}{\partial y}(2, 5) = \frac{1}{3} + \frac{1}{1} = \frac{4}{3}$, so the tangent line at $(2, 5)$ is given by $-\frac{8}{3}(x-2) + \frac{4}{3}(y-5) = 0$ or, equivalently, by $2(x-2) = (y-5)$ or by $y = 2x + 1$.

4.18 Example: Find a parametric equation for the tangent line to the curve of intersection of the paraboloid $z = 2 - x^2 - y^2$ with the cone $y = \sqrt{x^2 + z^2}$ at the point $p = (1, 1, 0)$.

Solution: Note that the paraboloid is given by $x^2 + y^2 + z = 2$ and the cone is given by $x^2 - y^2 + z^2 = 0$, with $y \geq 0$. Let $u(x, y, z) = x^2 + y^2 + z$ and $v(x, y, z) = x^2 - y^2 + z^2$ and let $g(x, y, z) = (u(x, y, z), v(x, y, z))^T$ so that the curve of intersection is given implicitly by $g(x, y, z) = (2, 0)^T$. Note that $g(1, 1, 0) = (2, 0)^T$ and

$$\begin{aligned}Dg(x, y, z) &= \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \end{pmatrix} = \begin{pmatrix} 2x & 2y & 1 \\ 2x & -2y & 2z \end{pmatrix} \\ Dg(1, 1, 0) &= \begin{pmatrix} 2 & 2 & 1 \\ 2 & -2 & 0 \end{pmatrix}\end{aligned}$$

The tangent line at $(1, 1, 0)$ is given implicitly by $Dg(1, 1, 0)(x-1, y-1, z)^T = (0, 0)^T$ that is

$$\begin{pmatrix} 2 & 2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} x-1 \\ y-1 \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This is equivalent to the pair of equations $2(x-1) + 2(y-1) + z = 0$ and $2(x-1) - 2(y-1) = 0$. We remark that these are the equations of the tangent planes to the two given surfaces at $(1, 1, 0)$. The two equations are equivalent to $2x + 2y + z = 4$ and $x - y = 0$. We let $y = t$, then the second equation gives $x = y = t$, and the first equation gives $z = 4 - 2x - 2y = 4 - 4t$, so the line is given parametrically by $(x, y, z) = (0, 0, 4) + t(1, 1, -4)$.

4.19 Exercise: Find an explicit equation for the tangent plane to the surface given by $(x, y, z) = (r \cos t, r \sin t, \frac{3}{1+r^2})$ at the point where $(r, t) = (\sqrt{2}, \frac{\pi}{4})$.

4.20 Theorem: (The Chain Rule) Let $f : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^m$, let $g : V \subseteq \mathbb{R}^m \rightarrow \mathbb{R}^l$, and let $h(x) = g(f(x))$. If f is differentiable at a and g is differentiable at $f(a)$ then h is differentiable at a and $Dh(a) = Dg(f(a))Df(a)$.

Proof: A proof will be given in the next chapter.

4.21 Exercise: Let $z = f(x, y) = 4x^2 - 8xy + 5y^2$, $(u, v) = g(z) = (\sqrt{z-1}, 5 \ln z)$ and $h(x, y) = g(f(x, y))$. Find $Dh(2, 1)$.

4.22 Exercise: Let $(x, y) = f(r, \theta) = (r \cos \theta, r \sin \theta)$, let $z = g(x, y)$ and let $z = h(r, \theta) = g(f(r, \theta))$. If $h(r, \theta) = r^2 e^{\sqrt{3}(\theta - \frac{\pi}{6})}$ then find $\nabla g(\sqrt{3}, 1)$.

4.23 Exercise: Let $(x, y, z) = f(s, t)$ and $(u, v) = g(x, y, z)$. Find a formula for $\frac{\partial u}{\partial t}$.

4.24 Definition: Let $a \in U$ where U is an open set in \mathbb{R}^n , let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ be differentiable at a , and let $v \in \mathbb{R}^n$. We define the **directional derivative of f at a with respect to v** , written as $D_v f(a)$, as follows: pick any differentiable curve $\alpha(t)$ with $\alpha(0) = a$ and $\alpha'(0) = v$ (for example, we could pick $\alpha(t) = a + v t$), and define $D_v f(a)$ to be the rate of change of the function f at $t = 0$ as we move along the curve α . To be precise, let $\beta(t) = f(\alpha(t))$, note that $\beta'(t) = Df(\alpha(t))\alpha'(t)$, and then define $D_v f(a)$ to be

$$\begin{aligned} D_v f(a) &= \beta'(0) \\ &= Df(\alpha(0))\alpha'(0) \\ &= Df(a)v \\ &= \nabla f(a) \cdot v. \end{aligned}$$

Notice that the formula for $D_v f(a)$ does not depend on the choice of the curve $\alpha(t)$. The (directional) **derivative of f in the direction of v** is defined to be $D_w f(a)$ where w is the unit vector in the direction of v , that is $w = \frac{v}{\|v\|}$.

4.25 Exercise: Let $f(x, y, z) = x \sin(y^2 - 2xz)$ and let $\alpha(t) = (\sqrt{t}, \frac{1}{2}t, e^{(t-4)/4})$. Find the rate of change of f as we move along the curve $\alpha(t)$ when $t = 4$.

4.26 Theorem: Let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ be differentiable at $a \in U$. Say $f(a) = b$. The gradient $\nabla f(a)$ is perpendicular to the level set $f(x) = b$, it is in the direction in which f increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: The proof will be given in the next chapter.

4.27 Note: Let $a \in U$ where U is an open set in \mathbb{R}^n , and let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be differentiable. The k^{th} column vector of the derivative matrix $Df(a)$ is the vector

$$f_{x_k}(a) = \frac{\partial f}{\partial x_k}(a) = \left(\frac{\partial f_1}{\partial x_k}(a), \dots, \frac{\partial f_m}{\partial x_k}(a) \right)^T \in \mathbb{R}^m,$$

which is the tangent vector to the curve $\beta_k(t) = f(\alpha_k(t))$ at $t = 0$, where α_k is the curve through a in the direction of the standard basis vector e_k given by $\alpha_k(t) = a + t e_k$.

The ℓ^{th} column vector of the derivative matrix $Df(a)$ is the vector

$$\nabla f_\ell(a) = \left(\frac{\partial f_\ell}{\partial x_1}(a), \dots, \frac{\partial f_\ell}{\partial x_n}(a) \right)^T$$

which is orthogonal to the level set $f_\ell(x) = f_\ell(a)$, and points in the direction in which f_ℓ increases most rapidly, and its length is the rate of increase of f_ℓ in that direction.