
MATH 245 Linear Algebra 2, Solutions to the Exercise for Chapter 1

1: Let P = a+ Null(A) and Q = b+ Col(B) where

a =


3
1
2
4

 , b =


1
2
1
3

 , A =

 1 −1 0 −1
3 −1 2 1
1 0 1 1

 , B =


1 1 2
1 0 3
2 4 2
0 3 −1

 .

Find a point p ∈ R4 and a basis for a subspace U ⊆ R4 such that P ∩Q = p+ U .

Solution: Let x ∈ P ∩ Q. Choose u ∈ NullA and v ∈ ColB so that x = a + u = b + v. Since v ∈ ColB
we can choose t ∈ R3 so that v = Bt. Then we have a + u = b + Bt. Multiply (on the left) by A, using
the fact that Au = 0, to get Aa + Ab + ABt. Thus we must have ABt = A(a − b). Conversely, suppose
that t ∈ R3 satisfies ABt = A(a − b) and let x = b + Bt. Then x ∈ b + ColB = Q. Also, we have
A(x − a) = A(b + Bt − a) = ABt − A(a − b) = 0 so that x − a ∈ NullA, and so x ∈ a + NullA = P . Thus
we have shown that P ∩ Q is equal to the set of vectors x ∈ R4 with x = b + Bt for some t ∈ R3 such that
ABt = A(a− b). We have

AB =

 1 −1 0 −1
3 −1 2 1
1 0 1 1




1 1 2
1 0 3
2 4 2
0 3 −1

 =

 0 −2 0
6 14 6
3 8 3

 ,

A(a− b) =

 1 −1 0 −1
3 −1 2 1
1 0 1 1




2
−1

1
1

 =

 2
10
4

 , and

(
AB
∣∣∣A(a− b

)
=

 0 −2 0
6 14 6
3 8 3

∣∣∣∣∣∣
2
10
4

 ∼
 3 8 3

6 14 6
0 −2 0

∣∣∣∣∣∣
4
10
2

 ∼
 1 8

3 1
0 2 0
0 −2 0

∣∣∣∣∣∣
4
3
−2

2

 ∼
 1 0 1

0 1 0
0 0 0

∣∣∣∣∣∣
4
−1

0


so the solution to ABt = A(a− b) is given by t = c+sv where c = (4,−1, 0)T and v = (−1, 0, 1)T . Thus P ∩Q
is the set of points x of the form x = b+Bt = b+B(c+ sv) = b+Bc+ sBv and so P ∩Q = p+ U where

p = b+Bc =


1
2
1
3

+


1 1 2
1 0 3
2 4 2
0 3 −1


 4
−1

0

 =


1
2
1
3

+


3
4
4
−3

 =


4
6
5
0


and U = Span{u} with

u = Bv =


1 1 2
1 0 3
2 4 2
0 3 −1


−1

0
1

 =


1
2
0
−1

 .



2: (a) Show that the set A =
{

(x, y) ∈ R2
∣∣x2 + y2 ≥ (x2 + y2 − x)2

}
is not convex.

Solution: For (x, y) =
(
− 1

4 ,±
√
3
4

)
we have x2 + y2 = 1

16 + 3
16 = 1

4 and (x2 + y2 − x)2 = ( 1
4 + 1

4 )2 = 1
4 and so

(x, y) ∈ A. For (x, y) =
(
− 1

4 , 0
)

we have x2 + y2 = 1
16 and (x2 + y2 − x)2 =

(
1
16 + 1

4

)2
=
(

5
16

)2
= 25

16 ·
1
16 >

1
16

and so (x, y) /∈ A. Since a =
(
− 1

4 ,
√
3
4

)
∈ A and b =

(
− 1

4 ,−
√
3
4

)
∈ A but 1

2a + 1
2b =

(
− 1

4 , 0
)
/∈ A, we

see that A is not convex. We remark that the motivation for selecting the above points a and b comes from
recognizing that A is the cardioid given in polar coordinates by r = 1 + cos θ.

(b) Show that the set B =
{

(x, y) ∈ R2
∣∣y ≥ x2} is convex.

Solution: Let (a, b) ∈ B and let (c, d) ∈ B and note that b ≥ a2 and d ≥ c2. Let (x, y) ∈
[
(a, b), (c, d)

]
, say

(x, y) = (1− t)(a, b) + t(c, d) =
(
(1− t)a+ tc , (1− t)b+ td

)
with 0 ≤ t ≤ 1. Then

y − x2 =
(
(1− t)b+ td

)
−
(
(1− t)a+ tc

)2
≥
(
(1− t)a2 + tc2

)
−
(
(1− t)a+ tc

)2
=
(
(1− t)a2 + tc2

)
−
(
(1− t)2a2 + 2t(1− t)ac+ t2c2

)
=
(
(1− t)− (1− t)2

)
a2 − 2t(1− t)ac+

(
t− t2

)
c2

= t(1− t)a2 − 2t(1− t)ac+ t(1− t)c2

= t(1− t)(a− c)2 ≥ 0

and so (x, y) ∈ B. Thus B is convex.



3: Let W be a vector space over R. A nonempty set ∅ 6= C ⊆W is called conical when it has the property that

for all a ∈ C and all 0 ≤ t ∈ R, we have ta ∈ C.

(a) Show that the intersection of a set of conical sets in W is conical.

Solution: Before we begin our solution, we remark that for every convex conical set ∅ 6= S ⊆ Rn we have 0 ∈ S
because since S 6= ∅ we can choose an element a ∈ S, and then since S is conical we have 0 = 0 · a ∈ S. Now
we begin our solution. Let A be a nonempty set. For each α ∈ A, let ∅ 6= Sα ⊆ Rn be a conical set in Rn.
Let S =

⋂
α∈A Sα. Note that 0 ∈ S (so that S 6= ∅) since 0 ∈ Sα for all α ∈ A. Let a ∈ S and let 0 ≤ t ∈ R.

Then a ∈ Sα for every α, and so ta ∈ Sα for every α (since Sα is conical and t ≥ 0), and so ta ∈ S. Thus S is
conical.

(b) For a nonempty set ∅ 6= S ⊆W we define the convex cone of S, denoted by Cone(S), to be the smallest
convex conical subset of W which contains S, or equivalently the intersection of all convex conical sets in W
which contain S. Show that

Cone(S) =
{ n∑
i=0

tiai

∣∣∣n ∈ N, ai ∈ S, 0 ≤ ti ∈ R
}
.

Solution: Let T be the set on the right. Note that S ⊆ T because when m = 0, a0 ∈ S and s0 = 1 we have
m∑
i=0

siai = a0. Note that T is conical because given 0 ≤ t ∈ R and a ∈ T , say a =
m∑
i=0

siai where m ∈ N,

ai ∈ S and 0 ≤ si ∈ R, we have ta =
m∑
i=0

(tsi)ai and 0 ≤ tsi ∈ R. We claim that T is convex. Let a, b ∈ T , say

a =
m∑
i=0

siai and b =
m∑
i=0

tiai where m ∈ N, ai ∈ S and 0 ≤ si, ti ∈ R. Let x ∈ [a, b], say x = a+ r(b− a) with

0 ≤ r ≤ 1. Then x =
∑
siai + r

(∑
tiai−

∑
siai

)
=
∑
riai where ri = si + r(ti− si). Since si ≥ 0 and ti ≥ 0

and ri ∈ [si, ti], we have ri ≥ 0, and hence x =
∑
riai ∈ T . Thus T is convex, as claimed. Since S ⊆ T and

T is convex and conical, we have Cone(S) ⊆ T , by the definition of Cone(S).

Let C ⊆ Rn be any convex conical set in Rn which contains S. Let x ∈ T , say x =
m∑
i=0

siai where m ∈ N,

ai ∈ S and 0 ≤ si ∈ R. If x = 0 then we have x ∈ C by our preliminary remark from Part (a). Suppose that
x 6= 0. Then some si > 0 and so

∑
si > 0. Let s =

∑
si. Note that 1

s x =
∑ si

s ai and each si
s ≥ 0 with∑ si

s = 1, and so we have 1
s x ∈ [S]. Since C is convex and S ⊆ C we have [S] ⊆ C and so 1

s x ∈ C. Since C
is conical, 1

s x ∈ C and s ≥ 0, we have x = s · 1s c ∈ C. Thus T ⊆ C. Since T ⊆ C for every convex conical set
C ⊆ Rn with S ⊆ C, it follows, from the definition of the convex cone of S, that T ⊆ Cone(S).



4: Let V and W be vector spaces over a field F in which 2 6= 0. Here is an alternate definition for an affine space
in V . Let us say that a nonempty set ∅ 6= P ⊆ V is affine in V when sx+ ty ∈ P for all x, y ∈ P and for all
s, t ∈ F with s+ t = 1. Also, let us say that a map A : V →W is affine when

A(sx+ ty) = sA(x) + t A(y) for all x, y ∈ V and s, t ∈ F with s+ t = 1.

(a) For ∅ 6= P ⊆ V , show that P is affine if and only if P = a+U for some a ∈ V and some subspace U ⊆ V .

Solution: Suppose first that P is affine. Choose a point a ∈ P and let U = P − a = {x − a|x ∈ P} so
that we have P = a + U . We claim that U is a subspace of V . Note that 0 = a − a ∈ U . Let u ∈ U ,
say u = x − a with x ∈ P , and let t ∈ F . Then we have tu + a = t(x − a) + a = tx + (1 − t)a which lies
in P since x ∈ P and a ∈ P and P is affine. Since u + a ∈ P we have u ∈ P − a = U , so U is closed
under multiplication by a scalar. Now let u, v ∈ U , say u = x − a and v − y − b with x, y ∈ P . Note that
u + v + a = (x − a) + (y − a) + a = x + y − a = 2 · x+y2 − 1 · a. Since x ∈ P and y ∈ P and P is affine, we

have x+y
2 ∈ P . Since x+y

2 ∈ P and a ∈ P and P is affine, we have u + v + a = 2 · x+y2 − 1 · a ∈ P . Since
u+ v + a ∈ P we have u+ v ∈ P − a = U , so U is closed under addition. This completes the proof that U is
a vector space, as claimed.

Conversely, suppose that P = a+ U where a ∈ P and U ⊆ V is a subspace. Let x, y ∈ P , say x = a+ u
and y = a + v with u, v ∈ U , and let s, t ∈ F with s + t = 1. Then we have sx + ty = s(a + u) + t(a + v) =
(s+ t)a+ (su+ tv) = a+ (su+ tv), which lies in a+ U since su+ tv ∈ U . Thus P is affine.

(b) Show that the affine maps A : V → W are the maps of the form A(x) = a + L(x) for some point a ∈ W
and some linear map L : V →W .

Solution: Suppose that A : V → W is affine. Let a = A(0) and define L : V → W by L(x) = A(x)− A(0) so
that we have A(x) = a+ L(x) for all x ∈ V . We claim that L is linear. Let u, v ∈ V and let t ∈ F . Then

L(u) + L(v) = A(u)−A(0) +A(v)−A(0) =
(

2
(
1
2A(u) + 1

2A(v)
)
−A(0)

)
−A(0)

=
(

2 ·A
(
1
2u+ 1

2v
)
− 1 ·A(0)

)
−A(0) = A

(
2 ·
(
1
2u+ 1

2v
)
− 1 · 0

)
−A(0)

= A(u+ v)−A(0) = L(u+ v)

and
t L(u) = t

(
A(u)−A(0)

)
=
(
t A(u) + (1− t)A(0)

)
−A(0) = A

(
t · u+ (1− t) · 0

)
−A(0)

= A(tu)−A(0) = L(u)

and so the map L is linear, as claimed.
Conversely, suppose that L : V → W is linear, let a ∈ W and define A : V → W by A(x) = a + L(x).

Then for x, y ∈ V and s, t ∈ R with s+ t = 1, we have

sA(x) + tA(y) = s
(
a+ L(x)

)
+ t
(
a+ L(y)

)
= (s+ t)a+ sL(x) + tL(y) = a+ L(sx+ ty) = A(sx+ ty)

and so A is affine.

(c) Show that when F = R, if A : V →W is affine and C ⊆ V is convex, then the image A(C) is convex.

Solution: Let A : V → W be affine. Let C ⊆ V be convex. Let u, v ∈ A(C) =
{
A(x)

∣∣x ∈ C}, say u = A(a)
and v = A(b) where a, b ∈ C. Let y ∈ [u, v], say y = su+ tv where 0 ≤ s, t ∈ R with s+ t = 1. Let x = sa+ tb.
Since 0 ≤ s, t and s+ t = 1, we have x ∈ [a, b]. Since a, b ∈ C and x ∈ [a, b] and C is convex, we have x ∈ C.
Since A is affine and s + t = 1, we have A(x) = A(sa+ tb) = sA(a) + tA(b) = su + tv = y and so y ∈ A(C).
Thus [u, v] ⊆ A(C), and so A(C) is convex.



5: (a) Let ∅ 6= S ⊆ Rn and let x ∈ [S]. Show that x =
m∑
i=0

tiai for some m ∈ N with m ≤ n, some ai ∈ S, and

some 0 ≤ ti ∈ R with
∑
ti = 1.

Solution: Write x in the form x =
m∑
i=0

siai where m ∈ N, ai ∈ S and 0 ≤ si ∈ R with
∑
si = 1, with the

value of m ∈ N chosen to be as small as possible. Note that the points ai must be distinct, since if we had
aj = ak with j 6= k then we could replace the two terms sjaj + skak in the sum

∑
siai by the single term

(sj + sk)ak. Suppose, for a contradiction, that m > n. Note that, since m > n and the ai are distinct, the set
{a0, a1, · · · , am} is affinely dependent (because the set of m distinct vectors {a1 − a0, a2 − a0, · · · , am − a0} is

linearly dependent). Choose coefficients ti, not all zero, so that
m∑
i=0

tiai = 0 and
m∑
i=0

ti = 0. Note that at least

one the coefficients ti is positive. Choose an index k so that tk > 0 and sk
tk

= min
{
si
ti

∣∣ti > 0
}

, and let r = sk
tk

.
Then we have

x =
m∑
i=0

siai − r · 0 =
m∑
i=0

siai − r
m∑
i=0

tiai =
m∑
i=0

riai

where ri = si − r ti. By our choice of k we have ri ≥ 0 for all i
(
indeed if ti ≤ 0 then ri = si − sk

tk
ti ≥ si ≥ 0

and if ti > 0 then sk
tk
≤ si

ti
so ri = si − sk

tk
ti ≥ si − si

ti
ti = 0

)
and we have rk = sk − sk

tk
tk = 0. Also note that∑

ri =
∑
si − r

∑
ti = 1 − r · 0 = 1. Thus we have x =

m∑
i=0

riai =
∑
i 6=k

riai with each ri ≥ 0 and
∑
i 6=k

ri = 1,

contradicting the minimality of m.

(b) Let S ⊆ Rn with |S| ≥ n + 2. Show that there exist disjoint, nonempty subsets A,B ⊆ S such that
[A] ∩ [B] 6= ∅.
Solution: Choose n+ 2 distinct points a0, a1, · · · , an+1 ∈ S. We claim that there exist non-empty disjoint sets
of indices I, J ⊆ {0, 1, 2, · · · , n+1} such that

[
{ai
∣∣i ∈ I}]∩[{aj∣∣j ∈ J}] 6= ∅, and so we can take A = {ai|i ∈ I}

and B = {aj |j ∈ J}. Since {a0, a1, · · · , an+1} is affinely dependent, we can choose coefficients ti, not all zero,

so that
n+1∑
i=0

tiai = 0 and
n+1∑
i=0

ti = 0. Let I = {i|ti > 0} and let J = {j|tj < 0}. Note that I and J are both

nonempty since the coefficients ti are not all zero and
∑
ti = 0 so that at least one coefficient is positive and

at least one is negative. For each j ∈ J , let sj = −tj . Since
n+1∑
i=0

ti = 0 we have

0 =
∑
i∈I

ti +
∑
j∈J

tj =
∑
i∈I

ti −
∑
j∈J

sj .

so we have
∑
i∈I

ti =
∑
j∈J

sj . Let r =
∑
i∈I

ti =
∑
j∈J

sj . Note that r > 0 and we have
∑
i∈I

ti
r = 1 and

∑
j∈J

sj
r = 1.

Since

0 =
n+1∑
i=0

ti
r ai =

∑
i∈I

ti
r ai −

∑
j∈J

si
r aj

we have
∑
i∈I

ti
r ai =

∑
j∈J

si
r aj . Let x =

∑
i∈I

ti
r ai =

∑
j∈J

si
r aj . Since x =

∑
i∈I

ti
r ai with each ti

r > 0 and
∑
i∈I

ti
r = 1,

we have x ∈
[
{ai|i ∈ I}

]
. Since x =

∑
j∈J

sj
r aj with each

sj
r > 0 and

∑
j∈J

sj
r = 1, we have x ∈

[
{aj |j ∈ J}

]
.

Thus
[
{ai
∣∣i ∈ I}] ∩ [{aj∣∣j ∈ J}] 6= ∅.



6: For x, y ∈ Rn, write x ≤ y when xi ≤ yi for all i. Let P =
{
x ∈ R4

∣∣Ax = a and Bx ≤ b
}

where

a =

(
3
4

)
, b =


5
5
4
4

 , A =

(
1 2 1 1
2 3 0 1

)
, B =


1 1 0 1
0 1 −1 3
1 2 0 −1
2 1 −1 −2

 .

Find a set of distinct points a0, a1, a2, a3 ∈ R4 such that P = [a0, a1, a2, a3].

Solution: First we solve Ax = a. We have(
A
∣∣a) =

(
1 2 1 1
2 3 0 1

∣∣∣∣ 3
4

)
∼
(

1 2 1 1
0 1 2 1

∣∣∣∣ 3
2

)
∼
(

1 0 −3 −1
0 1 2 1

∣∣∣∣−1
2

)
.

Thus

Ax = a ⇐⇒ x =


−1

2
0
0

+ t1


3
−2

1
0

+ t2


1
−1

0
1

 = p+ t1u1 + t2u2

for some t1, t2 ∈ R, where p = (−1, 2, 0, 0)T , u1 = (3,−2, 1, 0)T and u2 = (1,−1, 0, 1)T , and then we have

Bx ≤ b ⇐⇒


1 1 0 1
0 1 −1 3
1 2 0 −1
2 1 −1 −2




−1

2
0
0

+ t1


3
−2

1
0

+ t2


1
−1

0
1


 ≤


5
5
4
4



⇐⇒


1
2
3
0

+ t1


1
−3
−1

3

+ t2


1
2
−2
−1

 ≤


5
5
4
4


⇐⇒ t1 + t2 ≤ 4 , −3t1 + 2t2 ≤ 3 , −t1 − 2t2 ≤ 1 and 3t1 − t2 ≤ 4.

The set of solutions (t1, t2) is shown below. The lines t1+t2 = 4, −3t1+2t2 = 3, −t1−2t2 = 1 and 3t1−t2 = 4
are shown in grey and the solution set is outlined in blue.

The vertices lie at (t1, t2) = (−1, 0), (1,−1), (2, 2), (1, 3) which correspond to the points

x = p+ t1u1 + t2u2 =


−4

4
−1

0

 ,


1
1
1
−1

 ,


7
−4

2
2

 ,


5
−3

1
3

 .

These 4 points are the required vertices a0, a1, a2, a3 for which S = [a0, a1, a2, a3].

We remark that the above solution is not rigorous as it makes use of a picture. To make it rigorous
there are several things that should be proven. Indeed, letting b0 = (−1, 0)T , b1 = (1,−1)T , b2 = (2, 2)T and
b3 = (1, 3)T , and letting T =

{
t ∈ R2

∣∣t1 + t2 ≤ 4,−3t1 + 2t2 ≤ 3,−t1 − 2t2 ≤ 1, 3t1 − t2 ≤ 4
}

, one needs to
show that T = [b0, b1, b2, b3] and that the affine map F (t) = p+ t1u1 + t2u2 sends the convex hull [b0, b1, b2, b3]
to the convex hull [a0, a1, a2, a3]. We do this on the next page.



First we show that the affine map F : R2 → R4 given by F (t) = p + t1u1 + t2u2 sendss [b0, b1, b2, b3] to
[a0, a1, a2, a3]. This follows from the following lemma (which some students may have proven as part of their
solution to Problem 3(c)).

Lemma: Let V and W be vector spaces over R. Let F : V → W be an affine map. Let b0, · · · , bl ∈ V . Then
F maps [b0, · · · , bl] to [a0, · · · , al] where ai = F (bi).

Proof: We claim that for n ∈ N, bi ∈ V and 0 ≤ si ∈ R with
n∑
i=0

si = 1 we have F
( n∑
i=0

sibi
)

=
n∑
i=0

siF (bi).

We prove this claim using induction. When n = 0 the claim holds since F
( 0∑
i=0

sibi
)

= F (1 · b0) = 1 · F (b0).

Suppose the claim holds for some fixed n ∈ N. Let bi ∈ V and 0 ≤ si ∈ R with
n+1∑
i=0

si = 1. If sn+1 = 0 then

we have F
( n+1∑
i=0

sibi
)

= F
( n∑
i=0

sibi
)

=
n∑
i=0

siF
(
bi
)

=
n+1∑
i=0

siF
(
bi
)
. Suppose that sn+1 6= 0. Then

F
( n+1∑
i=0

sibi
)

= F
( n∑
i=0

sibi + sn+1bn+1

)
= F

(
(1− sn+1)

n∑
i=0

si
1−sn+1

bi + sn+1bn+1

)
= (1− sn+1)F

( n∑
i=0

si
1−sn+1

bi
)

+ sn+1F (bn+1) , since F is affine,

= (1− sn+1)
n∑
i=0

si
1−sn+1

F (bi) + sn+1F (bn+1) , by the induction hypothesis,

=
n+1∑
i=0

siF (bi).

By induction, the claim holds for all n ∈ N, and the lemma follows from the claim.

Next we show that [b0, b1, b2, b3] ⊆ T . It is easy to check that bi ∈ T for all i (simply check that each bi
satisfies the inequalities), so it suffices to show that T is convex. This follows from the following lemma.

Lemma: Let A ∈Ml×n(R) and let b ∈ Rl. Then the set T =
{
x ∈ Rn

∣∣Ax ≤ b} is convex.

Proof: Let u, v ∈ T so we have Au ≤ b and Av ≤ b, which means that (Au)i ≤ bi and (Av)i ≤ bi for all indices
i. Let x ∈ [u, v], say x = su+ tv with 0 ≤ s, t and s+ t = 1. Then Ax = A(su+ tv) = sAu+ tAv, so the ith

entry of Ax is
(Ax)i = s(Au)i + t(Av)i ∈

[
(Au)i, (Av)i

]
.

Since (Au)i ≤ bi and (Av)i ≤ bi and (Ax)i ∈
[
(Au)i, (Av)i

]
, it follows that (Ax)i ≤ bi. Since (Ax)i ≤ bi for

all i, we have Ax ≤ b so that x ∈ T . Thus T is convex.

It remains to show that T ⊆ [b0, b1, b2, b3]. We sketch a proof. Let t ∈ T , so we have t1 + t2 ≤ 4,
−3t1 + 2t2 ≤ 3, −t1 − 2t2 ≤ 1 and 3t1 − t2 ≤ 4. We consider the two cases that t1 ≤ 1 and t1 ≥ 1. Suppose

first that t1 ≤ 1. From the picture, it appears that t ∈ [b0, b1, b3], so we solve the system
3∑
i=0

sibi = t,
3∑
i=0

si = 1

and s2 = 0 for s ∈ R4 to get s0 = 1
2 −

1
2 t1, s1 = 3

8 + 3
8 t1 −

1
4 t2, s2 = 0 and s3 = 1

8 + 1
8 t1 + 1

4 t2. We note that
each si ≥ 0 (indeed s0 = 1

2 −
1
2 t1 ≥ 0 since t1 ≤ 1, s1 = 3

8 −
1
8 (−3t1 + 2t2) ≥ 0 since −3t1 + 2t2 ≤ 3 and

s3 = 1
8−

1
8 (−t1−2t2) ≥ 0 since −t1−2t2 ≤ 1) and also that

∑
si = 1 and so we have t =

∑
sibi ∈ [b0, b1, b2, b3].

Next we suppose that t1 ≥ 1. From the picture, it appears that t ∈ [b1, b2, b3], so we solve
3∑
i=0

sibi = t,
3∑
i=0

si = 1

and s0 = 0 for s ∈ R4 to get s0 = 0, s1 = 1 − 1
4 t1 −

1
4 t2, s2 = −1 + t1 and s3 = 1 − 3

4 t1 + 1
4 t2. We note

that each si ≥ 0 (indeed s1 = 1 − 1
4 (t1 + t2) ≥ 0 since t1 + t2 ≤ 4, s2 = −1 + t1 ≥ 0 since t1 ≥ 1 and

s3 = 1− 1
4 (3t1 − t2) ≥ 0 since 3t1 − t2 ≤ 4) and also that

∑
si = 1 and so we have t =

∑
sibi ∈ [b0, b1, b2, b3].

In either case we find that t ∈ [b0, b1, b2, b3], so we have T ⊆ [b0, b1, b2, b3].


