
MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 6

1: Let u1 =


1
0
1
−1

, u2 =


2
1
1
0

, u3 =


1
−3

2
1

 and x =


1
1
7
3

. Let U = {u1, u2, u3} and let U = Span U . Find

Proj
U

(x) in the following three ways.

(a) Let A =
(
u1, u2, u3

)
∈M4×3 then use the formula Proj

U
(x) = At where t is the solution to ATA t = ATx.

Solution: We have

ATA =

 1 0 1 −1
2 1 1 0
1 −3 2 1




1 2 1
0 1 −3
1 1 2
−1 0 1

 =

 3 3 2
3 6 1
2 1 15



ATx =

 1 0 1 −1
2 1 1 0
1 −3 2 1




1
1
7
3

 =

 5
10
15


(
ATA

∣∣ATx) =

 3 3 2
3 6 1
2 1 15

∣∣∣∣∣∣
5
10
15

 ∼
 1 2 −13

3 6 1
2 1 15

∣∣∣∣∣∣
−10

10
15

 ∼
 1 2 −13

0 0 40
0 3 −41

∣∣∣∣∣∣
−10

40
−35


∼

 1 2 −13
0 3 −41
0 0 1

∣∣∣∣∣∣
−10
−35

1

 ∼
 1 2 0

0 3 0
0 0 1

∣∣∣∣∣∣
3
6
1

 ∼
 1 2 0

0 1 0
0 0 1

∣∣∣∣∣∣
3
2
1

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
−1

2
1


and so

t =

−1
2
1

 and Proj
U

(x) = At =


1 2 1
0 1 −3
1 1 2
−1 0 1


−1

2
1

 =


4
−1

3
2

 .

(b) Apply the Gram-Schmidt Procedure to the basis U to obtain an orthogonal basis V = {v1, v2, v3} for U ,

then use the formula Proj
U

(x) =

3∑
i=1

x. vi
|vi|2

vi.

Solution: We let

v1 = u1 =


1
0
1
−1



v2 = u2 −
u2 . v1
|v1|2

v1 =


2
1
1
0

− 3

3


1
0
1
−1

 =


1
1
0
1



v3 = u3 −
u3 . v1
|v1|2

v1 −
u3 . v2
|v2|2

v2 =


1
−3

2
1

− 2

3


1
0
1
−1

+
1

3


1
1
0
1

 =
1

3


2
−8

4
6

 =
2

3


1
−4

2
3

 .

Then

Proj
U

(x) =
x. v1
|v1|2

v1 −
x. v2
|v2|2

v2 −
x. v3
|v3|2

v3 =
5

3


1
0
1
−1

+
5

3


1
1
0
1

+
20

30


1
−4

2
3

 =
1

3


12
−3

9
6

 =


4
−1

3
2

 .



(c) Find w ∈ R4 so that {w} is a basis for U⊥, then calculate Proj
U

(x) = x− Proj
w

(x) = x− x.w
|w|2

w.

Solution: Let A = (u1, u2, u3) ∈ M4×3. We wish to find a basis for U⊥ = (ColA)⊥ = (RowAT)⊥ = NullAT.
We have

AT =

 1 0 1 −1
2 1 1 0
1 −3 2 1

 ∼
 1 0 1 −1

0 1 −1 2
0 3 −1 −2

 ∼
 1 0 1 −1

0 1 −1 2
0 0 2 −8

 ∼
 1 0 0 3

0 1 0 −2
0 0 1 −4


so we can take w = (−3, 2, 4, 1)T . Thus

Proj
U

(x) = x− x.w
|w|2

w =


1
1
7
3

− 30

30


−3
2
4
1

 =


4
−1

3
2

 .

2: (a) Let W = P2(R) with the inner product given by 〈f, g〉 =
2∑
k=0

f(k)g(k). Let U ⊆ W be the subspace

U = Span
{

1 + x , 5− 2x+ x2
}

. Find Proj
U

(x2).

Solution: Let f1(x) = 1+x and f2(x) = 5−2x+x2 and let h(x) = x2. We apply the Gram-Schmidt procedure
to the basis {f1, f2}, using the inner product {f, g〉 = f(0)g(0) + f(1)g(1) + f(2)g(2) to obtain the orthogonal
basis {g1, g2}, where

g1 = f1 = 1 + x

g2 = f2 −
〈f2, g1〉
|g1|2

g1 = (5− 2x+ x2)− 5 · 1 + 4 · 2 + 5 · 3
02 + 12 + 22

(1 + x) = (5− 2x+ x2)− 2(1 + x) = 3− 4x+ x2.

The required projection is given by

Proj
U

(x2) =
〈x2, g1〉
|g1|2

g1 +
〈x2, g2〉
|g2|2

g2 =
0 · 1 + 1 · 2 + 4 · 3

12 + 22 + 32
(1 + x) +

0 · 3 + 1 · 0 + 4 · (−1)

32 + 02 + (−1)2
(3− 4x+ x2)

= (1 + x)− 2
5 (3− 4x+ x2) = 1

5 (−1 + 13x− 2x2).

(b) Let W = C0
(
[−1, 1],R

)
with the inner product given by 〈f, g〉 =

∫ 1

−1
fg. Using the orthogonal basis{

1, x, x2 − 1
3

}
for P2(R) ⊆W , find the polynomial f ∈ P2(R) which minimizes

∫ 1

−1

(
f(x)− x2/3

)2
dx.

Solution: To minimize
∫ 1

−1
(
f(x)− x2/3

)2
= d
(
f(x), x2/3

)2
we must take

f = Proj
P2(R)

(x2/3) =
〈x2/3, 1〉
|1|2

· 1 +
〈x2/3, x〉
|x|2

· x+
〈x 2

3 , x2 − 1
3 〉

|x2 − 1
3 |2

· (x− 1
3 )

=

∫ 1

−1 x
2/3∫ 1

−1 1
· 1 +

∫ 1

−1 x
5/3∫ 1

−1 x
2
· x+

∫ 1

−1 x
8/3 − 1

3x
2/3∫ 1

−1 x
4 − 2

3x
2 + 1

9

· (x2 − 1
3 )

= 6/5
2 · 1 + 0

2/3 · x+
2( 3

11 −
1
5 )

2( 1
5 −

2
9 + 1

9 )
· (x2 − 1

3 )

= 3
5 + 4/55

4/45 (x2 − 1
3 ) = 3

5 + 9
11 (x2 − 1

3 ) = 9
11x

2 + 18
55 .



3: (a) Let A1 =

(
1 0
1 2

)
, A2 =

(
1 2
1 −4

)
, A3 =

(
1 4
1 2

)
and A4 =

(
2 1
0 2

)
. Find the orthogonal basis for

M2(R) which is obtained by applying the Gram-Schmidt Procedure to the basis A = {A1, A2, A3, A4}.
Solution: Applying the Gram-Scmidt Procedure gives

B1 = A1 =

(
1 0
1 2

)
,

B2 = A2 −
〈A2, B1〉
|B1|2

B1 =

(
1 2
1 −4

)
− −6

6

(
1 0
1 2

)
=

(
2 2
2 −2

)
,

B3 = A3 −
〈A3, B1〉
|B1|2

B1 −
〈A3, B2〉
|B2|2

B2 =

(
1 4
1 2

)
− 6

6

(
1 0
1 2

)
− 8

16

(
2 2
2 −2

)
=

(
−1 3
−1 1

)
,

B4 = A4 −
〈A4, B1〉
|B1|2

B1 −
〈A4, B2〉
|B2|2

B2 −
〈A4, B3〉
|B3|2

B3

=

(
2 1
0 2

)
− 6

6

(
1 0
1 2

)
− 2

16

(
2 2
2 −2

)
− 3

12

(
−1 3
−1 1

)
=

(
1 0
−1 0

)
.

(b) Let U =
{
x = (x0, x1, x2, · · ·) ∈ R∞

∣∣∣ ∞∑
i=0

xi = 0
}

. Find the orthogonal basis for U which is obtained by

applying the Gram-Schmidt Procedure to the basis A = {u1, u2, u3, · · ·} where uk = ek − e0.

Solution: Let B = {v1, v2, v3, · · ·} be the basis obtained by applying the Gram-Schmidt Procedure to A. Write

sk =
n−1∑
i=0

ei = (1, 1, · · · , 1, 0, 0, · · ·).

We claim that

vk = ek − 1
ksk = ek − 1

k

k−1∑
i=0

ei =
(
− 1

k ,−
1
k , · · · ,−

1
k , 1, 0, 0, · · ·

)
for all k ≥ 1.

We have v1 = u1 = e1 − e0, so the claim holds when k = 1. Let n ≥ 2 and suppose the claim holds for all
k < n. For k < n we have

〈un, vk〉 =
〈
en − e0 , ek − 1

k

k∑
i=1

ei

〉
= 1

k , and

|vk|2 = k · 1
k2 + 1 = k+1

k

and so

vn = un −
n−1∑
k=1

〈un, vk〉
|vk|2

vk = un −
n−1∑
k=1

1
k+1 vk = un −

n−1∑
k=1

1
k+1

(
ek − 1

ksk
)

= un −
n−1∑
k=1

1
k+1 ek +

n−1∑
k=1

(
1
k −

1
k+1

)
sk = un +

n−1∑
k=1

1
k sk −

n−1∑
k=1

1
k+1 (ek + sk)

= un +
n−1∑
k=1

1
k sk −

n−1∑
k=1

1
k+1 sk+1 = un +

n−1∑
k=1

1
k sk −

n∑
l=2

1
l sl

= un + s1 − 1
nsn = (en − e0) + e0 − 1

nsn = en − 1
nsn,

as required.



4: (a) Use an orthogonal projection to find f ∈ P2(R) which minimizes

∫ 2

0

(
f(x)−

√
2x− x2

)2
dx.

Solution: To simplify calculations, we translate 1 unit to the left. Let g(x) =
√

2x− x2, h(x) = f(x+ 1) and
k(x) = g(x+ 1) =

√
1− x2 and note that∫ 2

x=0

(
f(x)− g(x)

)2
dx =

∫ 1

x=−1

(
h(x)− k(x)

)2
dx.

We work in the vector space C0
(
[−1, 1],R

)
with its standard inner product. To minimize

∫ 1

−1(h(x)−k(x))2dx,

which is equal to |h− k|2, we must choose h = Proj
P2

(k). To find this projection, we use an orthogonal basis

for P2. In Example 6.21 in the Lecture Notes, the Gram-Schmidt Procedure was applied to the standard basis
{1, x, x2} for P2 to obtain the orthogonal basis {q0, q1, q2} with q0(x) = 1, q1(x) = x and q2(x) = x2 − 1

3 . The
calculations done in that example also show that |q0|2 = 2, |q1|2 = 2

3 and |q2|2 = 8
45 . Note that

〈k, q0〉 =
〈√

1− x2, 1
〉

=

∫ 1

−1

√
1− x2 dx = π

2

since the integral calculates the area under the semicircle y =
√

1− x2. Also note that

〈k, q1〉 =
〈√

1− x2, x
〉

=

∫ 1

−1
x
√

1− x2 dx = 0

by symmetry, since x
√

1− x2 is an odd function. To find 〈k, q3〉 we need to find
∫ 1

−1 x
2
√

1− x2 dx. We make

the substitution sin θ = x so that cos θ =
√

1− x2 and cos θ dθ = dx to get∫ 1

x=−1
x2
√

1− x2 dx =

∫ π/2

θ=−π/2
sin2 θ cos2 θ dθ =

∫ π/2

θ=−π/2

sin2 2θ

4
dθ

=

∫ π/2

θ=−π/2

1− cos 4θ

8
dθ =

[
1
8θ −

1
32 sin 4θ

]π/2
−π/2

= π
8

and so

〈k, q2〉 =
〈√

1− x2, x2 − 1
3

〉
=

∫ 1

−1
x2
√

1− x2 dx− 1
3

∫ 1

−1

√
1− x2 dx = π

8 −
π
6 = − π

24 .

Thus in order to minimize |h− k|2 we must choose

h(x) = Proj
P2

(k) =
〈k, q0〉
|q0|2

q0 +
〈k, q1〉
|q1|2

q1 +
〈k, q2〉
|q2|2

q2

= π/2
2 · 1 + 0

2/3 · x+ −π/24
8/45 · (x

2 − 1
3 ) = π

4 −
15π
64

(
x2 − 1

3

)
= π

64

(
21− 15x2

)
and hence we must choose

f(x) = h(x− 1) = π
64

(
6 + 30x− 15x2

)
.

(b) Let a, b ∈ R with a < b and let W = C0
(
[a, b],R

)
with the inner product given by 〈f, g〉 =

∫ b
a
fg.

Suppose
{
p0, p1, · · · , pn

}
is an orthonormal basis for Pn(R) ⊆W . For each k, write pk(x) =

n∑
i=0

ak,ix
i and let

A ∈Mn+1(R) with Aki = aki. Let b = (b0, b1, · · · , bn)T ∈ Rn+1. Given that f ∈W with
∫ b
a
xif(x) dx = bi for

0 ≤ i ≤ n, find a formula, in terms of A and b, for the minimum possible value for
∫ b
a
f(x)2dx.

Solution: Since 〈f, xi〉 =
∫ b
a
xif(x) dx = bi for all i, we have 〈f, pk〉 =

〈
f,

n∑
i=1

akix
i
〉

=
n∑
i=1

aki〈f, xi〉 =
n∑
i=1

akibi

which is equal to the kth entry of Ab. Thus we have Ab =
(
〈f, p0〉, 〈f, p1〉, · · · , 〈f, pn〉

)T
. When f = u+ v with

u ∈ Pn(R) and v ∈ Pn(R)⊥, we have |f |2 = |u + v|2 = |u|2 + 2u. v + |v|2 = |u|2 + |v|2 because u. v = 0,
and so |f | ≤ |u| with |f | = |u| ⇐⇒ v = 0 ⇐⇒ f = u. Thus in order to minimize |f | we must have

f = u = Proj
P2(R)

(f). Thus the minimum possible value for
∫ b
a
f(x)2dx = |f |2 is equal to

|u|2 =
n∑
i=0

∣∣〈f, pk〉∣∣2 =
∣∣Ab∣∣2.


