
MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 7

1: Let F = R or C. Let W = F∞ with its standard inner product. Let U =
{
a = (a1, a2, · · ·) ∈ W

∣∣∣ ∞∑
k=1

ak = 0
}

.

Let S = {e1, e2, e3, · · ·} be the standard basis for W , where en = (en,1, en,2, en,3, · · ·) with en,k = δn,k.

(a) Recall that the annihilator of U in W ∗ is the vector space U0 =
{
f ∈ W ∗

∣∣f(a) = 0 for all a ∈ U
}

. Show
that dim(U0) = 1.

Solution: Define f : V → F by f(a) =
∞∑
k=1

ak. Note that f is well-defined since only finitely many of the terms

ak are non-zero, and f is linear, so we have f ∈ V ∗. We claim that U0 = Span{f}. For a = (a1, a2, · · ·) ∈ U ,

we have f(a) =
∞∑
k=1

ak = 0, so f ∈ U0 and hence Span{f} ⊂ U0. Conversely, let g ∈ U0 so that g(u) = 0 for

all u ∈ U . Notice that for all k = 1, 2, 3, · · · we have e1 − ek ∈ U , so 0 = g(e1 − ek) = g(e1)− g(ek), and hence
g(ek) = g(e1). For all a ∈ V , we have

g(a) = g
( ∞∑
k=1

akek
)

=
∞∑
k=1

ak g(ek) =
∞∑
k=1

ak g(e1) =
( ∞∑
k=1

ak
)
g(e1) = g(e1) f(a) .

Thus g = g(e1) f ∈ Span{f} and hence U0 ⊂ Span{f}.

(b) Let F =
{
f1, f2, f3, · · ·

}
where fn ∈ W ∗ is determined by fn(ek) = δn,k. Show that F is linearly

independent but does not span W ∗.

Solution: We claim that F is linearly independent. Suppose that some (finite) linear combination of the

elements of F is equal to zero, say
n∑

i=1

ci fi = 0. Then for every a ∈ V we have
n∑

i=1

ci fi(a) = 0, and in

particular for every k = 1, 2, 3, · · · we have 0 =
n∑

i=1

ci fi(ek) =
n∑

i=1

ci δi,k = ck. Thus F is linearly independent.

On the other hand, we claim that F does not span V ∗. Let f ∈ V ∗ be the map from part (b) given by

f(a) =
∞∑
k=1

ak. Notice that f cannot be equal to any (finite) linear combination of the elements of F , since for

g =
n∑

i=1

ci fi we have g(en+1) = 0 while f(en+1) = 1, so g 6= f . Thus F does not span V ∗.

(c) Define E : W →W ∗∗ by E(a)(f) = f(a), where a ∈W and f ∈W ∗. Show that E is 1:1 but not onto.

Solution: Note that E is linear, so to show that E is 1:1 it suffices to show that Null(E) = {0}. Let a ∈ Null(E)
so E(a) = 0. Then for all f ∈ V ∗ we have f(a) = E(a)(f) = 0. In particular, for all k = 1, 2, 3 · · · we have

0 = fk(a) = fk
( ∞∑
i=1

ai ei
)

=
∞∑
i=1

fk(ei) =
∞∑
i=1

ai δk,i = ak

and so a = 0.
We claim that E is not onto. Extend the linearly independent set F to a basis F ∪ G for V ∗ (where F

and G are disjoint). Let h : V ∗ → F be the (unique) linear map given by h(fk) = 1 for all k = 1, 2, 3, · · · and
h(g) = 0 for all g ∈ G. Notice that h cannot be in the range of E since given a = (a1, a2, · · ·) ∈ V we can
choose k so that ak = 0, and then we have E(a)(fk) = fk(a) = 0 while h(fk) = 1, so E(a) 6= h.

(d) Define L : W →W by L(a)k =
∞∑
i=k

ai, where a ∈W . Show that L has no adjoint.

Solution: Notice that for all k = 1, 2, 3, · · · we have L(ek) = (1, 1, · · · , 1, 0, 0, 0, · · ·) =
k∑

i=1

ei, and so 〈L(ek), e1〉 =

1. Suppose, for a contradiction, that L had an adjoint L∗. Let a = L∗(e1) ∈ V . Choose k so that ak = 0.
Then 〈ek, a〉 = ak = 0. But this contradicts the fact that 〈ek, a〉 = 〈ek, L∗(e1)〉 = 〈L(ek), e1〉 = 1.



2: Let U = P (R) = R[x]. Fix p ∈ U . Let L : U → U be multiplication by p, that is L(f) = pf for all f ∈ U , and

let D : U → U be the differentiation operator, that is D(f) = f ′ for all f ∈ U .

(a) Show that if we use the inner product on U given by
〈∑

aix
i,
∑
bix

i
〉

=
∑
aibi then both L and D have

adjoints.

Solution: When we use the inner product
〈∑

aix
i,
∑
bix

i
〉

=
∑
aibi, the standard basis S = {e1, e2, e3, · · ·}

is orthonormal. The differentiation operator is given by

D
( ∞∑

i=0

aix
i
)

=
∞∑
i=1

i aix
i−1 =

∞∑
i=0

(i+ 1)ai+1x
i .

Informally, we note that, with respect to the standard basis, we have

[D] =


0 1 0 0 · · ·
0 0 2 0
0 0 0 3
...

 , [D]∗ =


0 0 0 · · ·
1 0 0
0 2 0
0 0 3
...

 .

Since the (infinite) matrix [D]∗ has finitely many non-zero entries in each column, it is the matrix for a well-
defined adjoint operator D∗. To be more formal, we define E : U → U to be the linear map suggested by the
above matrix, that is we define E by

E
( ∞∑

i=0

bix
i
)

=
∞∑
i=0

(i+ 1)bix
i+1 =

∞∑
i=1

i bi−1x
i .

Then for a =
∑
aix

i and b =
∑
bix

i we have〈
Da, b

〉
=
〈 ∞∑

i=0

(i+ 1)ai+1x
i ,
∞∑
i=0

bix
i
〉

=
∞∑
i=0

(i+ 1)ai+1bi , and

〈
a,Eb

〉
=
〈 ∞∑

i=0

aix
i ,
∞∑
i=1

i bi−1x
i
〉

=
∞∑
i=1

i aibi−1 =
∞∑
i=0

(i+ 1)ai+1bi =
〈
Da, b

〉
,

and so we have D∗ = E.
If we write the fixed polynomial p ∈ U as p(x) = c0 + c1x+ · · ·+ cmx

m, then the multiplication operator
L is given by

L
( ∞∑

i=0

aix
i
)

= (c0a0) + (c1a0 + c0a1)x+ (c2a0 + c1a1 + c0a2)x2 + · · · .

Informally, we note that, respect to the standard basis, we have

[L] =



c0 0 0 · · ·
c1 c0 0
...

c1 c0
cm ...

c1
0 cm ...
0 0 cm
...


, [L]∗ =


c0 c1 c2 · · · cm 0 0 · · ·
0 c0 c1 c2 · · · cm 0
0 0 c0 c1 c2 · · · cm
...

 .

Since the (infinite) matrix [L]∗ has finitely many non-zero entries in each column, it can be used to determine
a well-defined adjoint for L. Let

Q(R) =
{ ∞∑

i=−∞
aix

i
∣∣∣ai ∈ R with ai = 0 for all but finitely many indices i

}
.

Note that
{
· · · , x−2, x−1, 1, x, x2, · · ·

}
is an orthonormal basis for Q(R). The orthogonal projection of Q(R)

onto U = P (R) is given by

Proj
U

( ∞∑
i=−∞

aix
i
)

=
∞∑
i=0

aix
i .

Define q ∈ Q(R) by q(x) = p
(
1
x

)
so that when p(x) = c0 + c1x+ · · ·+ cmx

m we have

q(x) = cmx
−m + cm−1x

−(m−1) + · · ·+ c1x
−1 + c0 .



Define M : U → U to be the linear map given by

M(g) = Proj
U

(q p)

We claim that M is the adjoint of L. First, we note that to show that M is the adjoint of L, it suffices to
show that

〈
Lxi, xj

〉
=
〈
xi,Mxj

〉
for all i, j, because then, for all a =

∑
aix

i and b =
∑
bjx

j〉 we have〈
L
( ∞∑
i=0

aix
i
)
,
∞∑
j=0

bjx
j
〉

=
∑
i,j

aibj
〈
L(xi), xj

〉
=
∑
i,j

aibj
〈
xi,M(xj)

〉
=
〈 ∞∑

i=0

aix
i , M

(∑
bjx

j)
〉
.

Next we note that 〈
lxi, xj

〉
=
〈
xip(x), xj

〉
=
〈
c0x

i + c1x
i+1 + · · ·+ cmx

i+m, xj
〉

= the coefficient of xj in
(
c0x

i + c1x
i+1 + · · ·+ cmx

i+m
)

=

{
cj−i if i ≤ j ≤ i+m,

0 otherwise.

and 〈
xi,Mxj

〉
=
〈
xi , Proj

U
xjq(x)

〉
=
〈
xi , Proj

U

(
cmx

j−m + · · ·+ c1x
j−1 + c0x

j
)〉

= the coefficient of xi in
(
cmx

j−m + · · ·+ c1x
j−1 + c0x

j
)

=

{
cj−i if j −m ≤ i ≤ j,

0 otherwise.

=
〈
Lxi, xj

〉
Thus L∗ = M , as claimed.

(b) Show that if we use the inner product given by 〈f, g〉 =

∫ b

a

fg, then L has an adjoint but D does not.

Hint: to show that D does not have an adjoint, you might find it useful to show first that there is no g ∈ U
with the property that 〈g, f〉 = f(b)− f(a) for every f ∈ U , and then use Integration by Parts.

Solution: Note that for all f, g ∈ P (R) we have

〈Lf, g〉 = 〈pf, g〉 =

∫ b

a

pfg = 〈f, pg〉 = 〈f, Lg〉

and so we see that L∗ exists and is equal to L (so L is self-adjoint).
To prove that D has no adjoint, we first follow the hint. Suppose, for a contradiction, that there exists

g ∈ P (R) with the property that 〈g, f〉 = f(b) − f(a) for all f ∈ P (R). Choose such a polynomial g. Then,
taking f(x) = (x− a)2(x− b)2g(x), so that f(a) = f(a) = 0, we obtain

0 =
〈
g(x) , (x− a)2(x− b)2g(x)

〉
=

∫ b

a

(
(x− a)(x− b)g(x)

)2
dx =

∣∣(x− a)(x− b)g(x)
∣∣2

and so (x − a)(x − b)g(x) = 0 ∈ P (R), and hence g(x) = 0 ∈ P (R). But clearly g(x) = 0 does not have the
required property, so no such polynomial g exists.

Now suppose, for a contradiction, that D has an adjoint D∗. Then for all f, g ∈ P (R), using Integration
by Parts, we have

〈D∗g, f〉 = 〈f,D∗g〉 = 〈Df, g〉 = 〈f ′, g〉 =

∫ b

a

f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x) dx

In particular, taking g to be the constant polynomial g(x) = 1, so g′(x) = 0, we find that 〈D∗1, f〉 = f(b)−f(a)
for all f ∈ P (R). But, as we just showed, there is no such polynomial D∗1 ∈ P (R).


