
MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 5

1: (a) For u = (u1, u2, · · · , un)T ∈ Cn, define |u|1 =
n∑
i=1

|ui|. Show that | |1 is a norm on Cn but that there is no

inner product 〈 , 〉 on Cn such that |u|1 =
√
〈u, u〉 for all u ∈ Cn.

Solution: We note that | |1 is a norm on Rn because for all x, y ∈ Rn and all t ∈ R we have

1. |tx|1 =
n∑
i=1

|txi| = |t|
n∑
i=1

|xi| = |t| |x|1,

2. |x|1 =
n∑
i=1

|xi| ≥ 0 with |x|1 = 0 ⇐⇒
n∑
i=1

|xi| = 0 ⇐⇒ |xi| = 0 for all i ⇐⇒ x = 0, and

3. |x+ y|1 =
n∑
i=1

|xi + yi| ≤
n∑
i=1

(
|xi|+ |yi|

)
=

n∑
i=1

|xi|+
n∑
i=1

|yi| = |x|1 + |y|1.

Suppose, for a contradiction, that there was an inner product 〈 , 〉 such that |x|1 =
√
〈x, x〉 for all x ∈ Rn.

Then by the polarization identity we would have〈(
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but this is not possible since by linearity, we would also have〈(
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)
,
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0
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)〉
=

〈
−
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(b) For A ∈ Ml×m(C), define |A| = max
u∈Cm,|u|=1

|Au|. Show that | | is a norm on Ml×m(C) and show that

for A ∈ Ml×m(C) and B ∈ Mm×n(C), we have |AB| ≤ |A| |B|. (You may assume, without proof, that the
maximum max

u∈Cm,|u|=1
|Au| exists and is finite. This follows from the Extreme Value Theorem, since the set

S =
{
u ∈ Cm

∣∣|u| = 1
}

is compact and the map g(u) = |Au| is continuous on S).

Solution: For A,B ∈Ml×m(C) and for t ∈ C we have

|tA| = max
|x|=1

|t Ax| = max
|x|=1

|t| |Ax| = |t|max
|x|=1

|Ax| = |t| |A| and

|A+B| = max
|x|=1

∣∣Ax+Bx
∣∣ ≤ max

|x|=1

(
|Ax|+ |Bx|

)
≤ max
|x|=1

|Ax|+ max
|x|=1

|Bx| = |A|+ |B| ,

and we have |A| ≥ 0 with

|A| = 0 ⇐⇒ max
|x|=1

|Ax| = 0 ⇐⇒ Ax = 0 for all x ∈ Cm with |x| = 1 ⇐⇒ A = 0,

indeed if A = 0 the of course Ax = 0 for all x ∈ Cm with |x| = 1, and conversely if Ax = 0 for all x ∈ Cm
with |x| = 1 then, in particular we have Aei = 0 for all indices i and so A = (Ae1, Ae2, · · · , Ael) = 0. Thus | |
is a norm on Ml×n(C). Now let A ∈Ml×m(C) and B ∈Mm×n(C). Then

|AB| = max
x∈Cn,|x|=1

|ABx| = max
x∈Cn,|x|=1

|ABx|
|Bx|

|Bx| = max
x∈Cn,|x|=1

∣∣∣A( Bx|Bx|)∣∣∣ |Bx|
≤
(

max
x∈Cn,|x|=1

∣∣∣∣A( Bx|Bx|)∣∣∣)( max
x∈Cn,|x|=1

|Bx|
)
≤
(

max
y∈Cm,|y|=1

|Ay|
)(

max
x∈Cn,|x|=1

|Bx|
)

= |A| |B|.



2: (a) A matrix A ∈ Mn(C) is called Hermitian (or self-adjoint) when A∗ = A, and positive-definite when
A∗ = A with u∗Au > 0 for all 0 6= u ∈ Cn. Show that the following matrix A is positive-definite:

A =

 2 1 i
1 3 2
−i 2 3

 .

Solution: It is clear that A∗ = A. For u ∈ C3 we have

u∗Au =
(
u1, u2, u3

) 2 1 i
1 3 2
−i 2 3

u1
u2
u3

 =
(
u1, u2, u3

) 2u1 + u2 + i u3
u1 + 3u2 + 2u3
−i+ 2u2 + 3u3


= 2u1u1 + u2u1 + i u3u1 + u1u2 + 3u2u2 + 2u3u2 − i u1u3 + 2u2u3 + 3u3u3

=
(
u1u1 + u2u1 + u1u2 + u2u2

)
+
(
u1u1 + i u3u1 − i u1u3 + u3u3

)
+ 2
(
u2u2 + u3u2 + u2u3 + u3u3

)
= |u1 + u2|2 + |u1 + i u3|2 + 2|u2 + u3|2 ≥ 0

with
u∗Au = 0 ⇐⇒ u1 + u2 = u1 + i u3 = u2 + u3 = 0 ⇐⇒ u1 = u2 = u3 = 0.

(b) Let U be an n-dimensional vector space over C and let A = (u1, u2, · · · , un) be an ordered basis for U .
Show that given an inner product 〈 , 〉 on U , there exists a unique matrix A ∈ Mn(C) (which we call the
matrix of the inner product with respect to the basis A) such that 〈x, y〉 = [y]A

∗
A [x]A for all x, y ∈ U and

this matrix A is Hermitian and positive-definite, and show, conversely, that given a Hermitian positive-definite
matrix A ∈Mn(C), we can define an inner-product on U by 〈x, y〉 = [y]A

∗
A [x]A for x, y ∈ U .

Solution: Let 〈 , 〉 be an inner product on U . Suppose that there exists a matrix A ∈Mn(C) with the property
that 〈x, y〉 = [y]A

∗
A [x]A for all x, y ∈ U . Then in particular, for all indices k and l we must have

〈ul, uk〉 = [uk]A
∗
A[ul]A = ekAal = Ak,l.

On the other hand, when we define A ∈ Mr(C) to be the matrix with entries Ak,l = 〈ul, uk〉, for x =
n∑
i=1

siui

and y =
n∑
j=1

tjuj we have

〈x, y〉 =
〈 n∑
i=1

siui,
n∑
j=1

tjuj
〉

=
n∑
i=1

n∑
j=1

sitj〈ui, uj〉 =
n∑
i=1

n∑
j=1

tjAj,isi = t∗As = [y]A
∗
A[x]A.

Note that A is Hermitian because for all indices k, l we have (A∗)k,l = Al,k = 〈uk, ul〉 = 〈ul, uk〉 = Ak,l and A

is positive-definite because given 0 6= t ∈ Cn, if we let x =
n∑
i=1

tiui then we have [x]A = t and x 6= 0, and so

t∗At = [x]A
∗
A[x]A = 〈x, x〉 > 0.

Conversely, let A ∈ Mn(C) be Hermitian and positive-definite and define 〈 , 〉 by 〈x, y〉 = [y]A
∗
A[x]A for

x, y ∈ Cn. Then 〈 , 〉 is an inner product because

1. 〈x, y + z〉 = [y + z]A
∗
A[x]A = [y]A

∗
A [x]A + [z]A

∗
A [x]A = 〈x, y〉+ 〈x, z〉 , and

〈x, ty〉 = [ty]A
∗
A [x]A =

(
t[y]A

)∗
A [x]A = t[y]A

∗
A [x]A = t〈x, y〉 , and similarly

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈tx, y〉 = t〈x, y〉,

2. 〈x, y〉 = (〈x, y〉)∗ =
(

[y]A
∗
A [x]A

)∗
= [x]A

∗
A∗ [y]A = [x]A

∗
A [y]A = 〈y, x〉 , and

3. for 0 6= x ∈ Cn we have [x]A 6= 0 so 〈x, x〉 = [x]A
∗
A [x]A > 0.

(c) Let U be an n-dimensional inner product space over C, let A = (u1, · · · , un) and B = (v1, · · · , vn) be two
ordered bases for U , let A and B be the matrices of the inner product with respect to the bases A and B, and
let P = [I]AB =

(
[u1]B, · · · , [un]B

)
be the change of basis matrix from A to B. Find a formula for B in terms

of A and P .

Solution: For all indices k, l we have

Bk,l = 〈vl, vk〉 = [vk]A
∗
A[vl]A =

(
[I]BA[vk]B

)∗
A
(

[I]BA[vl]B

)
=
(
P−1ek

)∗
A
(
P−1el

)
= ek

∗(P−1)∗AP−1el =
(
(P−1)∗AP−1

)
k,l

and so B = (P−1)∗AP−1.



3: For z = x+ iy with x, y ∈ R we define ez = ex cos y + i ex sin y and then we define

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
, sinh z =

ez − e−z

2
, cosh z =

ez + e−z

2
.

(a) Show that for x, y ∈ R we have cos(x+ iy) = cosx cosh y − i sinx sinh y.

Solution: We have

cos(x+ iy) = 1
2

(
ei(x+iy) + e−i(x+iy)

)
= 1

2

(
e−y+ix + ey−ix

)
= 1

2

(
e−y(cosx+ i sinx) + ey(cosx− i sinx)

)
= cosx · 12 (ey + e−y)− i sinx · 12 (ey − e−y) = cosx cosh y − i sinx sinh y.

(b) Draw a fairly accurate sketch of the images of the lines x = α for α ∈
{

0, π6 ,
π
3 ,

π
2 ,

2π
3 ,

5π
6 , π

}
and the images

of the lines y = β for β ∈
{

0,± ln 2,± ln 3,± ln 4
}

under the map w = f(z) = cos z.

Solution: The line x = α is given parametrically by x + iy = α + it, and it is mapped to the curve given
by u + iv = cos(α + it) = cosα cosh t + i sinα sinh t. When α = 0 we get the curve u + iv = cosh t + i 0
which follows the u-axis with u ≥ 1 (moving to the left then to the right). When α = π

2 we get the curve
u+ iv = 0− i sinh t which follows the v-axis (downwards). When α = π we get the curve u+ iv = − cosh t+ i 0
which follows the u-axis with u ≤ −1 (moving to the right then to the left). For the other values of α note

that u2

cos2 α −
v2

sinα = cosh2 α − sinh2 α = 1 and so the curve follows the hyperbola u2

cos2 α + v2

sin2 α
= 1 (the

asymptotes of this hyperbola make an angle α with the u-axis).
The line y = β is given parametrically by x + iy = t + iβ, and it is mapped to the curve given by

u + iv = cos(t + iβ) = cos t coshβ − i sin t sinhβ. When β = 0 we get the curve u + iv = cos t + i 0 which
follows the u-axis with −1 ≤ u ≤ 1 (moving back and forth). For all other values of β note that we have
u2

cosh2 β
+ v2

sinh2 β
= cos2 t + sin2 t = 1 and so the curve follows the ellipse u2

cosh2 β
+ v2

sinh2 β
= 1 (which has

semi-major and semi-minor axes coshβ and | sinhβ|).

(c) Recall that the complex-valued angle between u and v in Cn is the unique complex number θ = α+ iβ

with 0 < α < π such that cos θ = 〈u,v〉
|u||v| . Find the complex-valued angle between the vectors u = (1, 0, i)T and

v = (3 + i, 2i, 3 + 3i)T in C3.

Solution: We have
〈u, v〉
|u||v|

=
v∗u

|u||v|
=

(3− i) + i(3− 3i)√
2
√

32
=

6 + 2i

8
=

3 + i

4
.

For w = 3+i
4 and θ = α+ iβ with 0 ≤ α ≤ π we have

cos θ = w ⇐⇒ eiθ + e−iθ

2
=

3 + i

4
⇐⇒ 2eiθ + 2e−iθ = 3 + i ⇐⇒ 2(eiθ)2 − (3 + i)(eiθ) + 2 = 0

⇐⇒ eiθ =
(3 + i)±

√
(3 + i)2 − 16

4
=

(3 + i)±
√
−8 + 6i

4
=

(3 + i)± (1 + 3i)

4

⇐⇒ ei(α+iβ) ∈
{

1 + i, 1−i2
}
⇐⇒ e−βeiα ∈

{√
2ei π/4, 1√

2
e−i π/4

}
⇐⇒ e−β =

√
2 and α = π

4

(
since 0 ≤ α ≤ π

)
⇐⇒ θ = π

4 − i ln
√

2.

Thus the complex angle between u and v is θ = cos−1 〈u,v〉|u||v| = cos−1 3+i
4 = π

4 − i ln
√

2.


