
MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 4

1: (a) Let u = (1, 0, 1, 2)T , v = (2, 1, 1, 3)T and w = (1, 2, 0, 1)T . Find X(u, v, w).

Solution: We have

X


1 2 1
0 1 2
1 1 0
2 3 1

 =

−
∣∣∣∣∣∣
0 1 2
1 1 0
2 3 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 2 1
1 1 0
2 3 1

∣∣∣∣∣∣ , −
∣∣∣∣∣∣
1 2 1
0 1 2
2 3 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 2 1
0 1 2
1 1 0

∣∣∣∣∣∣
T

= (−1, 0,−1, 1)T .

(b) Let u1, u2, · · · , un−2 ∈ Rn with {u1, u2, · · · , un−2} linearly independent, let A = (u1, u2, · · · , un−2) and let

U = Col(A). Show that for x ∈ Rn we have Proj
U⊥

(x) =
−1

det(ATA)
X
(
u1, · · · , un−2, X(u1, · · · , un−2, x)

)
.

Solution: Let y = X(u1, · · · , un−2, x), w = X(u1, · · · , un−2, y) and v =
−1

det(ATA)
w. Since we have w .uk =

X(u1, · · · , un−2, y).uk = 0 for all indices k, we see that w ∈ U⊥. Since v is a scalar multiple of w, we also
have v ∈ U⊥. From the formula which expresses X(u1, · · · , un−2, X(v1, · · · , vn−1)) as a linear combination of
the vectors uk (namely Part (7) of Theorem 4.9 in the posted Lecture Notes), for B = (A, y) we have

w = X
(
u1, · · · , un−2, X(u1, · · · , un−2, x

)
=

n−2∑
i=1

(−1)n+i det
(
(BTA)(i)

)
ui + (−1)n+(n−1) det

(
(BTA)(n−1)

)
x

=
n−2∑
i=1

(−1)n+i det
(
(BTA)(i)

)
ui − det(ATA)x and so

v =
−1

det(ATA)
w =

n−2∑
i=1

ciui + x where ci = −
n−2∑
i1

(−1)n+i det
(
(BTA)(i)

)
det(ATA)

.

Since v ∈ U⊥ and v − x =
n−2∑
i=1

ciui ∈ U it follows that v = Proj
U⊥

(x).



2: (a) Find X(u1, u2, · · · , un−1), where uk = ek − k en ∈ Rn, for k = 1, 2, · · · , n− 1.

Solution: Let

A = (u1, u2, · · · , un−1) =



1 0 0 0
0 1 0 · · · 0
0 0 1 0

...
0 0 0 1
−1 −2 −3 · · · −(n− 1)

 ∈Mn×(n−1) .

Recall that Ak denotes the matrix obtained from A by removing the kth row. Note that An = I so det(An) = 1,
and for 1 ≤ k < n we have

Ak =



1 0
. . .

...
1 0

0 1
...

. . .

0 1
−1 . . . −(k − 1) −k −(k + 1) . . . −(n− 1)


∈M(n−1)×(n−1)

so expanding along the kth column gives det(Ak) = (−1)k+n−1(−k) det(I) = (−1)k+nk. Thus

X(u1, u2, · · · , un−1) =
n∑

k=1

(−1)k+n det(Ak) ek =

(
n−1∑
k=0

k ek

)
+ en =


1
2
...

n− 1
n

 .

(b) Let U and V be hyperspaces in Rn with U 6= V . Let W = U ∩ V and note that W is (n− 2)-dimensional
and the spaces U ∩W⊥ and V ∩W⊥ are both 1-dimensional. Let {w1, · · · , wn−2} be a basis for W , let {u} be
a basis for U ∩W⊥, and let {v} be a basis for V ∩W⊥, and note that {w1, · · · , wn−2, u} is a basis for U and
{w1, · · · , wn−2, v} is a basis for V . Let x = X(w1, · · · , wn−2, u) and y = X(w1, · · · , wn−2, v), and note that
{x} and {y} are bases for U⊥ and V ⊥. Let A = (w1, · · · , wn−2) ∈ Mn×(n−2)(R). Use Theorem 4.9 to show
that x. y = (u. v) det(ATA), |x|2 = |u|2 det(ATA) and |y|2 = |y|2 det(ATA) and hence provide an alternate
proof that θ(U⊥, V ⊥) = θ(U, V ).

Solution: By Part 6 of Theorem 4.9, we have

x. y = X(w1, · · · , wn−2, u).X(w1, · · · , wn−2, v)

= det
(
(A, u)T (A, v)

)
= det

(
ATA AT v
uTA uT v

)
= det

(
ATA 0
0 u. v

)
, since u, v ∈W⊥ = NullAT

= (u. v) det(ATA)

and similarly
|x|2 = X(w1, · · · , wn−2, u).X(w1, · · · , wn−2, u) = (u.u) det(ATA) , and

|y|2 = X(w1, · · · , wn−2, v).X(w1, · · · , wn−2, v) = (v . v) det(ATA) .

Thus
x. y
|x||y|

=
(u. v) det(ATA)

|u|
√
det(ATA)|v|

√
det(ATA)

=
u. v
|u||v|

and hence

θ(U, V ) = cos−1
|u. v|
|u||v|

= cos−1
|x. y|
|x||y|

= θ(U⊥, V ⊥) .


