

MATH 245 Linear Algebra 2, Exercises for Chapter 4

1: (a) Let $u = (1, 0, 1, 2)^T$, $v = (2, 1, 1, 3)^T$ and $w = (1, 2, 0, 1)^T$. Find $X(u, v, w)$.
 (b) Let $u_1, u_2, \dots, u_{n-2} \in \mathbb{R}^n$ with $\{u_1, u_2, \dots, u_{n-2}\}$ linearly independent, let $A = (u_1, u_2, \dots, u_{n-2})$ and let $U = \text{Col}(A)$. Show that for $x \in \mathbb{R}^n$ we have $\text{Proj}_{U^\perp}(x) = \frac{-1}{\det(A^T A)} X(u_1, \dots, u_{n-2}, X(u_1, \dots, u_{n-2}, x))$.

2: (a) Find $X(u_1, u_2, \dots, u_{n-1})$, where $u_k = e_k - k e_n \in \mathbb{R}^n$, for $k = 1, 2, \dots, n-1$.
 (b) Let U and V be hyperspaces in \mathbb{R}^n with $U \neq V$. Let $W = U \cap V$ and note that W is $(n-2)$ -dimensional and the spaces $U \cap W^\perp$ and $V \cap W^\perp$ are both 1-dimensional. Let $\{w_1, \dots, w_{n-2}\}$ be a basis for W , let $\{u\}$ be a basis for $U \cap W^\perp$, and let $\{v\}$ be a basis for $V \cap W^\perp$, and note that $\{w_1, \dots, w_{n-2}, u\}$ is a basis for U and $\{w_1, \dots, w_{n-2}, v\}$ is a basis for V . Let $x = X(w_1, \dots, w_{n-2}, u)$ and $y = X(w_1, \dots, w_{n-2}, v)$, and note that $\{x\}$ and $\{y\}$ are bases for U^\perp and V^\perp . Let $A = (w_1, \dots, w_{n-2}) \in M_{n \times (n-2)}(\mathbb{R})$. Use Theorem 4.9 to show that $x \cdot y = (u \cdot v) \det(A^T A)$, $|x|^2 = |u|^2 \det(A^T A)$ and $|y|^2 = |v|^2 \det(A^T A)$ and hence provide an alternate proof that $\theta(U^\perp, V^\perp) = \theta(U, V)$.