
MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 8

1: (a) Let A =

 0 2 4
2 −3 2
4 2 0

. Find an orthogonal matrix P and a diagonal matrix D such that P
T
AP = D.

Solution: The characteristic polynomial of A is

fA(x) =

∣∣∣∣∣∣
−x 2 4

2 −3− x 2
4 2 −x

∣∣∣∣∣∣
= −x2(x+ 3) + 16 + 16 + 4x+ 4x+ 16(x+ 3)

= −(x3 + 3x2 − 24x− 80) = −(x− 5)(x2 + 8x+ 16) = −(x− 5)(x+ 4)2

so the eigenvalues are λ1 = 5 and λ2 = λ3 = −4. When λ = λ1 = 5 we have

A− λI =

−5 2 4
2 −8 2
4 2 −5

 ∼
−5 2 4

1 −4 1
4 2 −5

 ∼
 1 −4 1

0 −18 9
0 18 −9

 ∼
 1 −4 1

0 1 − 1
2

0 17 −9

 ∼
 1 0 −1

0 1 − 1
2

0 0 0


so we can take v1 =

 2
1
2

 so that {v1} is a basis for the eigenspace E5, then let u1 =
v1
|v1|

= 1
3

 2
1
2

. Since

A is symmetric, we know that its eigenspaces are orthogonal so we have E−4 = E5
⊥. To find a basis for E−4

we can, by inspection, choose a unit vector u2 which is orthogonal to u1 and then choose u3 = u1 × u2. We

choose u2 = 1√
2

−1
0
1

 and u3 = 1
3
√
2

 2
1
2

×
−1

0
1

 = 1
3
√
2

 1
−4

1

 . Thus we can orthogonally diagonalize A

using P =
(
u1, u2, u3

)
=


2
3 −

1√
2

1
3
√
2

1
3 0 − 4

3
√
2

2
3

1√
2

1
3
√
2

 and D = diag(λ1, λ2, λ3) =

 5 0 0
0 −4 0
0 0 −4

.

(b) Let A =

(
5 + i −6

2 −2 + i

)
. Find a unitary matrix P and an upper-triangular matrix T so that P

∗
AP = T .

Solution: The characteristic polynomial of A is

fA(x) =

∣∣∣∣ (5 + i)− x −6
2 (−2 + i)− x

∣∣∣∣
= x2 − (3 + 2i)x+ (−11 + 3i) + 12 = x2 − (3 + 2i)x+ (1 + 3i).

The eigenvalues are

λ =
(3 + 2i)±

√
(5 + 12i)− (4 + 12i)

2
=

(3 + 2i)± 1

2
= 2 + i , 1 + i.

say λ1 = 2 + i and λ2 = 1 + i. When λ = λ1 = 2 + i we have

A− λI =

(
3 −6
2 −4

)
∼
(

1 −2
0 0

)
so we can take v1 =

(
2
1

)
so that {v1} is a basis for Eλ1

. By inspection, the vector v2 =

(
−1

2

)
is orthogonal

to v1. Normalize these vectors to get u1 =
v1
|v1|

= 1√
5

(
2
1

)
and u2 =

v2
|v2|

= 1√
5

(
−1

2

)
so that {u1, u2} is an

orthonormal basis for C2. Thus we can take

P =
(
u1, u2

)
= 1√

5

(
2 −1
1 2

)
, and

T = P ∗AP = 1
5

(
2 1
−1 2

)(
5 + i −6

2 −2 + i

)(
2 −1
1 2

)
= 1

5

(
2 1
−1 2

)(
4 + 2i −17− i
2 + i −6 + 2i

)
= 1

5

(
10 + 5i −40

0 5 + 5i

)
=

(
2 + i −8

0 1 + i

)
.



2: For 0 6= u ∈ R3 and θ ∈ R, let Ru,θ : R3 → R3 denote the rotation about the vector u by the angle θ (where
the direction of rotation is determined by the right-hand rule: the right thumb points in the direction of u
and the fingers curl in the direction of rotation).

(a) Let u =
(
1, 1,−1

)T
and let θ = π

3 . Find A =
[
Ru,θ

]
S where S is the standard basis for R3.

Solution: Let v =
(
0, 1, 1

)T
and w =

(
1, 0, 1

)T
. Let U = {u, v, w} and let B =

[
Ru,θ

]
U . Note that v and w

are othogonal to u with |v| = |w| =
√

2 and v × w = u, and we have θ(v, w) = cos−1 v.w
|v||w| = cos−1 1

2 = π
3 .

Thus Ru,θ(u) = u, Ru,θ(v) = w and Ru,θ(w) = w − v, and so

B =
[
Ru,θ

]
U =

 1 0 0
0 0 −1
0 1 1

 .

We have A = PBP−1 where P is the change of basis matrix P =
[
I
]U
S =

(
u1, u2, u3

)
. We calculate P−1. 1 0 1

1 1 0
−1 1 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 ∼
 1 0 1

0 1 −1
0 1 2

∣∣∣∣∣∣
1 0 0
−1 1 0

1 0 1

 ∼
 1 0 1

0 1 −1
0 0 3

∣∣∣∣∣∣
1 0 0
−1 1 0

2 −1 1

 ∼
 1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
1
3

1
3 −

1
3

− 1
3

2
3

1
3

2
3 −

1
3

1
3


Thus

A = PBP−1 =
1

3

 1 0 1
1 1 0
−1 1 1

 1 0 0
0 0 −1
0 1 1

 1 1 −1
−1 2 1

2 −1 1


=

1

3

 1 0 1
1 1 0
−1 1 1

 1 1 −1
−2 1 −1

1 1 2

 =
1

3

 2 2 1
−1 2 −2
−2 1 2

 .



(b) Let B =

 2 3 −6
−3 6 2

6 2 3

. Find c > 0, 0 6= u ∈ R3 and 0 ≤ θ ≤ π such that B =
[
cRu,θ

]
.

Solution: First, let us find the eigenvalues of the rotation Ru,θ, where 0 6= u ∈ R3 and θ ∈ R. Let u1 = u
|u|

and extend {u1} to an orthonormal basis U =
{
u1, u2, u3

}
for R3. Writing R = Ru,θ, we have

[
R
]
U =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and so

fR(t) =

∣∣∣∣∣∣
1− t 0 0

0 cos θ − t − sin θ
0 sin θ cos θ − t

∣∣∣∣∣∣ = (1− t)
(
(cos θ − t)2 + sin2 t

)
= (1− t)(cos2 θ − 2 cos θ t+ t2 + sin2 θ) = −(t− 1)(t2 − 2 cos θ t+ 1)

= −(t− 1)
(
t− ei θ

)(
t− e−i θ

)
.

Thus the eigenvalues of R = Ru,θ are 1, e±i θ. It follows that for c > 0, the eigenvalues of cR are c, c e±i θ.
Now let us find the eigenvalues of B. We have

fB(t) =
∣∣B − tI∣∣ =

∣∣∣∣∣∣
2− t 3 −6
−3 6− t 2

6 2 3− t

∣∣∣∣∣∣
= (2− t)(18− 9t+ t2) + 36 + 36− 4(2− t) + 9(3− t) + 36(6− t)
= 36− 36 t+ 11 t2 − t3 + 72− 8 + 4t+ 27− 9t+ 216− 36 t

= −(t3 − 11 t2 + 77 t− 343) = −(t− 7)(t2 − 4t+ 49)

so the eigenvalues of B are λ = 7 or λ = 4±
√
16−4·49
2 = 2 ±

√
−45 = 2 ± 3

√
5 i . Thus in order to have

B =
[
cRu,θ

]
with c > 0 and 0 ≤ θ ≤ π, we must have c = 7 and θ = cos−1 2

7 . To find the required vector u,
we find a basis for the eigenspace E7. We have

B − 7I =

−5 3 −6
−3 −1 2

6 2 −4

 ∼
 1 5 −10
−3 −1 2

0 0 0

 ∼
 1 5 −10

0 14 −28
0 0 0

 ∼
 1 5 −10

0 1 −2
0 0 0

 ∼
 1 0 0

0 1 −2
0 0 0


so a basis for E7 is given by {u} where u = ±

(
0, 2, 1

)T
. We still need to take some care in our choice of the

vector u. If we chose u =
(
0, 2, 1

)T
, v =

(
0,−1, 2

)T
, w =

(√
5, 0, 0

)T
so that U = {u, v, w} is a positively

oriented orthogonal basis with |u| = |v| = |w|, then we would have

B(u, v, w) =

 2 3 −6
−3 6 2

6 2 3

 0 0
√

5
2 −1 0
1 2 0

 =

 0 −15 2
√

5
14 −2 −3

√
5

7 4 6
√

5

 = (u, v, w)

 7 0 0
0 2 3

√
5

0 −3
√

5 2


so that B =

[
cRu,−θ

]
, which is not quite what we need. Instead we must choose u =

(
0,−2,−1

)T
(or some

positive multiple of that) in order to get B =
[
cRu,θ

]
.



3: Find a singular value decomposition Q∗AP = S for the matrix A =


1 1
2 0
0 1
1 1

 ∈M4×2(R).

Solution: We have

A∗A =

(
6 2
2 3

)
.

The characteristic polynomial of A∗A is

fA∗A(x) =
∣∣A∗A− xI∣∣ =

∣∣∣∣ 6− x 2
2 3− x

∣∣∣∣ = x2 − 9x+ 14 = (t− 7)(t− 2)

so the eigenvalues of A∗A are λ1 = 7, λ2 = 2, and hence the singular values of A are σ1 =
√

7, σ2 =
√

2, so
we can take

S =


σ1 0
0 σ2
0 0
0 0

 =


√

7 0
0
√

2
0 0
0 0

 .

When λ = λ1 = 7 we have

A∗A− λI =

(
−1 2

2 −4

)
∼
(

1 −2
0 0

)
so u1 = 1√

5

(
2
1

)
is a unit eigenvector for λ1. The eigenspace for λ2 is orthogonal so u2 = 1√

5

(
−1

2

)
is a unit

eigenvector for λ2, and so we can take

P =
(
u1, u2

)
=

(
2√
5
− 1√

5
1√
5

2√
5

)
.

Next let v1 = Au1

σ1
= 1√

7
√
5


1 1
2 0
0 1
1 1

( 2
1

)
= 1√

35


3
4
1
3

 and v2 = Au2

σ2
= 1√

2
√
5


1 1
2 0
0 1
1 1

(−1
2

)
= 1√

10


1
−2

2
1


then extend {v1, v2} to an orthonormal basis V = {v1, v2, v3, v4} for R4. We have(

3 4 1 3
1 −2 2 1

)
∼
(

1 −2 2 1
0 10 −5 0

)
∼
(

1 −2 2 1
0 1 − 1

2 0

)
∼
(

1 0 1 1
0 1 − 1

2 0

)
So the orthogonal complement of Span{v1, v2} has basis

{
(−1, 0, 0, 1)T , (02, 1, 2, 0)T

}
. We apply the Gram-

Schmidt Procedure, replacing the second vector in the basis by

(−2, 1, 2, 0)T − 2
2 (−1, 0, 0, 1)T = (−1, 1, 2,−1)T ,

and then we normalize to obtain v3 = 1√
2
(−1, 0, 0, 1)T and v4 = 1√

7
(−1, 1, 2,−1)T . Thus we can take

Q =
(
v1, v2, v3, v4

)
=


3√
35

1√
10
− 1√

2
− 1√

7

4√
35
− 2√

10
0 1√

7

1√
35

2√
10

0 2√
7

3√
35

1√
10

1√
2
− 1√

7

 .



4: Let A ∈ Mn(C). Let λ1, λ2, · · · , λn be the eigenvalues of A (listed with repetition according to algebraic
multiplicity). Show that the following are equivalent.

1. AA∗ = A∗A.
2. A∗ = f(A) for some polynomial f .
3. A∗ = AP for some unitary matrix P .

4.
∑
i,j

∣∣Ai,j∣∣2 =
∑
i

|λi|2.

Solution: First we show that 1 ⇐⇒ 2. Suppose first that A∗A = AA∗. Choose a unitary matrix P so that
P ∗AP = D = diag

(
λ1, · · · , λ1, λ2, · · · , λ2, · · · , λk, · · · , λk

)
where λ1, · · · , λk are the distinct eigenvalues of A.

Note that A = P DP ∗ and A∗ = P D∗P ∗ and that D∗ = D. Let f be the polynomial of degree at most k
such that f(λi) = λi for i = 1, 2, · · · , k. Note that f(D) = D, so we have

f(A) = f(PDP ∗) = Pf(D)P ∗ = P DP ∗ = PD∗P ∗ = A∗ .

Conversely, for any square matrix A and any polynomial f , it is clear that A commutes with f(A), indeed if
f(x) =

∑
ckx

k then we have Af(A) =
∑
ckA

k+1 = f(A)A. Thus if A∗ = f(A) then A commutes with A∗.
Next we show that 1 ⇐⇒ 3. Suppose first that AA∗ = A∗A. Choose a unitary matrix Q so that

Q∗AQ = D = diag(λ1, · · · , λn) where λ1, · · · , λn are the eigenvalues of A (listed with repetition according
to multiplicity). Note that A = QDQ∗ and A∗ = QD∗Q∗. For k = 1, 2, · · · , n, let rk = |λk| and choose
θk ∈ [0, 2π) so that λk = rke

i θk . Let E = diag
(
e−i 2θ1 , · · · , e−i 2θn

)
. Note that E is unitary and

DE = diag
(
r1e

i θ1 , · · · , rnei θn
)

diag
(
e−i 2θ1 , · · · , e−i 2θn

)
= diag

(
r1e
−iθ1 , · · · , rne−iθn

)
= D∗ .

Let P = QEQ∗. Then P is unitary and

AP = QDQ∗QEQ∗ = QDEQ∗ = QD∗Q∗ = A∗ .

Conversely, suppose that A∗ = AP where P is unitary. Then we have

A∗ = AP =⇒ A∗P ∗ = APP ∗ = A =⇒ (A∗P ∗)∗ = A∗ =⇒ PA = A∗ .

Thus A∗A = (AP )A = A(PA) = AA∗.
Finally we show that 1 ⇐⇒ 4. Suppose first that AA∗ = A∗A. Choose a unitary matrix P so that

P ∗AP = D = diag(λ1, · · · , λn). Recall that similar matrices have the same trace. Note that A∗A is similar
to D∗D since D∗D = PA∗P ∗PAP ∗ = PA∗AP ∗. Using the standard inner product 〈A,B〉 = trace(B∗A), we
have ∑

i,j

|Ai,j |2 = |A|2 = trace(A∗A) = trace(D∗D) = |D|2 =
∑
i

|λi|2 .

Conversely, suppose that A∗A 6= AA∗. Choose a unitary matrix P so that P ∗AP = T is upper triangular
with diagonal entries Ti,i = λi. Since A∗A 6= AA∗, we know that T is not diagonal, so we have Tk,l 6= 0 for
some k < l. Then∑

i,j

|Ai,j |2 = |A|2 = |T |2 =
∑
i≤j

|Ti,j |2 ≤ |Tk,l|2 +
∑
i

|Ti,i|2 = |Tk,l|2 +
∑
i

|λi|2 <
∑
i

|λi|2 .



5: A matrix A ∈ Mn×n(C) is called Hermitian positive-definite when A∗ = A and the eigenvalues of A are all
positive. Let Hn(C) denote the set of Hermitian positive-definite matrices in Mn×n(C).

(a) Let A ∈ Hn(C). Show that if Q∗AP = S is a singular value decomposition of A, then Q = P .

Solution: Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A∗A, let σi =
√
λi be the singular values of A,

let µ1 ≥ µ2 ≥ · · · ≥ µn > 0 be the eigenvalues of A, and let U = {u1, · · · , un} be a corresponding basis of
eigenvectors of A. Since A is Hermitian (that is A∗ = A) and since Aui = µiui, we have

A∗Aui = AAui = Aµiui = µiAui = µi
2ui

and so each µi
2 is an eigenvalue of A∗A with eigenvector ui. Since A is positive semi-definite we must have

µi =
√
λi = σi, and so the eigenvalues of A are equal to the singular values of A, and A and A∗A have the

same eigenvectors.
Let Q∗AP = S, with S = diag(σ1, · · · , σn) = diag(µ1, · · · , µn), be a singular value decomposition of A.

Let w1, · · · , wn be the columns of P and let W = {w1, · · · , wn}. Recall that W is a basis of eigenvectors
of A∗A. Since A and A∗A have the same eigenvectors, W is also a basis of eigenvectors of A, and so it
diagonalizes A, that is A = PSP ∗. Thus we have A = QSP ∗ = PSP ∗. Multiply on the right by P and then
by S−1 = diag

(
1
σ1
, · · · , 1

σn

)
to get Q = P .

(b) Show that every element of Hn(C) has a unique square root in Hn(C).

Solution: Let A ∈ Hn. Since A = A∗ we can unitarily diagonalize A. Choose a unitary matrix P so
that P ∗AP = D = diag{λ1, · · · , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn > 0 (we know the eigenvalues of A are
positive since A ∈ Hn). Let E = diag

(√
λ1, · · · ,

√
λn
)

and note that E2 = D. Let B = PEP ∗. Note that

B ∈ Hn(C) since B∗ = B and the eigenvalues of B are
√
λ1, · · · ,

√
λn which are positive. Also note that

B2 = (PEP ∗)2 = PEP ∗PEP ∗ = PEP ∗ = A. Thus B is a square root of A in Hn(C).
It remains to show that this square root is unique. Suppose that C ∈ Hn(C) and C2 = A. Since C∗ = C

we can unitarily diagonalize C. Choose a unitary matrix Q so that Q∗CQ = F = diag
(
σ1, · · · , σn

)
with

σ1 ≥ · · · ≥ σn > 0 (each σi > 0 since C ∈ Hn(C)) and let v1, · · · , vn be the columns of Q. For each i we have

Aui = C2ui = C(Cui) = C(σiui) = σiCui = σi
2ui

so the eigenvalues of C are the square roots of the eigenvalues of A and each eigenvector of C is also an
eigenvector for A. It follows that σi =

√
λi for each i, and that {v1, · · · , vn} is both a basis of eigenvectors for

C and a basis of eigenvectors for A, so the matrices C and A have the same eigenvectors. Similarly the above
matrix B also has the same eigenvectors. It follows that the unitary matrix Q which we used to diagonalize
C can also be used to diagonalize B. Thus we have

Q∗CQ = diag(
√
λ1, · · · ,

√
λn
)

= Q∗BQ .

Multiplying on the left by Q and on the right by Q∗ gives C = B.

(c) Show that for every A ∈ GLn(C) there exist unique R ∈ Hn(C) and Θ ∈ Un(C) such that A = RΘ.

Solution: By the Singular Value Decomposition Theorem, we can choose unitary matrices P and Q so that
Q∗AP = D = diag(σ1, · · · , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn > 0 (so the σi are the singular values of A, and they
are strictly positive since A is invertible). Then we have

A = PDQ∗ = PDP ∗PQ∗ = RΘ with R = PDP ∗ and Θ = PQ∗ .

Note that Θ ∈ Un(C) since Θ∗Θ = (PQ∗)∗(PQ∗) = QP ∗PQ∗ = QIQ∗ = QQ∗ = I, and R ∈ Hn(C) since
R∗ = (PDP ∗)∗ = PD∗P ∗ = PDP ∗ = R and since R is similar to D so that the eigenvalues of R are the
singular values σi which are positive.

It remains to show that R and Θ are unique. Suppose that A = RΘ = SΦ where R,S ∈ Hn(C) and
Θ,Φ ∈ Un(C). Note that R and S are invertible with R−1 = ΘA−1 and S−1 = ΦA−1. Since RΘ = SΦ, we
have SR−1 = ΘΦ−1. Since ΘΦ−1 is unitary, we see that R−1S is unitary, so we have

I = (R−1S)(R−1S)∗ = R−1SS∗R−1
∗

= R−1S2R−1

Multiply on the left and right by R to get R2 = S2. By the uniqueness of square roots proven in Part (b), we
have R = S. Since RΘ = SΦ and R = S with R and S invertible, we also have Θ = Φ.



6: Let U be a finite-dimensional inner product space over R and let L : U → U be linear. Suppose L∗L = LL∗.
Show that there is an orthonormal basis U for U such that [L]U is in the block-diagonal form

[L]U =



λ1
. . .

λk
a1 b1
−b1 a1

. . .

al bl
−bl al


where each 1× 1 block corresponds to a real eigenvalue λj of L, and each 2× 2 block corresponds to a pair of
conjugate complex eigenvalues aj ± i bj .
Solution 1: Choose a basis U0 for U and let A =

[
L
]
U0
∈Mn×n(R). Since L∗L = LL∗, we have A∗A = AA∗

(since A is real, this is equivalent to ATA = AAT ). We need to show that there exists a real orthogonal
matrix P such that P ∗AP is in the required block-diagonal form. Since A∗A = AA∗, we know that A can be
unitarily diagonalized over C. Choose an orthonormal basis of complex eigenvectors for Cn, say{

v1, · · · , vk, w1, · · · , wl, z1, · · · , zm
}

where each vi is a complex eigenvector for a real eigenvalue λi, each wα is a complex eigenvector for a complex
eigenvalue aα + i bα with bα > 0, and each zβ is a complex eigenvector for a complex eigenvalue aβ − i bβ with
bβ > 0. We make several preliminary remarks.

First we remark that the eigenvectors vi can be chosen to be real vectors. This is because for a real
eigenvalue λ, when we use our standard procedure to find a basis for the eigenspace Eλ = Null(A − λI) by
reducing the matrix A−λI, we obtain a basis of real vectors, and when we apply the Gram Schmidt procedure,
the vectors remain real.

Next we remark that we must have m = l because the characteristic polynomial fA is a real polynomial,
so each complex root µ = a+ i b occurs with the same algebraic multiplicity as its conjugate µ = a− i b. and
since A is diagonalizable, the geometric and algebraic multiplicities are equal, so dimEλ = dimEλ.

Finally, we remark that we can choose to have zα = wα for each α = 1, · · · , l. To see this, suppose that
{w1, · · · , wr} is an orthonormal basis for the eigenspace of µ = a + i b. We claim that {w1, · · · , wr} is an
orthonormal basis for the eigenspace of µ. Since Awα = Awα = µwα = µ wα, we see that each wα does lie in
the eigenspace Eµ. Since 〈wα, wβ〉 = 〈wα, wβ〉 = δα,β = δα,β , we see that {w1, · · · , wr} is orthonormal. Since
dimEµ = dimEµ, it follows that {w1, · · · , wr} is an orthonormal basis for Eµ, as claimed.

From these remarks, it follows that we can choose an orthonormal basis of complex eigenvectors{
v1, · · · , vk, w1, w1, · · · , wl, wl

}
for Cn such that each vi is a real eigenvector for a real eigenvalue λi and each wα is a complex eigenvector for
a complex eigenvalue µα = a+ α+ i bα with bα > 0.

For each α = 1, · · · , k, write wα = xα + i yα with xα, yα ∈ Rn. Let

V =
{
v1, · · · , vk,

√
2x1,

√
2 y1, · · · ,

√
2xn,

√
2 yn

}
and let P be the matrix whose columns are the vectors in V. We claim that V is orthonormal, or equivalently
that P ∗P = I, and that P ∗AP is of the required block-diagonal form.

First let us show that P ∗AP is of the required form. Since Avi = λivi for 1 ≤ i ≤ k, it follows that the
first k columns of A are of the required form. For 1 ≤ α ≤ l, since Awα = µαwα we have

A(xα + i yα) = (aα + i bα)(xα + i yα) = (aαxα − bαyα) + i(aαyα + bαxα) .

Equating real and imaginary parts gives

Axα = aαxα − bαyα , Ayα = bαxα + bαyα .

After scaling by
√

2 we see that the remaining columns of P ∗AP also have the required form.
Finally, it remains to show that V is orthonormal. Since 〈vi, vj〉 = δi,j , we have vi . vj = 〈vi, vj〉 = δi,j .

Since 〈vi, wα〉 = 0 we have 0 = 〈vi, wα〉 = vi .wα = vi . (xα − i yα) = vi .xα − i vi . yα. Equating real
and imaginary parts gives vi .xα = vi . yα = 0. Since 〈wα, wα〉 = 0 we have 0 = 〈wα, wα〉 = wα .wα =
(xα+i yα). (xα+i yα) = (xα .xα−yα . yα)+2i (xα . yα). Equating real and imaginary parts gives xα . yα = 0
and |xα|2 = |yα|2. Since 〈wα, wα〉 = 1 we also have |xα|2 + |yα|2 = 1, and so we have |xα|2 = |yα|2 = 1

2 and

hence |
√

2xα|2 = |
√

2 yα|2 = 1. Finally, since 〈wα, wβ〉 = 0 = 〈wα, wβ〉, a similar calculation shows that
xα .xβ = xα . yβ = yα .xβ = yα . yβ = 0.



Solution 2: Choose an orthonormal basis U0 for U and let A =
[
L
]
U0
∈Mn×n(R). Since L∗L = LL∗ we have

A∗A = AA∗. We must show that A can be put into the required block-diagonal form using an orthogonal

change of basis. We shall use induction on n. When n = 1, A is in diagonal form. Let n = 2, say A =

(
a b
c d

)
.

Note that A∗A =

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
and AA∗ =

(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
, so the condition that A∗A = AA∗

gives a2 + c2 = a2 + b2 so that c = ±b, and ab+ cd = ac+ bd so that (a− d)(b− c) = 0. Thus either c = b, in
which case A is symmetric and hence orthogonally diagonalizable, or c = −b and a = d, in which case A is in

the form A =

(
a b
−b d

)
.

Let n ≥ 3, suppose, inductively, that for 1 ≤ k < n every k×k matrix B can be put into the required block-
diagonal form using an orthogonal change of basis, and let A ∈ Mn×n(R) with A∗A = AA∗. Suppose first
that A has a real eigenvalue λ1, and let u1 be a corresponding unit eigenvector. Note that since A∗A = AA∗,
we have Au1 = λ1u1 ⇐⇒ A∗u1 = λu1 (see Theorem 6.15 in section 6.4 of the text). Extend {u1} to an
orthonormal basis {u1, · · · , un} for Rn, and let P = (u1, · · · , un) ∈ Mn×n(R). Consider the matrix P ∗AP .
For j ≥ 1 we have (

P ∗AP
)
1,1

= u1
∗Au1 = u1

∗λ1u1 = λ1(u1 .u1) = λ1(
P ∗AP

)
j,1

= uj
∗Au1 = uj

∗λ1u1 = λ1(u1 .uj) = 0(
P ∗AP

)
1,j

= u1
∗Auj = (A∗u1)∗uj = (λ1u1)∗uj = λ1(uj .u1) = 0

and so the matrix P ∗AP is in the form

P ∗AP =

(
λ1 0
0 B1

)
where B1 = (u2, · · · , un)∗A (u1, · · · , un). Since A commutes with its adjoint (or transpose) it follows that
P ∗AP commutes with its adjoint, and hence B1 commutes with its adjoint. By the induction hypothesis, we
can put B1 into the required block diagonal form.

Now suppose that A does not have any real eigenvalues. Let λ = a+ i b be a complex eigenvalue of A and
let w = x+ i y be a corresponding complex eigenvector, where x, y ∈ Rn. Since Aw = λw we have

A(x+ i y) = (a+ i b)(x+ i y) = (ax− by) + i(ay + bx) .

Equating the real and imaginary parts gives

Ax = ax− by , Ay = ay + bx .

Also, since A∗A = AA∗ we have A∗w = λw, so A∗(x+ i y) = (a− i b)(x+ i y) = (ax+ by) + i(ay− bx), hence

A∗x = ax+ by , A∗y = ay − bx .
This shows that A and A∗ both map Span{x, y} to itself. We also note that {x, y}must be linearly independent,
since otherwise A would have a real eigenvector (indeed if say y = cx then we would have w = x+i y = x+i cx =
(1 + ic)x, so x = 1

1+ic w would be a real eigenvector) and hence A would have a real eigenvalue (indeed if we
had 0 6= w ∈ Rn then we would have Aw ∈ Rn and so Aw = λw would imply that λ ∈ R). Let {u1, u2} be
an orthonormal basis for Span{x, y}. Extend {u1, u2} to an orthonormal basis {u1, · · · , un} for Rn and let
P = (u1, · · · , un) ∈Mn×n(R). Consider the matrix P ∗AP . For i = 1, 2 and j = 3, 4, · · · , n we have(

P ∗AP
)
j,i

= uj
∗Aui = (Aui).uj = 0

since Aui ∈ Span{u1, u2} and uj ∈ Span{u1, u2}⊥, and(
P ∗AP

)
i,j

= ui
∗Auj = (A∗ui)

∗uj = uj . (A∗ui) = 0

since A∗ui ∈ Span{u1, u2} and uj ∈ Span{u1, u2}⊥. Thus we see that P ∗AP is in the form

P ∗AP =

(
A1 0
0 B1

)
where A1 = (u1, u2)∗A (u1, u2) ∈ M2×2(R) and B1 = (u3, · · · , un)∗A (u3, · · · , un) ∈ M(n−2)×(n−2)(R). Note
that since A commutes with its adjoint, so do A1 and B1. Since A1 is a 2× 2 matrix with A∗A = AA∗, the

first paragraph shows that A is of the form A1 =

(
a1 b1
−b1 a1

)
. Since B1 is an (n − 2) × (n − 2) matrix with

B1
∗B1 = B1B1

∗, the induction hypothesis ensures that we can put B1 into the required block-diagonal form.


