
MATH 245 Linear Algebra 2, Solutions to the Exercises for Chapter 12

1: Find the number of similarity classes of 8× 8 complex matrices whose distinct eigenvalues are 1 and 2.

Solution: Recall that two 8× 8 matrices are similar if and only if they have the same Jordan form (up to the
order of the Jordan blocks). For an 8× 8 matrix A with eigenvalues λ1 = 1 and λ2 = 2, let k1 = dim(K1) and
k2 = dim(K2). Note that k1 + k2 = 8 so the only possibilities for the pair (k1, k2) are

(k1, k2) = (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1) .

For each possible value of k = k1 or k2, we list all the possibilities for the sizes of the Jordan blocks for λ = λ1
or λ2; here the ordered l-tuple (m1, · · · ,ml) indicates l blocks of sizes m1, · · · ,ml with

∑
mi = k:

k possible block sizes

1 (1)
2 (1, 1), (2)
3 (1, 1, 1), (2, 1), (3)
4 (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4)
5 (1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2), (4, 1), (5)
6 (1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1), (2, 2, 1, 1), (2, 2, 2), (3, 1, 1, 1), (3, 2, 1), (3, 3), (4, 1, 1), (4, 2), (5, 1), (6)
7 (1, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1), (2, 2, 1, 1, 1), (2, 2, 2, 1), (3, 1, 1, 1, 1), (3, 2, 1, 1), (3, 2, 2), (3, 3, 1),

(4, 1, 1, 1), (4, 2, 1), (4, 3), (5, 1, 1), (5, 2), (6, 1), (7)

Thus for k = 1, 2, · · · , 7, we obtain the following number p(k) of possible block sizes (we remark that p(k) is
equal to the number of partitions of k into positive integers):

k 1 2 3 4 5 6 7
p(k) 1 2 3 5 7 11 15

We list the number of possible Jordan forms, that is the number of similarity classes, for each pair (k1, k2):

(k1, k2) p(k1)p(k2)

(1, 7) 1 · 15 = 15
(2, 6) 2 · 11 = 22
(3, 5) 3 · 7 = 21
(4, 4) 5 · 5 = 25
(5, 3) 7 · 3 = 21
(6, 2) 11 · 2 = 22
(7, 1) 15 · 1 = 15

Total 141

Thus there are 141 similarity classes.

2: Let A =


2 −7 1 7
3 −8 2 7
0 1 −2 −1
3 −8 3 7

. Find an invertible matrix P such that P−1AP is in Jordan form.

Solution: The characteristic polynomial of A is

∣∣A− λI∣∣ =

∣∣∣∣∣∣∣
2− λ −7 1 7

3 −8− λ 2 7
0 1 −2− λ −1
3 −8 3 7− λ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2− λ −7 1 7

3 −8− λ 2 7
0 1 −2− λ −1
0 λ 1 −λ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2− λ −7 1 0

3 −8− λ 2 −1− λ
0 1 −2− λ 0
0 λ 1 0

∣∣∣∣∣∣∣ = (−1− λ)

∣∣∣∣∣∣
2− λ −7 1

0 1 −2− λ
0 λ 1

∣∣∣∣∣∣
= (−1− λ)(2− λ)

∣∣∣∣ 1 −2− λ
λ 1

∣∣∣∣ = (λ+ 1)(λ− 2)(1 + 2λ+ λ2) = (λ+ 1)3(λ+ 2)

so the eigenvalues are λ1 = −1 and λ2 = 2 with algebraic multiplicities dim(K−1) = 3 and dim(K2) = 1.



When λ = λ1 = −1 we have

A− λI = A+ I =


3 −7 1 7
3 −7 2 7
0 1 −1 −1
3 −8 3 8

 ∼


3 −7 1 7
0 0 1 0
0 1 −1 −1
0 −1 2 1

 ∼


3 −7 1 7
0 1 −1 −1
0 0 1 0
0 0 1 0

 ∼


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 0

 .

Since rank(A+ I) = 3, there is one 3× 3 Jordan block for λ1 = −1, and since dim(K2) = 1, there is one 1× 1
block for λ2 = 2, so the Jordan form of A is

P−1AP = J =


−1 1 0

0 −1 1
0 0 −1

2

 .

Let us find a cycle C = {u1, u2, u3} which is a basis for K−1. We need u1 ∈ Range(A + I)2 ∩ E−1. Since
E−1 = Null(A + I), which is 1-dimensional, we can choose any 0 6= u1 ∈ E−1. We choose u1 = (0, 1, 0, 1)T .
We then need u2 ∈ Range(A−λI)1 with (A+I)u2 = u1 and u3 with (A+I)u3 = u2, so we solve (A+I)x = y.

(
A+ I

∣∣y) =


3 −7 1 7
3 −7 2 7
0 1 −1 −1
3 −8 3 8

∣∣∣∣∣∣∣
y1
y2
y3
y4

 ∼


3 −7 1 7
0 1 −1 −1
0 0 1 0
0 −1 2 1

∣∣∣∣∣∣∣
y1
y3

−y1 + y2
−y1 + y4



∼


1 0 −2 0
0 1 −1 −1
0 0 1 0
0 0 1 0

∣∣∣∣∣∣∣
1
3y1 + 7

3y3
y3

−y1 + y2
−y1 + y3 + y4

 ∼


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 0

∣∣∣∣∣∣∣
− 5

3y1 + 2y2 + 7
3y3

−y1 + y2 + y3
−y1 + y2

−y2 + y3 + y4

 .

Thus (A+ I)x = y has a solution (so y ∈ Range(A+ I)) if and only if −y2 +y3 +y4 = 0, and then the solution
is

x =
(
− 5

3y1 + 2y2 + 7
3y3 , −y1 + y2 + y3 , −y1 + y2 , 0

)T
+ t (0, 1, 0, 1)T .

Take y = u1 to get u2 = x = (2, 1, 1, 0)T + t(0, 1, 0, 1)T = (2, 1 + t, 1, t)T for some value of t. Taking
y = u2 = (2, 1 + t, 1, t)T we find that −y2 + y3 + y4 = 0 so that u2 ∈ Range(A− λI) for any choice of t. We
choose t = 0 so that u2 = (2, 1, 1, 0)T . Taking y = u2 = (2, 1, 1, 0)T we get u3 = x = (1, 0,−1, 0)T .

When λ = λ2 = 2 we have

A− λI = A− 2I =


0 −7 1 7
3 −10 2 7
0 1 −4 −1
3 −8 3 5

 ∼


3 −8 3 5
0 1 −4 −1
0 −7 1 7
0 2 1 −2

 ∼


3 0 −29 −3
0 1 −4 −1
0 0 −27 0
0 0 9 0

 ∼


1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 0

 .

We need u4 ∈ E2 = Null(A− 2I), and we can take u4 = (1, 1, 0, 1)T . Thus we can take

P =
(
u1, u2, u3, u4

)
=


0 2 1 1
1 1 0 1
0 1 −1 0
1 0 0 1

 .



3: Let A =


1 1 0
0 1 1
0 0 1

−1 1
0 −1

.

(a) Find An, where n is a positive integer.

Solution: We have A =

(
J1
3

J2
−1

)
. We can write J3

1 = I +N where I = I3×3 and N =

 0 1 0
0 0 1
0 0 0

. Note

that N2 =

 0 0 1
0 0 0
0 0 0

 and Nk = 0 for k ≥ 3. By the Binomial Theorem (which holds, and can be proven

as usual, for (X + Y )n with X,Y ∈Mm×m, as long as X and Y commute) we have

(
J3
1

)n
= (I +N)n = In +

(
n
1

)
In−1N +

(
n
2

)
In−2N2 + · · · = I + nN + n(n−1)

2 N2 =

 1 n n(n−1)
2

0 1 n
0 0 1

 .

Similarly, we can write J2
−1 = −I + M where I = I2×2 and M =

(
0 1
0 0

)
, we note that Mk = 0 for k ≥ 2,

then the Binomial Theorem gives(
J2
−1
)n

= (−1)nI + (−1)n−1nM =

(
(−1)n (−1)n−1n

0 (−1)n

)
.

Thus

An =

((
J3
1

)n
0

0
(
J2
−1
)n) =


1 n n(n+1)

2
0 1 n
0 0 1

(−1)n (−1)n−1n
0 (−1)n


(b) Find e

A
= I +A+ 1

2!A
2 + 1

3!A
3 + · · ·.

Solution: Recall that ex =
∞∑
n=0

1
n! x

n for all x ∈ R. Taking the derivative gives ex =
∞∑
n=0

n
n! x

n−1 then taking it

again gives ex =
∞∑
n=0

n(n−1)
n! xn−2. Setting x = 1 gives e =

∞∑
n=0

1
n! and e =

∞∑
n=0

n
n! and e =

∞∑
n=0

n(n−1)
n! . Setting

x = −1 gives e−1 =
∞∑
n=0

(−1)n
n! and e−1 =

∞∑
n=0

(−1)n−1n
n! . Thus we have

e
J3
1 =

∞∑
n=0

1

n!

(
J3
1

)n
=

∞∑
n=0

1

n!

 1 n n(n−1)
2

0 1 n
0 0 1

 =


∑

1
n!

∑
n
n!

∑ n(n−1)
2n!

0
∑

1
n!

∑
n
n!

0 0
∑

1
n!

 =

 e e 1
2 e

0 e e
0 0 e


and

e
J2
−1 =

∞∑
n=0

1

n!

(
J2
−1
)n

=

∞∑
n=0

1

n!

(
(−1)n (−1)n−1n

0 (−1)n

)
=

(∑ (−1)n
n!

∑ (−1)n−1n
n!

0
∑ (−1)n

n!

)
=

(
e−1 e−1

0 e−1

)
.

Thus we have

e
A

=

(
e
J3
1 0

0 e
J2
−1

)
=


e e 1

2e
0 e e
0 0 e

e−1 e−1

0 e−1

 .



4: Let A ∈Mn×n(C).

(a) Show that A is similar to AT .

Solution: We have rank(A − λI)k = rank(AT − λI)k for all k ∈ Z+, and so A and AThave the same Jordan
form.

(b) Show that if A is invertible then there is a matrix B ∈Mn×n(C) such that A = B2.

Solution: Let A be invertible. Note that the eigenvalues of A are all nonzero. Choose an invertible matrix P
so that P−1AP = J with J in Jordan form. Consider one of the Jordan blocks Jmλ of J . Write

Jmλ = λ(I +N)

where N is the m ×m matrix whose above-diagonal entries are Ni,i+1 = 1
λ and whose other entries are all

zero (in the case that m = 1, N = (0), the 1 × 1 zero matrix). Note that Nk has entries Ni,i+k = 1
λk and

other entries zero, and in particular Nk = 0 for all k ≥ m. By the Binomial Theorem, for x ∈ R with |x| < 1
we have

(1 + x)1/2 =
∞∑
k=0

(
1/2
k

)
xk.

It follows that ( m∑
k=0

(
1/2
k

)
xk
)2

= 1 + x+
2m∑

i=m+1

cix
i

for some ci ∈ R Since Nk = 0 for k > m we have( m∑
k=0

(
1/2
k

)
Nk
)2

= I +N +
2m∑

k=m+1

ciN
i = I +N.

We choose µ ∈ C with µ2 = λ and then let

Smµ = µ
m∑
k=0

(
1/2
k

)
Nk

so that
(
Smµ
)2

= λ(I +N) = Jmλ . We do the same for each Jordan block so that for the block-diagonal matrix

J = diag
(
Jm1

λ1
, · · · , Jml

λl

)
we obtain the block diagonal matrix S = diag

(
Sm1
µ1
, · · · , Sml

µl

)
with S2 = J . Finally,

we note that A = PJP−1 = PS2P−1 = PSP−1PSP−1 = (PSP−1)2, so we take B = PSP−1.

(c) Show that for n ≥ 2, there is no matrix B ∈Mn×n(C) such that Jn0 = B2.

Solution: Suppose, for a contradiction, that Jn0 = B2. Choose an invertible matrix P so that P−1BP = K
with K in Jordan form. Note that the eigenvalues of B (hence of K) are all zero (indeed if κ is an eigenvalue
of B and w is an eigenvector for κ then B2w = Bκw = κ2w and so κ2 is an eigenvalue for B2 = Jn0 ). Let bi
be the number of Jordan blocks in K of size at least i. Then

rank(B2) = rank(K2) = rank(K − 0I)2 = n− b1 − b2.
If b1 = 1 then K only has one jordan block, and this block is of size n ≥ 2 so that b2 = 1, and so we have
rank(B2) = n− b1 − b2 = n− 2. If b1 ≥ 2 then rank(B2) = n− b1 − b2 ≤ n− b1 ≤ n− 2. In either case, we
have rank(B2) < n− 1 = rank(Jn0 ), giving the desired contradiction.


