

1: (a) For $u = (u_1, u_2, \dots, u_n)^T \in \mathbb{C}^n$, define $|u|_1 = \sum_{i=1}^n |u_i|$. Show that $|\cdot|_1$ is a norm on \mathbb{C}^n but that there is no inner product $\langle \cdot, \cdot \rangle$ on \mathbb{C}^n such that $|u|_1 = \sqrt{\langle u, u \rangle}$ for all $u \in \mathbb{C}^n$.

Solution: We note that $|\cdot|_1$ is a norm on \mathbb{R}^n because for all $x, y \in \mathbb{R}^n$ and all $t \in \mathbb{R}$ we have

1. $|tx|_1 = \sum_{i=1}^n |tx_i| = |t| \sum_{i=1}^n |x_i| = |t| |x|_1$,
2. $|x|_1 = \sum_{i=1}^n |x_i| \geq 0$ with $|x|_1 = 0 \iff \sum_{i=1}^n |x_i| = 0 \iff |x_i| = 0$ for all $i \iff x = 0$, and
3. $|x + y|_1 = \sum_{i=1}^n |x_i + y_i| \leq \sum_{i=1}^n (|x_i| + |y_i|) = \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = |x|_1 + |y|_1$.

Suppose, for a contradiction, that there was an inner product $\langle \cdot, \cdot \rangle$ such that $|x|_1 = \sqrt{\langle x, x \rangle}$ for all $x \in \mathbb{R}^n$. Then by the polarization identity we would have

$$\begin{aligned} \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle &= \frac{1}{2} \left(\left| \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right|_1^2 - \left| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|_1^2 - \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right|_1^2 \right) = \frac{1}{2} (4 - 1 - 1) = 1, \text{ and} \\ \left\langle \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle &= \frac{1}{2} \left(\left| \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right|_1^2 - \left| \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right|_1^2 - \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right|_1^2 \right) = \frac{1}{2} (4 - 1 - 1) = 1, \end{aligned}$$

but this is not possible since by linearity, we would also have

$$\left\langle \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle = \left\langle - \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle = - \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle.$$

(b) For $A \in M_{l \times m}(\mathbb{C})$, define $|A| = \max_{u \in \mathbb{C}^m, |u|=1} |Au|$. Show that $|\cdot|$ is a norm on $M_{l \times m}(\mathbb{C})$ and show that for $A \in M_{l \times m}(\mathbb{C})$ and $B \in M_{m \times n}(\mathbb{C})$, we have $|AB| \leq |A||B|$. (You may assume, without proof, that the maximum $\max_{u \in \mathbb{C}^m, |u|=1} |Au|$ exists and is finite. This follows from the Extreme Value Theorem, since the set $S = \{u \in \mathbb{C}^m \mid |u|=1\}$ is compact and the map $g(u) = |Au|$ is continuous on S).

Solution: For $A, B \in M_{l \times m}(\mathbb{C})$ and for $t \in \mathbb{C}$ we have

$$\begin{aligned} |tA| &= \max_{|x|=1} |tAx| = \max_{|x|=1} |t| |Ax| = |t| \max_{|x|=1} |Ax| = |t| |A| \text{ and} \\ |A + B| &= \max_{|x|=1} |Ax + Bx| \leq \max_{|x|=1} (|Ax| + |Bx|) \leq \max_{|x|=1} |Ax| + \max_{|x|=1} |Bx| = |A| + |B|, \end{aligned}$$

and we have $|A| \geq 0$ with

$$|A| = 0 \iff \max_{|x|=1} |Ax| = 0 \iff Ax = 0 \text{ for all } x \in \mathbb{C}^m \text{ with } |x|=1 \iff A = 0,$$

indeed if $A = 0$ the of course $Ax = 0$ for all $x \in \mathbb{C}^m$ with $|x|=1$, and conversely if $Ax = 0$ for all $x \in \mathbb{C}^m$ with $|x|=1$ then, in particular we have $Ae_i = 0$ for all indices i and so $A = (Ae_1, Ae_2, \dots, Ae_l) = 0$. Thus $|\cdot|$ is a norm on $M_{l \times n}(\mathbb{C})$. Now let $A \in M_{l \times m}(\mathbb{C})$ and $B \in M_{m \times n}(\mathbb{C})$. Then

$$\begin{aligned} |AB| &= \max_{x \in \mathbb{C}^n, |x|=1} |ABx| = \max_{x \in \mathbb{C}^n, |x|=1} \frac{|ABx|}{|Bx|} |Bx| = \max_{x \in \mathbb{C}^n, |x|=1} \left| A \left(\frac{Bx}{|Bx|} \right) \right| |Bx| \\ &\leq \left(\max_{x \in \mathbb{C}^n, |x|=1} \left| A \left(\frac{Bx}{|Bx|} \right) \right| \right) \left(\max_{x \in \mathbb{C}^n, |x|=1} |Bx| \right) \leq \left(\max_{y \in \mathbb{C}^m, |y|=1} |Ay| \right) \left(\max_{x \in \mathbb{C}^n, |x|=1} |Bx| \right) = |A||B|. \end{aligned}$$

2: (a) A matrix $A \in M_n(\mathbb{C})$ is called **Hermitian** (or **self-adjoint**) when $A^* = A$, and **positive-definite** when $A^* = A$ with $u^*Au > 0$ for all $0 \neq u \in \mathbb{C}^n$. Show that the following matrix A is positive-definite:

$$A = \begin{pmatrix} 2 & 1 & i \\ 1 & 3 & 2 \\ -i & 2 & 3 \end{pmatrix}.$$

Solution: It is clear that $A^* = A$. For $u \in \mathbb{C}^3$ we have

$$\begin{aligned} u^*Au &= (\bar{u}_1, \bar{u}_2, \bar{u}_3) \begin{pmatrix} 2 & 1 & i \\ 1 & 3 & 2 \\ -i & 2 & 3 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = (\bar{u}_1, \bar{u}_2, \bar{u}_3) \begin{pmatrix} 2u_1 + u_2 + iu_3 \\ u_1 + 3u_2 + 2u_3 \\ -i + 2u_2 + 3u_3 \end{pmatrix} \\ &= 2u_1\bar{u}_1 + u_2\bar{u}_1 + iu_3\bar{u}_1 + u_1\bar{u}_2 + 3u_2\bar{u}_2 + 2u_3\bar{u}_2 - iu_1\bar{u}_3 + 2u_2\bar{u}_3 + 3u_3\bar{u}_3 \\ &= (u_1\bar{u}_1 + u_2\bar{u}_1 + u_1\bar{u}_2 + u_2\bar{u}_2) + (u_1\bar{u}_1 + iu_3\bar{u}_1 - iu_1\bar{u}_3 + u_3\bar{u}_3) + 2(u_2\bar{u}_2 + u_3\bar{u}_2 + u_2\bar{u}_3 + u_3\bar{u}_3) \\ &= |u_1 + u_2|^2 + |u_1 + iu_3|^2 + 2|u_2 + u_3|^2 \geq 0 \end{aligned}$$

with

$$u^*Au = 0 \iff u_1 + u_2 = u_1 + iu_3 = u_2 + u_3 = 0 \iff u_1 = u_2 = u_3 = 0.$$

(b) Let U be an n -dimensional vector space over \mathbb{C} and let $\mathcal{A} = (u_1, u_2, \dots, u_n)$ be an ordered basis for U . Show that given an inner product $\langle \cdot, \cdot \rangle$ on U , there exists a unique matrix $A \in M_n(\mathbb{C})$ (which we call the **matrix of the inner product** with respect to the basis \mathcal{A}) such that $\langle x, y \rangle = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}}$ for all $x, y \in U$ and this matrix A is Hermitian and positive-definite, and show, conversely, that given a Hermitian positive-definite matrix $A \in M_n(\mathbb{C})$, we can define an inner-product on U by $\langle x, y \rangle = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}}$ for $x, y \in U$.

Solution: Let $\langle \cdot, \cdot \rangle$ be an inner product on U . Suppose that there exists a matrix $A \in M_n(\mathbb{C})$ with the property that $\langle x, y \rangle = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}}$ for all $x, y \in U$. Then in particular, for all indices k and l we must have

$$\langle u_l, u_k \rangle = [u_k]_{\mathcal{A}}^* A [u_l]_{\mathcal{A}} = e_k A a_l = A_{k,l}.$$

On the other hand, when we define $A \in M_r(\mathbb{C})$ to be the matrix with entries $A_{k,l} = \langle u_l, u_k \rangle$, for $x = \sum_{i=1}^n s_i u_i$ and $y = \sum_{j=1}^n t_j u_j$ we have

$$\langle x, y \rangle = \left\langle \sum_{i=1}^n s_i u_i, \sum_{j=1}^n t_j u_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n s_i \bar{t}_j \langle u_i, u_j \rangle = \sum_{i=1}^n \sum_{j=1}^n \bar{t}_j A_{j,i} s_i = t^* A s = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}}.$$

Note that A is Hermitian because for all indices k, l we have $(A^*)_{k,l} = \overline{A_{l,k}} = \overline{\langle u_k, u_l \rangle} = \langle u_l, u_k \rangle = A_{k,l}$ and A is positive-definite because given $0 \neq t \in \mathbb{C}^n$, if we let $x = \sum_{i=1}^n t_i u_i$ then we have $[x]_{\mathcal{A}} = t$ and $x \neq 0$, and so $t^* A t = [x]_{\mathcal{A}}^* A [x]_{\mathcal{A}} = \langle x, x \rangle > 0$.

Conversely, let $A \in M_n(\mathbb{C})$ be Hermitian and positive-definite and define $\langle \cdot, \cdot \rangle$ by $\langle x, y \rangle = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}}$ for $x, y \in \mathbb{C}^n$. Then $\langle \cdot, \cdot \rangle$ is an inner product because

1. $\langle x, y + z \rangle = [y + z]_{\mathcal{A}}^* A [x]_{\mathcal{A}} = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}} + [z]_{\mathcal{A}}^* A [x]_{\mathcal{A}} = \langle x, y \rangle + \langle x, z \rangle$, and
 $\langle x, ty \rangle = [ty]_{\mathcal{A}}^* A [x]_{\mathcal{A}} = (t[y]_{\mathcal{A}})^* A [x]_{\mathcal{A}} = \bar{t}[y]_{\mathcal{A}}^* A [x]_{\mathcal{A}} = \bar{t} \langle x, y \rangle$, and similarly
 $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ and $\langle tx, y \rangle = t \langle x, y \rangle$,
2. $\overline{\langle x, y \rangle} = (\langle x, y \rangle)^* = ([y]_{\mathcal{A}}^* A [x]_{\mathcal{A}})^* = [x]_{\mathcal{A}}^* A^* [y]_{\mathcal{A}} = [x]_{\mathcal{A}}^* A [y]_{\mathcal{A}} = \langle y, x \rangle$, and
3. for $0 \neq x \in \mathbb{C}^n$ we have $[x]_{\mathcal{A}} \neq 0$ so $\langle x, x \rangle = [x]_{\mathcal{A}}^* A [x]_{\mathcal{A}} > 0$.

(c) Let U be an n -dimensional inner product space over \mathbb{C} , let $\mathcal{A} = (u_1, \dots, u_n)$ and $\mathcal{B} = (v_1, \dots, v_n)$ be two ordered bases for U , let A and B be the matrices of the inner product with respect to the bases \mathcal{A} and \mathcal{B} , and let $P = [I]_{\mathcal{B}}^{\mathcal{A}} = ([u_1]_{\mathcal{B}}, \dots, [u_n]_{\mathcal{B}})$ be the change of basis matrix from \mathcal{A} to \mathcal{B} . Find a formula for B in terms of A and P .

Solution: For all indices k, l we have

$$\begin{aligned} B_{k,l} &= \langle v_l, v_k \rangle = [v_k]_{\mathcal{A}}^* A [v_l]_{\mathcal{A}} = ([I]_{\mathcal{B}}^{\mathcal{A}} [v_k]_{\mathcal{B}})^* A ([I]_{\mathcal{B}}^{\mathcal{A}} [v_l]_{\mathcal{B}}) \\ &= (P^{-1} e_k)^* A (P^{-1} e_l) = e_k^* (P^{-1})^* A P^{-1} e_l = ((P^{-1})^* A P^{-1})_{k,l} \end{aligned}$$

and so $B = (P^{-1})^* A P^{-1}$.

3: For $z = x + iy$ with $x, y \in \mathbb{R}$ we define $e^z = e^x \cos y + i e^x \sin y$ and then we define

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \cos z = \frac{e^{iz} + e^{-iz}}{2}, \sinh z = \frac{e^z - e^{-z}}{2}, \cosh z = \frac{e^z + e^{-z}}{2}.$$

(a) Show that for $x, y \in \mathbb{R}$ we have $\cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$.

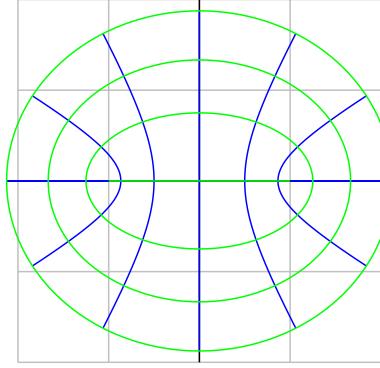
Solution: We have

$$\begin{aligned} \cos(x + iy) &= \frac{1}{2}(e^{i(x+iy)} + e^{-i(x+iy)}) = \frac{1}{2}(e^{-y+ix} + e^{y-ix}) = \frac{1}{2}(e^{-y}(\cos x + i \sin x) + e^y(\cos x - i \sin x)) \\ &= \cos x \cdot \frac{1}{2}(e^y + e^{-y}) - i \sin x \cdot \frac{1}{2}(e^y - e^{-y}) = \cos x \cosh y - i \sin x \sinh y. \end{aligned}$$

(b) Draw a fairly accurate sketch of the images of the lines $x = \alpha$ for $\alpha \in \{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{5\pi}{6}, \pi\}$ and the images of the lines $y = \beta$ for $\beta \in \{0, \pm \ln 2, \pm \ln 3, \pm \ln 4\}$ under the map $w = f(z) = \cos z$.

Solution: The line $x = \alpha$ is given parametrically by $x + iy = \alpha + it$, and it is mapped to the curve given by $u + iv = \cos(\alpha + it) = \cos \alpha \cosh t + i \sin \alpha \sinh t$. When $\alpha = 0$ we get the curve $u + iv = \cosh t + i 0$ which follows the u -axis with $u \geq 1$ (moving to the left then to the right). When $\alpha = \frac{\pi}{2}$ we get the curve $u + iv = 0 - i \sinh t$ which follows the v -axis (downwards). When $\alpha = \pi$ we get the curve $u + iv = -\cosh t + i 0$ which follows the u -axis with $u \leq -1$ (moving to the right then to the left). For the other values of α note that $\frac{u^2}{\cos^2 \alpha} - \frac{v^2}{\sin^2 \alpha} = \cosh^2 \alpha - \sinh^2 \alpha = 1$ and so the curve follows the hyperbola $\frac{u^2}{\cos^2 \alpha} + \frac{v^2}{\sin^2 \alpha} = 1$ (the asymptotes of this hyperbola make an angle α with the u -axis).

The line $y = \beta$ is given parametrically by $x + iy = t + i\beta$, and it is mapped to the curve given by $u + iv = \cos(t + i\beta) = \cos t \cosh \beta - i \sin t \sinh \beta$. When $\beta = 0$ we get the curve $u + iv = \cos t + i 0$ which follows the u -axis with $-1 \leq u \leq 1$ (moving back and forth). For all other values of β note that we have $\frac{u^2}{\cosh^2 \beta} + \frac{v^2}{\sinh^2 \beta} = \cos^2 t + \sin^2 t = 1$ and so the curve follows the ellipse $\frac{u^2}{\cosh^2 \beta} + \frac{v^2}{\sinh^2 \beta} = 1$ (which has semi-major and semi-minor axes $\cosh \beta$ and $|\sinh \beta|$).



(c) Recall that the **complex-valued angle** between u and v in \mathbb{C}^n is the unique complex number $\theta = \alpha + i\beta$ with $0 < \alpha < \pi$ such that $\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}$. Find the complex-valued angle between the vectors $u = (1, 0, i)^T$ and $v = (3 + i, 2i, 3 + 3i)^T$ in \mathbb{C}^3 .

Solution: We have

$$\frac{\langle u, v \rangle}{\|u\| \|v\|} = \frac{v^* u}{\|u\| \|v\|} = \frac{(3 - i) + i(3 - 3i)}{\sqrt{2} \sqrt{32}} = \frac{6 + 2i}{8} = \frac{3 + i}{4}.$$

For $w = \frac{3+i}{4}$ and $\theta = \alpha + i\beta$ with $0 \leq \alpha \leq \pi$ we have

$$\begin{aligned} \cos \theta = w &\iff \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{3 + i}{4} \iff 2e^{i\theta} + 2e^{-i\theta} = 3 + i \iff 2(e^{i\theta})^2 - (3 + i)(e^{i\theta}) + 2 = 0 \\ &\iff e^{i\theta} = \frac{(3 + i) \pm \sqrt{(3 + i)^2 - 16}}{4} = \frac{(3 + i) \pm \sqrt{-8 + 6i}}{4} = \frac{(3 + i) \pm (1 + 3i)}{4} \\ &\iff e^{i(\alpha+i\beta)} \in \{1 + i, \frac{1-i}{2}\} \iff e^{-\beta} e^{i\alpha} \in \{\sqrt{2} e^{i\pi/4}, \frac{1}{\sqrt{2}} e^{-i\pi/4}\} \\ &\iff e^{-\beta} = \sqrt{2} \text{ and } \alpha = \frac{\pi}{4} \text{ (since } 0 \leq \alpha \leq \pi) \iff \theta = \frac{\pi}{4} - i \ln \sqrt{2}. \end{aligned}$$

Thus the complex angle between u and v is $\theta = \cos^{-1} \frac{\langle u, v \rangle}{\|u\| \|v\|} = \cos^{-1} \frac{3+i}{4} = \frac{\pi}{4} - i \ln \sqrt{2}$.