

**1:** (a) Let  $u = (1, 0, 1, 2)^T$ ,  $v = (2, 1, 1, 3)^T$  and  $w = (1, 2, 0, 1)^T$ . Find  $X(u, v, w)$ .

Solution: We have

$$X \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix} = \left( - \begin{vmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \end{vmatrix}, - \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 0 \end{vmatrix} \right)^T = (-1, 0, -1, 1)^T.$$

(b) Let  $u_1, u_2, \dots, u_{n-2} \in \mathbb{R}^n$  with  $\{u_1, u_2, \dots, u_{n-2}\}$  linearly independent, let  $A = (u_1, u_2, \dots, u_{n-2})$  and let  $U = \text{Col}(A)$ . Show that for  $x \in \mathbb{R}^n$  we have  $\text{Proj}_{U^\perp}(x) = \frac{-1}{\det(A^T A)} X(u_1, \dots, u_{n-2}, X(u_1, \dots, u_{n-2}, x))$ .

Solution: Let  $y = X(u_1, \dots, u_{n-2}, x)$ ,  $w = X(u_1, \dots, u_{n-2}, y)$  and  $v = \frac{-1}{\det(A^T A)} w$ . Since we have  $w \cdot u_k = X(u_1, \dots, u_{n-2}, y) \cdot u_k = 0$  for all indices  $k$ , we see that  $w \in U^\perp$ . Since  $v$  is a scalar multiple of  $w$ , we also have  $v \in U^\perp$ . From the formula which expresses  $X(u_1, \dots, u_{n-2}, X(v_1, \dots, v_{n-1}))$  as a linear combination of the vectors  $u_k$  (namely Part (7) of Theorem 4.9 in the posted Lecture Notes), for  $B = (A, y)$  we have

$$\begin{aligned} w &= X(u_1, \dots, u_{n-2}, X(u_1, \dots, u_{n-2}, x)) \\ &= \sum_{i=1}^{n-2} (-1)^{n+i} \det((B^T A)^{(i)}) u_i + (-1)^{n+(n-1)} \det((B^T A)^{(n-1)}) x \\ &= \sum_{i=1}^{n-2} (-1)^{n+i} \det((B^T A)^{(i)}) u_i - \det(A^T A) x \text{ and so} \\ v &= \frac{-1}{\det(A^T A)} w = \sum_{i=1}^{n-2} c_i u_i + x \text{ where } c_i = -\sum_{i=1}^{n-2} (-1)^{n+i} \frac{\det((B^T A)^{(i)})}{\det(A^T A)}. \end{aligned}$$

Since  $v \in U^\perp$  and  $v - x = \sum_{i=1}^{n-2} c_i u_i \in U$  it follows that  $v = \text{Proj}_{U^\perp}(x)$ .

2: (a) Find  $X(u_1, u_2, \dots, u_{n-1})$ , where  $u_k = e_k - k e_n \in \mathbb{R}^n$ , for  $k = 1, 2, \dots, n-1$ .

Solution: Let

$$A = (u_1, u_2, \dots, u_{n-1}) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & & 1 \\ -1 & -2 & -3 & \dots & -(n-1) \end{pmatrix} \in M_{n \times (n-1)}.$$

Recall that  $A^k$  denotes the matrix obtained from  $A$  by removing the  $k^{\text{th}}$  row. Note that  $A^n = I$  so  $\det(A^n) = 1$ , and for  $1 \leq k < n$  we have

$$A^k = \begin{pmatrix} 1 & & 0 & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & 0 & 1 & & \\ & & & & \ddots & \\ & & 0 & & & 1 \\ -1 & \dots & -(k-1) & -k & -(k+1) & \dots & -(n-1) \end{pmatrix} \in M_{(n-1) \times (n-1)}$$

so expanding along the  $k^{\text{th}}$  column gives  $\det(A^k) = (-1)^{k+n-1}(-k) \det(I) = (-1)^{k+n}k$ . Thus

$$X(u_1, u_2, \dots, u_{n-1}) = \sum_{k=1}^n (-1)^{k+n} \det(A^k) e_k = \left( \sum_{k=0}^{n-1} k e_k \right) + e_n = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n-1 \\ n \end{pmatrix}.$$

(b) Let  $U$  and  $V$  be hyperspaces in  $\mathbb{R}^n$  with  $U \neq V$ . Let  $W = U \cap V$  and note that  $W$  is  $(n-2)$ -dimensional and the spaces  $U \cap W^\perp$  and  $V \cap W^\perp$  are both 1-dimensional. Let  $\{w_1, \dots, w_{n-2}\}$  be a basis for  $W$ , let  $\{u\}$  be a basis for  $U \cap W^\perp$ , and let  $\{v\}$  be a basis for  $V \cap W^\perp$ , and note that  $\{w_1, \dots, w_{n-2}, u\}$  is a basis for  $U$  and  $\{w_1, \dots, w_{n-2}, v\}$  is a basis for  $V$ . Let  $x = X(w_1, \dots, w_{n-2}, u)$  and  $y = X(w_1, \dots, w_{n-2}, v)$ , and note that  $\{x\}$  and  $\{y\}$  are bases for  $U^\perp$  and  $V^\perp$ . Let  $A = (w_1, \dots, w_{n-2}) \in M_{n \times (n-2)}(\mathbb{R})$ . Use Theorem 4.9 to show that  $x \cdot y = (u \cdot v) \det(A^T A)$ ,  $|x|^2 = |u|^2 \det(A^T A)$  and  $|y|^2 = |v|^2 \det(A^T A)$  and hence provide an alternate proof that  $\theta(U^\perp, V^\perp) = \theta(U, V)$ .

Solution: By Part 6 of Theorem 4.9, we have

$$\begin{aligned} x \cdot y &= X(w_1, \dots, w_{n-2}, u) \cdot X(w_1, \dots, w_{n-2}, v) \\ &= \det((A, u)^T (A, v)) \\ &= \det \begin{pmatrix} A^T A & A^T v \\ u^T A & u^T v \end{pmatrix} \\ &= \det \begin{pmatrix} A^T A & 0 \\ 0 & u \cdot v \end{pmatrix}, \text{ since } u, v \in W^\perp = \text{Null } A^T \\ &= (u \cdot v) \det(A^T A) \end{aligned}$$

and similarly

$$\begin{aligned} |x|^2 &= X(w_1, \dots, w_{n-2}, u) \cdot X(w_1, \dots, w_{n-2}, u) = (u \cdot u) \det(A^T A), \text{ and} \\ |y|^2 &= X(w_1, \dots, w_{n-2}, v) \cdot X(w_1, \dots, w_{n-2}, v) = (v \cdot v) \det(A^T A). \end{aligned}$$

Thus

$$\frac{x \cdot y}{|x||y|} = \frac{(u \cdot v) \det(A^T A)}{|u| \sqrt{\det(A^T A)} |v| \sqrt{\det(A^T A)}} = \frac{u \cdot v}{|u||v|}$$

and hence

$$\theta(U, V) = \cos^{-1} \frac{|u \cdot v|}{|u||v|} = \cos^{-1} \frac{|x \cdot y|}{|x||y|} = \theta(U^\perp, V^\perp).$$