MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 5

n

: (a) For u = (uy,ua, -, u,)’ € C", define |u|, = Z |u;|. Show that | |; is a norm on C™ but that there is no
=1

inner product ( , ) on C™ such that |ul; = \/{(u,u) for all u € C".

Solution: We note that | |; is a norm on R™ because for all x,y € R™ and all ¢ € R we have
n n
L. [tz = Zl |tzs| = [t] 21 || = [t] |1,
= i=

2. |z|p = > |z > 0 with |z]; =0 < > |2;| =0 <= |z;|=0for all i <= z =0, and
i=1 i=1

n n n n
3.z tyl =X |+ uil < X (lnal + lwil) = X lasl + X lwal = [zl + [yl
i=1 i=1 i=1 i=1

Suppose, for a contradiction, that there was an inner product ( , ) such that |z|; = /(z,z) for all z € R™.
Then by the polarization identity we would have

RGNS

1 AN

()= )]
(OIOIRSIRBIEG]N

but this is not possible since by linearity, we would also have

() (=0 6)()==6)-()

(b) For A € Mjxm(C), define |[A] = énalx\ 1|Au|. Show that | | is a norm on Mjx.,(C) and show that
uEC™ |u|=

for A € Miyxm(C) and B € My, %, (C), we have |AB| < |A||B|. (You may assume, without proof, that the

maximum (Cmalx‘ |Au| exists and is finite. This follows from the Extreme Value Theorem, since the set
ue ‘"L7 Uu :1

S ={u € C™||u| =1} is compact and the map g(u) = |Au| is continuous on ).
Solution: For A, B € Mjx,(C) and for ¢ € C we have

[tA| = ‘rnlax |t Az| = rnlax [t]|Ax| = |¢| In‘ax |Az| = |t| |A| and
|A+ B| = ‘mla% |Az + Bz| < lm‘ax (|Az| + |Bz|) < Im‘ax |Az| + lm‘ax |Bx| = |A| + |B|,
x|= x|=1 x|=1 x|=1

4-1-1)=1,and

N[ =

(4-1-1)=1,

1
2

and we have |A| > 0 with

Al =0 «— |111Ia>§\Ax|:0 <= Ar=0forallz € C" with [z| =1 <= A =0,
indeed if A = 0 the of course Az = 0 for all x € C™ with |z| = 1, and conversely if Az = 0 for all z € C™
with |z| = 1 then, in particular we have Ae; = 0 for all indices ¢ and so A = (Aey, Aea, -, Ae;) = 0. Thus | |
is a norm on My, (C). Now let A € My, (C) and B € M, %, (C). Then

|ABzx|

AB| = a; ABz| = a = a ’A ’ B
|AB] reé{},\;{\:1| 2l = xE((IZI”l,\ﬂ 1 |Bz| | Bz xe(g},\;ﬂ:l (|B*|) | Bz
< max A(—gx )’ max |Bz|| < ( max |Ay|>( max |Bx|) = |A||B].
zeCn |oj=1| ‘1Bzl zeCn,|z|=1 yeCm |y|=1 zeCn,|z|




2: (a) A matrix A € M, (C) is called Hermitian (or self-adjoint) when A* = A, and positive-definite when
A* = A with u*Au > 0 for all 0 # v € C™. Show that the following matrix A is positive-definite:

2 1 4
A=|[1 3 2
—1 2 3
Solution: It is clear that A* = A. For u € C3 we have
2 1 3 U1 2uq 4+ us + 1 us
wAu= (a,az,us) | 103 2| | ue | = (@1,,a3) | ur+ 3uz + 2us
—7 2 3 us —i 4 2uo + 3ug

= 2u1U7 + Uy + 1 U3l + U1l + Jugliz + 2uzlUy — tUUZ + 2usUz + 3usUz
= (T + u2Tr + w W + usTs) + (W1 + i usTr — 1w T3 + ugliz) + 2(u2lz + uslz + usTls + usls)
= |U1 +U2|2 + |U1 +Z"LL3|2 +2|U2 +U3|2 Z O

with
WAu =0 < Ui +us=u1 +iu3 =us +u3 =0 < u; = uy = u3z = 0.

(b) Let U be an n-dimensional vector space over C and let A = (uy,us, -, u,) be an ordered basis for U.
Show that given an inner product ( , ) on U, there exists a unique matrix A € M, (C) (which we call the
matrix of the inner product with respect to the basis A) such that (z,y) = [y] 1A [z] 4 for all 2,y € U and
this matrix A is Hermitian and positive-definite, and show, conversely, that given a Hermitian positive-definite
matrix A € M,,(C), we can define an inner-product on U by (x,y) = [y] 4A [x]4 for 2,y € U.

Solution: Let (, ) be an inner product on U. Suppose that there exists a matrix A € M,,(C) with the property
that (z,y) = [y] 1A [z]4 for all z,y € U. Then in particular, for all indices k and [ we must have

(up, up) = [ug) AAlw)a = exAa; = Ay .

On the other hand, when we define A € M,.(C) to be the matrix with entries Ay; = (u;, ux), for z = > s;u;
i=1

n
and y = ) t;ju; we have
j=1

(z,y) = ( Zlé’iuz‘, 21 tiug) = 21 Zl sitj(ui,uj) = 21 '21 tjAjisi = t* As = [y| 4A[z] 4.
i= j= i=1j= i=1j=

Note that A is Hermitian because for all indices k,! we have (A*)x; = A r = (uk, w;) = (w;, ux) = A, and A

is positive-definite because given 0 # ¢t € C", if we let = >_ t;u; then we have [z]4 =t and = # 0, and so
i=1

t* At = [2] 4Ax] 4 = (z,2) > 0.

Conversely, let A € M, (C) be Hermitian and positive-definite and define ( , ) by (z,y) = [y]1A[z]4 for
z,y € C". Then (, ) is an inner product because

L2,y +2) = [y + 2] aAlz] 4 = [y]aA [2]a + [l aA [2]4 = (z,y) + (z,2) , and
(x,ty) = [ty] 1A [2]a = (tly]a) Alz]a =1
(x+y,2) = {(x,2) + (y,2) and (tz,y) = t{x,v),

2. (o) = (@) = (WA lala) = [2144° [yla = [2]3ATy)a = (y,2) , and

3. for 0 # z € C" we have [z]4 # 0 so (z,x) = [z] 1A [z]4 > 0.
(¢) Let U be an n-dimensional inner product space over C, let A = (uy,---,u,) and B = (vq,---,v,) be two
ordered bases for U, let A and B be the matrices of the inner product with respect to the bases A and B, and

let P = (I3 = ([u1], -, [un]B) be the change of basis matrix from A to B. Find a formula for B in terms
of A and P.

Solution: For all indices k,l we have

Biy = (i 04) = [0y iAf]a = (N [s) A (D5 [vds)
= (P ler) A(Pe) = ey (P AP ey = (P71)"APTY)

and so B = (P~1H)*AP~1L.



3: For z = x + iy with z,y € R we define e* = e” cosy + ¢ €” siny and then we define
iz

) ez _ iz e | e~i% ) e — e % e + e 7
singz=———,cos2=———, sinhz=———, coshz=—F—.
21 2 2 2

(a) Show that for z,y € R we have cos(x + iy) = cosx coshy — i sinx sinh y.

Solution: We have
cos(z + iy) = 1 (e’@HW) 4 emi@t)) = L(e-vtio 4 ev=iv) = L(e~Y(cosz + isinz) + e¥(cosz — isinz))
x

= . Liey —v) — Loy ey = — i si i
=cosz-3(e + e ) —isinz-1(e? — e Y) =coswcoshy — i sinzsinhy.

(b) Draw a fairly accurate sketch of the images of the lines z = a for o € {O, 823799 %’r, a ,7r} and the images
of the lines y = 8 for g € {0, +In2,+1In3, :tln4} under the map w = f(z) = cos z.

Solution: The line x = « is given parametrically by = + iy = « + it, and it is mapped to the curve given
by u + iv = cos(a + it) = cosacosht + i sinasinht. When o = 0 we get the curve v + v = cosht + 40
which follows the u-axis with v > 1 (moving to the left then to the right). When a = 7 we get the curve
u+iv = 0—1i sinh ¢ which follows the v-axis (downwards). When oo = 7 we get the curve u+iv = —cosht+:0
which follows the u-axis with v < —1 (moving to the right then to the left). For the other values of « note

that COSQQ - Sifa = cosh? @ — sinh® @ = 1 and so the curve follows the hyperbola % + - = 1 (the

asymptotes of this hyperbola make an angle o with the u-axis).
The line y = [ is given parametrically by x + iy = t + ¢, and it is mapped to the curve given by
u—+ 1w = cos(t +i8) = costcoshf — ¢ sintsinh 5. When 8 = 0 we get the curve u + iv = cost + i 0 which

follows the u-axis with —1 < w < 1 (moving back and forth). For all other values of § note that we have
2 2

cosuh2 B + sinlil2 B

semi-major and semi-minor axes cosh § and |sinh j3]).

= cos?t +sint = 1 and so the curve follows the ellipse ﬁ + ﬁ = 1 (which has

\ /
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(c) Recall that the complex-valued angle between u and v in C™ is the unique complex number 6 = o+ i3
with 0 < a < 7 such that cos = < V) Find the complex-valued angle between the vectors u = (1,0,4)T and

fulo]
v=(3+1,2i,3+3i)7 in C3.

Solution: We have

[ullol — Jullvl — V2V/32 8 4

For w = 3 and § = o+ i3 with 0 < a < 7 we have

(u,v)  v'u  (3—i4)+i(3—-3i) 642 3+

el £ e 34

cosf = w = = 2e% 4270 =340 = 2()? - (3+4)(?)+2=0
e o B E (3+Z) 16 (3+i)£V=8+6i (3+1i)+(1+3i)
a B 4 - 4

s eilatif) o {1+277} P = {\/ie”/“,%e—”/“}

“— e‘ﬂzﬁanda:%(sinceogagﬁ) = Ozg—iln\/i

Thus the complex angle between v and v is § = cos™* (wo) _ oog—1 % =7—1ln V2.



