MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 12

1: Find the number of similarity classes of 8 x 8 complex matrices whose distinct eigenvalues are 1 and 2.

Solution: Recall that two 8 x 8 matrices are similar if and only if they have the same Jordan form (up to the
order of the Jordan blocks). For an 8 x 8 matrix A with eigenvalues A\; = 1 and Ay = 2, let ky = dim(K;) and
ko = dim(K5). Note that k1 + ko = 8 so the only possibilities for the pair (k1, ko) are

(k17 k2) = (17 7)7 (27 6)7 (37 5)’ (47 4)7 (5’ 3)’ (67 2)’ (7’ 1) °

For each possible value of k = ky or k3, we list all the possibilities for the sizes of the Jordan blocks for A = Ay

or Ag; here the ordered I-tuple (mq,---,m;) indicates [ blocks of sizes mq,---, m; with > m; = k:
k possible block sizes
1 (1)
2 (1,1),(2)
3 (1,1,1),(2,1),(3)
4 (1,1,1,1),(2,1,1),(2,2),(3,1), (4)
5 (]‘7 1’ ]‘7171)7 (2’1’171)7 (2727 1)7 (3’1’1)7( ) )7(47 1)’ (5)
6 (1,1,1,1,1,1),(2,1,1,1,1),(2,2,1,1),(2,2,2),(3,1,1,1),(3,2,1), (3, 3), (4,1, 1), (4,2), (5, 1), (6)
7 (1,1,1,1,1,1,1),(2,1,1,1,1, 1), (2,2,1,1,1) (2,2,2,1),(3,1,1,1,1),(3,2,1,1),(3,2,2),(3,3,1),
(4,1,1,1),(4,2,1),(4,3),(5,1,1),(5,2), (6,1), (7)

Thus for k = 1,2,---,7, we obtain the following number p(k) of possible block sizes (we remark that p(k) is
equal to the number of partitions of k into positive integers):

k12345 6 7
pk) 1 2 3 5 7 11 15

We list the number of possible Jordan forms, that is the number of similarity classes, for each pair (k1, k2):

(k1 k2)  p(k1)p(k2)

(1,7) 1-15=15
(2,6) 2-11=22
(3,5) 3.-7=21
(4,4) 5-5=25
(5,3) 7-3=21
(6,2) 11-2=22
(7,1) 15-1=15
Total 141
Thus there are 141 similarity classes.
2 -7 1 7
2: Let A= 8 718 722 771 . Find an invertible matrix P such that P~'AP is in Jordan form.
3-8 3 7
Solution: The characteristic polynomial of A is
2—A -7 1 7 2—A -7 1 7
3 —8—A 2 7 3 —8—A 2 7
A=A = 0 1 —2-X 1| | o0 1 —2-X -1
3 -8 3 7T—A 0 A 1 -2
RS U R SO
=1 0 1 9 0 =(-1-X)] 0 1 —2-2A
0 A 1 0 0 A !
1 —2-A 9 3
=(-1-X)(2-) A\ 1 =A+DA=2)1+22+ X )= A+ 1)°(A+2)

so the eigenvalues are A\; = —1 and Ay = 2 with algebraic multiplicities dim(K_;) = 3 and dim(K3) =



When A = A\; = —1 we have

3 -7 1 7 3 -7 1 7 3 -7 1 7 1 0 0 O
3 -7 2 7 0 0 1 O 0 1 -1 -1 0 1 0-1
A=M=A+T=1g 1 1 1]~|lo1-1-1"|oo 1 0] {001 0
3-8 3 8 0-1 2 1 0 0 1 O 0 0 0 O
Since rank(A + I) = 3, there is one 3 x 3 Jordan block for Ay = —1, and since dim(K3) = 1, there is one 1 x 1

block for A2 = 2, so the Jordan form of A is

1 1 0
IR (RS R |
PAP=J=| o o |

2

Let us find a cycle C = {uj,us,u3} which is a basis for K_;. We need u; € Range(A + I)> N E_;. Since
E_1 = Null(A4 + I), which is 1-dimensional, we can choose any 0 # u; € E_;. We choose u; = (0,1,0,1)7.
We then need us € Range(A —\I)! with (A+I)us = uy and ug with (A+I)ug = ug, so we solve (A+ 1)z = y.

3-=7 1 7 |wn 3 -7 1 7 Y1

37 2 Ty 0 1 —1 —1 s

(A+Ily) =14 1 5 Ys 0 0 1 0| —-y+wy

3-8 3 8 |lwy 0-1 2 11| —y1+wa
1 0-2 0 Ty + Zys 1 00 0|3y +2y+ Iy

N 0 1-1-1 Y3 N 01 0-1 =1 +y2+ Y3
00 1 0 —y1 + Y2 001 0 —y1 + Y2
00 1 01 -yi+ys+ua 000 0 —Y2+ys+ya

Thus (A+I)x = y has a solution (so y € Range(A -+ 1)) if and only if —ys +y3 +y4 = 0, and then the solution

is
T
v=(=3y+2y2+ Sys, —y1+y2+ys, —y1 +y2,0) +¢(0,1,0,1)T
Take y = uy to get ug = x = (2,1,1,0)7 +¢(0,1,0,1)T = (2,1 + ¢,1,#)T for some value of t. Taking
y=uy = (2,1+t1,t)7 we find that —ys + y3 + y4 = 0 so that us € Range(A — \I) for any choice of t. We
choose t = 0 so that uy = (2,1,1,0)7. Taking y = us = (2,1,1,0)T we get us = 2 = (1,0, —1,0)7.
When A = Ay = 2 we have

o -7 1 7 3 -8 3 5 3 0 —-29 -3 1 0 0 -1
3 -10 2 7 0 1 —4 -1 0 1 —4 -1 01 0-1
A-M=A=20=|, 4 3 )~lo-7 1 7|~ |o 0-27 0 001 0
3 -8 3 5 0 2 1 =2 00 9 0 0 0 0 O
We need uy € Ey = Null(A — 2I), and we can take uy = (1,1,0,1)7. Thus we can take
0 2 1 1
1 1 0 1
P:(ulau27u37u4 O 1 1 0
1 0 0 1



1 1 0
0 1 1
3:Let A=]10 0 1
-1 1
0 -1

(a) Find A™, where n is a positive integer.

0 1 0

1

Solution: We have A = <J3 g2 > We can write J§ = I + N where I = I3x3and N= | 0 0 1 |. Note
-1 0 0 0

0 0 1
that N>= 10 0 0 | and N¥ =0 for £ > 3. By the Binomial Theorem (which holds, and can be proven
0 0 O
as usual, for (X +Y)™ with X, Y € M, «xm, as long as X and Y commute) we have
1 n n(n2—1)
()" =I+N)"=1"+ () I IN+ ()" 2N2 4o =T 4N+ 2 UN2 = [0 1 g
0 0 1

Similarly, we can write J2; = —I + M where I = Iyxo and M = (0 1), we note that M* = 0 for k > 2,

0 0
then the Binomial Theorem gives

(72" = (11 o= (G0 DR

0 (="
Thus
1 n n(n2+1)
n 0 1
e (D0 n
—1 (_1)n (_1)n—1n
0 (="
(b) Find e =T+ A+ L A2+ 143 4.
[e.e] (oo}
Solution: Recall that e* = > % x™ for all z € R. Taking the derivative gives e* = > I 2"~ ! then taking it
n=0 n=0
again gives e® = > %x”_z. Setting z =1 givese= > Hande= Y Zande= ) % Setting
n=0 n=0 n=0 n=0
r=—-1lgvese =3 % and e ! = Y (_l)nﬂ Thus we have
n=0 n=0
Lomn sy (1omoey (ShTa TN g
3 n
et=d SN =2l =] 0 wooXam | =0 e e
n=0 n=0 0 0 1 0 0 ) % 0 0
and
o oo _1\n _1\yn—1
le B i 2 \n l (_1)n (_1)n—1n B Z ( nll) Z ( l)n! n B 6_1 6_1
© - Zo n! (24)" = Z;) n! 0 (=" N 0 et o el )
Thus we have L
e e e
N 73 0 e e
et = (6 })21> =0 0 e
0 e el el



4: Let A € Myyn(C).

(a) Show that A is similar to AT
Solution: We have rank(A — AI)* = rank(AT — AI)* for all k € ZT, and so A and AThave the same Jordan

form.

(b) Show that if A is invertible then there is a matrix B € M, »,(C) such that A = B2.

Solution: Let A be invertible. Note that the eigenvalues of A are all nonzero. Choose an invertible matrix P

so that P~YAP = J with J in Jordan form. Consider one of the Jordan blocks J{* of .J. Write
JV=AI+N)

where N is the m X m matrix whose above-diagonal entries are N; ;11 = % and whose other entries are all

zero (in the case that m = 1, N = (0), the 1 x 1 zero matrix). Note that N* has entries N;;yx = 1 and

other entries zero, and in particular N* = 0 for all k > m. By the Binomial Theorem, for x € R with |z| < 1
we have

(1 —|—aL‘)1/2 = ioj (122) xk.

k=0
It follows that

(S (0)e) =1eos 3 o

k=0 i=m-+1
for some ¢; € R Since N*¥ = 0 for k > m we have
m 2 2m .
(X ()W) =1+N+ ¥ aN=I+N.
k=0 k=m+1
We choose i € C with p? = \ and then let

S =p ];2::0 (122) NG

so that (SZ“)2 = AI+ N) = J*. We do the same for each Jordan block so that for the block-diagonal matrix
J = diag(Jﬁl, cee J;\’l”) we obtain the block diagonal matrix S = diag (Sml AR Sml) with §2 = J. Finally,

we note that A= PJP~! = PS?P~1 = PSP~1PSP~! = (PSP~1)% so we take B = PSP~!.

(c) Show that for n > 2, there is no matrix B € M,,»,(C) such that Ji = B2.

Solution: Suppose, for a contradiction, that JJ = B2. Choose an invertible matrix P so that P"!BP = K
with K in Jordan form. Note that the eigenvalues of B (hence of K) are all zero (indeed if x is an eigenvalue
of B and w is an eigenvector for x then B?w = Brw = k*w and so x? is an eigenvalue for B2 = JJ). Let b;
be the number of Jordan blocks in K of size at least . Then

rank(B?) = rank(K?) = rank(K — 0I)? = n — by — by.
If by = 1 then K only has one jordan block, and this block is of size n > 2 so that by = 1, and so we have

rank(B%) = n — by — by = n — 2. If b; > 2 then rank(B?) =n — by — by < n —b; < n — 2. In either case, we
have rank(B?) < n — 1 = rank(J}), giving the desired contradiction.



