

1: Let $P = a + \text{Null}(A)$ and $Q = b + \text{Col}(B)$ where

$$a = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 4 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 3 & -1 & 2 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 4 & 2 \\ 0 & 3 & -1 \end{pmatrix}.$$

Find a point $p \in \mathbb{R}^4$ and a basis for a subspace $U \subseteq \mathbb{R}^4$ such that $P \cap Q = p + U$.

Solution: Let $x \in P \cap Q$. Choose $u \in \text{Null}A$ and $v \in \text{Col}B$ so that $x = a + u = b + v$. Since $v \in \text{Col}B$ we can choose $t \in \mathbb{R}^3$ so that $v = Bt$. Then we have $a + u = b + Bt$. Multiply (on the left) by A , using the fact that $Au = 0$, to get $Aa + Ab + ABt$. Thus we must have $ABt = A(a - b)$. Conversely, suppose that $t \in \mathbb{R}^3$ satisfies $ABt = A(a - b)$ and let $x = b + Bt$. Then $x \in b + \text{Col}B = Q$. Also, we have $A(x - a) = A(b + Bt - a) = ABt - A(a - b) = 0$ so that $x - a \in \text{Null}A$, and so $x \in a + \text{Null}A = P$. Thus we have shown that $P \cap Q$ is equal to the set of vectors $x \in \mathbb{R}^4$ with $x = b + Bt$ for some $t \in \mathbb{R}^3$ such that $ABt = A(a - b)$. We have

$$AB = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 3 & -1 & 2 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 4 & 2 \\ 0 & 3 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 0 \\ 6 & 14 & 6 \\ 3 & 8 & 3 \end{pmatrix},$$

$$A(a - b) = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 3 & -1 & 2 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 10 \\ 4 \end{pmatrix}, \text{ and}$$

$$(AB | A(a - b)) = \left(\begin{array}{ccc|c} 0 & -2 & 0 & 2 \\ 6 & 14 & 6 & 10 \\ 3 & 8 & 3 & 4 \end{array} \right) \sim \left(\begin{array}{ccc|c} 3 & 8 & 3 & 4 \\ 6 & 14 & 6 & 10 \\ 0 & -2 & 0 & 2 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & \frac{8}{3} & 1 & \frac{4}{3} \\ 0 & 2 & 0 & -2 \\ 0 & -2 & 0 & 2 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 1 & 4 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

so the solution to $ABt = A(a - b)$ is given by $t = c + sv$ where $c = (4, -1, 0)^T$ and $v = (-1, 0, 1)^T$. Thus $P \cap Q$ is the set of points x of the form $x = b + Bt = b + B(c + sv) = b + Bc + sBv$ and so $P \cap Q = p + U$ where

$$p = b + Bc = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 4 & 2 \\ 0 & 3 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \\ 4 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 5 \\ 0 \end{pmatrix}$$

and $U = \text{Span}\{u\}$ with

$$u = Bv = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 4 & 2 \\ 0 & 3 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}.$$

2: (a) Show that the set $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \geq (x^2 + y^2 - x)^2\}$ is not convex.

Solution: For $(x, y) = \left(-\frac{1}{4}, \pm \frac{\sqrt{3}}{4}\right)$ we have $x^2 + y^2 = \frac{1}{16} + \frac{3}{16} = \frac{1}{4}$ and $(x^2 + y^2 - x)^2 = \left(\frac{1}{4} + \frac{1}{4}\right)^2 = \frac{1}{4}$ and so $(x, y) \in A$. For $(x, y) = \left(-\frac{1}{4}, 0\right)$ we have $x^2 + y^2 = \frac{1}{16}$ and $(x^2 + y^2 - x)^2 = \left(\frac{1}{16} + \frac{1}{4}\right)^2 = \left(\frac{5}{16}\right)^2 = \frac{25}{16} \cdot \frac{1}{16} > \frac{1}{16}$ and so $(x, y) \notin A$. Since $a = \left(-\frac{1}{4}, \frac{\sqrt{3}}{4}\right) \in A$ and $b = \left(-\frac{1}{4}, -\frac{\sqrt{3}}{4}\right) \in A$ but $\frac{1}{2}a + \frac{1}{2}b = \left(-\frac{1}{4}, 0\right) \notin A$, we see that A is not convex. We remark that the motivation for selecting the above points a and b comes from recognizing that A is the cardioid given in polar coordinates by $r = 1 + \cos \theta$.

(b) Show that the set $B = \{(x, y) \in \mathbb{R}^2 \mid y \geq x^2\}$ is convex.

Solution: Let $(a, b) \in B$ and let $(c, d) \in B$ and note that $b \geq a^2$ and $d \geq c^2$. Let $(x, y) \in [(a, b), (c, d)]$, say $(x, y) = (1-t)(a, b) + t(c, d) = ((1-t)a + tc, (1-t)b + td)$ with $0 \leq t \leq 1$. Then

$$\begin{aligned} y - x^2 &= ((1-t)b + td) - ((1-t)a + tc)^2 \\ &\geq ((1-t)a^2 + tc^2) - ((1-t)a + tc)^2 \\ &= ((1-t)a^2 + tc^2) - ((1-t)^2a^2 + 2t(1-t)ac + t^2c^2) \\ &= ((1-t) - (1-t)^2)a^2 - 2t(1-t)ac + (t - t^2)c^2 \\ &= t(1-t)a^2 - 2t(1-t)ac + t(1-t)c^2 \\ &= t(1-t)(a - c)^2 \geq 0 \end{aligned}$$

and so $(x, y) \in B$. Thus B is convex.

3: Let W be a vector space over \mathbb{R} . A nonempty set $\emptyset \neq C \subseteq W$ is called **conical** when it has the property that for all $a \in C$ and all $0 \leq t \in \mathbb{R}$, we have $ta \in C$.

(a) Show that the intersection of a set of conical sets in W is conical.

Solution: Before we begin our solution, we remark that for every convex conical set $\emptyset \neq S \subseteq \mathbb{R}^n$ we have $0 \in S$ because since $S \neq \emptyset$ we can choose an element $a \in S$, and then since S is conical we have $0 = 0 \cdot a \in S$. Now we begin our solution. Let A be a nonempty set. For each $\alpha \in A$, let $\emptyset \neq S_\alpha \subseteq \mathbb{R}^n$ be a conical set in \mathbb{R}^n . Let $S = \bigcap_{\alpha \in A} S_\alpha$. Note that $0 \in S$ (so that $S \neq \emptyset$) since $0 \in S_\alpha$ for all $\alpha \in A$. Let $a \in S$ and let $0 \leq t \in \mathbb{R}$. Then $a \in S_\alpha$ for every α , and so $ta \in S_\alpha$ for every α (since S_α is conical and $t \geq 0$), and so $ta \in S$. Thus S is conical.

(b) For a nonempty set $\emptyset \neq S \subseteq W$ we define the **convex cone** of S , denoted by $\text{Cone}(S)$, to be the smallest convex conical subset of W which contains S , or equivalently the intersection of all convex conical sets in W which contain S . Show that

$$\text{Cone}(S) = \left\{ \sum_{i=0}^n t_i a_i \mid n \in \mathbb{N}, a_i \in S, 0 \leq t_i \in \mathbb{R} \right\}.$$

Solution: Let T be the set on the right. Note that $S \subseteq T$ because when $m = 0$, $a_0 \in S$ and $s_0 = 1$ we have $\sum_{i=0}^m s_i a_i = a_0$. Note that T is conical because given $0 \leq t \in \mathbb{R}$ and $a \in T$, say $a = \sum_{i=0}^m s_i a_i$ where $m \in \mathbb{N}$, $a_i \in S$ and $0 \leq s_i \in \mathbb{R}$, we have $ta = \sum_{i=0}^m (ts_i) a_i$ and $0 \leq ts_i \in \mathbb{R}$. We claim that T is convex. Let $a, b \in T$, say $a = \sum_{i=0}^m s_i a_i$ and $b = \sum_{i=0}^n t_i a_i$ where $m \in \mathbb{N}$, $a_i \in S$ and $0 \leq s_i, t_i \in \mathbb{R}$. Let $x \in [a, b]$, say $x = a + r(b - a)$ with $0 \leq r \leq 1$. Then $x = \sum s_i a_i + r(\sum t_i a_i - \sum s_i a_i) = \sum r_i a_i$ where $r_i = s_i + r(t_i - s_i)$. Since $s_i \geq 0$ and $t_i \geq 0$ and $r_i \in [s_i, t_i]$, we have $r_i \geq 0$, and hence $x = \sum r_i a_i \in T$. Thus T is convex, as claimed. Since $S \subseteq T$ and T is convex and conical, we have $\text{Cone}(S) \subseteq T$, by the definition of $\text{Cone}(S)$.

Let $C \subseteq \mathbb{R}^n$ be any convex conical set in \mathbb{R}^n which contains S . Let $x \in T$, say $x = \sum_{i=0}^m s_i a_i$ where $m \in \mathbb{N}$, $a_i \in S$ and $0 \leq s_i \in \mathbb{R}$. If $x = 0$ then we have $x \in C$ by our preliminary remark from Part (a). Suppose that $x \neq 0$. Then some $s_i > 0$ and so $\sum s_i > 0$. Let $s = \sum s_i$. Note that $\frac{1}{s} x = \sum \frac{s_i}{s} a_i$ and each $\frac{s_i}{s} \geq 0$ with $\sum \frac{s_i}{s} = 1$, and so we have $\frac{1}{s} x \in [S]$. Since C is convex and $S \subseteq C$ we have $[S] \subseteq C$ and so $\frac{1}{s} x \in C$. Since C is conical, $\frac{1}{s} x \in C$ and $s \geq 0$, we have $x = s \cdot \frac{1}{s} x \in C$. Thus $T \subseteq C$. Since $T \subseteq C$ for every convex conical set $C \subseteq \mathbb{R}^n$ with $S \subseteq C$, it follows, from the definition of the convex cone of S , that $T \subseteq \text{Cone}(S)$.

4: Let V and W be vector spaces over a field F in which $2 \neq 0$. Here is an alternate definition for an affine space in V . Let us say that a nonempty set $\emptyset \neq P \subseteq V$ is **affine** in V when $sx + ty \in P$ for all $x, y \in P$ and for all $s, t \in F$ with $s + t = 1$. Also, let us say that a map $A : V \rightarrow W$ is **affine** when

$$A(sx + ty) = sA(x) + tA(y) \text{ for all } x, y \in V \text{ and } s, t \in F \text{ with } s + t = 1.$$

(a) For $\emptyset \neq P \subseteq V$, show that P is affine if and only if $P = a + U$ for some $a \in V$ and some subspace $U \subseteq V$.

Solution: Suppose first that P is affine. Choose a point $a \in P$ and let $U = P - a = \{x - a | x \in P\}$ so that we have $P = a + U$. We claim that U is a subspace of V . Note that $0 = a - a \in U$. Let $u \in U$, say $u = x - a$ with $x \in P$, and let $t \in F$. Then we have $tu + a = t(x - a) + a = tx + (1 - t)a$ which lies in P since $x \in P$ and $a \in P$ and P is affine. Since $u + a \in P$ we have $u \in P - a = U$, so U is closed under multiplication by a scalar. Now let $u, v \in U$, say $u = x - a$ and $v = y - a$ with $x, y \in P$. Note that $u + v + a = (x - a) + (y - a) + a = x + y - a = 2 \cdot \frac{x+y}{2} - 1 \cdot a$. Since $x \in P$ and $y \in P$ and P is affine, we have $\frac{x+y}{2} \in P$. Since $\frac{x+y}{2} \in P$ and $a \in P$ and P is affine, we have $u + v + a = 2 \cdot \frac{x+y}{2} - 1 \cdot a \in P$. Since $u + v + a \in P$ we have $u + v \in P - a = U$, so U is closed under addition. This completes the proof that U is a vector space, as claimed.

Conversely, suppose that $P = a + U$ where $a \in P$ and $U \subseteq V$ is a subspace. Let $x, y \in P$, say $x = a + u$ and $y = a + v$ with $u, v \in U$, and let $s, t \in F$ with $s + t = 1$. Then we have $sx + ty = s(a + u) + t(a + v) = (s + t)a + (su + tv) = a + (su + tv)$, which lies in $a + U$ since $su + tv \in U$. Thus P is affine.

(b) Show that the affine maps $A : V \rightarrow W$ are the maps of the form $A(x) = a + L(x)$ for some point $a \in W$ and some linear map $L : V \rightarrow W$.

Solution: Suppose that $A : V \rightarrow W$ is affine. Let $a = A(0)$ and define $L : V \rightarrow W$ by $L(x) = A(x) - A(0)$ so that we have $A(x) = a + L(x)$ for all $x \in V$. We claim that L is linear. Let $u, v \in V$ and let $t \in F$. Then

$$\begin{aligned} L(u) + L(v) &= A(u) - A(0) + A(v) - A(0) = \left(2\left(\frac{1}{2}A(u) + \frac{1}{2}A(v)\right) - A(0)\right) - A(0) \\ &= \left(2 \cdot A\left(\frac{1}{2}u + \frac{1}{2}v\right) - 1 \cdot A(0)\right) - A(0) = A\left(2 \cdot \left(\frac{1}{2}u + \frac{1}{2}v\right) - 1 \cdot 0\right) - A(0) \\ &= A(u + v) - A(0) = L(u + v) \end{aligned}$$

and

$$\begin{aligned} tL(u) &= t(A(u) - A(0)) = (tA(u) + (1 - t)A(0)) - A(0) = A(t \cdot u + (1 - t) \cdot 0) - A(0) \\ &= A(tu) - A(0) = L(u) \end{aligned}$$

and so the map L is linear, as claimed.

Conversely, suppose that $L : V \rightarrow W$ is linear, let $a \in W$ and define $A : V \rightarrow W$ by $A(x) = a + L(x)$. Then for $x, y \in V$ and $s, t \in \mathbb{R}$ with $s + t = 1$, we have

$$sA(x) + tA(y) = s(a + L(x)) + t(a + L(y)) = (s + t)a + sL(x) + tL(y) = a + L(sx + ty) = A(sx + ty)$$

and so A is affine.

(c) Show that when $F = \mathbb{R}$, if $A : V \rightarrow W$ is affine and $C \subseteq V$ is convex, then the image $A(C)$ is convex.

Solution: Let $A : V \rightarrow W$ be affine. Let $C \subseteq V$ be convex. Let $u, v \in A(C) = \{A(x) | x \in C\}$, say $u = A(a)$ and $v = A(b)$ where $a, b \in C$. Let $y \in [u, v]$, say $y = su + tv$ where $0 \leq s, t \in \mathbb{R}$ with $s + t = 1$. Let $x = sa + tb$. Since $0 \leq s, t$ and $s + t = 1$, we have $x \in [a, b]$. Since $a, b \in C$ and $x \in [a, b]$ and C is convex, we have $x \in C$. Since A is affine and $s + t = 1$, we have $A(x) = A(sa + tb) = sA(a) + tA(b) = su + tv = y$ and so $y \in A(C)$. Thus $[u, v] \subseteq A(C)$, and so $A(C)$ is convex.

5: (a) Let $\emptyset \neq \mathcal{S} \subseteq \mathbb{R}^n$ and let $x \in [\mathcal{S}]$. Show that $x = \sum_{i=0}^m t_i a_i$ for some $m \in \mathbb{N}$ with $m \leq n$, some $a_i \in \mathcal{S}$, and some $0 \leq t_i \in \mathbb{R}$ with $\sum t_i = 1$.

Solution: Write x in the form $x = \sum_{i=0}^m s_i a_i$ where $m \in \mathbb{N}$, $a_i \in S$ and $0 \leq s_i \in \mathbb{R}$ with $\sum s_i = 1$, with the value of $m \in \mathbb{N}$ chosen to be as small as possible. Note that the points a_i must be distinct, since if we had $a_j = a_k$ with $j \neq k$ then we could replace the two terms $s_j a_j + s_k a_k$ in the sum $\sum s_i a_i$ by the single term $(s_j + s_k) a_k$. Suppose, for a contradiction, that $m > n$. Note that, since $m > n$ and the a_i are distinct, the set $\{a_0, a_1, \dots, a_m\}$ is affinely dependent (because the set of m distinct vectors $\{a_1 - a_0, a_2 - a_0, \dots, a_m - a_0\}$ is linearly dependent). Choose coefficients t_i , not all zero, so that $\sum_{i=0}^m t_i a_i = 0$ and $\sum_{i=0}^m t_i = 0$. Note that at least one the coefficients t_i is positive. Choose an index k so that $t_k > 0$ and $\frac{s_k}{t_k} = \min \left\{ \frac{s_i}{t_i} \mid t_i > 0 \right\}$, and let $r = \frac{s_k}{t_k}$. Then we have

$$x = \sum_{i=0}^m s_i a_i - r \cdot 0 = \sum_{i=0}^m s_i a_i - r \sum_{i=0}^m t_i a_i = \sum_{i=0}^m r_i a_i$$

where $r_i = s_i - r t_i$. By our choice of k we have $r_i \geq 0$ for all i (indeed if $t_i \leq 0$ then $r_i = s_i - \frac{s_k}{t_k} t_i \geq s_i \geq 0$ and if $t_i > 0$ then $\frac{s_k}{t_k} \leq \frac{s_i}{t_i}$ so $r_i = s_i - \frac{s_k}{t_k} t_i \geq s_i - \frac{s_i}{t_i} t_i = 0$) and we have $r_k = s_k - \frac{s_k}{t_k} t_k = 0$. Also note that $\sum r_i = \sum s_i - r \sum t_i = 1 - r \cdot 0 = 1$. Thus we have $x = \sum_{i=0}^m r_i a_i = \sum_{i \neq k} r_i a_i$ with each $r_i \geq 0$ and $\sum_{i \neq k} r_i = 1$, contradicting the minimality of m .

(b) Let $\mathcal{S} \subseteq \mathbb{R}^n$ with $|\mathcal{S}| \geq n+2$. Show that there exist disjoint, nonempty subsets $A, B \subseteq \mathcal{S}$ such that $[A] \cap [B] \neq \emptyset$.

Solution: Choose $n+2$ distinct points $a_0, a_1, \dots, a_{n+1} \in S$. We claim that there exist non-empty disjoint sets of indices $I, J \subseteq \{0, 1, 2, \dots, n+1\}$ such that $[\{a_i \mid i \in I\}] \cap [\{a_j \mid j \in J\}] \neq \emptyset$, and so we can take $A = \{a_i \mid i \in I\}$ and $B = \{a_j \mid j \in J\}$. Since $\{a_0, a_1, \dots, a_{n+1}\}$ is affinely dependent, we can choose coefficients t_i , not all zero, so that $\sum_{i=0}^{n+1} t_i a_i = 0$ and $\sum_{i=0}^{n+1} t_i = 0$. Let $I = \{i \mid t_i > 0\}$ and let $J = \{j \mid t_j < 0\}$. Note that I and J are both nonempty since the coefficients t_i are not all zero and $\sum t_i = 0$ so that at least one coefficient is positive and at least one is negative. For each $j \in J$, let $s_j = -t_j$. Since $\sum_{i=0}^{n+1} t_i = 0$ we have

$$0 = \sum_{i \in I} t_i + \sum_{j \in J} t_j = \sum_{i \in I} t_i - \sum_{j \in J} s_j.$$

so we have $\sum_{i \in I} t_i = \sum_{j \in J} s_j$. Let $r = \sum_{i \in I} t_i = \sum_{j \in J} s_j$. Note that $r > 0$ and we have $\sum_{i \in I} \frac{t_i}{r} = 1$ and $\sum_{j \in J} \frac{s_j}{r} = 1$. Since

$$0 = \sum_{i=0}^{n+1} \frac{t_i}{r} a_i = \sum_{i \in I} \frac{t_i}{r} a_i - \sum_{j \in J} \frac{s_j}{r} a_j$$

we have $\sum_{i \in I} \frac{t_i}{r} a_i = \sum_{j \in J} \frac{s_j}{r} a_j$. Let $x = \sum_{i \in I} \frac{t_i}{r} a_i = \sum_{j \in J} \frac{s_j}{r} a_j$. Since $x = \sum_{i \in I} \frac{t_i}{r} a_i$ with each $\frac{t_i}{r} > 0$ and $\sum_{i \in I} \frac{t_i}{r} = 1$, we have $x \in [\{a_i \mid i \in I\}]$. Since $x = \sum_{j \in J} \frac{s_j}{r} a_j$ with each $\frac{s_j}{r} > 0$ and $\sum_{j \in J} \frac{s_j}{r} = 1$, we have $x \in [\{a_j \mid j \in J\}]$. Thus $[\{a_i \mid i \in I\}] \cap [\{a_j \mid j \in J\}] \neq \emptyset$.

6: For $x, y \in \mathbb{R}^n$, write $x \leq y$ when $x_i \leq y_i$ for all i . Let $P = \{x \in \mathbb{R}^4 \mid Ax = a \text{ and } Bx \leq b\}$ where

$$a = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ 5 \\ 4 \\ 4 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 3 \\ 1 & 2 & 0 & -1 \\ 2 & 1 & -1 & -2 \end{pmatrix}.$$

Find a set of distinct points $a_0, a_1, a_2, a_3 \in \mathbb{R}^4$ such that $P = [a_0, a_1, a_2, a_3]$.

Solution: First we solve $Ax = a$. We have

$$(A|a) = \left(\begin{array}{cccc|c} 1 & 2 & 1 & 1 & 3 \\ 2 & 3 & 0 & 1 & 4 \end{array} \right) \sim \left(\begin{array}{cccc|c} 1 & 2 & 1 & 1 & 3 \\ 0 & 1 & 2 & 1 & 2 \end{array} \right) \sim \left(\begin{array}{cccc|c} 1 & 0 & -3 & -1 & -1 \\ 0 & 1 & 2 & 1 & 2 \end{array} \right).$$

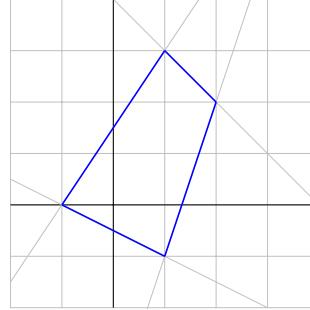
Thus

$$Ax = a \iff x = \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} 3 \\ -2 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} = p + t_1 u_1 + t_2 u_2$$

for some $t_1, t_2 \in \mathbb{R}$, where $p = (-1, 2, 0, 0)^T$, $u_1 = (3, -2, 1, 0)^T$ and $u_2 = (1, -1, 0, 1)^T$, and then we have

$$\begin{aligned} Bx \leq b &\iff \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 3 \\ 1 & 2 & 0 & -1 \\ 2 & 1 & -1 & -2 \end{pmatrix} \left(\begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} 3 \\ -2 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right) \leq \begin{pmatrix} 5 \\ 5 \\ 4 \\ 4 \end{pmatrix} \\ &\iff \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} 1 \\ -3 \\ -1 \\ 3 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ 2 \\ -2 \\ -1 \end{pmatrix} \leq \begin{pmatrix} 5 \\ 5 \\ 4 \\ 4 \end{pmatrix} \\ &\iff t_1 + t_2 \leq 4, \quad -3t_1 + 2t_2 \leq 3, \quad -t_1 - 2t_2 \leq 1 \text{ and } 3t_1 - t_2 \leq 4. \end{aligned}$$

The set of solutions (t_1, t_2) is shown below. The lines $t_1 + t_2 = 4$, $-3t_1 + 2t_2 = 3$, $-t_1 - 2t_2 = 1$ and $3t_1 - t_2 = 4$ are shown in grey and the solution set is outlined in blue.



The vertices lie at $(t_1, t_2) = (-1, 0), (1, -1), (2, 2), (1, 3)$ which correspond to the points

$$x = p + t_1 u_1 + t_2 u_2 = \begin{pmatrix} -4 \\ 4 \\ -1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} 7 \\ -4 \\ 2 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 5 \\ -3 \\ 1 \\ 3 \end{pmatrix}.$$

These 4 points are the required vertices a_0, a_1, a_2, a_3 for which $S = [a_0, a_1, a_2, a_3]$.

We remark that the above solution is not rigorous as it makes use of a picture. To make it rigorous there are several things that should be proven. Indeed, letting $b_0 = (-1, 0)^T$, $b_1 = (1, -1)^T$, $b_2 = (2, 2)^T$ and $b_3 = (1, 3)^T$, and letting $T = \{t \in \mathbb{R}^2 \mid t_1 + t_2 \leq 4, -3t_1 + 2t_2 \leq 3, -t_1 - 2t_2 \leq 1, 3t_1 - t_2 \leq 4\}$, one needs to show that $T = [b_0, b_1, b_2, b_3]$ and that the affine map $F(t) = p + t_1 u_1 + t_2 u_2$ sends the convex hull $[b_0, b_1, b_2, b_3]$ to the convex hull $[a_0, a_1, a_2, a_3]$. We do this on the next page.

First we show that the affine map $F : \mathbb{R}^2 \rightarrow \mathbb{R}^4$ given by $F(t) = p + t_1u_1 + t_2u_2$ sends $[b_0, b_1, b_2, b_3]$ to $[a_0, a_1, a_2, a_3]$. This follows from the following lemma (which some students may have proven as part of their solution to Problem 3(c)).

Lemma: Let V and W be vector spaces over \mathbb{R} . Let $F : V \rightarrow W$ be an affine map. Let $b_0, \dots, b_l \in V$. Then F maps $[b_0, \dots, b_l]$ to $[a_0, \dots, a_l]$ where $a_i = F(b_i)$.

Proof: We claim that for $n \in \mathbb{N}$, $b_i \in V$ and $0 \leq s_i \in \mathbb{R}$ with $\sum_{i=0}^n s_i = 1$ we have $F\left(\sum_{i=0}^n s_i b_i\right) = \sum_{i=0}^n s_i F(b_i)$.

We prove this claim using induction. When $n = 0$ the claim holds since $F\left(\sum_{i=0}^0 s_i b_i\right) = F(1 \cdot b_0) = 1 \cdot F(b_0)$.

Suppose the claim holds for some fixed $n \in \mathbb{N}$. Let $b_i \in V$ and $0 \leq s_i \in \mathbb{R}$ with $\sum_{i=0}^{n+1} s_i = 1$. If $s_{n+1} = 0$ then

we have $F\left(\sum_{i=0}^{n+1} s_i b_i\right) = F\left(\sum_{i=0}^n s_i b_i\right) = \sum_{i=0}^n s_i F(b_i) = \sum_{i=0}^{n+1} s_i F(b_i)$. Suppose that $s_{n+1} \neq 0$. Then

$$\begin{aligned} F\left(\sum_{i=0}^{n+1} s_i b_i\right) &= F\left(\sum_{i=0}^n s_i b_i + s_{n+1} b_{n+1}\right) = F\left((1 - s_{n+1}) \sum_{i=0}^n \frac{s_i}{1-s_{n+1}} b_i + s_{n+1} b_{n+1}\right) \\ &= (1 - s_{n+1}) F\left(\sum_{i=0}^n \frac{s_i}{1-s_{n+1}} b_i\right) + s_{n+1} F(b_{n+1}) , \text{ since } F \text{ is affine,} \\ &= (1 - s_{n+1}) \sum_{i=0}^n \frac{s_i}{1-s_{n+1}} F(b_i) + s_{n+1} F(b_{n+1}) , \text{ by the induction hypothesis,} \\ &= \sum_{i=0}^{n+1} s_i F(b_i). \end{aligned}$$

By induction, the claim holds for all $n \in \mathbb{N}$, and the lemma follows from the claim.

Next we show that $[b_0, b_1, b_2, b_3] \subseteq T$. It is easy to check that $b_i \in T$ for all i (simply check that each b_i satisfies the inequalities), so it suffices to show that T is convex. This follows from the following lemma.

Lemma: Let $A \in M_{l \times n}(\mathbb{R})$ and let $b \in \mathbb{R}^l$. Then the set $T = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ is convex.

Proof: Let $u, v \in T$ so we have $Au \leq b$ and $Av \leq b$, which means that $(Au)_i \leq b_i$ and $(Av)_i \leq b_i$ for all indices i . Let $x \in [u, v]$, say $x = su + tv$ with $0 \leq s, t$ and $s + t = 1$. Then $Ax = A(su + tv) = sAu + tAv$, so the i^{th} entry of Ax is

$$(Ax)_i = s(Au)_i + t(Av)_i \in [(Au)_i, (Av)_i].$$

Since $(Au)_i \leq b_i$ and $(Av)_i \leq b_i$ and $(Ax)_i \in [(Au)_i, (Av)_i]$, it follows that $(Ax)_i \leq b_i$. Since $(Ax)_i \leq b_i$ for all i , we have $Ax \leq b$ so that $x \in T$. Thus T is convex.

It remains to show that $T \subseteq [b_0, b_1, b_2, b_3]$. We sketch a proof. Let $t \in T$, so we have $t_1 + t_2 \leq 4$, $-3t_1 + 2t_2 \leq 3$, $-t_1 - 2t_2 \leq 1$ and $3t_1 - t_2 \leq 4$. We consider the two cases that $t_1 \leq 1$ and $t_1 \geq 1$. Suppose first that $t_1 \leq 1$. From the picture, it appears that $t \in [b_0, b_1, b_3]$, so we solve the system $\sum_{i=0}^3 s_i b_i = t$, $\sum_{i=0}^3 s_i = 1$ and $s_2 = 0$ for $s \in \mathbb{R}^4$ to get $s_0 = \frac{1}{2} - \frac{1}{2}t_1$, $s_1 = \frac{3}{8} + \frac{3}{8}t_1 - \frac{1}{4}t_2$, $s_2 = 0$ and $s_3 = \frac{1}{8} + \frac{1}{8}t_1 + \frac{1}{4}t_2$. We note that each $s_i \geq 0$ (indeed $s_0 = \frac{1}{2} - \frac{1}{2}t_1 \geq 0$ since $t_1 \leq 1$, $s_1 = \frac{3}{8} - \frac{1}{8}(-3t_1 + 2t_2) \geq 0$ since $-3t_1 + 2t_2 \leq 3$ and $s_3 = \frac{1}{8} - \frac{1}{8}(-t_1 - 2t_2) \geq 0$ since $-t_1 - 2t_2 \leq 1$) and also that $\sum s_i = 1$ and so we have $t = \sum s_i b_i \in [b_0, b_1, b_2, b_3]$. Next we suppose that $t_1 \geq 1$. From the picture, it appears that $t \in [b_1, b_2, b_3]$, so we solve $\sum_{i=0}^3 s_i b_i = t$, $\sum_{i=0}^3 s_i = 1$ and $s_0 = 0$ for $s \in \mathbb{R}^4$ to get $s_0 = 0$, $s_1 = 1 - \frac{1}{4}t_1 - \frac{1}{4}t_2$, $s_2 = -1 + t_1$ and $s_3 = 1 - \frac{3}{4}t_1 + \frac{1}{4}t_2$. We note that each $s_i \geq 0$ (indeed $s_1 = 1 - \frac{1}{4}(t_1 + t_2) \geq 0$ since $t_1 + t_2 \leq 4$, $s_2 = -1 + t_1 \geq 0$ since $t_1 \geq 1$ and $s_3 = 1 - \frac{3}{4}(3t_1 - t_2) \geq 0$ since $3t_1 - t_2 \leq 4$) and also that $\sum s_i = 1$ and so we have $t = \sum s_i b_i \in [b_0, b_1, b_2, b_3]$. In either case we find that $t \in [b_0, b_1, b_2, b_3]$, so we have $T \subseteq [b_0, b_1, b_2, b_3]$.