
MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 3

1: Find the least-squares best fit quadratic f ∈ P2(R) for the following data points.

xi −1 0 1 2 3
yi 0 2 3 2 −2

Solution: Let A =


1 x1 x1

2

1 x2 x2
2

1 x3 x3
2

1 x4 x4
2

1 x5 x5
2

 =


1 −1 1
1 0 0
1 1 1
1 2 4
1 3 9

 and y =


y1
y2
y3
y4
y5

 =


0
2
3
2
−2

. Then we have

ATA =

 1 1 1 1 1
−1 0 1 2 3

1 0 1 4 9




1 −1 1
1 0 0
1 1 1
1 2 4
1 3 9

 =

 5 5 15
5 15 35
15 35 99

 ,

ATy =

 1 1 1 1 1
−1 0 1 2 3
1 0 1 4 9




0
2
3
2
−2

 =

 5
1
−7

 , and

(
ATA

∣∣ATy) =

 5 5 15
5 15 35
15 35 99

∣∣∣∣∣∣
5
1
−7

 ∼
 1 1 3

0 10 20
0 20 54

∣∣∣∣∣∣
1
−4
−22

 ∼
 1 1 3

0 1 2
0 0 14

∣∣∣∣∣∣
1
− 2

5
−14


∼

 1 0 1
0 1 2
0 0 1

∣∣∣∣∣∣
7
5

− 2
5
−1

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
12
5
8
5
−1

 .

Thus the best fit quadratic is f(x) = 12
5 + 8

5 x− x
2.



2: (a) In R4, find the angle between 〈e1, e2, e3, e4〉 and 〈a1, a2, a3, a4〉, where ak =
k∑
i=1

ei.

Solution: Let P = 〈e1, e2, e3, e3〉 and Q = 〈a1, a2, a3, a4〉. Note that P = e1 + U and Q = e1 + V where

U = Span{e2 − e1, e3 − e1, e4 − e1} =
{
x ∈ R4

∣∣∑xi = 0
}
,

V = Span{a2 − a1, a3 − a1, a4 − a3} = Span{e2, e2 + e3, e2 + e3 + e4
}

= Span{e2, e3, e4
}

=
{
x ∈ R4

∣∣x1 = 0
}
,

W = U ∩ V =
{
x ∈ R4

∣∣x1 = 0 , x2 + x3 + x4 = 0
}

= Span{e3 − e2 , e4 − e3
}
,

W⊥ =
{
x ∈ R4

∣∣x. (e3 − e2) = x. (e4 − e3) = 0
}

=
{
x ∈ R4

∣∣x2 = x3 = x4
}
,

U ∩W⊥ =
{
x ∈ R4

∣∣∑xi = 0 , x2 = x3 = x4
}

= Span{(−3, 1, 1, 1)T },
V ∩W⊥ =

{
x ∈ R4

∣∣x1 = 0 , x2 = x3 = x4
}

= Span{(0, 1, 1, 1)T }.

Let u = (−3, 1, 1, 1)T and v = (0, 1, 1, 1)T so that we have U ∩W⊥ = Span{u} and V ∩W⊥ = Span{v}. Then

θ(P,Q) = θ(U, V ) = cos−1
|u. v|
|u| |v|

= cos−1 3√
12
√
3

= cos−1 1
2 = π

3 .

(b) In Rn, find the distance hk from 〈e1, e2, · · · , ek〉 to 〈ek+1, ek+2, · · · , en〉.
Solution: Let P = 〈e1, · · · , ek〉 and Q = 〈ek+1, · · · , en〉. Let U and V be the associated vector spaces so we
have P = e1 + U and Q = en + V where U = Span{u2, u3, · · · , uk} with ui = ei − e1 for 1 < i ≤ k and
V = Span{vk+1, vk+2, · · · , vn−1} with vj = ej − en for k < j < n. Then

U + V = Span{ui, vj
∣∣1 < i ≤ k, k < j < n

}
and

(U + V )⊥ =
{
x ∈ Rn

∣∣x.ui = x. vj = 0 for 1 < i ≤ k, k < j < n
}

=
{
x ∈ Rn

∣∣xi = x1 for 1 < i ≤ j and xj = xn for k < j < n
}

= Span{u, v}

where u =
k∑
i=1

ei = (1, · · · , 1, 0, · · · , 0)T and v =
n∑

j=k+1

ei = (0, · · · , 0, 1, · · · , 1)T . To find Proj
(U+V )⊥

(en − e1),

we let A = (u, v) ∈Mn×2(R) so that (U + V )⊥ = ColA, then we have

Proj
(U+V )⊥

(en − e1) = A(ATA)−1AT (en − e1) =
(
u , v

)(u.u u. v
v .u v . v

)−1(
uT

vT

)
(en − e1)

=
(
u , v

)( k 0
0 n− k

)−1(
un − u1
vn − v1

)
=
(
u , v

)( 1
k 0
0 1

n−k

)(
−1

1

)
=
(
u , v

)( − 1
k

1
n−k

)
= − 1

k u+ 1
n−k v =

(
− 1

k , · · · ,−
1
k ,

1
n−k , · · · ,

1
n−k

)T
.

Thus

hk = dist(P,Q) =
∣∣∣Proj

(U+V )⊥
(en − e1)

∣∣∣ =
√
k · 1

k2 + (n− k) · 1
(n−k)2 =

√
1
k + 1

n−k =
√

n
k(n−k) .



3: Let U and V be subspaces of Rn.

(a) Show that (U ∩ V )⊥ = U⊥ + V ⊥.

Solution: We shall show that U∩V = (U⊥+V ⊥)⊥. It then follows that (U∩V )⊥ = (U⊥+V ⊥)⊥⊥ = U⊥+V ⊥.
Let x ∈ U ∩ V . Let y ∈ U⊥ + V ⊥, say y = y1 + y2 with y1 ∈ U⊥ and y2 ∈ V ⊥. Since x ∈ U and y1 ∈ U⊥

we have x. y1 = 0. Since x ∈ V and y2 ∈ V ⊥ we have x. y2 = 0. Thus x. y = x. y1 + x. y2 = 0. Since
x. y = 0 for all y ∈ U⊥ + V ⊥, we have x ∈ (U⊥ + V ⊥)⊥. This proves that U ∩ V ⊆ (U⊥ + V ⊥)⊥.

Now let x ∈ (U⊥+V ⊥)⊥ so that x. y = 0 for all y ∈ U⊥+V ⊥. For all y ∈ U⊥, we also have y ∈ U⊥+V ⊥,
and so x. y = 0. Since x. y = 0 for all y ∈ U⊥ we have x ∈ U⊥⊥ = U . Similarly we have x ∈ V so that
x ∈ U ∩ V . This proves that (U⊥ + V ⊥)⊥ = U ∩ V , and so we have U ∩ V = (U⊥ + V ⊥)⊥, as required.

(b) Show that θ(U, V ) = 0 ⇐⇒ θ(U⊥, V ⊥) = 0.

Solution: We claim that θ(U, V ) = 0 if and only if either U ⊆ V or V ⊆ U . By definition, we know that
if either U ⊆ V or V ⊆ U then θ(U, V ) = 0. Suppose U 6⊆ V and V 6⊆ U . Let W = U ∩ V and choose
0 6= u ∈ U ∩W⊥ and 0 6= v ∈ V ∩W⊥ so that θ(u, v) = θ(U, V ). If we had θ(u, v) = 0 then we would have
u = tv for some 0 6= t ∈ R so that u ∈ V , but then we would have u ∈ U ∩V = W and u ∈W⊥ so that u = 0.
Thus we must have θ(u, v) 6= 0 so θ(U, V ) 6= 0. This proves the claim.

Next we claim that U ⊆ V ⇐⇒ V ⊥ ⊆ U⊥. Suppose that U ⊆ V . Let x ∈ V ⊥. Let y ∈ U . Since y ∈ U
and U ⊆ V we have y ∈ V . Since x ∈ V ⊥ and y ∈ V we have x. y = 0. Since x. y for all y ∈ U we have
x ∈ U⊥. This proves that if U ⊆ V then V ⊥ ⊆ U⊥. Conversely, if V ⊥ ⊆ U⊥ then we have U⊥⊥ ⊆ V ⊥⊥, and
so U ⊆ V . This proves the claim.

From the above two claims, we see that

θ(U, V ) = 0 ⇐⇒
(
U ⊆ V or V ⊆ U

)
⇐⇒

(
V ⊥ ⊆ U⊥ or U⊥ ⊆ V ⊥

)
⇐⇒ θ(U⊥, V ⊥) = 0.

(c) Show that θ(U, V ) = π
2 ⇐⇒ θ(U⊥, V ⊥) = π

2 .

Solution: Let A = {u1, · · · , uk} be a basis for U ∩ W⊥, let B = {v1, · · · , vl} be a basis for V ∩ W⊥, Let
C = {w1, · · · , wm} be a basis for W = U ∩V , and let D = {z1, · · · , zp} be a basis for Z = U⊥∩V ⊥ = (U+V )⊥.
Note that U = W ⊕ (U ∩W⊥) because given u ∈ U we can write u uniquely in the form u = w+y with w ∈W
and y ∈ W⊥, and then, since u ∈ U and w ∈ W = U ∩ V ⊆ U , we also have y ∈ U so that y ∈ U ∩W⊥.
Similarly we have V = W ⊕ (V ∩W⊥). Thus A∪C is a basis for U and B ∪C is a basis for V and A∪B∪C is
a basis for U + V and A∪B ∪ C ∪D is a basis for all of Rn, and we have k+ l+m+ p = n. In this situation,
we write Rn = (U ∩W⊥)⊕ (V ∩W⊥)⊕W ⊕ Z. Interchanging U with V ⊥ and V with U⊥ and W = U ∩ V
with Z = U⊥ ∩ V ⊥, we also have Rn = (V ⊥ ∩ Z⊥)⊕ (U⊥ ∩ Z⊥)⊕ Z ⊕W .

Suppose that θ(U, V ) = π
2 . Note that, by Part (b), we do not have U ⊆ V or V ⊆ U , and so

π
2 = θ(U, V ) = min

{
θ(u, v)

∣∣∣0 6= u ∈ U ∩W⊥ , 0 6= v ∈ V ∩W⊥
}
.

It follows that θ(u, v) = π
2 for all 0 6= u ∈ U ∩ W⊥ , 0 6= v ∈ V ∩ W⊥ (because if we had θ(u, v) > π

2
for any such pair, then we would also have θ(u,−v) = π − θ(u, v) < π

2 ). Thus we have u. v = 0 for all
u ∈ U ∩W⊥ , v ∈ V ∩W⊥.

We claim that U ∩W⊥ ⊆ V ⊥ ∩ Z⊥ and V ∩W⊥ ⊆ U⊥ ∩ Z⊥. Let u ∈ U ∩W⊥. Since u ∈ U and
U ⊂ U + V = Z⊥, we also have u ∈ Z⊥. It remains to show that u ∈ V ⊥. Let y ∈ V ⊥. Write y = w + v with
w ∈ W and v ∈ W⊥. Since y ∈ V and w ∈ W = U ∩ V ⊆ V we also have v ∈ V and so v ∈ V ∩W⊥. Since
u ∈ U ∩ U⊥ and v ∈ V ∩W⊥, we have u. v = 0 (as shown in the previous paragraph). Since u ∈ W⊥ and
w ∈W we also have u.w = 0. Since u.w = u. v = 0 we have u. y = u. (w+ v) = 0. Since u. y = 0 for all
y ∈ V we have u ∈ V ⊥, as required. This proves that U ∩W⊥ ⊆ V ⊥∩Z⊥. The proof that V ∩W⊥ ⊆ U⊥∩Z⊥
is similar.

Since U ∩W⊥ ⊆ V ⊥ ∩ Z⊥ and V ∩W⊥ ⊆ U⊥ ∩ Z⊥, and since

dim(U ∩W⊥) + dim(V ∩W⊥) = n−m− p = dim(V ⊥ ∩ Z⊥) + dim(U⊥ ∩ Z⊥),

it follows that dim(U ∩W⊥) = dim(V ⊥ ∩ Z⊥) and dim(V ∩W⊥) = dim(U⊥ ∩ Z⊥), so in fact we see that
U ∩W⊥ = V ⊥ ∩ Z⊥ and V ∩W⊥ = U⊥ ∩ Z⊥. Thus

θ(U⊥, V ⊥) = min
{
θ(u, v)

∣∣∣0 6= u ∈ U⊥ ∩ Z⊥ , 0 6= v ∈ V ⊥ ∩ Z⊥
}

= θ(U, V ) = π
2 .

Conversely, if θ(U⊥, V ⊥) = π
2 then θ(U, V ) = θ(U⊥⊥, V ⊥⊥) = θ(U⊥, V ⊥) = π

2 .



4: Let U and V be subspaces of Rn with 0 < θ(U, V ) < π
2 . Let W = U ∩ V and Z = U⊥ ∩ V ⊥ so that we have

θ (U, V ) = min
{
θ(u, v)

∣∣∣0 6= u ∈ U ∩W⊥ , 0 6= v ∈ V ∩W⊥
}

, and

θ (U⊥, V ⊥) = min
{
θ(x, y)

∣∣∣0 6= x ∈ U⊥ ∩ Z⊥ , 0 6= y ∈ V ⊥ ∩ Z⊥
}
.

Choose u ∈ U ∩W⊥ and v ∈ V ∩W⊥ with |u| = |v| = 1 such that θ(u, v) = θ(U, V ).

(a) Show that Proj
V

(u) = Proj
v
(u) = (u. v) v and Proj

U
(v) = Proj

u
(v) = (u. v)u.

Solution: We already know that Proj
v
(u) = u. v

|v|2 v = (u. v)v. We also remark that 0 < θ(u, v) < π
2 (since if

θ(u, v) > π
2 then we would have θ(u,−v) = π− θ(u, v) < π

2 contradicting the minimality of θ(u, v)) and hence
u. v = cos θ(u, v) > 0.

Write u = x + y with x ∈ V and y ∈ V ⊥ so that x = Proj
V

(u). Since θ(u, v) 6= π
2 we have u. v 6= 0

so u /∈ V ⊥ hence u 6= y and so x 6= 0. Since W = U ∩ V ⊆ V we have V ⊥ ⊆ W⊥. Since u ∈ W⊥ and
y ∈ V ⊥ ⊆W⊥, we also have x = u− y ∈W⊥. Thus we have 0 6= x ∈ V ∩W⊥. Suppose, for a contradiction,
that x = Proj

V
(u) 6= Proj

v
(u) = (u. v)v. Then by Trigonometric Ratios and Scaling, and using the fact that

Proj
V

(u) is the unique point in V nearest to u, we have

sin θ(u, x) = |u− x| =
∣∣u− Proj

V
(u)
∣∣ < ∣∣u− (u. v)v

∣∣ = sin θ
(
u, (u. v)v

)
= sin θ(u, v)

which implies that θ(u, x) < θ(u, v), contradicting the minimality of θ(u, v).

(b) Let x=(u. v)u− v and y=u− (u. v)v. Show that 0 6=x ∈ U⊥∩Z⊥, 0 6=y ∈ V ⊥∩Z⊥ and θ(x, y)=θ(u, v).

Solution: By Part (a), we have y = u − (u. v)v = u − Proj
V

(u) = Proj
V ⊥

(u). Let z = Proj
V

(u) = (u. v)v.

Then u = z+y with z ∈ V and y ∈ V ⊥. Since u ∈ U and z ∈ V we have y = u−z ∈ U+V = (U⊥∩V ⊥)⊥ = Z⊥,
and so y ∈ V ⊥ ∩ Z⊥. Also note that since 0 6= u ∈ U ∩W⊥ it follows that u /∈ V (if we had u ∈ V then
we would have u ∈ U ∩ V = W hence u ∈ W ∩W⊥ so that u = 0). Since u /∈ V we have u 6= z so that
y 6= 0. This completes the proof that 0 6= y ∈ V ⊥ ∩Z⊥. A similar proof shows that x = −Proj

U⊥
(v) and that

0 6= x ∈ U⊥ ∩ Z⊥.
By Trigonometric Ratios and Scaling we have

sin θ(u, v) = sin θ
(
u, (u. v)v

)
=
∣∣u− (u. v)v

∣∣ = |y| , and

sin θ(u, v) = sin θ
(
(u. v)u, v

)
=
∣∣v − (u. v)u

∣∣ = |x|,
and so

cos θ(x, y) =
x. y
|x||y|

=

(
(u. v)u− v

). (u− (u. v)v
)

sin2 θ(u, v)
=

(u. v)− (u. v)3 − (u. v) + (u. v)

sin2 θ(u, v)

=
(u. v)− (u. v)3

sin2 θ(u, v)
=

cos θ(u, v)− cos3 θ(u, v)

sin2 θ(u, v)
= cos θ(u, v)

and hence θ(x, y) = θ(u, v), as required.

(c) Show that θ(U⊥, V ⊥) = θ(U, V ).

Solution: Since we can choose 0 6= x ∈ U⊥ ∩ Z⊥ and 0 6= y ∈ V ⊥ ∩ Z⊥ such that θ(x, y) = θ(u, v) = θ(U, V ),
it follows from the definition of θ(U⊥, V ⊥) that θ(U⊥, V ⊥) ≤ θ(x, y) = θ(u, v) = θ(U, V ). By interchanging U
with U⊥ and V with V ⊥, we also have θ(U, V ) = θ(U⊥⊥, V ⊥⊥) ≤ θ(U⊥, V ⊥).


