MATH 245 Linear Algebra 2, Solutions to the Exercise for Chapter 1

: Let P =a+ Null(4) and @ = b+ Col(B) where
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Find a point p € R* and a basis for a subspace U C R* such that PN Q =p+ U.

Solution: Let x € PN Q. Choose u € NullA and v € ColB so that x+ = a +u = b+ v. Since v € ColB
we can choose t € R3 so that v = Bt. Then we have a +u = b+ Bt. Multiply (on the left) by A, using
the fact that Au = 0, to get Aa + Ab+ ABt. Thus we must have ABt = A(a — b). Conversely, suppose
that ¢t € R? satisfies ABt = A(a — b) and let * = b+ Bt. Then z € b+ ColB = Q. Also, we have
A(x —a) = A(b+ Bt —a) = ABt — A(a — b) = 0 so that x — a € NullA, and so z € a + NullA = P. Thus
we have shown that P N Q is equal to the set of vectors € R* with ¢ = b+ Bt for some ¢t € R3 such that
ABt = A(a —b). We have
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so the solution to ABt = A(a—b) is given by t = ¢+ sv where ¢ = (4,—1,0)7 and v = (=1,0,1)7. Thus PNQ
is the set of points x of the form x = b+ Bt = b+ B(c+ sv) = b+ Be+ sBv and so PN Q = p+ U where
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2: (a) Show that the set A = {(z,y) € R?*|2? + y* > (#* + y? — 2)?} is not convex.

Solution: For (z,y) = ( — Z,:ti) we have 2% + 32 = -+ = =1 and (22 +¢y* —2)* = (§ + 1)? =} and so

ol H

(z,y) € A. For (z,y) = (- ,0) we have 22 +y? = & and (22 +y? —z)? = (& + 1)2 = (3 = Z.LlsL
and so (z,y) ¢ A. Since a = (—i,%) EAandb— (—i,—?) € Abut sa+ 3b=(—1,0) ¢ A, we
see that A is not convex. We remark that the motivation for selecting the above pomts and b comes from

recognizing that A is the cardioid given in polar coordinates by » = 1 4 cos 6.

(b) Show that the set B = {(z,y) € R?|y > 2} is convex.
Solution: Let (a,b) € B and let (c,d) € B and note that b > a? and d > ¢%. Let (z,y) € [(a,b), (c,d)], say
(z,y) = (1 —t)(a,b) + t(c,d) = (1 — t)a+tc, (1 —t)b+td) with 0 < ¢ < 1. Then

— 2% = (1= t)b+td) — ((1 - t)a+tc)”

> (1= t)a® +tc?) — (1 - t)a+ te)”

(1 —t)a® +tc®) — ((1 — t)%a® + 2t(1 — t)ac + tc?)
( 2
(

1—t)—(1-t)?)a —2t(1—t)ac+(t—t2)
1 —t)a® — 2t(1 — t)ac + t(1 — t)c?
(1-t)(a-0?*20

(
(
t
t

and so (z,y) € B. Thus B is convex.



3: Let W be a vector space over R. A nonempty set ) # C C W is called conical when it has the property that
for all a € C and all 0 <t € R, we have ta € C.

(a) Show that the intersection of a set of conical sets in W is conical.

Solution: Before we begin our solution, we remark that for every convex conical set } # S C R™ we have 0 € S
because since S # () we can choose an element a € S, and then since S is conical we have 0 =0-a € S. Now
we begin our solution. Let A be a nonempty set. For each o € A, let § # S, C R™ be a conical set in R™.
Let S =(\,ca Sa- Note that 0 € S (so that S # () since 0 € S, for all & € A. Let a € S and let 0 < ¢ € R.
Then a € S, for every a, and so ta € S, for every « (since S, is conical and ¢ > 0), and so ta € S. Thus S is
conical.

(b) For a nonempty set §) # S C W we define the convex cone of S, denoted by Cone(S), to be the smallest
convex conical subset of W which contains S, or equivalently the intersection of all convex conical sets in W
which contain §. Show that

Cone(S) = { zn: t;a;
i=0

nEN,(LiGS,OStiER}.

Solution: Let T be the set on the right. Note that S C T because when m = 0, ap € S and sy = 1 we have
m m

> s;a; = ag. Note that T is conical because given 0 < ¢t € R and a € T, say a = > s;a; where m € N,
i=0

i=0
m

a; € S and 0 < s; € R, we have ta = > (ts;)a; and 0 < ts; € R. We claim that T is convex. Let a,b € T, say
i=0

a=> sa; and b= 3 t;a; where m € N, a; € S and 0 < s;,t; € R. Let x € [a,b], say x = a + r(b — a) with
i=0 i=0

0<r <1 Thenz=> s;a; —I—T(Etiai - Zsiai) =Y r;a; where r; = s; +1r(t; — s;). Since s; > 0 and ¢; > 0

and r; € [s;,t;], we have r; > 0, and hence = > r;a; € T. Thus T is convex, as claimed. Since S C T and

T is convex and conical, we have Cone(S) C T, by the definition of Cone(S5).

m
Let C' C R™ be any convex conical set in R”™ which contains S. Let € T, say © = > s;a; where m € N,

i=0

a; € S and 0 < s; € R. If 2 = 0 then we have x € C by our preliminary remark from Part (a). Suppose that
x # 0. Then some s; > 0 and so > s; > 0. Let s = > s;. Note that %33 = > a; and each % > 0 with
> % =1, and so we have 1z € [S]. Since C is convex and S C C we have [S] C C and so L z € C. Since C
is conical, %x € C and s >0, we have z = s - %c € C. Thus T C C. Since T C C for every convex conical set

C CR™ with S C C, it follows, from the definition of the convex cone of S, that T C Cone(.5).



4: Let V and W be vector spaces over a field F' in which 2 £ 0. Here is an alternate definition for an affine space
in V. Let us say that a nonempty set ) # P C V is affine in V when sz + ty € P for all z,y € P and for all
s,t € F with s +t = 1. Also, let us say that a map A:V — W is affine when

A(sx +ty) = sA(z) + t A(y) for all z,y € V and s,t € F with s+t = 1.

(a) For ) ## P C V, show that P is affine if and only if P = a + U for some a € V and some subspace U C V.

Solution: Suppose first that P is affine. Choose a point @ € P and let U = P —a = {x — alx € P} so
that we have P = a + U. We claim that U is a subspace of V. Note that 0 = a —a € U. Let u € U,
say u = & — a with € P, and let ¢ € F. Then we have tu + a = t(x — a) + a = tx + (1 — t)a which lies
in P since x € P and a € P and P is affine. Since u +a € P we have u € P —a = U, so U is closed
under multiplication by a scalar. Now let u,v € U, say u = x — a and v — y — b with x,y € P. Note that
u+vt+a=(@x—a)+(y—a)+a=ac+y—a=2 %L —1.qa. Since z € P and y € P and P is affine, we
have % € P. Since % € P and a € P and P is affine, we haveu+v+a:2-#—1-a€ P. Since
u+v+a€ P wehave u+v € P —a=U,so U is closed under addition. This completes the proof that U is
a vector space, as claimed.

Conversely, suppose that P = a + U where a € P and U C V is a subspace. Let z,y € P, say xt =a+u
and y = a4+ v with w,v € U, and let s,t € F with s +¢ = 1. Then we have sz + ty = s(a + u) + t(a +v) =
(s +t)a+ (su+tv) = a+ (su+ tv), which lies in a + U since su +tv € U. Thus P is affine.

(b) Show that the affine maps A : V' — W are the maps of the form A(x) = a + L(z) for some point a € W
and some linear map L : V — W.
Solution: Suppose that A : V — W is affine. Let a = A(0) and define L : V — W by L(x) = A(x) — A(0) so
that we have A(z) = a + L(z) for all z € V. We claim that L is linear. Let u,v € V and let ¢t € F'. Then
L(w) + Do) = Alw) — A0) + A@) — A©0) = (2(JA() + 3A()) — A©0)) ~ A(0)
- (2 CA(Ru+ L) -1 A(O)) — A(0) = A(2- (bu+ Lv) —1-0) — A(0)
= A(u+v) — A(0) = L(u +v)
and
t L(u) = t(A(u) — A(0)) = (t A(u) + (1 — t)A(0)) — A(0) = A(t-u+ (1 —t) - 0) — A(0)
= A(tu) — A(0) = L(u)
and so the map L is linear, as claimed.
Conversely, suppose that L : V' — W is linear, let a € W and define A : V. — W by A(z) = a + L(z).
Then for x,y € V and s,t € R with s +¢ = 1, we have
sA(z) + tA(y) = s(a+ L(z)) + t(a+ L(y)) = (s +t)a+ sL(z) + tL(y) = a + L(sz + ty) = A(sz + ty)

and so A is affine.

(¢) Show that when F =R, if A: V — W is affine and C' C V is convex, then the image A(C) is convex.

Solution: Let A : V — W be affine. Let C' C V be convex. Let u,v € A(C) = {A(x)’x € C}, say u = A(a)
and v = A(b) where a,b € C. Let y € [u,v], say y = su+tv where 0 < s,t € R with s+¢ = 1. Let z = sa+tb.
Since 0 < s,t and s+t = 1, we have x € [a,b]. Since a,b € C and z € [a,b] and C is convex, we have z € C.
Since A is affine and s+t = 1, we have A(z) = A(sa + tb) = sA(a) +tA(b) = su+tv =y and so y € A(C).
Thus [u,v] C A(C), and so A(C) is convex.
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5: (a) Let ) # S C R™ and let = € [S]. Show that © = Y t;a; for some m € N with m < n, some a; € S, and
some 0 < t; € R with > ¢; = 1. =0

m
Solution: Write z in the form z = Y s;a; where m € N, a; € S and 0 < s; € R with > s; = 1, with the
i=0
value of m € N chosen to be as small as possible. Note that the points a; must be distinct, since if we had
a; = aj with j # k then we could replace the two terms s;a; + sgay in the sum ) s;a; by the single term
(sj + sk)ak. Suppose, for a contradiction, that m > n. Note that, since m > n and the a; are distinct, the set
{ag, a1, ,an} is affinely dependent (because the set of m distinct vectors {a; — ag,as — ag, -+, am — ag} is
m m
linearly dependent). Choose coefficients t;, not all zero, so that Y t;a; =0 and Y ¢; = 0. Note that at least
i=0 i=0
one the coefficients ¢; is positive. Choose an index k so that ¢, > 0 and i—: = min {f—
Then we have

t; > 0}, and let r = i—l’:

m m m m
I:Zsiai—w():Zsiai—thim:Zmai
=0 =0 =0 =0

where r; = s; — rt;. By our choice of k£ we have r; > 0 for all ¢ (indeed if t;, <0 then r; = s; — j—:ti >5;,>0

andifti>0thenf—:S‘:—;‘sori:si—f—:tizsi—‘:—;tizo) andwehaverkzsk—i—:tkzo. Also note that
m

Sri=>8—ry.ti=1—r-0=1. Thus we have © = > r;a; = Y ra; with each r; > 0 and > r; =1,
i=0 i£k i#k

contradicting the minimality of m.

(b) Let S C R™ with |S| > n + 2. Show that there exist disjoint, nonempty subsets A, B C S such that
[A] N [B] # 0.

Solution: Choose n + 2 distinct points ag, a1, -, an+1 € S. We claim that there exist non-empty disjoint sets
of indices I, J C {0,1,2,---,n+1} such that [{a;|i € I}]N[{a;|j € J}] # 0, and so we can take A = {a;]i € I}
and B = {a;|j € J}. Since {ag, a1, -, an41} is affinely dependent, we can choose coefficients ¢;, not all zero,
n+1 n+1
so that > t;a; =0 and ) ¢; = 0. Let I = {i|t; > 0} and let J = {j|t; < 0}. Note that I and J are both
i=0 i=0
nonempty since the coefficients t; are not all zero and _¢; = 0 so that at least one coefficient is positive and
n+1
at least one is negative. For each j € J, let s; = —t;. Since ) t; = 0 we have
i=0
Ozzti-i- thzzti— ZSj.
i€l jeJ i€l jeJ
so we have Y t; = > s;. Let r = > t; = > s;. Note that 7 > 0 and we have Y- 4% =1 and ) % = 1.
iel jeJ iel jeJ iel jeJ
Since

we have Y Ya; =Y %a; Letaz =) LYa; &
i€l jes il jed i€l i€l
we have z € [{a;|i € I}]. Since z = Y 2 a; with each 2 > 0 and Y 2 =1, we have z € [{a;|j € J}].
J€T jET
Thus [{a;]i € I}] N [{a;]j € J}] #0.



6: For x,y € R", write <y when z; < y; for all i. Let P = {x € R4|Ax =a and Bx < b} where

5 110 1
3 5 12 11 0 1-1 3
“_(4>’b_ 4 ’A_(2301>’B_ 12 0 -1
4 2 1 -1-2

]

Find a set of distinct points ag, a1, as, az € R* such that P = [ag, a1, az, a3

Solution: First we solve Az = a. We have

(A|a)—12113 1 2 1 1|3 1 0-3 -1
~\2 3 0 1|4 01 2 12 01 2 1

Thus
1 3 1
2 —2 -1
Ar=a < x = 0 + 1 1 + t2 0 =p+tiu; + tausg
0 0 1

for some t1,t, € R, where p = (—1,2,0,0)7, u; = (3,-2,1,0)7 and uy = (1,—1,0,1)7, and then we have

110 1 1 3 1 5
01-1 3 2 ) -1 5
Be<b = || 5 o NEIER IR
2 1-1-2 0 0 1 4
1 1 1 5
2 -3 2 5
= ||l [t S]],
0 3 1 4

— b1+t <4, =3t +2t, <3, —t1 — 2ty <1 and 3t; — ty < 4.

The set of solutions (t1,t2) is shown below. The lines t1 +to = 4, —3t1+2t3 =3, —t1 —2ts = 1 and 3t; —t, =4
are shown in grey and the solution set is outlined in blue.

~J

The vertices lie at (t1,t2) = (—1,0),(1,-1),(2,2), (1,3) which correspond to the points

—4 1 7 5

1 —4 -3

‘r:p+t1u1 +t2U2: -1 ) 1 ) 2 ) 1
0 —1 2 3

These 4 points are the required vertices ag, a1, as, ag for which S = [ag, a1, az, as].

We remark that the above solution is not rigorous as it makes use of a picture. To make it rigorous
there are several things that should be proven. Indeed, letting by = (—1,0)7, by = (1, —=1)T, by = (2,2)7 and
bz = (1,3)T, and letting T = {t € Rz‘tl +to < 4,3t + 2ty < 3,—t] — 2ty < 1,3t1 — 15 < 4}, one needs to
show that T = [bg, b1, b, b3] and that the affine map F(t) = p+t1u; + taug sends the convex hull [bg, by, b, bs]
to the convex hull [ag, a1, as, as]. We do this on the next page.



First we show that the affine map F : R?2 — R* given by F(t) = p + tyu; + taug sendss [bg, by, b, b3] to
[ao, a1, as,as]. This follows from the following lemma (which some students may have proven as part of their
solution to Problem 3(c)).

Lemma: Let V and W be vector spaces over R. Let F' : V — W be an affine map. Let by, --,b; € V. Then
F maps [bg, -, b] to [ag, - -,a;] where a; = F(b;).

Proof: We claim that for n € N, b; € V and 0 < s; € R with > s; = 1 we have F( > sibi) = > s F(b;).

i=0 i=0 i=0
0
We prove this claim using induction. When n = 0 the claim holds since F( Y s;b;) = F(1-bg) = 1- F(by).
i=0
n+1
Suppose the claim holds for some fixed n € N. Let b; € V and 0 < s; € R with > s; = 1. If 5,41 = 0 then
i=0
n+1 n n n4+1
we have F( > sibi) = F( > sibi) =5 le(bz) => siF(bi). Suppose that s,1 # 0. Then
i=0 i=0 i=0 i=0
n+1 n n
F(Y sibi) = F(X sibi + sng1bny1) = F((1 = spg1) > e bi Snt1bpnt1)
i=0 i=0 i=0

n

=(1- an)F( 54 bi) + Spt+1F(bnt1) , since F is affine,
0

: 1=8$n41
7=

1—sp41

=(1—58p41) Y., —2—F(b;) + $p+1F (bp+1) , by the induction hypothesis,
i=0

n+1

= Z SZF(bZ)

i=0
By induction, the claim holds for all n € N, and the lemma follows from the claim.

Next we show that [bg, b1,be,b3] C T. It is easy to check that b; € T for all ¢ (simply check that each b;
satisfies the inequalities), so it suffices to show that T is convex. This follows from the following lemma.

Lemma: Let A € My, (R) and let b € R!. Then the set T = {a? S R”‘Am < b} is convex.

Proof: Let u,v € T so we have Au < b and Av < b, which means that (Au); < b; and (Av); < b; for all indices
i. Let x € [u,v], say © = su + tv with 0 < s,¢ and s +¢ = 1. Then Az = A(su + tv) = sAu + tAv, so the i*}
entry of Ax is

(Ax); = s(Au); + t(Av); € [(Au),», (Av)i}.

Since (Au); < b; and (Av); < b; and (Az); € [(Au);, (Av);], it follows that (Az); < b;. Since (Az); < b; for
all 4, we have Ax < b so that x € T. Thus T is convex.

It remains to show that T C [bg, b1, ba, b3]. We sketch a proof. Let ¢t € T, so we have t; + ty < 4,
—3t1 + 2ty < 3, —t; — 2t < 1 and 3ty — to < 4. We consider the two cases that t; < 1 and t; > 1. Suppose

3 3
first that ¢; < 1. From the picture, it appears that t € [bg, by, b3], so we solve the system > s;b; =1¢t, > s; =1
i=0 i=0
and s = 0 for s € R* to get sg = % — %th Ss1 = % + %tl — %tz, so = 0 and s3 = % + %tl + itz. We note that
each s; > 0 (indeed sy = &+ — 1¢; > O since t; < 1, 51 = 2 — L(=3t; + 2t3) > 0 since —3t; + 2t < 3 and

272 8 8
83 = %—%(—t1—2t2) > 0 since —t; —2to < 1) and also that > s, = 1 and so we have t = >_ s;b; € [bo, b1, ba, b3).
3 3
Next we suppose that t; > 1. From the picture, it appears that ¢ € [by, ba, bs], so we solve > s;b; =¢t, > s, =1
i=0 i=0
and so = 0 for s € R* to get so = 0, 51 = lfitlf%tg, S9 = —1 + 1t and s3 = 17%t1+%t2. We note
that each s; > 0 (indeed s; = 1 — $(t1 +t2) > 0 since t; +t2 < 4, s = —1+1t; > 0 since t; > 1 and

s3=1— i(?)tl —t3) > 0 since 3t; — to < 4) and also that > s, = 1 and so we have t = s;b; € [bg, b1, ba, b3].
In either case we find that ¢ € [bg, b1, ba, b3], so we have T C [bg, b1, ba, b3].



