

1: Let $u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ -3 \\ 2 \\ 1 \end{pmatrix}$ and $x = \begin{pmatrix} 1 \\ 1 \\ 7 \\ 3 \end{pmatrix}$. Let $\mathcal{U} = \{u_1, u_2, u_3\}$ and let $U = \text{Span } \mathcal{U}$. Find $\text{Proj}_U(x)$ in the following three ways.

(a) Let $A = (u_1, u_2, u_3) \in M_{4 \times 3}$ then use the formula $\text{Proj}_U(x) = At$ where t is the solution to $A^T A t = A^T x$.

Solution: We have

$$\begin{aligned} A^T A &= \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & -3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -3 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 2 \\ 3 & 6 & 1 \\ 2 & 1 & 15 \end{pmatrix} \\ A^T x &= \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & -3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \\ 15 \end{pmatrix} \\ (A^T A | A^T x) &= \left(\begin{array}{ccc|c} 3 & 3 & 2 & 5 \\ 3 & 6 & 1 & 10 \\ 2 & 1 & 15 & 15 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & -13 & -10 \\ 3 & 6 & 1 & 10 \\ 2 & 1 & 15 & 15 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & -13 & -10 \\ 0 & 0 & 40 & 40 \\ 0 & 3 & -41 & -35 \end{array} \right) \\ &\sim \left(\begin{array}{ccc|c} 1 & 2 & -13 & -10 \\ 0 & 3 & -41 & -35 \\ 0 & 0 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & 0 & 3 \\ 0 & 3 & 0 & 6 \\ 0 & 0 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{array} \right) \end{aligned}$$

and so

$$t = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \text{ and } \text{Proj}_U(x) = At = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -3 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}.$$

(b) Apply the Gram-Schmidt Procedure to the basis \mathcal{U} to obtain an orthogonal basis $\mathcal{V} = \{v_1, v_2, v_3\}$ for U , then use the formula $\text{Proj}_U(x) = \sum_{i=1}^3 \frac{x \cdot v_i}{|v_i|^2} v_i$.

Solution: We let

$$\begin{aligned} v_1 &= u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} \\ v_2 &= u_2 - \frac{u_2 \cdot v_1}{|v_1|^2} v_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix} - \frac{3}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \\ v_3 &= u_3 - \frac{u_3 \cdot v_1}{|v_1|^2} v_1 - \frac{u_3 \cdot v_2}{|v_2|^2} v_2 = \begin{pmatrix} 1 \\ -3 \\ 2 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ -8 \\ 4 \\ 6 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix}. \end{aligned}$$

Then

$$\text{Proj}_U(x) = \frac{x \cdot v_1}{|v_1|^2} v_1 - \frac{x \cdot v_2}{|v_2|^2} v_2 - \frac{x \cdot v_3}{|v_3|^2} v_3 = \frac{5}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} + \frac{5}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} + \frac{20}{30} \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 12 \\ -3 \\ 9 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \\ 2 \end{pmatrix}.$$

(c) Find $w \in \mathbb{R}^4$ so that $\{w\}$ is a basis for U^\perp , then calculate $\text{Proj}_U(x) = x - \text{Proj}_w(x) = x - \frac{x \cdot w}{|w|^2} w$.

Solution: Let $A = (u_1, u_2, u_3) \in M_{4 \times 3}$. We wish to find a basis for $U^\perp = (\text{ColA})^\perp = (\text{RowA}^T)^\perp = \text{NullA}^T$. We have

$$A^T = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & -3 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 3 & -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 2 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -4 \end{pmatrix}$$

so we can take $w = (-3, 2, 4, 1)^T$. Thus

$$\text{Proj}_U(x) = x - \frac{x \cdot w}{|w|^2} w = \begin{pmatrix} 1 \\ 1 \\ 7 \\ 3 \end{pmatrix} - \frac{30}{30} \begin{pmatrix} -3 \\ 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \\ 2 \end{pmatrix}.$$

2: (a) Let $W = P_2(\mathbb{R})$ with the inner product given by $\langle f, g \rangle = \sum_{k=0}^2 f(k)g(k)$. Let $U \subseteq W$ be the subspace $U = \text{Span}\{1+x, 5-2x+x^2\}$. Find $\text{Proj}_U(x^2)$.

Solution: Let $f_1(x) = 1+x$ and $f_2(x) = 5-2x+x^2$ and let $h(x) = x^2$. We apply the Gram-Schmidt procedure to the basis $\{f_1, f_2\}$, using the inner product $\langle f, g \rangle = f(0)g(0) + f(1)g(1) + f(2)g(2)$ to obtain the orthogonal basis $\{g_1, g_2\}$, where

$$g_1 = f_1 = 1+x$$

$$g_2 = f_2 - \frac{\langle f_2, g_1 \rangle}{|g_1|^2} g_1 = (5-2x+x^2) - \frac{5 \cdot 1 + 4 \cdot 2 + 5 \cdot 3}{0^2 + 1^2 + 2^2} (1+x) = (5-2x+x^2) - 2(1+x) = 3-4x+x^2.$$

The required projection is given by

$$\begin{aligned} \text{Proj}_U(x^2) &= \frac{\langle x^2, g_1 \rangle}{|g_1|^2} g_1 + \frac{\langle x^2, g_2 \rangle}{|g_2|^2} g_2 = \frac{0 \cdot 1 + 1 \cdot 2 + 4 \cdot 3}{1^2 + 2^2 + 3^2} (1+x) + \frac{0 \cdot 3 + 1 \cdot 0 + 4 \cdot (-1)}{3^2 + 0^2 + (-1)^2} (3-4x+x^2) \\ &= (1+x) - \frac{2}{5}(3-4x+x^2) = \frac{1}{5}(-1+13x-2x^2). \end{aligned}$$

(b) Let $W = \mathcal{C}^0([-1, 1], \mathbb{R})$ with the inner product given by $\langle f, g \rangle = \int_{-1}^1 fg$. Using the orthogonal basis $\{1, x, x^2 - \frac{1}{3}\}$ for $P_2(\mathbb{R}) \subseteq W$, find the polynomial $f \in P_2(\mathbb{R})$ which minimizes $\int_{-1}^1 (f(x) - x^{2/3})^2 dx$.

Solution: To minimize $\int_{-1}^1 (f(x) - x^{2/3})^2 = d(f(x), x^{2/3})^2$ we must take

$$\begin{aligned} f &= \text{Proj}_{P_2(\mathbb{R})}(x^{2/3}) = \frac{\langle x^{2/3}, 1 \rangle}{|1|^2} \cdot 1 + \frac{\langle x^{2/3}, x \rangle}{|x|^2} \cdot x + \frac{\langle x^{2/3}, x^2 - \frac{1}{3} \rangle}{|x^2 - \frac{1}{3}|^2} \cdot (x - \frac{1}{3}) \\ &= \frac{\int_{-1}^1 x^{2/3}}{\int_{-1}^1 1} \cdot 1 + \frac{\int_{-1}^1 x^{5/3}}{\int_{-1}^1 x^2} \cdot x + \frac{\int_{-1}^1 x^{8/3} - \frac{1}{3}x^{2/3}}{\int_{-1}^1 x^4 - \frac{2}{3}x^2 + \frac{1}{9}} \cdot (x^2 - \frac{1}{3}) \\ &= \frac{6/5}{2} \cdot 1 + \frac{0}{2/3} \cdot x + \frac{2(\frac{3}{11} - \frac{1}{5})}{2(\frac{1}{5} - \frac{2}{9} + \frac{1}{9})} \cdot (x^2 - \frac{1}{3}) \\ &= \frac{3}{5} + \frac{4/55}{4/45} (x^2 - \frac{1}{3}) = \frac{3}{5} + \frac{9}{11} (x^2 - \frac{1}{3}) = \frac{9}{11} x^2 + \frac{18}{55}. \end{aligned}$$

3: (a) Let $A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 2 \\ 1 & -4 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix}$ and $A_4 = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Find the orthogonal basis for $M_2(\mathbb{R})$ which is obtained by applying the Gram-Schmidt Procedure to the basis $\mathcal{A} = \{A_1, A_2, A_3, A_4\}$.

Solution: Applying the Gram-Schmidt Procedure gives

$$\begin{aligned} B_1 &= A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}, \\ B_2 &= A_2 - \frac{\langle A_2, B_1 \rangle}{|B_1|^2} B_1 = \begin{pmatrix} 1 & 2 \\ 1 & -4 \end{pmatrix} - \frac{-6}{6} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & -2 \end{pmatrix}, \\ B_3 &= A_3 - \frac{\langle A_3, B_1 \rangle}{|B_1|^2} B_1 - \frac{\langle A_3, B_2 \rangle}{|B_2|^2} B_2 = \begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix} - \frac{6}{6} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} - \frac{8}{16} \begin{pmatrix} 2 & 2 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -1 & 1 \end{pmatrix}, \\ B_4 &= A_4 - \frac{\langle A_4, B_1 \rangle}{|B_1|^2} B_1 - \frac{\langle A_4, B_2 \rangle}{|B_2|^2} B_2 - \frac{\langle A_4, B_3 \rangle}{|B_3|^2} B_3 \\ &= \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} - \frac{6}{6} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} - \frac{2}{16} \begin{pmatrix} 2 & 2 \\ 2 & -2 \end{pmatrix} - \frac{3}{12} \begin{pmatrix} -1 & 3 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}. \end{aligned}$$

(b) Let $U = \left\{ x = (x_0, x_1, x_2, \dots) \in \mathbb{R}^\infty \mid \sum_{i=0}^{\infty} x_i = 0 \right\}$. Find the orthogonal basis for U which is obtained by applying the Gram-Schmidt Procedure to the basis $\mathcal{A} = \{u_1, u_2, u_3, \dots\}$ where $u_k = e_k - e_0$.

Solution: Let $\mathcal{B} = \{v_1, v_2, v_3, \dots\}$ be the basis obtained by applying the Gram-Schmidt Procedure to \mathcal{A} . Write

$$s_k = \sum_{i=0}^{n-1} e_i = (1, 1, \dots, 1, 0, 0, \dots).$$

We claim that

$$v_k = e_k - \frac{1}{k} s_k = e_k - \frac{1}{k} \sum_{i=0}^{k-1} e_i = \left(-\frac{1}{k}, -\frac{1}{k}, \dots, -\frac{1}{k}, 1, 0, 0, \dots \right) \text{ for all } k \geq 1.$$

We have $v_1 = u_1 = e_1 - e_0$, so the claim holds when $k = 1$. Let $n \geq 2$ and suppose the claim holds for all $k < n$. For $k < n$ we have

$$\begin{aligned} \langle u_n, v_k \rangle &= \left\langle e_n - e_0, e_k - \frac{1}{k} \sum_{i=1}^k e_i \right\rangle = \frac{1}{k}, \text{ and} \\ |v_k|^2 &= k \cdot \frac{1}{k^2} + 1 = \frac{k+1}{k} \end{aligned}$$

and so

$$\begin{aligned} v_n &= u_n - \sum_{k=1}^{n-1} \frac{\langle u_n, v_k \rangle}{|v_k|^2} v_k = u_n - \sum_{k=1}^{n-1} \frac{1}{k+1} v_k = u_n - \sum_{k=1}^{n-1} \frac{1}{k+1} (e_k - \frac{1}{k} s_k) \\ &= u_n - \sum_{k=1}^{n-1} \frac{1}{k+1} e_k + \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) s_k = u_n + \sum_{k=1}^{n-1} \frac{1}{k} s_k - \sum_{k=1}^{n-1} \frac{1}{k+1} (e_k + s_k) \\ &= u_n + \sum_{k=1}^{n-1} \frac{1}{k} s_k - \sum_{k=1}^{n-1} \frac{1}{k+1} s_{k+1} = u_n + \sum_{k=1}^{n-1} \frac{1}{k} s_k - \sum_{l=2}^n \frac{1}{l} s_l \\ &= u_n + s_1 - \frac{1}{n} s_n = (e_n - e_0) + e_0 - \frac{1}{n} s_n = e_n - \frac{1}{n} s_n, \end{aligned}$$

as required.

4: (a) Use an orthogonal projection to find $f \in P_2(\mathbb{R})$ which minimizes $\int_0^2 (f(x) - \sqrt{2x - x^2})^2 dx$.

Solution: To simplify calculations, we translate 1 unit to the left. Let $g(x) = \sqrt{2x - x^2}$, $h(x) = f(x + 1)$ and $k(x) = g(x + 1) = \sqrt{1 - x^2}$ and note that

$$\int_{x=0}^2 (f(x) - g(x))^2 dx = \int_{x=-1}^1 (h(x) - k(x))^2 dx.$$

We work in the vector space $\mathcal{C}^0([-1, 1], \mathbb{R})$ with its standard inner product. To minimize $\int_{-1}^1 (h(x) - k(x))^2 dx$, which is equal to $|h - k|^2$, we must choose $h = \text{Proj}_{P_2}(k)$. To find this projection, we use an orthogonal basis for P_2 . In Example 6.21 in the Lecture Notes, the Gram-Schmidt Procedure was applied to the standard basis $\{1, x, x^2\}$ for P_2 to obtain the orthogonal basis $\{q_0, q_1, q_2\}$ with $q_0(x) = 1$, $q_1(x) = x$ and $q_2(x) = x^2 - \frac{1}{3}$. The calculations done in that example also show that $|q_0|^2 = 2$, $|q_1|^2 = \frac{2}{3}$ and $|q_2|^2 = \frac{8}{45}$. Note that

$$\langle k, q_0 \rangle = \langle \sqrt{1 - x^2}, 1 \rangle = \int_{-1}^1 \sqrt{1 - x^2} dx = \frac{\pi}{2}$$

since the integral calculates the area under the semicircle $y = \sqrt{1 - x^2}$. Also note that

$$\langle k, q_1 \rangle = \langle \sqrt{1 - x^2}, x \rangle = \int_{-1}^1 x \sqrt{1 - x^2} dx = 0$$

by symmetry, since $x\sqrt{1 - x^2}$ is an odd function. To find $\langle k, q_3 \rangle$ we need to find $\int_{-1}^1 x^2 \sqrt{1 - x^2} dx$. We make the substitution $\sin \theta = x$ so that $\cos \theta = \sqrt{1 - x^2}$ and $\cos \theta d\theta = dx$ to get

$$\begin{aligned} \int_{x=-1}^1 x^2 \sqrt{1 - x^2} dx &= \int_{\theta=-\pi/2}^{\pi/2} \sin^2 \theta \cos^2 \theta d\theta = \int_{\theta=-\pi/2}^{\pi/2} \frac{\sin^2 2\theta}{4} d\theta \\ &= \int_{\theta=-\pi/2}^{\pi/2} \frac{1 - \cos 4\theta}{8} d\theta = \left[\frac{1}{8}\theta - \frac{1}{32}\sin 4\theta \right]_{-\pi/2}^{\pi/2} = \frac{\pi}{8} \end{aligned}$$

and so

$$\langle k, q_2 \rangle = \langle \sqrt{1 - x^2}, x^2 - \frac{1}{3} \rangle = \int_{-1}^1 x^2 \sqrt{1 - x^2} dx - \frac{1}{3} \int_{-1}^1 \sqrt{1 - x^2} dx = \frac{\pi}{8} - \frac{\pi}{6} = -\frac{\pi}{24}.$$

Thus in order to minimize $|h - k|^2$ we must choose

$$\begin{aligned} h(x) &= \text{Proj}_{P_2}(k) = \frac{\langle k, q_0 \rangle}{|q_0|^2} q_0 + \frac{\langle k, q_1 \rangle}{|q_1|^2} q_1 + \frac{\langle k, q_2 \rangle}{|q_2|^2} q_2 \\ &= \frac{\pi/2}{2} \cdot 1 + \frac{0}{2/3} \cdot x + \frac{-\pi/24}{8/45} \cdot (x^2 - \frac{1}{3}) = \frac{\pi}{4} - \frac{15\pi}{64} (x^2 - \frac{1}{3}) = \frac{\pi}{64} (21 - 15x^2) \end{aligned}$$

and hence we must choose

$$f(x) = h(x - 1) = \frac{\pi}{64} (6 + 30x - 15x^2).$$

(b) Let $a, b \in \mathbb{R}$ with $a < b$ and let $W = \mathcal{C}^0([a, b], \mathbb{R})$ with the inner product given by $\langle f, g \rangle = \int_a^b f g dx$. Suppose $\{p_0, p_1, \dots, p_n\}$ is an orthonormal basis for $P_n(\mathbb{R}) \subseteq W$. For each k , write $p_k(x) = \sum_{i=0}^n a_{k,i} x^i$ and let $A \in M_{n+1}(\mathbb{R})$ with $A_{ki} = a_{k,i}$. Let $b = (b_0, b_1, \dots, b_n)^T \in \mathbb{R}^{n+1}$. Given that $f \in W$ with $\int_a^b x^i f(x) dx = b_i$ for $0 \leq i \leq n$, find a formula, in terms of A and b , for the minimum possible value for $\int_a^b f(x)^2 dx$.

Solution: Since $\langle f, x^i \rangle = \int_a^b x^i f(x) dx = b_i$ for all i , we have $\langle f, p_k \rangle = \langle f, \sum_{i=1}^n a_{k,i} x^i \rangle = \sum_{i=1}^n a_{k,i} \langle f, x^i \rangle = \sum_{i=1}^n a_{k,i} b_i$ which is equal to the k^{th} entry of Ab . Thus we have $Ab = (\langle f, p_0 \rangle, \langle f, p_1 \rangle, \dots, \langle f, p_n \rangle)^T$. When $f = u + v$ with $u \in P_n(\mathbb{R})$ and $v \in P_n(\mathbb{R})^\perp$, we have $|f|^2 = |u + v|^2 = |u|^2 + 2u \cdot v + |v|^2 = |u|^2 + |v|^2$ because $u \cdot v = 0$, and so $|f| \leq |u|$ with $|f| = |u| \iff v = 0 \iff f = u$. Thus in order to minimize $|f|$ we must have $f = u = \text{Proj}_{P_2(\mathbb{R})}(f)$. Thus the minimum possible value for $\int_a^b f(x)^2 dx = |f|^2$ is equal to

$$|u|^2 = \sum_{i=0}^n |\langle f, p_k \rangle|^2 = |Ab|^2.$$