

1: (a) Let $A = \begin{pmatrix} 0 & 2 & 4 \\ 2 & -3 & 2 \\ 4 & 2 & 0 \end{pmatrix}$. Find an orthogonal matrix P and a diagonal matrix D such that $P^TAP = D$.

Solution: The characteristic polynomial of A is

$$\begin{aligned} f_A(x) &= \begin{vmatrix} -x & 2 & 4 \\ 2 & -3-x & 2 \\ 4 & 2 & -x \end{vmatrix} \\ &= -x^2(x+3) + 16 + 16 + 4x + 4x + 16(x+3) \\ &= -(x^3 + 3x^2 - 24x - 80) = -(x-5)(x^2 + 8x + 16) = -(x-5)(x+4)^2 \end{aligned}$$

so the eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = \lambda_3 = -4$. When $\lambda = \lambda_1 = 5$ we have

$$A - \lambda I = \begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \sim \begin{pmatrix} -5 & 2 & 4 \\ 1 & -4 & 1 \\ 4 & 2 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & -4 & 1 \\ 0 & -18 & 9 \\ 0 & 18 & -9 \end{pmatrix} \sim \begin{pmatrix} 1 & -4 & 1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 17 & -9 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

so we can take $v_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ so that $\{v_1\}$ is a basis for the eigenspace E_5 , then let $u_1 = \frac{v_1}{|v_1|} = \frac{1}{3} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$. Since

A is symmetric, we know that its eigenspaces are orthogonal so we have $E_{-4} = E_5^\perp$. To find a basis for E_{-4} we can, by inspection, choose a unit vector u_2 which is orthogonal to u_1 and then choose $u_3 = u_1 \times u_2$. We

choose $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $u_3 = \frac{1}{3\sqrt{2}} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{3\sqrt{2}} \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}$. Thus we can orthogonally diagonalize A

using $P = (u_1, u_2, u_3) = \begin{pmatrix} \frac{2}{3} & -\frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ \frac{1}{3} & 0 & -\frac{4}{3\sqrt{2}} \\ \frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{pmatrix}$ and $D = \text{diag}(\lambda_1, \lambda_2, \lambda_3) = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix}$.

(b) Let $A = \begin{pmatrix} 5+i & -6 \\ 2 & -2+i \end{pmatrix}$. Find a unitary matrix P and an upper-triangular matrix T so that $P^*AP = T$.

Solution: The characteristic polynomial of A is

$$\begin{aligned} f_A(x) &= \begin{vmatrix} (5+i)-x & -6 \\ 2 & (-2+i)-x \end{vmatrix} \\ &= x^2 - (3+2i)x + (-11+3i) + 12 = x^2 - (3+2i)x + (1+3i). \end{aligned}$$

The eigenvalues are

$$\lambda = \frac{(3+2i) \pm \sqrt{(5+12i) - (4+12i)}}{2} = \frac{(3+2i) \pm 1}{2} = 2+i, 1+i.$$

say $\lambda_1 = 2+i$ and $\lambda_2 = 1+i$. When $\lambda = \lambda_1 = 2+i$ we have

$$A - \lambda I = \begin{pmatrix} 3 & -6 \\ 2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$

so we can take $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ so that $\{v_1\}$ is a basis for E_{λ_1} . By inspection, the vector $v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ is orthogonal to v_1 . Normalize these vectors to get $u_1 = \frac{v_1}{|v_1|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $u_2 = \frac{v_2}{|v_2|} = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ so that $\{u_1, u_2\}$ is an orthonormal basis for \mathbb{C}^2 . Thus we can take

$$P = (u_1, u_2) = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}, \text{ and}$$

$$\begin{aligned} T &= P^*AP = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 5+i & -6 \\ 2 & -2+i \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \\ &= \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4+2i & -17-i \\ 2+i & -6+2i \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 10+5i & -40 \\ 0 & 5+5i \end{pmatrix} = \begin{pmatrix} 2+i & -8 \\ 0 & 1+i \end{pmatrix}. \end{aligned}$$

2: For $0 \neq u \in \mathbb{R}^3$ and $\theta \in \mathbb{R}$, let $R_{u,\theta} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ denote the rotation about the vector u by the angle θ (where the direction of rotation is determined by the right-hand rule: the right thumb points in the direction of u and the fingers curl in the direction of rotation).

(a) Let $u = (1, 1, -1)^T$ and let $\theta = \frac{\pi}{3}$. Find $A = [R_{u,\theta}]_{\mathcal{S}}$ where \mathcal{S} is the standard basis for \mathbb{R}^3 .

Solution: Let $v = (0, 1, 1)^T$ and $w = (1, 0, 1)^T$. Let $\mathcal{U} = \{u, v, w\}$ and let $B = [R_{u,\theta}]_{\mathcal{U}}$. Note that v and w are orthogonal to u with $|v| = |w| = \sqrt{2}$ and $v \times w = u$, and we have $\theta(v, w) = \cos^{-1} \frac{v \cdot w}{|v||w|} = \cos^{-1} \frac{1}{2} = \frac{\pi}{3}$.

Thus $R_{u,\theta}(u) = u$, $R_{u,\theta}(v) = w$ and $R_{u,\theta}(w) = v$, and so

$$B = [R_{u,\theta}]_{\mathcal{U}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}.$$

We have $A = PBP^{-1}$ where P is the change of basis matrix $P = [I]_{\mathcal{S}}^{\mathcal{U}} = (u_1, u_2, u_3)$. We calculate P^{-1} .

$$\left(\begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 3 & 2 & -1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \end{array} \right)$$

Thus

$$\begin{aligned} A &= PBP^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ -2 & 1 & -1 \\ 1 & 1 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -1 & 2 & -2 \\ -2 & 1 & 2 \end{pmatrix}. \end{aligned}$$

(b) Let $B = \begin{pmatrix} 2 & 3 & -6 \\ -3 & 6 & 2 \\ 6 & 2 & 3 \end{pmatrix}$. Find $c > 0$, $0 \neq u \in \mathbb{R}^3$ and $0 \leq \theta \leq \pi$ such that $B = [c R_{u,\theta}]$.

Solution: First, let us find the eigenvalues of the rotation $R_{u,\theta}$, where $0 \neq u \in \mathbb{R}^3$ and $\theta \in \mathbb{R}$. Let $u_1 = \frac{u}{\|u\|}$ and extend $\{u_1\}$ to an orthonormal basis $\mathcal{U} = \{u_1, u_2, u_3\}$ for \mathbb{R}^3 . Writing $R = R_{u,\theta}$, we have

$$[R]_{\mathcal{U}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

and so

$$\begin{aligned} f_R(t) &= \begin{vmatrix} 1-t & 0 & 0 \\ 0 & \cos \theta - t & -\sin \theta \\ 0 & \sin \theta & \cos \theta - t \end{vmatrix} = (1-t)((\cos \theta - t)^2 + \sin^2 t) \\ &= (1-t)(\cos^2 \theta - 2\cos \theta t + t^2 + \sin^2 \theta) = -(t-1)(t^2 - 2\cos \theta t + 1) \\ &= -(t-1)(t - e^{i\theta})(t - e^{-i\theta}). \end{aligned}$$

Thus the eigenvalues of $R = R_{u,\theta}$ are $1, e^{\pm i\theta}$. It follows that for $c > 0$, the eigenvalues of cR are $c, ce^{\pm i\theta}$. Now let us find the eigenvalues of B . We have

$$\begin{aligned} f_B(t) &= |B - tI| = \begin{vmatrix} 2-t & 3 & -6 \\ -3 & 6-t & 2 \\ 6 & 2 & 3-t \end{vmatrix} \\ &= (2-t)(18-9t+t^2) + 36 + 36 - 4(2-t) + 9(3-t) + 36(6-t) \\ &= 36 - 36t + 11t^2 - t^3 + 72 - 8 + 4t + 27 - 9t + 216 - 36t \\ &= -(t^3 - 11t^2 + 77t - 343) = -(t-7)(t^2 - 4t + 49) \end{aligned}$$

so the eigenvalues of B are $\lambda = 7$ or $\lambda = \frac{4 \pm \sqrt{16-4 \cdot 49}}{2} = 2 \pm \sqrt{-45} = 2 \pm 3\sqrt{5}i$. Thus in order to have $B = [c R_{u,\theta}]$ with $c > 0$ and $0 \leq \theta \leq \pi$, we must have $c = 7$ and $\theta = \cos^{-1} \frac{2}{7}$. To find the required vector u , we find a basis for the eigenspace E_7 . We have

$$B - 7I = \begin{pmatrix} -5 & 3 & -6 \\ -3 & -1 & 2 \\ 6 & 2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -10 \\ -3 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -10 \\ 0 & 14 & -28 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -10 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

so a basis for E_7 is given by $\{u\}$ where $u = \pm(0, 2, 1)^T$. We still need to take some care in our choice of the vector u . If we chose $u = (0, 2, 1)^T$, $v = (0, -1, 2)^T$, $w = (\sqrt{5}, 0, 0)^T$ so that $\mathcal{U} = \{u, v, w\}$ is a positively oriented orthogonal basis with $|u| = |v| = |w|$, then we would have

$$B(u, v, w) = \begin{pmatrix} 2 & 3 & -6 \\ -3 & 6 & 2 \\ 6 & 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 & \sqrt{5} \\ 2 & -1 & 0 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -15 & 2\sqrt{5} \\ 14 & -2 & -3\sqrt{5} \\ 7 & 4 & 6\sqrt{5} \end{pmatrix} = (u, v, w) \begin{pmatrix} 7 & 0 & 0 \\ 0 & 2 & 3\sqrt{5} \\ 0 & -3\sqrt{5} & 2 \end{pmatrix}$$

so that $B = [c R_{u,-\theta}]$, which is not quite what we need. Instead we must choose $u = (0, -2, -1)^T$ (or some positive multiple of that) in order to get $B = [c R_{u,\theta}]$.

3: Find a singular value decomposition $Q^*AP = S$ for the matrix $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \in M_{4 \times 2}(\mathbb{R})$.

Solution: We have

$$A^*A = \begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}.$$

The characteristic polynomial of A^*A is

$$f_{A^*A}(x) = |A^*A - xI| = \begin{vmatrix} 6-x & 2 \\ 2 & 3-x \end{vmatrix} = x^2 - 9x + 14 = (t-7)(t-2)$$

so the eigenvalues of A^*A are $\lambda_1 = 7$, $\lambda_2 = 2$, and hence the singular values of A are $\sigma_1 = \sqrt{7}$, $\sigma_2 = \sqrt{2}$, so we can take

$$S = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{7} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

When $\lambda = \lambda_1 = 7$ we have

$$A^*A - \lambda I = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$

so $u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is a unit eigenvector for λ_1 . The eigenspace for λ_2 is orthogonal so $u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ is a unit eigenvector for λ_2 , and so we can take

$$P = (u_1, u_2) = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}.$$

Next let $v_1 = \frac{Au_1}{\sigma_1} = \frac{1}{\sqrt{7}\sqrt{5}} \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{35}} \begin{pmatrix} 3 \\ 4 \\ 1 \\ 3 \end{pmatrix}$ and $v_2 = \frac{Au_2}{\sigma_2} = \frac{1}{\sqrt{2}\sqrt{5}} \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -2 \\ 2 \\ 1 \end{pmatrix}$

then extend $\{v_1, v_2\}$ to an orthonormal basis $\mathcal{V} = \{v_1, v_2, v_3, v_4\}$ for \mathbb{R}^4 . We have

$$\begin{pmatrix} 3 & 4 & 1 & 3 \\ 1 & -2 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & 10 & -5 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & 1 & -\frac{1}{2} & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -\frac{1}{2} & 0 \end{pmatrix}$$

So the orthogonal complement of $\text{Span}\{v_1, v_2\}$ has basis $\{(-1, 0, 0, 1)^T, (0, 2, 1, 2, 0)^T\}$. We apply the Gram-Schmidt Procedure, replacing the second vector in the basis by

$$(-2, 1, 2, 0)^T - \frac{2}{2}(-1, 0, 0, 1)^T = (-1, 1, 2, -1)^T,$$

and then we normalize to obtain $v_3 = \frac{1}{\sqrt{2}}(-1, 0, 0, 1)^T$ and $v_4 = \frac{1}{\sqrt{7}}(-1, 1, 2, -1)^T$. Thus we can take

$$Q = (v_1, v_2, v_3, v_4) = \begin{pmatrix} \frac{3}{\sqrt{35}} & \frac{1}{\sqrt{10}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{7}} \\ \frac{4}{\sqrt{35}} & -\frac{2}{\sqrt{10}} & 0 & \frac{1}{\sqrt{7}} \\ \frac{1}{\sqrt{35}} & \frac{2}{\sqrt{10}} & 0 & \frac{2}{\sqrt{7}} \\ \frac{3}{\sqrt{35}} & \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{7}} \end{pmatrix}.$$

4: Let $A \in M_n(\mathbb{C})$. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of A (listed with repetition according to algebraic multiplicity). Show that the following are equivalent.

1. $AA^* = A^*A$.
2. $A^* = f(A)$ for some polynomial f .
3. $A^* = AP$ for some unitary matrix P .
4. $\sum_{i,j} |A_{i,j}|^2 = \sum_i |\lambda_i|^2$.

Solution: First we show that $1 \iff 2$. Suppose first that $A^*A = AA^*$. Choose a unitary matrix P so that $P^*AP = D = \text{diag}(\lambda_1, \dots, \lambda_1, \lambda_2, \dots, \lambda_2, \dots, \lambda_k, \dots, \lambda_k)$ where $\lambda_1, \dots, \lambda_k$ are the distinct eigenvalues of A . Note that $A = PDP^*$ and $A^* = P D^* P^*$ and that $D^* = \overline{D}$. Let f be the polynomial of degree at most k such that $f(\lambda_i) = \overline{\lambda_i}$ for $i = 1, 2, \dots, k$. Note that $f(D) = \overline{D}$, so we have

$$f(A) = f(PDP^*) = Pf(D)P^* = P\overline{D}P^* = PD^*P^* = A^*.$$

Conversely, for any square matrix A and any polynomial f , it is clear that A commutes with $f(A)$, indeed if $f(x) = \sum c_k x^k$ then we have $Af(A) = \sum c_k A^{k+1} = f(A)A$. Thus if $A^* = f(A)$ then A commutes with A^* .

Next we show that $1 \iff 3$. Suppose first that $AA^* = A^*A$. Choose a unitary matrix Q so that $Q^*AQ = D = \text{diag}(\lambda_1, \dots, \lambda_n)$ where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of A (listed with repetition according to multiplicity). Note that $A = QDQ^*$ and $A^* = QD^*Q^*$. For $k = 1, 2, \dots, n$, let $r_k = |\lambda_k|$ and choose $\theta_k \in [0, 2\pi)$ so that $\lambda_k = r_k e^{i\theta_k}$. Let $E = \text{diag}(e^{-i2\theta_1}, \dots, e^{-i2\theta_n})$. Note that E is unitary and

$$DE = \text{diag}(r_1 e^{i\theta_1}, \dots, r_n e^{i\theta_n}) \text{diag}(e^{-i2\theta_1}, \dots, e^{-i2\theta_n}) = \text{diag}(r_1 e^{-i\theta_1}, \dots, r_n e^{-i\theta_n}) = D^*.$$

Let $P = QEQ^*$. Then P is unitary and

$$AP = QDQ^*QEQ^* = QDEQ^* = QD^*Q^* = A^*.$$

Conversely, suppose that $A^* = AP$ where P is unitary. Then we have

$$A^* = AP \implies A^*P^* = APP^* = A \implies (A^*P^*)^* = A^* \implies PA = A^*.$$

Thus $A^*A = (AP)A = A(PA) = AA^*$.

Finally we show that $1 \iff 4$. Suppose first that $AA^* = A^*A$. Choose a unitary matrix P so that $P^*AP = D = \text{diag}(\lambda_1, \dots, \lambda_n)$. Recall that similar matrices have the same trace. Note that A^*A is similar to D^*D since $D^*D = PA^*P^*PAP^* = PA^*AP^*$. Using the standard inner product $\langle A, B \rangle = \text{trace}(B^*A)$, we have

$$\sum_{i,j} |A_{i,j}|^2 = |A|^2 = \text{trace}(A^*A) = \text{trace}(D^*D) = |D|^2 = \sum_i |\lambda_i|^2.$$

Conversely, suppose that $A^*A \neq AA^*$. Choose a unitary matrix P so that $P^*AP = T$ is upper triangular with diagonal entries $T_{i,i} = \lambda_i$. Since $A^*A \neq AA^*$, we know that T is not diagonal, so we have $T_{k,l} \neq 0$ for some $k < l$. Then

$$\sum_{i,j} |A_{i,j}|^2 = |A|^2 = |T|^2 = \sum_{i \leq j} |T_{i,j}|^2 \leq |T_{k,l}|^2 + \sum_i |T_{i,i}|^2 = |T_{k,l}|^2 + \sum_i |\lambda_i|^2 < \sum_i |\lambda_i|^2.$$

5: A matrix $A \in M_{n \times n}(\mathbb{C})$ is called Hermitian positive-definite when $A^* = A$ and the eigenvalues of A are all positive. Let $H_n(\mathbb{C})$ denote the set of Hermitian positive-definite matrices in $M_{n \times n}(\mathbb{C})$.

(a) Let $A \in H_n(\mathbb{C})$. Show that if $Q^*AP = S$ is a singular value decomposition of A , then $Q = P$.

Solution: Let $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ be the eigenvalues of A^*A , let $\sigma_i = \sqrt{\lambda_i}$ be the singular values of A , let $\mu_1 \geq \mu_2 \geq \dots \geq \mu_n > 0$ be the eigenvalues of A , and let $\mathcal{U} = \{u_1, \dots, u_n\}$ be a corresponding basis of eigenvectors of A . Since A is Hermitian (that is $A^* = A$) and since $Au_i = \mu_i u_i$, we have

$$A^*Au_i = AAu_i = A\mu_i u_i = \mu_i Au_i = \mu_i^2 u_i$$

and so each μ_i^2 is an eigenvalue of A^*A with eigenvector u_i . Since A is positive semi-definite we must have $\mu_i = \sqrt{\lambda_i} = \sigma_i$, and so the eigenvalues of A are equal to the singular values of A , and A and A^*A have the same eigenvectors.

Let $Q^*AP = S$, with $S = \text{diag}(\sigma_1, \dots, \sigma_n) = \text{diag}(\mu_1, \dots, \mu_n)$, be a singular value decomposition of A . Let w_1, \dots, w_n be the columns of P and let $\mathcal{W} = \{w_1, \dots, w_n\}$. Recall that \mathcal{W} is a basis of eigenvectors of A^*A . Since A and A^*A have the same eigenvectors, \mathcal{W} is also a basis of eigenvectors of A , and so it diagonalizes A , that is $A = PSP^*$. Thus we have $A = QSP^* = PSP^*$. Multiply on the right by P and then by $S^{-1} = \text{diag}(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_n})$ to get $Q = P$.

(b) Show that every element of $H_n(\mathbb{C})$ has a unique square root in $H_n(\mathbb{C})$.

Solution: Let $A \in H_n$. Since $A = A^*$ we can unitarily diagonalize A . Choose a unitary matrix P so that $P^*AP = D = \text{diag}\{\lambda_1, \dots, \lambda_n\}$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n > 0$ (we know the eigenvalues of A are positive since $A \in H_n$). Let $E = \text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$ and note that $E^2 = D$. Let $B = PEP^*$. Note that $B \in H_n(\mathbb{C})$ since $B^* = B$ and the eigenvalues of B are $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}$ which are positive. Also note that $B^2 = (PEP^*)^2 = PEP^*PEP^* = PEP^* = A$. Thus B is a square root of A in $H_n(\mathbb{C})$.

It remains to show that this square root is unique. Suppose that $C \in H_n(\mathbb{C})$ and $C^2 = A$. Since $C^* = C$ we can unitarily diagonalize C . Choose a unitary matrix Q so that $Q^*CQ = F = \text{diag}(\sigma_1, \dots, \sigma_n)$ with $\sigma_1 \geq \dots \geq \sigma_n > 0$ (each $\sigma_i > 0$ since $C \in H_n(\mathbb{C})$) and let v_1, \dots, v_n be the columns of Q . For each i we have

$$Au_i = C^2 u_i = C(Cu_i) = C(\sigma_i u_i) = \sigma_i Cu_i = \sigma_i^2 u_i$$

so the eigenvalues of C are the square roots of the eigenvalues of A and each eigenvector of C is also an eigenvector for A . It follows that $\sigma_i = \sqrt{\lambda_i}$ for each i , and that $\{v_1, \dots, v_n\}$ is both a basis of eigenvectors for C and a basis of eigenvectors for A , so the matrices C and A have the same eigenvectors. Similarly the above matrix B also has the same eigenvectors. It follows that the unitary matrix Q which we used to diagonalize C can also be used to diagonalize B . Thus we have

$$Q^*CQ = \text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) = Q^*BQ.$$

Multiplying on the left by Q and on the right by Q^* gives $C = B$.

(c) Show that for every $A \in GL_n(\mathbb{C})$ there exist unique $R \in H_n(\mathbb{C})$ and $\Theta \in U_n(\mathbb{C})$ such that $A = R\Theta$.

Solution: By the Singular Value Decomposition Theorem, we can choose unitary matrices P and Q so that $Q^*AP = D = \text{diag}(\sigma_1, \dots, \sigma_n)$ with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$ (so the σ_i are the singular values of A , and they are strictly positive since A is invertible). Then we have

$$A = PDQ^* = PDP^*PQ^* = R\Theta \text{ with } R = PDP^* \text{ and } \Theta = PQ^*.$$

Note that $\Theta \in U_n(\mathbb{C})$ since $\Theta^*\Theta = (PQ^*)^*(PQ^*) = QP^*PQ^* = QIQ^* = QQ^* = I$, and $R \in H_n(\mathbb{C})$ since $R^* = (PDP^*)^* = PD^*P^* = PDP^* = R$ and since R is similar to D so that the eigenvalues of R are the singular values σ_i which are positive.

It remains to show that R and Θ are unique. Suppose that $A = R\Theta = S\Phi$ where $R, S \in H_n(\mathbb{C})$ and $\Theta, \Phi \in U_n(\mathbb{C})$. Note that R and S are invertible with $R^{-1} = \Theta A^{-1}$ and $S^{-1} = \Phi A^{-1}$. Since $R\Theta = S\Phi$, we have $SR^{-1} = \Theta\Phi^{-1}$. Since $\Theta\Phi^{-1}$ is unitary, we see that $R^{-1}S$ is unitary, so we have

$$I = (R^{-1}S)(R^{-1}S)^* = R^{-1}SS^*R^{-1*} = R^{-1}S^2R^{-1}$$

Multiply on the left and right by R to get $R^2 = S^2$. By the uniqueness of square roots proven in Part (b), we have $R = S$. Since $R\Theta = S\Phi$ and $R = S$ with R and S invertible, we also have $\Theta = \Phi$.

6: Let U be a finite-dimensional inner product space over \mathbb{R} and let $L : U \rightarrow U$ be linear. Suppose $L^*L = L L^*$. Show that there is an orthonormal basis \mathcal{U} for U such that $[L]_{\mathcal{U}}$ is in the block-diagonal form

$$[L]_{\mathcal{U}} = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & \\ & & \lambda_k & & \\ & & & a_1 & b_1 \\ & & & -b_1 & a_1 \\ & & & & \ddots \\ & & & & a_l & b_l \\ & & & & -b_l & a_l \end{pmatrix}$$

where each 1×1 block corresponds to a real eigenvalue λ_j of L , and each 2×2 block corresponds to a pair of conjugate complex eigenvalues $a_j \pm i b_j$.

Solution 1: Choose a basis \mathcal{U}_0 for U and let $A = [L]_{\mathcal{U}_0} \in M_{n \times n}(\mathbb{R})$. Since $L^*L = L L^*$, we have $A^*A = A A^*$ (since A is real, this is equivalent to $A^T A = A A^T$). We need to show that there exists a real orthogonal matrix P such that $P^* A P$ is in the required block-diagonal form. Since $A^*A = A A^*$, we know that A can be unitarily diagonalized over \mathbb{C} . Choose an orthonormal basis of complex eigenvectors for \mathbb{C}^n , say

$$\{v_1, \dots, v_k, w_1, \dots, w_l, z_1, \dots, z_m\}$$

where each v_i is a complex eigenvector for a real eigenvalue λ_i , each w_α is a complex eigenvector for a complex eigenvalue $a_\alpha + i b_\alpha$ with $b_\alpha > 0$, and each z_β is a complex eigenvector for a complex eigenvalue $a_\beta - i b_\beta$ with $b_\beta > 0$. We make several preliminary remarks.

First we remark that the eigenvectors v_i can be chosen to be real vectors. This is because for a real eigenvalue λ , when we use our standard procedure to find a basis for the eigenspace $E_\lambda = \text{Null}(A - \lambda I)$ by reducing the matrix $A - \lambda I$, we obtain a basis of real vectors, and when we apply the Gram Schmidt procedure, the vectors remain real.

Next we remark that we must have $m = l$ because the characteristic polynomial f_A is a real polynomial, so each complex root $\mu = a + i b$ occurs with the same algebraic multiplicity as its conjugate $\bar{\mu} = a - i b$. and since A is diagonalizable, the geometric and algebraic multiplicities are equal, so $\dim E_\lambda = \dim E_{\bar{\lambda}}$.

Finally, we remark that we can choose to have $z_\alpha = \bar{w}_\alpha$ for each $\alpha = 1, \dots, l$. To see this, suppose that $\{w_1, \dots, w_r\}$ is an orthonormal basis for the eigenspace of $\mu = a + i b$. We claim that $\{\bar{w}_1, \dots, \bar{w}_r\}$ is an orthonormal basis for the eigenspace of $\bar{\mu}$. Since $A\bar{w}_\alpha = Aw_\alpha = \bar{\mu}w_\alpha = \bar{\mu}\bar{w}_\alpha$, we see that each \bar{w}_α does lie in the eigenspace $E_{\bar{\mu}}$. Since $\langle \bar{w}_\alpha, \bar{w}_\beta \rangle = \langle w_\alpha, w_\beta \rangle = \bar{\delta}_{\alpha,\beta} = \delta_{\alpha,\beta}$, we see that $\{\bar{w}_1, \dots, \bar{w}_r\}$ is orthonormal. Since $\dim E_\mu = \dim E_{\bar{\mu}}$, it follows that $\{\bar{w}_1, \dots, \bar{w}_r\}$ is an orthonormal basis for $E_{\bar{\mu}}$, as claimed.

From these remarks, it follows that we can choose an orthonormal basis of complex eigenvectors

$$\{v_1, \dots, v_k, w_1, \bar{w}_1, \dots, w_l, \bar{w}_l\}$$

for \mathbb{C}^n such that each v_i is a real eigenvector for a real eigenvalue λ_i and each w_α is a complex eigenvector for a complex eigenvalue $\mu_\alpha = a + \alpha + i b_\alpha$ with $b_\alpha > 0$.

For each $\alpha = 1, \dots, k$, write $w_\alpha = x_\alpha + i y_\alpha$ with $x_\alpha, y_\alpha \in \mathbb{R}^n$. Let

$$\mathcal{V} = \{v_1, \dots, v_k, \sqrt{2}x_1, \sqrt{2}y_1, \dots, \sqrt{2}x_n, \sqrt{2}y_n\}$$

and let P be the matrix whose columns are the vectors in \mathcal{V} . We claim that \mathcal{V} is orthonormal, or equivalently that $P^*P = I$, and that $P^* A P$ is of the required block-diagonal form.

First let us show that $P^* A P$ is of the required form. Since $A v_i = \lambda_i v_i$ for $1 \leq i \leq k$, it follows that the first k columns of A are of the required form. For $1 \leq \alpha \leq l$, since $A w_\alpha = \mu_\alpha w_\alpha$ we have

$$A(x_\alpha + i y_\alpha) = (a_\alpha + i b_\alpha)(x_\alpha + i y_\alpha) = (a_\alpha x_\alpha - b_\alpha y_\alpha) + i(a_\alpha y_\alpha + b_\alpha x_\alpha).$$

Equating real and imaginary parts gives

$$Ax_\alpha = a_\alpha x_\alpha - b_\alpha y_\alpha, \quad Ay_\alpha = b_\alpha x_\alpha + a_\alpha y_\alpha.$$

After scaling by $\sqrt{2}$ we see that the remaining columns of $P^* A P$ also have the required form.

Finally, it remains to show that \mathcal{V} is orthonormal. Since $\langle v_i, v_j \rangle = \delta_{i,j}$, we have $v_i \cdot v_j = \langle v_i, v_j \rangle = \delta_{i,j}$. Since $\langle v_i, w_\alpha \rangle = 0$ we have $0 = \langle v_i, w_\alpha \rangle = v_i \cdot \bar{w}_\alpha = v_i \cdot (x_\alpha - i y_\alpha) = v_i \cdot x_\alpha - i v_i \cdot y_\alpha$. Equating real and imaginary parts gives $v_i \cdot x_\alpha = v_i \cdot y_\alpha = 0$. Since $\langle w_\alpha, \bar{w}_\alpha \rangle = 0$ we have $0 = \langle w_\alpha, \bar{w}_\alpha \rangle = w_\alpha \cdot w_\alpha = (x_\alpha + i y_\alpha) \cdot (x_\alpha - i y_\alpha) = (x_\alpha \cdot x_\alpha - y_\alpha \cdot y_\alpha) + 2i(x_\alpha \cdot y_\alpha)$. Equating real and imaginary parts gives $x_\alpha \cdot y_\alpha = 0$ and $|x_\alpha|^2 = |y_\alpha|^2$. Since $\langle w_\alpha, w_\alpha \rangle = 1$ we also have $|x_\alpha|^2 + |y_\alpha|^2 = 1$, and so we have $|x_\alpha|^2 = |y_\alpha|^2 = \frac{1}{2}$ and hence $|\sqrt{2}x_\alpha|^2 = |\sqrt{2}y_\alpha|^2 = 1$. Finally, since $\langle w_\alpha, w_\beta \rangle = 0 = \langle w_\alpha, \bar{w}_\beta \rangle$, a similar calculation shows that $x_\alpha \cdot x_\beta = x_\alpha \cdot y_\beta = y_\alpha \cdot x_\beta = y_\alpha \cdot y_\beta = 0$.

Solution 2: Choose an orthonormal basis \mathcal{U}_0 for U and let $A = [L]_{\mathcal{U}_0} \in M_{n \times n}(\mathbb{R})$. Since $L^*L = LL^*$ we have $A^*A = AA^*$. We must show that A can be put into the required block-diagonal form using an orthogonal change of basis. We shall use induction on n . When $n = 1$, A is in diagonal form. Let $n = 2$, say $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Note that $A^*A = \begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix}$ and $AA^* = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}$, so the condition that $A^*A = AA^*$ gives $a^2 + c^2 = a^2 + b^2$ so that $c = \pm b$, and $ab + cd = ac + bd$ so that $(a - d)(b - c) = 0$. Thus either $c = b$, in which case A is symmetric and hence orthogonally diagonalizable, or $c = -b$ and $a = d$, in which case A is in the form $A = \begin{pmatrix} a & b \\ -b & d \end{pmatrix}$.

Let $n \geq 3$, suppose, inductively, that for $1 \leq k < n$ every $k \times k$ matrix B can be put into the required block-diagonal form using an orthogonal change of basis, and let $A \in M_{n \times n}(\mathbb{R})$ with $A^*A = AA^*$. Suppose first that A has a real eigenvalue λ_1 , and let u_1 be a corresponding unit eigenvector. Note that since $A^*A = AA^*$, we have $Au_1 = \lambda_1 u_1 \iff A^*u_1 = \bar{\lambda}_1 u_1$ (see Theorem 6.15 in section 6.4 of the text). Extend $\{u_1\}$ to an orthonormal basis $\{u_1, \dots, u_n\}$ for \mathbb{R}^n , and let $P = (u_1, \dots, u_n) \in M_{n \times n}(\mathbb{R})$. Consider the matrix P^*AP . For $j \geq 1$ we have

$$\begin{aligned} (P^*AP)_{1,1} &= u_1^*Au_1 = u_1^*\lambda_1 u_1 = \lambda_1(u_1 \cdot u_1) = \lambda_1 \\ (P^*AP)_{j,1} &= u_j^*Au_1 = u_j^*\lambda_1 u_1 = \lambda_1(u_1 \cdot u_j) = 0 \\ (P^*AP)_{1,j} &= u_1^*Au_j = (A^*u_1)^*u_j = (\bar{\lambda}_1 u_1)^*u_j = \lambda_1(u_j \cdot u_1) = 0 \end{aligned}$$

and so the matrix P^*AP is in the form

$$P^*AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & B_1 \end{pmatrix}$$

where $B_1 = (u_2, \dots, u_n)^*A(u_1, \dots, u_n)$. Since A commutes with its adjoint (or transpose) it follows that P^*AP commutes with its adjoint, and hence B_1 commutes with its adjoint. By the induction hypothesis, we can put B_1 into the required block diagonal form.

Now suppose that A does not have any real eigenvalues. Let $\lambda = a + ib$ be a complex eigenvalue of A and let $w = x + iy$ be a corresponding complex eigenvector, where $x, y \in \mathbb{R}^n$. Since $Aw = \lambda w$ we have

$$A(x + iy) = (a + ib)(x + iy) = (ax - by) + i(ay + bx).$$

Equating the real and imaginary parts gives

$$Ax = ax - by, \quad Ay = ay + bx.$$

Also, since $A^*A = AA^*$ we have $A^*w = \bar{\lambda}w$, so $A^*(x + iy) = (a - ib)(x + iy) = (ax + by) + i(ay - bx)$, hence

$$A^*x = ax + by, \quad A^*y = ay - bx.$$

This shows that A and A^* both map $\text{Span}\{x, y\}$ to itself. We also note that $\{x, y\}$ must be linearly independent, since otherwise A would have a real eigenvector (indeed if say $y = cx$ then we would have $w = x + iy = x + i cx = (1 + ic)x$, so $x = \frac{1}{1+ic}w$ would be a real eigenvector) and hence A would have a real eigenvalue (indeed if we had $0 \neq w \in \mathbb{R}^n$ then we would have $Aw \in \mathbb{R}^n$ and so $Aw = \lambda w$ would imply that $\lambda \in \mathbb{R}$). Let $\{u_1, u_2\}$ be an orthonormal basis for $\text{Span}\{x, y\}$. Extend $\{u_1, u_2\}$ to an orthonormal basis $\{u_1, \dots, u_n\}$ for \mathbb{R}^n and let $P = (u_1, \dots, u_n) \in M_{n \times n}(\mathbb{R})$. Consider the matrix P^*AP . For $i = 1, 2$ and $j = 3, 4, \dots, n$ we have

$$(P^*AP)_{j,i} = u_j^*Au_i = (Au_i) \cdot u_j = 0$$

since $Au_i \in \text{Span}\{u_1, u_2\}$ and $u_j \in \text{Span}\{u_1, u_2\}^\perp$, and

$$(P^*AP)_{i,j} = u_i^*Au_j = (A^*u_i)^*u_j = u_j \cdot (A^*u_i) = 0$$

since $A^*u_i \in \text{Span}\{u_1, u_2\}$ and $u_j \in \text{Span}\{u_1, u_2\}^\perp$. Thus we see that P^*AP is in the form

$$P^*AP = \begin{pmatrix} A_1 & 0 \\ 0 & B_1 \end{pmatrix}$$

where $A_1 = (u_1, u_2)^*A(u_1, u_2) \in M_{2 \times 2}(\mathbb{R})$ and $B_1 = (u_3, \dots, u_n)^*A(u_3, \dots, u_n) \in M_{(n-2) \times (n-2)}(\mathbb{R})$. Note that since A commutes with its adjoint, so do A_1 and B_1 . Since A_1 is a 2×2 matrix with $A^*A = AA^*$, the first paragraph shows that A is of the form $A_1 = \begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix}$. Since B_1 is an $(n-2) \times (n-2)$ matrix with $B_1^*B_1 = B_1 B_1^*$, the induction hypothesis ensures that we can put B_1 into the required block-diagonal form.