

MATH 245 Linear Algebra 2, Exercises for Chapter 7

1: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $W = \mathbb{F}^\infty$ with its standard inner product. Let $U = \left\{ a = (a_1, a_2, \dots) \in W \mid \sum_{k=1}^{\infty} a_k = 0 \right\}$.

Let $\mathcal{S} = \{e_1, e_2, e_3, \dots\}$ be the standard basis for W , where $e_n = (e_{n,1}, e_{n,2}, e_{n,3}, \dots)$ with $e_{n,k} = \delta_{n,k}$.

(a) Recall that the annihilator of U in W^* is the vector space $U^0 = \{f \in W^* \mid f(a) = 0 \text{ for all } a \in U\}$. Show that $\dim(U^0) = 1$.

(b) Let $\mathcal{F} = \{f_1, f_2, f_3, \dots\}$ where $f_n \in W^*$ is determined by $f_n(e_k) = \delta_{n,k}$. Show that \mathcal{F} is linearly independent but does not span W^* .

(c) Define $E : W \rightarrow W^{**}$ by $E(a)(f) = f(a)$, where $a \in W$ and $f \in W^*$. Show that E is 1:1 but not onto.

(d) Define $L : W \rightarrow W$ by $L(a)_k = \sum_{i=k}^{\infty} a_i$, where $a \in W$. Show that L has no adjoint.

2: Let $U = P(\mathbb{R}) = \mathbb{R}[x]$. Fix $p \in U$. Let $L : U \rightarrow U$ be multiplication by p , that is $L(f) = pf$ for all $f \in U$, and let $D : U \rightarrow U$ be the differentiation operator, that is $D(f) = f'$ for all $f \in U$.

(a) Show that if we use the inner product on U given by $\langle \sum a_i x^i, \sum b_i x^i \rangle = \sum a_i b_i$ then both L and D have adjoints.

(b) Show that if we use the inner product given by $\langle f, g \rangle = \int_a^b fg$, then L has an adjoint but D does not.

Hint: to show that D does not have an adjoint, you might find it useful to show first that there is no $g \in U$ with the property that $\langle g, f \rangle = f(b) - f(a)$ for every $f \in U$, and then use Integration by Parts.