MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 8

0 2 4
:(a) Let A= | 2 =3 2 |. Find an orthogonal matrix P and a diagonal matrix D such that P'AP = D.
4 2 0
Solution: The characteristic polynomial of A is
—x 2 4
falx)=| 2 =3—z 2
4 2 -z

= —2%(x +3) + 16 + 16 + 42 + 4z + 16(z + 3)
= —(2® +32% — 242 — 80) = —(z — 5)(2® + 8z + 16) = —(x — 5)(x + 4)*

so the eigenvalues are A\; = 5 and Ao = A3 = —4. When A = A\; = 5 we have

~5 2 4 ~5 2 4 1 -4 1 1 -4 1 1 0 -1
A-X=[2-8 2|~|1 -4 1|~[0-18 9|~|0 1 —5]|~|0 1—3
4 2 -5 4 2 -5 0 18 -9 0 17 -9 0 0 O
2 v 2

so we can take v; = [ 1 | so that {v1} is a basis for the eigenspace Ej5, then let u; = ﬁ = % 1 |. Since
2 v 2

A is symmetric, we know that its eigenspaces are orthogonal so we have F_4 = Est. To find a basis for E_4
we can, by inspection, choose a unit vector us which is orthogonal to u; and then choose u3 = u; X ug. We

~1 2 ~1 1
choose uy = % 0 | and ug = 3—\1@ 11 x| 0| = ﬁ —4 | . Thus we can orthogonally diagonalize A
1 2 1
2 1 1
3. V2 32 5 0 0
using P = (ul,ug,u;;) = % 0 —ﬁ and D = diag(A,A2,03) = 0 -4 0
2 1 1 0 0 —4
3 V2 32

_(5+i —6
(b)LetA—( 9 _9ii

Solution: The characteristic polynomial of A is

|G+ -2 6
fale) = 2 (—2+1i) —

= 2% — (3+2i)z + (=11 + 3i) + 12 = 2 — (3 + 2i)x + (1 + 3i).

). Find a unitary matrix P and an upper-triangular matrix 7" so that P"AP = T.

The eigenvalues are

(342i)£/(5+12i) — (4+12i) (3+2i) 1
2 N 2
say Ay =2+4 and Ay =1+44. When A = A\; =2+ i we have

3 -6 1 -2
A_M_<2 4)”(0 o)

so we can take v; = (?) so that {v1} is a basis for F),. By inspection, the vector vy = o

A=

=244, 144

21 is orthogonal
. v 2 v —1 .
to v1. Normalize these vectors to get u; = ‘—1| = % (1> and ug = |—2| = % (2) so that {u1,us} is an
U1 (%)

orthonormal basis for C2. Thus we can take

2 —1
P_(Ul,UQ)_\}B(l 2),and

2 1 5+1 —6 2 -1
— p* — 1
rerar=(5 ) (%3 2%) (0 2)

(2 1\ (442 —1T—i\ _, (1045 —40 \ _[2+i -8
"ol 2)\ 240 —6+2i) 0  5+45i) 0 1+4i)"

(S
at|=



2: For 0 # u € R® and 0 € R, let R, 5 : R® — R3 denote the rotation about the vector u by the angle 6 (where
the direction of rotation is determined by the right-hand rule: the right thumb points in the direction of u
and the fingers curl in the direction of rotation).

(a) Let u = (1,1, —1)T and let § = 7. Find A = [Ru)g]s where S is the standard basis for R3.

Solution: Let v = (0, 1,1)T and w = (1,0, 1)T. Let Y = {u,v,w} and let B = [Ruyg]u. Note that v and w
are othogonal to u with |[v| = |w| = v/2 and v x w = u, and we have 0(v,w) = cos =cos'i=12
Thus R, ¢(u) = u, Ryg(v) =w and R, g(w) = w — v, and so

—1lvew
[v]w]

3

1 0 O

B=[Rusl,=[0 0-1

01 1
We have A = PBP~! where P is the change of basis matrix P = [I]Z = (u1,us,us). We calculate P!
10021 L 1L
1 0 11 0 O 10 1{1 00 10 111 0 O 3 3 73
1 10/010]~(01-1-110f|~{01-1]-1 1 0f~|f010-L 2 1
—1 1 110 0 1 01 271 01 00 3]2-11 001%_%%

Thus



2 3 -6
(b)Let B=|-3 6 2 |.Findc>0,0#u€R?and0<6 < such that B= [cRyp].
6 2 3

Solution: First, let us find the eigenvalues of the rotation R, g, where 0 # u € R? and 6§ € R. Let uy = ﬁ

u

and extend {u;} to an orthonormal basis U = {ul, Us, U3} for R3. Writing R = R, p, we have

1 0 0
[R]u =10 cosf —sinf
0 sinf cos@
and so
1—1t 0 0
frR®)=| 0 cosO—t —sinf |=(1—1t)((cosf—1t)*>+sint)
0 sin 6 cosf —t

= (1—1t)(cos?0 —2cosft +t* +sin® ) = —(t — 1)(t> — 2cos Ot + 1)
=—t-1)(t—e?)(t—e"Y).
Thus the eigenvalues of R = R, 4 are 1,e¥%%. Tt follows that for ¢ > 0, the eigenvalues of cR are c,ce™*?.
Now let us find the eigenvalues of B. We have

2—-t 3 -6
ft)=|B—tl|=|-3 6-t 2
6 23—t

=(2-t)(18 =9t +t3) +364+36 —4(2—t) + 9(3 — t) + 36(6 — 1)
=36—36t+ 111> — 13 +72 — 84 4t + 27 — 9t + 216 — 36 ¢
= (=112 + 77t — 343) = —(t — 7)(t* — 4t + 49)

+i6

so the eigenvalues of B are A = 7 or A = 4£V16-4-49 W = 24+ +/=45 = 2+ 3v/5i. Thus in order to have
B = [c Ruyg] with ¢ > 0 and 0 < 0 < 7, we must have ¢ = 7 and 0 = cos™! % To find the required vector u,
we find a basis for the eigenspace E7. We have

—5 3 —6 1 5 —10 1 5 —10 1 5 -10 1 0 0
B-"=|-3-1 2 ]|~|-3-1 2 ~10 14-28~(0 1 -2 ]~10 1-2
6 2 —4 0 0 0 0 0 0 0 0 O 0 0 0

so a basis for E7 is given by {u} where u = i(O, 2, 1)T. We still need to take some care in our choice of the
vector u. If we chose u = (0,2, I)T, v = (0771,2)T, w = (\/5,(),0)T so that U = {u,v,w} is a positively

oriented orthogonal basis with |u| = |v| = |w|, then we would have
2 3 -6 0 0 5 0 —15 2v5 70 0
B(u,v,w) = |-3 6 2 2 -1 0 |=(14 -2 =35 | =(wv,w) [0 2 35
6 2 3 1 2 0 7 4 6V5 0 —-3v5 2

so that B = [c R%_@}, which is not quite what we need. Instead we must choose u = (0, -2, —1)T (or some
positive multiple of that) in order to get B = [c Ruﬂ}.



3: Find a singular value decomposition Q*AP = S for the matrix A = € Myx2(R).

L, (6 2
wan(52).

6—x 2
2 3—x

_ O N =
— = o

Solution: We have

The characteristic polynomial of A*A is

=2 —9r+ 14 =(t—-T7)(t—2)

faca(z) =|A*A—zl| = ‘

so the eigenvalues of A*A are \; = 7, A2 = 2, and hence the singular values of A are o; = \ﬁ, 09 = \/§, SO
we can take

o 0 VT 0
g_ |0 2| _| O V2
0 0 0 0
0 0 0 0

When A = A\; = 7 we have
N (-1 2 1 -2
AA—AI_<2_4> (0 0)

SO Uy = % ? is a unit eigenvector for A\;. The eigenspace for Ao is orthogonal so us = % ( 9 ) is a unit

eigenvector for Ao, and so we can take

2 _ 1
P:<U1,UQ): <\{5 \2/5> .

V5 V5
11 3 11 1
_ Auyp 1 2 0 2 _ 1 4 _ Aus __ 1 20 -1 _ 1 -2
Nextlet =50 =777% o 1] \1) Tvm | 1] ™ 2= =05 0 1) 2) =m0 | 2
11 3 11 1

then extend {v1,v2} to an orthonormal basis V = {v1, va, v3,v4} for R, We have

3413'\/17221 17221N1011
1-2 2 1 0 10 =5 0 0 1 -2 0 0 1-% 0
So the orthogonal complement of Span{vy, v} has basis {(—1, 0,0,1)7, (02,1, 2, O)T}. We apply the Gram-
Schmidt Procedure, replacing the second vector in the basis by
(_2a 1, QaO)T - %(_1,0707 1)T = (_17 13 27 _1)T ;

\%7(—1, 1,2, —1)T. Thus we can take

\:—‘
o
o
=
H
®
=
a
<
'y
|

and then we normalize to obtain vz = %(—

Q= (U1702703,U4) =

ot ot [S28 ot

-2y
E‘»—' o o E‘»—t

S Sl S g



4: Let A € M,(C). Let A\, \a, -+, A\, be the eigenvalues of A (listed with repetition according to algebraic

multiplicity). Show that the following are equivalent.
1. AA* = A*A.

2. A* = f(A) for some polynomial f.

3. A* = AP for some unitary matrix P.

4.3 4 =S Il
i.j i

Solution: First we show that 1 <= 2. Suppose first that A*A = A A*. Choose a unitary matrix P so that
P*AP = D = diag(A1, -+, A1, A2, -+, Ao, -, A, -+, A ) where Ay, .-+, Ay are the distinct eigenvalues of A.
Note that A = P DP* and A* = P D*P* and that D* = D. Let f be the polynomial of degree at most k
such that f()\;) = \; fori =1,2,--- k. Note that f(D) = D, so we have
f(A) = f(PDP*) = Pf(D) P* = PD P* = PD*P* = A*.

Conversely, for any square matrix A and any polynomial f, it is clear that A commutes with f(A), indeed if
f(z) =" cia® then we have Af(A) = cp A¥*t = f(A)A. Thus if A* = f(A) then A commutes with A*.

Next we show that 1 <= 3. Suppose first that A A* = A*A. Choose a unitary matrix ¢ so that
Q*AQ = D = diag(A1,- -, \,) where Aq,---, A, are the eigenvalues of A (listed with repetition according
to multiplicity). Note that A = QDQ* and A* = QD*Q*. For k = 1,2,---,n, let ry = |X\g| and choose
0x € [0,27) so that A\ = rpe’%. Let E = diag(e_”gl, . e‘i%“). Note that F is unitary and

DE = diag(rlei e 0”) diatg(e_iwl7 RN e_”("") = diag(rle_wl, e ,rne_w") =D".
Let P = QEQ*. Then P is unitary and
AP =QDQ*QEQ* = QDEQ" =QD*Q* = A*.
Conversely, suppose that A* = AP where P is unitary. Then we have
A" =AP = A"P*" = APP"=A— (A"P*)" = A" = PA=A".

Thus A*A = (AP)A = A(PA) = AA*.

Finally we show that 1 <= 4. Suppose first that AA* = A*A. Choose a unitary matrix P so that
P*AP = D = diag(\1, -+, \n). Recall that similar matrices have the same trace. Note that A*A is similar

to D*D since D*D = PA*P*PAP* = PA*AP*. Using the standard inner product (A, B) = trace(B*A), we
have

> A ;P = Al = trace(A* A) = trace(D*D) = [D|> = > |A;[*.
1,7 7
Conversely, suppose that A*A # AA*. Choose a unitary matrix P so that P*AP = T is upper triangular

with diagonal entries T;; = A;. Since A*A # AA*, we know that T is not diagonal, so we have T} ; # 0 for
some k < [. Then

D AP =IAP = TP =) 1Ty < Tl + ) |Tal® = Teal® + )0 Il < Y 1Ml
1,7 % %

i<j i



5: A matrix A € M,,«,(C) is called Hermitian positive-definite when A* = A and the eigenvalues of A are all
positive. Let H,(C) denote the set of Hermitian positive-definite matrices in M, «,(C).

(a) Let A € H,(C). Show that if Q*AP = S is a singular value decomposition of A, then @ = P.

Solution: Let A\; > Xy > --- > A, be the eigenvalues of A*4, let o; = v/\; be the singular values of A,
let gy > po > -++ > pn > 0 be the eigenvalues of A, and let U = {uq, -, u,} be a corresponding basis of
eigenvectors of A. Since A is Hermitian (that is A* = A) and since Au; = p;u;, we have

and so each p;2 is an eigenvalue of A*A with eigenvector u;. Since A is positive semi-definite we must have
wi = VA = 0y, and so the eigenvalues of A are equal to the singular values of A, and A and A*A have the
same eigenvectors.

Let Q*AP = S, with S = diag(o1,--,0,) = diag(p1,- -+, n), be a singular value decomposition of A.
Let wy,---,w, be the columns of P and let W = {wy,---,w,}. Recall that W is a basis of eigenvectors
of A*A. Since A and A*A have the same eigenvectors, W is also a basis of eigenvectors of A, and so it
diagonalizes A, that is A = PSP*. Thus we have A = QSP* = PSP*. Multiply on the right by P and then
by 7! = diag(a%, e é) to get Q = P.

(b) Show that every element of H,,(C) has a unique square root in H,(C).

Solution: Let A € H,. Since A = A* we can unitarily diagonalize A. Choose a unitary matrix P so
that P*AP = D = diag{A1, -+, A\n} with Ay > Ay > -+ > X\, > 0 (we know the eigenvalues of A are
positive since A € H,). Let E = diag(v/A1,--+,v/A,) and note that E> = D. Let B = PEP*. Note that
B € H,(C) since B* = B and the eigenvalues of B are /A1, --,v/\, which are positive. Also note that
B? = (PEP*)? = PEP*PEP* = PEP* = A. Thus B is a square root of A in H,(C).

It remains to show that this square root is unique. Suppose that C € H,,(C) and C? = A. Since C* = C
we can unitarily diagonalize C. Choose a unitary matrix @ so that Q*CQ = F = diag(al7 e ,an) with
01>+ >0y, >0 (each o; > 0 since C € H,(C)) and let vy, -+, v, be the columns of Q. For each i we have

Aui = CQUi = C(Cul) = C(O’iui) = aiC’ui = O'iQUi

so the eigenvalues of C' are the square roots of the eigenvalues of A and each eigenvector of C' is also an
eigenvector for A. It follows that o; = \/A; for each i, and that {vy,---,v,} is both a basis of eigenvectors for
C and a basis of eigenvectors for A, so the matrices C and A have the same eigenvectors. Similarly the above
matrix B also has the same eigenvectors. It follows that the unitary matrix ¢ which we used to diagonalize
C can also be used to diagonalize B. Thus we have

Q*0Q = diag(v/A1,- -, V) = Q"BQ.
Multiplying on the left by @ and on the right by @Q* gives C' = B.

(c) Show that for every A € GL,(C) there exist unique R € H,(C) and © € U, (C) such that A = RO.

Solution: By the Singular Value Decomposition Theorem, we can choose unitary matrices P and @ so that
Q*AP = D = diag(o1,---,0,) with 01 > 09 > -+ > 0, > 0 (so the o; are the singular values of A, and they
are strictly positive since A is invertible). Then we have

A= PDQ* = PDP*PQ* = RO with R = PDP* and © = PQ*.

Note that © € U, (C) since ©*0 = (PQ*)*(PQ*) = QP*PQ* = QIQ* = QQ* = I, and R € H,(C) since
R* = (PDP*)* = PD*P* = PDP* = R and since R is similar to D so that the eigenvalues of R are the
singular values o; which are positive.

It remains to show that R and © are unique. Suppose that A = RO = S® where R, S € H,(C) and
0,® € U,(C). Note that R and S are invertible with R~! = ©A~! and S~! = ®A~!. Since RO = SP, we
have SR™! = ©®~!. Since O®~! is unitary, we see that R~1S is unitary, so we have

I=(R'S)(R'S)*=R'SS*R™" = R'S°R™!

Multiply on the left and right by R to get R? = S2. By the uniqueness of square roots proven in Part (b), we
have R = S. Since RO = S® and R = S with R and S invertible, we also have © = ®.



6: Let U be a finite-dimensional inner product space over R and let L : U — U be linear. Suppose L*L = L L*.
Show that there is an orthonormal basis U for U such that [L]y is in the block-diagonal form

AL

Ak
o ar by
[L]M B b

a; b
—bl ap

where each 1 x 1 block corresponds to a real eigenvalue A; of L, and each 2 x 2 block corresponds to a pair of

conjugate complex eigenvalues a; + 1 b;.
Solution 1: Choose a basis Uy for U and let A = [L] Yo € Mpxn(R). Since L*L = L L*, we have A*A = A A*

(since A is real, this is equivalent to ATA = A AT). We need to show that there exists a real orthogonal
matrix P such that P*A P is in the required block-diagonal form. Since A*A = A A*, we know that A can be
unitarily diagonalized over C. Choose an orthonormal basis of complex eigenvectors for C", say

{Ulv"'7vl€7w17"'awlaZ17“'azm}

where each v; is a complex eigenvector for a real eigenvalue \;, each w, is a complex eigenvector for a complex
eigenvalue aq + 1 b, with b, > 0, and each zg is a complex eigenvector for a complex eigenvalue ag — i bg with
bg > 0. We make several preliminary remarks.

First we remark that the eigenvectors v; can be chosen to be real vectors. This is because for a real
eigenvalue A\, when we use our standard procedure to find a basis for the eigenspace E) = Null(A — A\I) by
reducing the matrix A— AI, we obtain a basis of real vectors, and when we apply the Gram Schmidt procedure,
the vectors remain real.

Next we remark that we must have m = [ because the characteristic polynomial f4 is a real polynomial,
so each complex root ;= a + i b occurs with the same algebraic multiplicity as its conjugate 7 = a —ib. and
since A is diagonalizable, the geometric and algebraic multiplicities are equal, so dim E) = dim E5.

Finally, we remark that we can choose to have z, = w, for each oo = 1,---,[. To see this, suppose that
{w1,--+,w,} is an orthonormal basis for the eigenspace of y = a + ib. We claim that {wy,---,w,} is an
orthonormal basis for the eigenspace of . Since Aw, = Aw, = W, = I W,, We see that each w, does lie in
the eigenspace Ep. Since (Wa,Ws) = (Wa, W) = 0,3 = 0a,3, We see that {wy,---,w,} is orthonormal. Since
dim E,, = dim Ey, it follows that {wi,---,w,} is an orthonormal basis for Fy, as claimed.

From these remarks, it follows that we can choose an orthonormal basis of complex eigenvectors

{vlv Cey Uk, W1, Wy 7wlaml}
for C” such that each v; is a real eigenvector for a real eigenvalue \; and each w,, is a complex eigenvector for

a complex eigenvalue u, = a + a + i b, with b, > 0.
For each a =1, .-, k, write wy, = o + 1 yo With x4, yo € R™. Let

V= {Ulv"‘7Uk7\/§x17\/§y1;"'7\/§x’n3\/§yn}

and let P be the matrix whose columns are the vectors in V. We claim that V is orthonormal, or equivalently
that P*P = I, and that P*A P is of the required block-diagonal form.

First let us show that P*A P is of the required form. Since Av; = \;v; for 1 < i < k, it follows that the
first k£ columns of A are of the required form. For 1 < « <, since Aw,, = ptqw, we have

A('Ta + iya) = (aa +7;b0¢)(xa +Zya) = (aaxa - baya) + i(aaya + baxot) N
Equating real and imaginary parts gives
ATy = @aTa — baYa , AYa = baTa + baYa -
After scaling by v/2 we see that the remaining columns of P*A P also have the required form.

Finally, it remains to show that V' is orthonormal. Since (v;,v;) = d; 5, we have v; « v; = (v;,v;) = J; ;.
Since (v, wq) = 0 we have 0 = (v;,wa) = V; * Wy = Vi * (T — 1Ya) = Vj * To, — LV; * Yo. Equating real
and imaginary parts gives v; » To = vU; * Yo = 0. Since (wqs,Ws) = 0 we have 0 = (Wq, Wa) = Wq * Wo =
(Tatiya) * (Tati¥a) = (Ta * Ta—Ya * Ya)+2i (Za * Yo ). Equating real and imaginary parts gives 24, * Yo = 0
and [z4]? = |ya|?. Since (wa,wa) =1 we also have |z4|? + |yo|? = 1, and so we have |z4[> = |ya|* = 3
hence [vV2z,[2 = |[V2y.|> = 1. Finally, since (w,,wg) = 0 = (w,,Ws), a similar calculation shows that
xa'xB:xa'yB:ya'xB:ya'yB:(l



Solution 2: Choose an orthonormal basis Uy for U and let A = [L] u € M, wn(R). Since L*L = L L* we have
A*A = A A*. We must show that A can be put into the required block-diagonal form using an orthogonal

change of basis. We shall use induction on n. When n = 1, A is in diagonal form. Let n = 2, say A = (a b ) .

c d
oa (a4 ab+cd . [a*+b ac+bd i A A Ax
Note thatAA-(alH_cd B4 2 and A A* = ac+bd 24a? ) the condition that A*A =AA

gives a? + ¢ = a® + b? so that ¢ = £b, and ab + cd = ac + bd so that (a — d)(b— c) = 0. Thus either ¢ = b, in

which case A is symmetric and hence orthogonally diagonalizable, or ¢ = —b and a = d, in which case A is in
a b
the form A = (—b d>'

Let n > 3, suppose, inductively, that for 1 < k < n every k x k matrix B can be put into the required block-
diagonal form using an orthogonal change of basis, and let A € M,,x,(R) with A*A = A A*. Suppose first
that A has a real eigenvalue A1, and let u; be a corresponding unit eigenvector. Note that since A*A = A A*,
we have Aup = Mug <= A*up = g (see Theorem 6.15 in section 6.4 of the text). Extend {u;} to an
orthonormal basis {uy, -, u,} for R® and let P = (uy,---,up) € Myxn(R). Consider the matrix P*A P.
For j > 1 we have

(P*AP)L1 =u1 Aug = ur" Aur = M (ug cu1) = M
(P*A P)j71 =u;"Auyp = u; " Muy = M (ug - uy) =0
(P*AP)L]. = ul*A’LL]' = (A*ul)*uj = (Xlul)*uj = )\1(Uj . ul) =0

and so the matrix P*A P is in the form
A1 O
P*AP=
( 0 B )
where By = (ug, -, un)*A(uy, -+, u,). Since A commutes with its adjoint (or transpose) it follows that
P*A P commutes with its adjoint, and hence B; commutes with its adjoint. By the induction hypothesis, we
can put B into the required block diagonal form.

Now suppose that A does not have any real eigenvalues. Let A = a+14b be a complex eigenvalue of A and
let w =z 4 iy be a corresponding complex eigenvector, where x,y € R™. Since Aw = Aw we have

Alx+iy) = (a+ib)(x +iy) = (ax — by) + i(ay + bx) .
Equating the real and imaginary parts gives
Az =ax — by, Ay=ay+bx.
Also, since A*A = A A* we have A*w = \w, so A*(x +iy) = (a —ib)(x +iy) = (ax + by) +i(ay — bx), hence
A'x =ax+by, A'y=ay—bx.

This shows that A and A* both map Span{z, y} to itself. We also note that {z, y} must be linearly independent,

since otherwise A would have a real eigenvector (indeed if say y = cx then we would have w = z+iy = z+icx =
(1+ic)x,sox= ﬁ w would be a real eigenvector) and hence A would have a real eigenvalue (indeed if we
had 0 # w € R™ then we would have Aw € R™ and so Aw = Aw would imply that A € R). Let {uy,us} be
an orthonormal basis for Span{z,y}. Extend {uj,us} to an orthonormal basis {uy,---,u,} for R™ and let
P=(uy, ,up) € Mpxn(R). Consider the matrix P*AP. Fori=1,2 and j = 3,4,---,n we have
(P*AP>J,71, = uj*Aui = (AUZ) U = 0
since Au; € Span{ui,us} and u; € Span{u,us}*, and

(P*A P)i,j = ui*Auj = (A*UZ)*UJ =Uuj; - (A*ui) =0

since A*u; € Span{uq,us} and u; € Span{u,, us}*. Thus we see that P*A P is in the form

e (A0
par- (4 9)

where Ay = (u1,u2)*A (u,u2) € Maxo(R) and By = (us,---,un)* A (us, -+, un) € Mp_9)x(n-2)(R). Note
that since A commutes with its adjoint, so do A; and B;. Since Aj is a 2 X 2 matrix with A*A = A A*, the
first paragraph shows that A is of the form A; = (C;)l 21 ) Since Bj is an (n — 2) x (n — 2) matrix with

01 ar
B1*By = By B1*, the induction hypothesis ensures that we can put B into the required block-diagonal form.



