

1: Find the least-squares best fit quadratic $f \in P_2(\mathbb{R})$ for the following data points.

$$\begin{array}{cccccc} x_i & -1 & 0 & 1 & 2 & 3 \\ y_i & 0 & 2 & 3 & 2 & -2 \end{array}$$

Solution: Let $A = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$ and $y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 3 \\ 2 \\ -2 \end{pmatrix}$. Then we have

$$A^T A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 15 \\ 5 & 15 & 35 \\ 15 & 35 & 99 \end{pmatrix},$$

$$A^T y = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 3 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ -7 \end{pmatrix}, \text{ and}$$

$$\begin{aligned} (A^T A | A^T y) &= \left(\begin{array}{ccc|c} 5 & 5 & 15 & 5 \\ 5 & 15 & 35 & 1 \\ 15 & 35 & 99 & -7 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 1 & 3 & 1 \\ 0 & 10 & 20 & -4 \\ 0 & 20 & 54 & -22 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 1 & 3 & 1 \\ 0 & 1 & 2 & -\frac{2}{5} \\ 0 & 0 & 14 & -14 \end{array} \right) \\ &\sim \left(\begin{array}{ccc|c} 1 & 0 & 1 & \frac{7}{5} \\ 0 & 1 & 2 & -\frac{2}{5} \\ 0 & 0 & 1 & -1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & \frac{12}{5} \\ 0 & 1 & 0 & \frac{8}{5} \\ 0 & 0 & 1 & -1 \end{array} \right). \end{aligned}$$

Thus the best fit quadratic is $f(x) = \frac{12}{5} + \frac{8}{5}x - x^2$.

2: (a) In \mathbb{R}^4 , find the angle between $\langle e_1, e_2, e_3, e_4 \rangle$ and $\langle a_1, a_2, a_3, a_4 \rangle$, where $a_k = \sum_{i=1}^k e_i$.

Solution: Let $P = \langle e_1, e_2, e_3, e_4 \rangle$ and $Q = \langle a_1, a_2, a_3, a_4 \rangle$. Note that $P = e_1 + U$ and $Q = e_1 + V$ where

$$\begin{aligned} U &= \text{Span}\{e_2 - e_1, e_3 - e_1, e_4 - e_1\} = \{x \in \mathbb{R}^4 \mid \sum x_i = 0\}, \\ V &= \text{Span}\{a_2 - a_1, a_3 - a_1, a_4 - a_3\} = \text{Span}\{e_2, e_2 + e_3, e_2 + e_3 + e_4\} \\ &= \text{Span}\{e_2, e_3, e_4\} = \{x \in \mathbb{R}^4 \mid x_1 = 0\}, \\ W &= U \cap V = \{x \in \mathbb{R}^4 \mid x_1 = 0, x_2 + x_3 + x_4 = 0\} = \text{Span}\{e_3 - e_2, e_4 - e_3\}, \\ W^\perp &= \{x \in \mathbb{R}^4 \mid x \cdot (e_3 - e_2) = x \cdot (e_4 - e_3) = 0\} = \{x \in \mathbb{R}^4 \mid x_2 = x_3 = x_4\}, \\ U \cap W^\perp &= \{x \in \mathbb{R}^4 \mid \sum x_i = 0, x_2 = x_3 = x_4\} = \text{Span}\{(-3, 1, 1, 1)^T\}, \\ V \cap W^\perp &= \{x \in \mathbb{R}^4 \mid x_1 = 0, x_2 = x_3 = x_4\} = \text{Span}\{(0, 1, 1, 1)^T\}. \end{aligned}$$

Let $u = (-3, 1, 1, 1)^T$ and $v = (0, 1, 1, 1)^T$ so that we have $U \cap W^\perp = \text{Span}\{u\}$ and $V \cap W^\perp = \text{Span}\{v\}$. Then

$$\theta(P, Q) = \theta(U, V) = \cos^{-1} \frac{|u \cdot v|}{|u| |v|} = \cos^{-1} \frac{3}{\sqrt{12} \sqrt{3}} = \cos^{-1} \frac{1}{2} = \frac{\pi}{3}.$$

(b) In \mathbb{R}^n , find the distance h_k from $\langle e_1, e_2, \dots, e_k \rangle$ to $\langle e_{k+1}, e_{k+2}, \dots, e_n \rangle$.

Solution: Let $P = \langle e_1, \dots, e_k \rangle$ and $Q = \langle e_{k+1}, \dots, e_n \rangle$. Let U and V be the associated vector spaces so we have $P = e_1 + U$ and $Q = e_n + V$ where $U = \text{Span}\{u_2, u_3, \dots, u_k\}$ with $u_i = e_i - e_1$ for $1 < i \leq k$ and $V = \text{Span}\{v_{k+1}, v_{k+2}, \dots, v_{n-1}\}$ with $v_j = e_j - e_n$ for $k < j < n$. Then

$$U + V = \text{Span}\{u_i, v_j \mid 1 < i \leq k, k < j < n\}$$

and

$$\begin{aligned} (U + V)^\perp &= \{x \in \mathbb{R}^n \mid x \cdot u_i = x \cdot v_j = 0 \text{ for } 1 < i \leq k, k < j < n\} \\ &= \{x \in \mathbb{R}^n \mid x_i = x_1 \text{ for } 1 < i \leq j \text{ and } x_j = x_n \text{ for } k < j < n\} \\ &= \text{Span}\{u, v\} \end{aligned}$$

where $u = \sum_{i=1}^k e_i = (1, \dots, 1, 0, \dots, 0)^T$ and $v = \sum_{j=k+1}^n e_i = (0, \dots, 0, 1, \dots, 1)^T$. To find $\text{Proj}_{(U+V)^\perp}(e_n - e_1)$,

we let $A = (u, v) \in M_{n \times 2}(\mathbb{R})$ so that $(U + V)^\perp = \text{ColA}$, then we have

$$\begin{aligned} \text{Proj}_{(U+V)^\perp}(e_n - e_1) &= A(A^T A)^{-1} A^T (e_n - e_1) = (u, v) \begin{pmatrix} u \cdot u & u \cdot v \\ v \cdot u & v \cdot v \end{pmatrix}^{-1} \begin{pmatrix} u^T \\ v^T \end{pmatrix} (e_n - e_1) \\ &= (u, v) \begin{pmatrix} k & 0 \\ 0 & n-k \end{pmatrix}^{-1} \begin{pmatrix} u_n - u_1 \\ v_n - v_1 \end{pmatrix} = (u, v) \begin{pmatrix} \frac{1}{k} & 0 \\ 0 & \frac{1}{n-k} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = (u, v) \begin{pmatrix} -\frac{1}{k} \\ \frac{1}{n-k} \end{pmatrix} \\ &= -\frac{1}{k} u + \frac{1}{n-k} v = \left(-\frac{1}{k}, \dots, -\frac{1}{k}, \frac{1}{n-k}, \dots, \frac{1}{n-k} \right)^T. \end{aligned}$$

Thus

$$h_k = \text{dist}(P, Q) = \left| \text{Proj}_{(U+V)^\perp}(e_n - e_1) \right| = \sqrt{k \cdot \frac{1}{k^2} + (n-k) \cdot \frac{1}{(n-k)^2}} = \sqrt{\frac{1}{k} + \frac{1}{n-k}} = \sqrt{\frac{n}{k(n-k)}}.$$

3: Let U and V be subspaces of \mathbb{R}^n .

(a) Show that $(U \cap V)^\perp = U^\perp + V^\perp$.

Solution: We shall show that $U \cap V = (U^\perp + V^\perp)^\perp$. It then follows that $(U \cap V)^\perp = (U^\perp + V^\perp)^{\perp\perp} = U^\perp + V^\perp$.

Let $x \in U \cap V$. Let $y \in U^\perp + V^\perp$, say $y = y_1 + y_2$ with $y_1 \in U^\perp$ and $y_2 \in V^\perp$. Since $x \in U$ and $y_1 \in U^\perp$ we have $x \cdot y_1 = 0$. Since $x \in V$ and $y_2 \in V^\perp$ we have $x \cdot y_2 = 0$. Thus $x \cdot y = x \cdot y_1 + x \cdot y_2 = 0$. Since $x \cdot y = 0$ for all $y \in U^\perp + V^\perp$, we have $x \in (U^\perp + V^\perp)^\perp$. This proves that $U \cap V \subseteq (U^\perp + V^\perp)^\perp$.

Now let $x \in (U^\perp + V^\perp)^\perp$ so that $x \cdot y = 0$ for all $y \in U^\perp + V^\perp$. For all $y \in U^\perp$, we also have $y \in U^\perp + V^\perp$, and so $x \cdot y = 0$. Since $x \cdot y = 0$ for all $y \in U^\perp$ we have $x \in U^{\perp\perp} = U$. Similarly we have $x \in V$ so that $x \in U \cap V$. This proves that $(U^\perp + V^\perp)^\perp = U \cap V$, and so we have $U \cap V = (U^\perp + V^\perp)^\perp$, as required.

(b) Show that $\theta(U, V) = 0 \iff \theta(U^\perp, V^\perp) = 0$.

Solution: We claim that $\theta(U, V) = 0$ if and only if either $U \subseteq V$ or $V \subseteq U$. By definition, we know that if either $U \subseteq V$ or $V \subseteq U$ then $\theta(U, V) = 0$. Suppose $U \not\subseteq V$ and $V \not\subseteq U$. Let $W = U \cap V$ and choose $0 \neq u \in U \cap W^\perp$ and $0 \neq v \in V \cap W^\perp$ so that $\theta(u, v) = \theta(U, V)$. If we had $\theta(u, v) = 0$ then we would have $u = tv$ for some $0 \neq t \in \mathbb{R}$ so that $u \in V$, but then we would have $u \in U \cap V = W$ and $u \in W^\perp$ so that $u = 0$. Thus we must have $\theta(u, v) \neq 0$ so $\theta(U, V) \neq 0$. This proves the claim.

Next we claim that $U \subseteq V \iff V^\perp \subseteq U^\perp$. Suppose that $U \subseteq V$. Let $x \in V^\perp$. Let $y \in U$. Since $y \in U$ and $U \subseteq V$ we have $y \in V$. Since $x \in V^\perp$ and $y \in V$ we have $x \cdot y = 0$. Since $x \cdot y$ for all $y \in U$ we have $x \in U^\perp$. This proves that if $U \subseteq V$ then $V^\perp \subseteq U^\perp$. Conversely, if $V^\perp \subseteq U^\perp$ then we have $U^{\perp\perp} \subseteq V^{\perp\perp}$, and so $U \subseteq V$. This proves the claim.

From the above two claims, we see that

$$\theta(U, V) = 0 \iff (U \subseteq V \text{ or } V \subseteq U) \iff (V^\perp \subseteq U^\perp \text{ or } U^\perp \subseteq V^\perp) \iff \theta(U^\perp, V^\perp) = 0.$$

(c) Show that $\theta(U, V) = \frac{\pi}{2} \iff \theta(U^\perp, V^\perp) = \frac{\pi}{2}$.

Solution: Let $\mathcal{A} = \{u_1, \dots, u_k\}$ be a basis for $U \cap W^\perp$, let $\mathcal{B} = \{v_1, \dots, v_l\}$ be a basis for $V \cap W^\perp$, Let $\mathcal{C} = \{w_1, \dots, w_m\}$ be a basis for $W = U \cap V$, and let $\mathcal{D} = \{z_1, \dots, z_p\}$ be a basis for $Z = U^\perp \cap V^\perp = (U + V)^\perp$. Note that $U = W \oplus (U \cap W^\perp)$ because given $u \in U$ we can write u uniquely in the form $u = w + y$ with $w \in W$ and $y \in W^\perp$, and then, since $u \in U$ and $w \in W = U \cap V \subseteq U$, we also have $y \in U$ so that $y \in U \cap W^\perp$. Similarly we have $V = W \oplus (V \cap W^\perp)$. Thus $\mathcal{A} \cup \mathcal{C}$ is a basis for U and $\mathcal{B} \cup \mathcal{C}$ is a basis for V and $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ is a basis for $U + V$ and $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$ is a basis for all of \mathbb{R}^n , and we have $k + l + m + p = n$. In this situation, we write $\mathbb{R}^n = (U \cap W^\perp) \oplus (V \cap W^\perp) \oplus W \oplus Z$. Interchanging U with V^\perp and V with U^\perp and $W = U \cap V$ with $Z = U^\perp \cap V^\perp$, we also have $\mathbb{R}^n = (V^\perp \cap Z^\perp) \oplus (U^\perp \cap Z^\perp) \oplus Z \oplus W$.

Suppose that $\theta(U, V) = \frac{\pi}{2}$. Note that, by Part (b), we do not have $U \subseteq V$ or $V \subseteq U$, and so

$$\frac{\pi}{2} = \theta(U, V) = \min \left\{ \theta(u, v) \mid 0 \neq u \in U \cap W^\perp, 0 \neq v \in V \cap W^\perp \right\}.$$

It follows that $\theta(u, v) = \frac{\pi}{2}$ for all $0 \neq u \in U \cap W^\perp, 0 \neq v \in V \cap W^\perp$ (because if we had $\theta(u, v) > \frac{\pi}{2}$ for any such pair, then we would also have $\theta(u, -v) = \pi - \theta(u, v) < \frac{\pi}{2}$). Thus we have $u \cdot v = 0$ for all $u \in U \cap W^\perp, v \in V \cap W^\perp$.

We claim that $U \cap W^\perp \subseteq V^\perp \cap Z^\perp$ and $V \cap W^\perp \subseteq U^\perp \cap Z^\perp$. Let $u \in U \cap W^\perp$. Since $u \in U$ and $U \subset U + V = Z^\perp$, we also have $u \in Z^\perp$. It remains to show that $u \in V^\perp$. Let $y \in V^\perp$. Write $y = w + v$ with $w \in W$ and $v \in W^\perp$. Since $y \in V$ and $w \in W = U \cap V \subseteq V$ we also have $v \in V$ and so $v \in V \cap W^\perp$. Since $u \in U \cap U^\perp$ and $v \in V \cap W^\perp$, we have $u \cdot v = 0$ (as shown in the previous paragraph). Since $u \in W^\perp$ and $w \in W$ we also have $u \cdot w = 0$. Since $u \cdot w = u \cdot v = 0$ we have $u \cdot y = u \cdot (w + v) = 0$. Since $u \cdot y = 0$ for all $y \in V$ we have $u \in V^\perp$, as required. This proves that $U \cap W^\perp \subseteq V^\perp \cap Z^\perp$. The proof that $V \cap W^\perp \subseteq U^\perp \cap Z^\perp$ is similar.

Since $U \cap W^\perp \subseteq V^\perp \cap Z^\perp$ and $V \cap W^\perp \subseteq U^\perp \cap Z^\perp$, and since

$$\dim(U \cap W^\perp) + \dim(V \cap W^\perp) = n - m - p = \dim(V^\perp \cap Z^\perp) + \dim(U^\perp \cap Z^\perp),$$

it follows that $\dim(U \cap W^\perp) = \dim(V^\perp \cap Z^\perp)$ and $\dim(V \cap W^\perp) = \dim(U^\perp \cap Z^\perp)$, so in fact we see that $U \cap W^\perp = V^\perp \cap Z^\perp$ and $V \cap W^\perp = U^\perp \cap Z^\perp$. Thus

$$\theta(U^\perp, V^\perp) = \min \left\{ \theta(u, v) \mid 0 \neq u \in U^\perp \cap Z^\perp, 0 \neq v \in V^\perp \cap Z^\perp \right\} = \theta(U, V) = \frac{\pi}{2}.$$

Conversely, if $\theta(U^\perp, V^\perp) = \frac{\pi}{2}$ then $\theta(U, V) = \theta(U^\perp \cap Z^\perp, V^\perp \cap Z^\perp) = \theta(U^\perp, V^\perp) = \frac{\pi}{2}$.

4: Let U and V be subspaces of \mathbb{R}^n with $0 < \theta(U, V) < \frac{\pi}{2}$. Let $W = U \cap V$ and $Z = U^\perp \cap V^\perp$ so that we have

$$\theta(U, V) = \min \left\{ \theta(u, v) \mid 0 \neq u \in U \cap W^\perp, 0 \neq v \in V \cap W^\perp \right\}, \text{ and}$$

$$\theta(U^\perp, V^\perp) = \min \left\{ \theta(x, y) \mid 0 \neq x \in U^\perp \cap Z^\perp, 0 \neq y \in V^\perp \cap Z^\perp \right\}.$$

Choose $u \in U \cap W^\perp$ and $v \in V \cap W^\perp$ with $|u| = |v| = 1$ such that $\theta(u, v) = \theta(U, V)$.

(a) Show that $\text{Proj}_V(u) = \text{Proj}_v(u) = (u \cdot v)v$ and $\text{Proj}_U(v) = \text{Proj}_u(v) = (u \cdot v)u$.

Solution: We already know that $\text{Proj}_v(u) = \frac{u \cdot v}{|v|^2}v = (u \cdot v)v$. We also remark that $0 < \theta(u, v) < \frac{\pi}{2}$ (since if $\theta(u, v) > \frac{\pi}{2}$ then we would have $\theta(u, -v) = \pi - \theta(u, v) < \frac{\pi}{2}$ contradicting the minimality of $\theta(u, v)$) and hence $u \cdot v = \cos \theta(u, v) > 0$.

Write $u = x + y$ with $x \in V$ and $y \in V^\perp$ so that $x = \text{Proj}_V(u)$. Since $\theta(u, v) \neq \frac{\pi}{2}$ we have $u \cdot v \neq 0$ so $u \notin V^\perp$ hence $u \neq y$ and so $x \neq 0$. Since $W = U \cap V \subseteq V$ we have $V^\perp \subseteq W^\perp$. Since $u \in W^\perp$ and $y \in V^\perp \subseteq W^\perp$, we also have $x = u - y \in W^\perp$. Thus we have $0 \neq x \in V \cap W^\perp$. Suppose, for a contradiction, that $x = \text{Proj}_V(u) \neq \text{Proj}_v(u) = (u \cdot v)v$. Then by Trigonometric Ratios and Scaling, and using the fact that $\text{Proj}_V(u)$ is the unique point in V nearest to u , we have

$$\sin \theta(u, x) = |u - x| = |u - \text{Proj}_V(u)| < |u - (u \cdot v)v| = \sin \theta(u, (u \cdot v)v) = \sin \theta(u, v)$$

which implies that $\theta(u, x) < \theta(u, v)$, contradicting the minimality of $\theta(u, v)$.

(b) Let $x = (u \cdot v)u - v$ and $y = u - (u \cdot v)v$. Show that $0 \neq x \in U^\perp \cap Z^\perp$, $0 \neq y \in V^\perp \cap Z^\perp$ and $\theta(x, y) = \theta(u, v)$.

Solution: By Part (a), we have $y = u - (u \cdot v)v = u - \text{Proj}_V(u) = \text{Proj}_{V^\perp}(u)$. Let $z = \text{Proj}_V(u) = (u \cdot v)v$. Then $u = z + y$ with $z \in V$ and $y \in V^\perp$. Since $u \in U$ and $z \in V$ we have $y = u - z \in U + V = (U^\perp \cap V^\perp)^\perp = Z^\perp$, and so $y \in V^\perp \cap Z^\perp$. Also note that since $0 \neq u \in U \cap W^\perp$ it follows that $u \notin V$ (if we had $u \in V$ then we would have $u \in U \cap V = W$ hence $u \in W \cap W^\perp$ so that $u = 0$). Since $u \notin V$ we have $u \neq z$ so that $y \neq 0$. This completes the proof that $0 \neq y \in V^\perp \cap Z^\perp$. A similar proof shows that $x = -\text{Proj}_{U^\perp}(v)$ and that $0 \neq x \in U^\perp \cap Z^\perp$.

By Trigonometric Ratios and Scaling we have

$$\sin \theta(u, v) = \sin \theta(u, (u \cdot v)v) = |u - (u \cdot v)v| = |y|, \text{ and}$$

$$\sin \theta(u, v) = \sin \theta((u \cdot v)u, v) = |v - (u \cdot v)u| = |x|,$$

and so

$$\begin{aligned} \cos \theta(x, y) &= \frac{x \cdot y}{|x||y|} = \frac{((u \cdot v)u - v) \cdot (u - (u \cdot v)v)}{\sin^2 \theta(u, v)} = \frac{(u \cdot v) - (u \cdot v)^3 - (u \cdot v) + (u \cdot v)}{\sin^2 \theta(u, v)} \\ &= \frac{(u \cdot v) - (u \cdot v)^3}{\sin^2 \theta(u, v)} = \frac{\cos \theta(u, v) - \cos^3 \theta(u, v)}{\sin^2 \theta(u, v)} = \cos \theta(u, v) \end{aligned}$$

and hence $\theta(x, y) = \theta(u, v)$, as required.

(c) Show that $\theta(U^\perp, V^\perp) = \theta(U, V)$.

Solution: Since we can choose $0 \neq x \in U^\perp \cap Z^\perp$ and $0 \neq y \in V^\perp \cap Z^\perp$ such that $\theta(x, y) = \theta(u, v) = \theta(U, V)$, it follows from the definition of $\theta(U^\perp, V^\perp)$ that $\theta(U^\perp, V^\perp) \leq \theta(x, y) = \theta(u, v) = \theta(U, V)$. By interchanging U with U^\perp and V with V^\perp , we also have $\theta(U, V) = \theta(U^{\perp\perp}, V^{\perp\perp}) \leq \theta(U^\perp, V^\perp)$.