

1: Let  $\mathbb{F} = \mathbb{R}$  or  $\mathbb{C}$ . Let  $W = \mathbb{F}^\infty$  with its standard inner product. Let  $U = \left\{ a = (a_1, a_2, \dots) \in W \mid \sum_{k=1}^{\infty} a_k = 0 \right\}$ .

Let  $\mathcal{S} = \{e_1, e_2, e_3, \dots\}$  be the standard basis for  $W$ , where  $e_n = (e_{n,1}, e_{n,2}, e_{n,3}, \dots)$  with  $e_{n,k} = \delta_{n,k}$ .

(a) Recall that the *annihilator* of  $U$  in  $W^*$  is the vector space  $U^0 = \{f \in W^* \mid f(a) = 0 \text{ for all } a \in U\}$ . Show that  $\dim(U^0) = 1$ .

Solution: Define  $f : V \rightarrow \mathbb{F}$  by  $f(a) = \sum_{k=1}^{\infty} a_k$ . Note that  $f$  is well-defined since only finitely many of the terms  $a_k$  are non-zero, and  $f$  is linear, so we have  $f \in V^*$ . We claim that  $U^0 = \text{Span}\{f\}$ . For  $a = (a_1, a_2, \dots) \in U$ , we have  $f(a) = \sum_{k=1}^{\infty} a_k = 0$ , so  $f \in U^0$  and hence  $\text{Span}\{f\} \subset U^0$ . Conversely, let  $g \in U^0$  so that  $g(u) = 0$  for all  $u \in U$ . Notice that for all  $k = 1, 2, 3, \dots$  we have  $e_1 - e_k \in U$ , so  $0 = g(e_1 - e_k) = g(e_1) - g(e_k)$ , and hence  $g(e_k) = g(e_1)$ . For all  $a \in V$ , we have

$$g(a) = g\left(\sum_{k=1}^{\infty} a_k e_k\right) = \sum_{k=1}^{\infty} a_k g(e_k) = \sum_{k=1}^{\infty} a_k g(e_1) = \left(\sum_{k=1}^{\infty} a_k\right) g(e_1) = g(e_1) f(a).$$

Thus  $g = g(e_1) f \in \text{Span}\{f\}$  and hence  $U^0 \subset \text{Span}\{f\}$ .

(b) Let  $\mathcal{F} = \{f_1, f_2, f_3, \dots\}$  where  $f_n \in W^*$  is determined by  $f_n(e_k) = \delta_{n,k}$ . Show that  $\mathcal{F}$  is linearly independent but does not span  $W^*$ .

Solution: We claim that  $\mathcal{F}$  is linearly independent. Suppose that some (finite) linear combination of the elements of  $\mathcal{F}$  is equal to zero, say  $\sum_{i=1}^n c_i f_i = 0$ . Then for every  $a \in V$  we have  $\sum_{i=1}^n c_i f_i(a) = 0$ , and in particular for every  $k = 1, 2, 3, \dots$  we have  $0 = \sum_{i=1}^n c_i f_i(e_k) = \sum_{i=1}^n c_i \delta_{i,k} = c_k$ . Thus  $\mathcal{F}$  is linearly independent.

On the other hand, we claim that  $\mathcal{F}$  does not span  $V^*$ . Let  $f \in V^*$  be the map from part (b) given by  $f(a) = \sum_{k=1}^{\infty} a_k$ . Notice that  $f$  cannot be equal to any (finite) linear combination of the elements of  $\mathcal{F}$ , since for  $g = \sum_{i=1}^n c_i f_i$  we have  $g(e_{n+1}) = 0$  while  $f(e_{n+1}) = 1$ , so  $g \neq f$ . Thus  $\mathcal{F}$  does not span  $V^*$ .

(c) Define  $E : W \rightarrow W^{**}$  by  $E(a)(f) = f(a)$ , where  $a \in W$  and  $f \in W^*$ . Show that  $E$  is 1:1 but not onto.

Solution: Note that  $E$  is linear, so to show that  $E$  is 1:1 it suffices to show that  $\text{Null}(E) = \{0\}$ . Let  $a \in \text{Null}(E)$  so  $E(a) = 0$ . Then for all  $f \in V^*$  we have  $f(a) = E(a)(f) = 0$ . In particular, for all  $k = 1, 2, 3, \dots$  we have

$$0 = f_k(a) = f_k\left(\sum_{i=1}^{\infty} a_i e_i\right) = \sum_{i=1}^{\infty} f_k(e_i) = \sum_{i=1}^{\infty} a_i \delta_{k,i} = a_k$$

and so  $a = 0$ .

We claim that  $E$  is not onto. Extend the linearly independent set  $\mathcal{F}$  to a basis  $\mathcal{F} \cup \mathcal{G}$  for  $V^*$  (where  $\mathcal{F}$  and  $\mathcal{G}$  are disjoint). Let  $h : V^* \rightarrow \mathbb{F}$  be the (unique) linear map given by  $h(f_k) = 1$  for all  $k = 1, 2, 3, \dots$  and  $h(g) = 0$  for all  $g \in \mathcal{G}$ . Notice that  $h$  cannot be in the range of  $E$  since given  $a = (a_1, a_2, \dots) \in V$  we can choose  $k$  so that  $a_k = 0$ , and then we have  $E(a)(f_k) = f_k(a) = 0$  while  $h(f_k) = 1$ , so  $E(a) \neq h$ .

(d) Define  $L : W \rightarrow W$  by  $L(a)_k = \sum_{i=k}^{\infty} a_i$ , where  $a \in W$ . Show that  $L$  has no adjoint.

Solution: Notice that for all  $k = 1, 2, 3, \dots$  we have  $L(e_k) = (1, 1, \dots, 1, 0, 0, 0, \dots) = \sum_{i=1}^k e_i$ , and so  $\langle L(e_k), e_1 \rangle = 1$ . Suppose, for a contradiction, that  $L$  had an adjoint  $L^*$ . Let  $a = L^*(e_1) \in V$ . Choose  $k$  so that  $a_k = 0$ . Then  $\langle e_k, a \rangle = \overline{a_k} = 0$ . But this contradicts the fact that  $\langle e_k, a \rangle = \langle e_k, L^*(e_1) \rangle = \langle L(e_k), e_1 \rangle = 1$ .

**2:** Let  $U = P(\mathbb{R}) = \mathbb{R}[x]$ . Fix  $p \in U$ . Let  $L : U \rightarrow U$  be multiplication by  $p$ , that is  $L(f) = pf$  for all  $f \in U$ , and let  $D : U \rightarrow U$  be the differentiation operator, that is  $D(f) = f'$  for all  $f \in U$ .

(a) Show that if we use the inner product on  $U$  given by  $\langle \sum a_i x^i, \sum b_i x^i \rangle = \sum a_i b_i$  then both  $L$  and  $D$  have adjoints.

Solution: When we use the inner product  $\langle \sum a_i x^i, \sum b_i x^i \rangle = \sum a_i b_i$ , the standard basis  $\mathcal{S} = \{e_1, e_2, e_3, \dots\}$  is orthonormal. The differentiation operator is given by

$$D\left(\sum_{i=0}^{\infty} a_i x^i\right) = \sum_{i=1}^{\infty} i a_i x^{i-1} = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i.$$

Informally, we note that, with respect to the standard basis, we have

$$[D] = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \\ 0 & 0 & 0 & 3 & \\ \vdots & & & & \end{pmatrix}, \quad [D]^* = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \\ 0 & 2 & 0 & \\ 0 & 0 & 3 & \\ \vdots & & & \end{pmatrix}.$$

Since the (infinite) matrix  $[D]^*$  has finitely many non-zero entries in each column, it is the matrix for a well-defined adjoint operator  $D^*$ . To be more formal, we define  $E : U \rightarrow U$  to be the linear map suggested by the above matrix, that is we define  $E$  by

$$E\left(\sum_{i=0}^{\infty} b_i x^i\right) = \sum_{i=0}^{\infty} (i+1) b_i x^{i+1} = \sum_{i=1}^{\infty} i b_{i-1} x^i.$$

Then for  $a = \sum a_i x^i$  and  $b = \sum b_i x^i$  we have

$$\begin{aligned} \langle Da, b \rangle &= \left\langle \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i, \sum_{i=0}^{\infty} b_i x^i \right\rangle = \sum_{i=0}^{\infty} (i+1) a_{i+1} b_i, \text{ and} \\ \langle a, Eb \rangle &= \left\langle \sum_{i=0}^{\infty} a_i x^i, \sum_{i=1}^{\infty} i b_{i-1} x^i \right\rangle = \sum_{i=1}^{\infty} i a_i b_{i-1} = \sum_{i=0}^{\infty} (i+1) a_{i+1} b_i = \langle Da, b \rangle, \end{aligned}$$

and so we have  $D^* = E$ .

If we write the fixed polynomial  $p \in U$  as  $p(x) = c_0 + c_1 x + \dots + c_m x^m$ , then the multiplication operator  $L$  is given by

$$L\left(\sum_{i=0}^{\infty} a_i x^i\right) = (c_0 a_0) + (c_1 a_0 + c_0 a_1)x + (c_2 a_0 + c_1 a_1 + c_0 a_2)x^2 + \dots$$

Informally, we note that, respect to the standard basis, we have

$$[L] = \begin{pmatrix} c_0 & 0 & 0 & \cdots \\ c_1 & c_0 & 0 & \\ \vdots & c_1 & c_0 & \\ c_m & \vdots & c_1 & \\ 0 & c_m & \vdots & \\ 0 & 0 & c_m & \\ \vdots & & & \end{pmatrix}, \quad [L]^* = \begin{pmatrix} c_0 & c_1 & c_2 & \cdots & c_m & 0 & 0 & \cdots \\ 0 & c_0 & c_1 & c_2 & \cdots & c_m & 0 & \\ 0 & 0 & c_0 & c_1 & c_2 & \cdots & c_m & \\ \vdots & & & & & & & \end{pmatrix}.$$

Since the (infinite) matrix  $[L]^*$  has finitely many non-zero entries in each column, it can be used to determine a well-defined adjoint for  $L$ . Let

$$Q(\mathbb{R}) = \left\{ \sum_{i=-\infty}^{\infty} a_i x^i \mid a_i \in \mathbb{R} \text{ with } a_i = 0 \text{ for all but finitely many indices } i \right\}.$$

Note that  $\{\dots, x^{-2}, x^{-1}, 1, x, x^2, \dots\}$  is an orthonormal basis for  $Q(\mathbb{R})$ . The orthogonal projection of  $Q(\mathbb{R})$  onto  $U = P(\mathbb{R})$  is given by

$$\text{Proj}_U\left(\sum_{i=-\infty}^{\infty} a_i x^i\right) = \sum_{i=0}^{\infty} a_i x^i.$$

Define  $q \in Q(\mathbb{R})$  by  $q(x) = p\left(\frac{1}{x}\right)$  so that when  $p(x) = c_0 + c_1 x + \dots + c_m x^m$  we have

$$q(x) = c_m x^{-m} + c_{m-1} x^{-(m-1)} + \dots + c_1 x^{-1} + c_0.$$

Define  $M : U \rightarrow U$  to be the linear map given by

$$M(g) = \text{Proj}_U(qp)$$

We claim that  $M$  is the adjoint of  $L$ . First, we note that to show that  $M$  is the adjoint of  $L$ , it suffices to show that  $\langle Lx^i, x^j \rangle = \langle x^i, Mx^j \rangle$  for all  $i, j$ , because then, for all  $a = \sum a_i x^i$  and  $b = \sum b_j x^j$  we have

$$\left\langle L\left(\sum_{i=0}^{\infty} a_i x^i\right), \sum_{j=0}^{\infty} b_j x^j \right\rangle = \sum_{i,j} a_i b_j \langle L(x^i), x^j \rangle = \sum_{i,j} a_i b_j \langle x^i, M(x^j) \rangle = \left\langle \sum_{i=0}^{\infty} a_i x^i, M\left(\sum b_j x^j\right) \right\rangle.$$

Next we note that

$$\begin{aligned} \langle Lx^i, x^j \rangle &= \langle x^i p(x), x^j \rangle \\ &= \langle c_0 x^i + c_1 x^{i+1} + \cdots + c_m x^{i+m}, x^j \rangle \\ &= \text{the coefficient of } x^j \text{ in } (c_0 x^i + c_1 x^{i+1} + \cdots + c_m x^{i+m}) \\ &= \begin{cases} c_{j-i} & \text{if } i \leq j \leq i+m, \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

and

$$\begin{aligned} \langle x^i, Mx^j \rangle &= \langle x^i, \text{Proj}_U x^j q(x) \rangle \\ &= \langle x^i, \text{Proj}_U (c_m x^{j-m} + \cdots + c_1 x^{j-1} + c_0 x^j) \rangle \\ &= \text{the coefficient of } x^i \text{ in } (c_m x^{j-m} + \cdots + c_1 x^{j-1} + c_0 x^j) \\ &= \begin{cases} c_{j-i} & \text{if } j-m \leq i \leq j, \\ 0 & \text{otherwise.} \end{cases} \\ &= \langle Lx^i, x^j \rangle \end{aligned}$$

Thus  $L^* = M$ , as claimed.

(b) Show that if we use the inner product given by  $\langle f, g \rangle = \int_a^b fg$ , then  $L$  has an adjoint but  $D$  does not.

Hint: to show that  $D$  does not have an adjoint, you might find it useful to show first that there is no  $g \in U$  with the property that  $\langle g, f \rangle = f(b) - f(a)$  for every  $f \in U$ , and then use Integration by Parts.

Solution: Note that for all  $f, g \in P(\mathbb{R})$  we have

$$\langle Lf, g \rangle = \langle pf, g \rangle = \int_a^b p f g = \langle f, pg \rangle = \langle f, Lg \rangle$$

and so we see that  $L^*$  exists and is equal to  $L$  (so  $L$  is self-adjoint).

To prove that  $D$  has no adjoint, we first follow the hint. Suppose, for a contradiction, that there exists  $g \in P(\mathbb{R})$  with the property that  $\langle g, f \rangle = f(b) - f(a)$  for all  $f \in P(\mathbb{R})$ . Choose such a polynomial  $g$ . Then, taking  $f(x) = (x-a)^2(x-b)^2g(x)$ , so that  $f(a) = f(b) = 0$ , we obtain

$$0 = \langle g(x), (x-a)^2(x-b)^2g(x) \rangle = \int_a^b ((x-a)(x-b)g(x))^2 dx = |(x-a)(x-b)g(x)|^2$$

and so  $(x-a)(x-b)g(x) = 0 \in P(\mathbb{R})$ , and hence  $g(x) = 0 \in P(\mathbb{R})$ . But clearly  $g(x) = 0$  does not have the required property, so no such polynomial  $g$  exists.

Now suppose, for a contradiction, that  $D$  has an adjoint  $D^*$ . Then for all  $f, g \in P(\mathbb{R})$ , using Integration by Parts, we have

$$\langle D^*g, f \rangle = \langle f, D^*g \rangle = \langle Df, g \rangle = \langle f', g \rangle = \int_a^b f'(x)g(x) dx = f(b)g(b) - f(a)g(a) - \int_a^b f(x)g'(x) dx$$

In particular, taking  $g$  to be the constant polynomial  $g(x) = 1$ , so  $g'(x) = 0$ , we find that  $\langle D^*1, f \rangle = f(b) - f(a)$  for all  $f \in P(\mathbb{R})$ . But, as we just showed, there is no such polynomial  $D^*1 \in P(\mathbb{R})$ .