

MATH 245 Linear Algebra 2, Exercises for Chapter 5

1: (a) For $u = (u_1, u_2, \dots, u_n)^T \in \mathbb{C}^n$, define $|u|_1 = \sum_{i=1}^n |u_i|$. Show that $|\cdot|_1$ is a norm on \mathbb{C}^n but that there is no inner product $\langle \cdot, \cdot \rangle$ on \mathbb{C}^n such that $|u|_1 = \sqrt{\langle u, u \rangle}$ for all $u \in \mathbb{C}^n$.

(b) For $A \in M_{l \times m}(\mathbb{C})$, define $|A| = \max_{u \in \mathbb{C}^m, |u|=1} |Au|$. Show that $|\cdot|$ is a norm on $M_{l \times m}(\mathbb{C})$ and show that for $A \in M_{l \times m}(\mathbb{C})$ and $B \in M_{m \times n}(\mathbb{C})$, we have $|AB| \leq |A||B|$. (You may assume, without proof, that the maximum $\max_{u \in \mathbb{C}^m, |u|=1} |Au|$ exists and is finite. This follows from the Extreme Value Theorem, since the set $S = \{u \in \mathbb{C}^m \mid |u|=1\}$ is compact and the map $g(u) = |Au|$ is continuous on S).

2: (a) A matrix $A \in M_n(\mathbb{C})$ is called **Hermitian** (or **self-adjoint**) when $A^* = A$, and **positive-definite** when $A^* = A$ with $u^*Au > 0$ for all $0 \neq u \in \mathbb{C}^n$. Show that the following matrix A is positive-definite:

$$A = \begin{pmatrix} 2 & 1 & i \\ 1 & 3 & 2 \\ -i & 2 & 3 \end{pmatrix}.$$

(b) Let U be an n -dimensional vector space over \mathbb{C} and let $\mathcal{A} = (u_1, u_2, \dots, u_n)$ be an ordered basis for U . Show that given an inner product $\langle \cdot, \cdot \rangle$ on U , there exists a unique matrix $A \in M_n(\mathbb{C})$ (which we call the **matrix of the inner product** with respect to the basis \mathcal{A}) such that $\langle x, y \rangle = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}}$ for all $x, y \in U$ and this matrix A is Hermitian and positive-definite, and show, conversely, that given a Hermitian positive-definite matrix $A \in M_n(\mathbb{C})$, we can define an inner-product on U by $\langle x, y \rangle = [y]_{\mathcal{A}}^* A [x]_{\mathcal{A}}$ for $x, y \in U$.

(c) Let U be an n -dimensional inner product space over \mathbb{C} , let $\mathcal{A} = (u_1, \dots, u_n)$ and $\mathcal{B} = (v_1, \dots, v_n)$ be two ordered bases for U , let A and B be the matrices of the inner product with respect to the bases \mathcal{A} and \mathcal{B} , and let $P = [I]_{\mathcal{B}}^{\mathcal{A}} = ([u_1]_{\mathcal{B}}, \dots, [u_n]_{\mathcal{B}})$ be the change of basis matrix from \mathcal{A} to \mathcal{B} . Find a formula for B in terms of A and P .

3: For $z = x + iy$ with $x, y \in \mathbb{R}$ we define $e^z = e^x \cos y + i e^x \sin y$ and then we define

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}.$$

(a) Show that for $x, y \in \mathbb{R}$ we have $\cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$.

(b) Draw a fairly accurate sketch of the images of the lines $x = \alpha$ for $\alpha \in \{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{5\pi}{6}, \pi\}$ and the images of the lines $y = \beta$ for $\beta \in \{0, \pm \ln 2, \pm \ln 3, \pm \ln 4\}$ under the map $w = f(z) = \cos z$.

(c) Recall that the **complex-valued angle** between u and v in \mathbb{C}^n is the unique complex number $\theta = \alpha + i\beta$ with $0 < \alpha < \pi$ such that $\cos \theta = \frac{\langle u, v \rangle}{|u||v|}$. Find the complex-valued angle between the vectors $u = (1, 0, i)^T$ and $v = (3 + i, 2i, 3 + 3i)^T$ in \mathbb{C}^3 .