

MATH 245 Linear Algebra 2, Exercises for Chapter 3

1: Find the least-squares best fit quadratic $f \in P_2(\mathbb{R})$ for the following data points.

x_i	-1	0	1	2	3
y_i	0	2	3	2	-2

2: (a) In \mathbb{R}^4 , find the angle between $\langle e_1, e_2, e_3, e_4 \rangle$ and $\langle a_1, a_2, a_3, a_4 \rangle$, where $a_k = \sum_{i=1}^k e_i$.

(b) In \mathbb{R}^n , find the distance h_k from $\langle e_1, e_2, \dots, e_k \rangle$ to $\langle e_{k+1}, e_{k+2}, \dots, e_n \rangle$.

3: Let U and V be subspaces of \mathbb{R}^n .

(a) Show that $(U \cap V)^\perp = U^\perp + V^\perp$.

(b) Show that $\theta(U, V) = 0 \iff \theta(U^\perp, V^\perp) = 0$.

(c) Show that $\theta(U, V) = \frac{\pi}{2} \iff \theta(U^\perp, V^\perp) = \frac{\pi}{2}$.

4: Let U and V be subspaces of \mathbb{R}^n with $0 < \theta(U, V) < \frac{\pi}{2}$. Let $W = U \cap V$ and $Z = U^\perp \cap V^\perp$ so that we have

$$\theta(U, V) = \min \left\{ \theta(u, v) \mid 0 \neq u \in U \cap W^\perp, 0 \neq v \in V \cap W^\perp \right\}, \text{ and}$$

$$\theta(U^\perp, V^\perp) = \min \left\{ \theta(x, y) \mid 0 \neq x \in U^\perp \cap Z^\perp, 0 \neq y \in V^\perp \cap Z^\perp \right\}.$$

Choose $u \in U \cap W^\perp$ and $v \in V \cap W^\perp$ with $|u| = |v| = 1$ such that $\theta(u, v) = \theta(U, V)$.

(a) Show that $\text{Proj}_V(u) = \text{Proj}_v(u) = (u \cdot v)v$ and $\text{Proj}_U(v) = \text{Proj}_u(v) = (u \cdot v)u$.

(b) Let $x = (u \cdot v)u - v$ and $y = u - (u \cdot v)v$. Show that $0 \neq x \in U^\perp \cap Z^\perp$, $0 \neq y \in V^\perp \cap Z^\perp$ and $\theta(x, y) = \theta(U, V)$.

(c) Show that $\theta(U^\perp, V^\perp) = \theta(U, V)$.