

1: Find the number of similarity classes of 8×8 complex matrices whose distinct eigenvalues are 1 and 2.

Solution: Recall that two 8×8 matrices are similar if and only if they have the same Jordan form (up to the order of the Jordan blocks). For an 8×8 matrix A with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$, let $k_1 = \dim(K_1)$ and $k_2 = \dim(K_2)$. Note that $k_1 + k_2 = 8$ so the only possibilities for the pair (k_1, k_2) are

$$(k_1, k_2) = (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1).$$

For each possible value of $k = k_1$ or k_2 , we list all the possibilities for the sizes of the Jordan blocks for $\lambda = \lambda_1$ or λ_2 ; here the ordered l -tuple (m_1, \dots, m_l) indicates l blocks of sizes m_1, \dots, m_l with $\sum m_i = k$:

k	possible block sizes
1	(1)
2	(1, 1), (2)
3	(1, 1, 1), (2, 1), (3)
4	(1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4)
5	(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2), (4, 1), (5)
6	(1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1), (2, 2, 1, 1), (2, 2, 2), (3, 1, 1, 1), (3, 2, 1), (3, 3), (4, 1, 1), (4, 2), (5, 1), (6)
7	(1, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1), (2, 2, 1, 1, 1), (2, 2, 2, 1), (3, 1, 1, 1, 1), (3, 2, 1, 1), (3, 2, 2), (3, 3, 1), (4, 1, 1, 1), (4, 2, 1), (4, 3), (5, 1, 1), (5, 2), (6, 1), (7)

Thus for $k = 1, 2, \dots, 7$, we obtain the following number $p(k)$ of possible block sizes (we remark that $p(k)$ is equal to the number of partitions of k into positive integers):

k	1	2	3	4	5	6	7
$p(k)$	1	2	3	5	7	11	15

We list the number of possible Jordan forms, that is the number of similarity classes, for each pair (k_1, k_2) :

(k_1, k_2)	$p(k_1)p(k_2)$
(1, 7)	$1 \cdot 15 = 15$
(2, 6)	$2 \cdot 11 = 22$
(3, 5)	$3 \cdot 7 = 21$
(4, 4)	$5 \cdot 5 = 25$
(5, 3)	$7 \cdot 3 = 21$
(6, 2)	$11 \cdot 2 = 22$
(7, 1)	$15 \cdot 1 = 15$
Total	141

Thus there are 141 similarity classes.

2: Let $A = \begin{pmatrix} 2 & -7 & 1 & 7 \\ 3 & -8 & 2 & 7 \\ 0 & 1 & -2 & -1 \\ 3 & -8 & 3 & 7 \end{pmatrix}$. Find an invertible matrix P such that $P^{-1}AP$ is in Jordan form.

Solution: The characteristic polynomial of A is

$$\begin{aligned} |A - \lambda I| &= \begin{vmatrix} 2 - \lambda & -7 & 1 & 7 \\ 3 & -8 - \lambda & 2 & 7 \\ 0 & 1 & -2 - \lambda & -1 \\ 3 & -8 & 3 & 7 - \lambda \end{vmatrix} = \begin{vmatrix} 2 - \lambda & -7 & 1 & 7 \\ 3 & -8 - \lambda & 2 & 7 \\ 0 & 1 & -2 - \lambda & -1 \\ 0 & \lambda & 1 & -\lambda \end{vmatrix} \\ &= \begin{vmatrix} 2 - \lambda & -7 & 1 & 0 \\ 3 & -8 - \lambda & 2 & -1 - \lambda \\ 0 & 1 & -2 - \lambda & 0 \\ 0 & \lambda & 1 & 0 \end{vmatrix} = (-1 - \lambda) \begin{vmatrix} 2 - \lambda & -7 & 1 \\ 0 & 1 & -2 - \lambda \\ 0 & \lambda & 1 \end{vmatrix} \\ &= (-1 - \lambda)(2 - \lambda) \begin{vmatrix} 1 & -2 - \lambda \\ \lambda & 1 \end{vmatrix} = (\lambda + 1)(\lambda - 2)(1 + 2\lambda + \lambda^2) = (\lambda + 1)^3(\lambda + 2) \end{aligned}$$

so the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 2$ with algebraic multiplicities $\dim(K_{-1}) = 3$ and $\dim(K_2) = 1$.

When $\lambda = \lambda_1 = -1$ we have

$$A - \lambda I = A + I = \begin{pmatrix} 3 & -7 & 1 & 7 \\ 3 & -7 & 2 & 7 \\ 0 & 1 & -1 & -1 \\ 3 & -8 & 3 & 8 \end{pmatrix} \sim \begin{pmatrix} 3 & -7 & 1 & 7 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & -1 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 3 & -7 & 1 & 7 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Since $\text{rank}(A + I) = 3$, there is one 3×3 Jordan block for $\lambda_1 = -1$, and since $\dim(K_2) = 1$, there is one 1×1 block for $\lambda_2 = 2$, so the Jordan form of A is

$$P^{-1}AP = J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \\ & & 2 \end{pmatrix}.$$

Let us find a cycle $\mathcal{C} = \{u_1, u_2, u_3\}$ which is a basis for K_{-1} . We need $u_1 \in \text{Range}(A + I)^2 \cap E_{-1}$. Since $E_{-1} = \text{Null}(A + I)$, which is 1-dimensional, we can choose any $0 \neq u_1 \in E_{-1}$. We choose $u_1 = (0, 1, 0, 1)^T$. We then need $u_2 \in \text{Range}(A - \lambda I)^1$ with $(A + I)u_2 = u_1$ and u_3 with $(A + I)u_3 = u_2$, so we solve $(A + I)x = y$.

$$\begin{aligned} (A + I|y) &= \left(\begin{array}{cccc|c} 3 & -7 & 1 & 7 & y_1 \\ 3 & -7 & 2 & 7 & y_2 \\ 0 & 1 & -1 & -1 & y_3 \\ 3 & -8 & 3 & 8 & y_4 \end{array} \right) \sim \left(\begin{array}{cccc|c} 3 & -7 & 1 & 7 & y_1 \\ 0 & 1 & -1 & -1 & y_3 \\ 0 & 0 & 1 & 0 & -y_1 + y_2 \\ 0 & -1 & 2 & 1 & -y_1 + y_4 \end{array} \right) \\ &\sim \left(\begin{array}{cccc|c} 1 & 0 & -2 & 0 & \frac{1}{3}y_1 + \frac{7}{3}y_3 \\ 0 & 1 & -1 & -1 & y_3 \\ 0 & 0 & 1 & 0 & -y_1 + y_2 \\ 0 & 0 & 1 & 0 & -y_1 + y_3 + y_4 \end{array} \right) \sim \left(\begin{array}{cccc|c} 1 & 0 & 0 & 0 & -\frac{5}{3}y_1 + 2y_2 + \frac{7}{3}y_3 \\ 0 & 1 & 0 & -1 & -y_1 + y_2 + y_3 \\ 0 & 0 & 1 & 0 & -y_1 + y_2 \\ 0 & 0 & 0 & 0 & -y_2 + y_3 + y_4 \end{array} \right). \end{aligned}$$

Thus $(A + I)x = y$ has a solution (so $y \in \text{Range}(A + I)$) if and only if $-y_2 + y_3 + y_4 = 0$, and then the solution is

$$x = \left(-\frac{5}{3}y_1 + 2y_2 + \frac{7}{3}y_3, -y_1 + y_2 + y_3, -y_1 + y_2, 0 \right)^T + t(0, 1, 0, 1)^T.$$

Take $y = u_1$ to get $u_2 = x = (2, 1, 1, 0)^T + t(0, 1, 0, 1)^T = (2, 1 + t, 1, t)^T$ for some value of t . Taking $y = u_2 = (2, 1 + t, 1, t)^T$ we find that $-y_2 + y_3 + y_4 = 0$ so that $u_2 \in \text{Range}(A - \lambda I)$ for any choice of t . We choose $t = 0$ so that $u_2 = (2, 1, 1, 0)^T$. Taking $y = u_2 = (2, 1, 1, 0)^T$ we get $u_3 = x = (1, 0, -1, 0)^T$.

When $\lambda = \lambda_2 = 2$ we have

$$A - \lambda I = A - 2I = \begin{pmatrix} 0 & -7 & 1 & 7 \\ 3 & -10 & 2 & 7 \\ 0 & 1 & -4 & -1 \\ 3 & -8 & 3 & 5 \end{pmatrix} \sim \begin{pmatrix} 3 & -8 & 3 & 5 \\ 0 & 1 & -4 & -1 \\ 0 & -7 & 1 & 7 \\ 0 & 2 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 3 & 0 & -29 & -3 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & -27 & 0 \\ 0 & 0 & 9 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

We need $u_4 \in E_2 = \text{Null}(A - 2I)$, and we can take $u_4 = (1, 1, 0, 1)^T$. Thus we can take

$$P = (u_1, u_2, u_3, u_4) = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

3: Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ & & -1 & 1 \\ & & 0 & -1 \end{pmatrix}$.

(a) Find A^n , where n is a positive integer.

Solution: We have $A = \begin{pmatrix} J_1^3 & \\ & J_{-1}^2 \end{pmatrix}$. We can write $J_1^3 = I + N$ where $I = I_{3 \times 3}$ and $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Note

that $N^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $N^k = 0$ for $k \geq 3$. By the Binomial Theorem (which holds, and can be proven as usual, for $(X + Y)^n$ with $X, Y \in M_{m \times m}$, as long as X and Y commute) we have

$$(J_1^3)^n = (I + N)^n = I^n + \binom{n}{1} I^{n-1} N + \binom{n}{2} I^{n-2} N^2 + \cdots = I + nN + \frac{n(n-1)}{2} N^2 = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Similarly, we can write $J_{-1}^2 = -I + M$ where $I = I_{2 \times 2}$ and $M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, we note that $M^k = 0$ for $k \geq 2$, then the Binomial Theorem gives

$$(J_{-1}^2)^n = (-1)^n I + (-1)^{n-1} n M = \begin{pmatrix} (-1)^n & (-1)^{n-1} n \\ 0 & (-1)^n \end{pmatrix}.$$

Thus

$$A^n = \begin{pmatrix} (J_1^3)^n & 0 \\ 0 & (J_{-1}^2)^n \end{pmatrix} = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \\ & & (-1)^n & (-1)^{n-1} n \\ & & 0 & (-1)^n \end{pmatrix}$$

(b) Find $e^A = I + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \cdots$.

Solution: Recall that $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$ for all $x \in \mathbb{R}$. Taking the derivative gives $e^x = \sum_{n=0}^{\infty} \frac{n}{n!} x^{n-1}$ then taking it again gives $e^x = \sum_{n=0}^{\infty} \frac{n(n-1)}{n!} x^{n-2}$. Setting $x = 1$ gives $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ and $e = \sum_{n=0}^{\infty} \frac{n}{n!}$ and $e = \sum_{n=0}^{\infty} \frac{n(n-1)}{n!}$. Setting $x = -1$ gives $e^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ and $e^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} n}{n!}$. Thus we have

$$e^{J_1^3} = \sum_{n=0}^{\infty} \frac{1}{n!} (J_1^3)^n = \sum_{n=0}^{\infty} \frac{1}{n!} \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \sum \frac{1}{n!} & \sum \frac{n}{n!} & \sum \frac{n(n-1)}{2n!} \\ 0 & \sum \frac{1}{n!} & \sum \frac{n}{n!} \\ 0 & 0 & \sum \frac{1}{n!} \end{pmatrix} = \begin{pmatrix} e & e & \frac{1}{2}e \\ 0 & e & e \\ 0 & 0 & e \end{pmatrix}$$

and

$$e^{J_{-1}^2} = \sum_{n=0}^{\infty} \frac{1}{n!} (J_{-1}^2)^n = \sum_{n=0}^{\infty} \frac{1}{n!} \begin{pmatrix} (-1)^n & (-1)^{n-1} n \\ 0 & (-1)^n \end{pmatrix} = \begin{pmatrix} \sum \frac{(-1)^n}{n!} & \sum \frac{(-1)^{n-1} n}{n!} \\ 0 & \sum \frac{(-1)^n}{n!} \end{pmatrix} = \begin{pmatrix} e^{-1} & e^{-1} \\ 0 & e^{-1} \end{pmatrix}.$$

Thus we have

$$e^A = \begin{pmatrix} e^{J_1^3} & 0 \\ 0 & e^{J_{-1}^2} \end{pmatrix} = \begin{pmatrix} e & e & \frac{1}{2}e \\ 0 & e & e \\ 0 & 0 & e \\ & & e^{-1} & e^{-1} \\ & & 0 & e^{-1} \end{pmatrix}.$$

4: Let $A \in M_{n \times n}(\mathbb{C})$.

(a) Show that A is similar to A^T .

Solution: We have $\text{rank}(A - \lambda I)^k = \text{rank}(A^T - \lambda I)^k$ for all $k \in \mathbb{Z}^+$, and so A and A^T have the same Jordan form.

(b) Show that if A is invertible then there is a matrix $B \in M_{n \times n}(\mathbb{C})$ such that $A = B^2$.

Solution: Let A be invertible. Note that the eigenvalues of A are all nonzero. Choose an invertible matrix P so that $P^{-1}AP = J$ with J in Jordan form. Consider one of the Jordan blocks J_λ^m of J . Write

$$J_\lambda^m = \lambda(I + N)$$

where N is the $m \times m$ matrix whose above-diagonal entries are $N_{i,i+1} = \frac{1}{\lambda}$ and whose other entries are all zero (in the case that $m = 1$, $N = (0)$, the 1×1 zero matrix). Note that N^k has entries $N_{i,i+k} = \frac{1}{\lambda^k}$ and other entries zero, and in particular $N^k = 0$ for all $k \geq m$. By the Binomial Theorem, for $x \in \mathbb{R}$ with $|x| < 1$ we have

$$(1+x)^{1/2} = \sum_{k=0}^{\infty} \binom{1/2}{k} x^k.$$

It follows that

$$\left(\sum_{k=0}^m \binom{1/2}{k} x^k \right)^2 = 1 + x + \sum_{i=m+1}^{2m} c_i x^i$$

for some $c_i \in \mathbb{R}$. Since $N^k = 0$ for $k > m$ we have

$$\left(\sum_{k=0}^m \binom{1/2}{k} N^k \right)^2 = I + N + \sum_{k=m+1}^{2m} c_i N^i = I + N.$$

We choose $\mu \in \mathbb{C}$ with $\mu^2 = \lambda$ and then let

$$S_\mu^m = \mu \sum_{k=0}^m \binom{1/2}{k} N^k$$

so that $(S_\mu^m)^2 = \lambda(I + N) = J_\lambda^m$. We do the same for each Jordan block so that for the block-diagonal matrix $J = \text{diag}(J_{\lambda_1}^{m_1}, \dots, J_{\lambda_l}^{m_l})$ we obtain the block diagonal matrix $S = \text{diag}(S_{\mu_1}^{m_1}, \dots, S_{\mu_l}^{m_l})$ with $S^2 = J$. Finally, we note that $A = PJP^{-1} = PS^2P^{-1} = PSP^{-1}PSP^{-1} = (PSP^{-1})^2$, so we take $B = PSP^{-1}$.

(c) Show that for $n \geq 2$, there is no matrix $B \in M_{n \times n}(\mathbb{C})$ such that $J_0^n = B^2$.

Solution: Suppose, for a contradiction, that $J_0^n = B^2$. Choose an invertible matrix P so that $P^{-1}BP = K$ with K in Jordan form. Note that the eigenvalues of B (hence of K) are all zero (indeed if κ is an eigenvalue of B and w is an eigenvector for κ then $B^2w = B\kappa w = \kappa^2 w$ and so κ^2 is an eigenvalue for $B^2 = J_0^n$). Let b_i be the number of Jordan blocks in K of size at least i . Then

$$\text{rank}(B^2) = \text{rank}(K^2) = \text{rank}(K - 0I)^2 = n - b_1 - b_2.$$

If $b_1 = 1$ then K only has one Jordan block, and this block is of size $n \geq 2$ so that $b_2 = 1$, and so we have $\text{rank}(B^2) = n - b_1 - b_2 = n - 2$. If $b_1 \geq 2$ then $\text{rank}(B^2) = n - b_1 - b_2 \leq n - b_1 \leq n - 2$. In either case, we have $\text{rank}(B^2) < n - 1 = \text{rank}(J_0^n)$, giving the desired contradiction.