

1: (a) Find the vertices and the asymptotes of the hyperbola $11x^2 + 24xy + 4y^2 = 500$.

Solution: Let $K(x, y) = 11x^2 + 24xy + 4y^2$. Note that $K(x, y) = (x \ y) A \begin{pmatrix} x \\ y \end{pmatrix}$ where $A = \begin{pmatrix} 11 & 12 \\ 12 & 4 \end{pmatrix}$. The characteristic polynomial of A is

$$\det(A - xI) = \det \begin{pmatrix} 11 - x & 12 \\ 12 & 4 - x \end{pmatrix} = x^2 - 15x - 100 = (x - 20)(x + 5)$$

so the eigenvalues are $\lambda_1 = 20$ and $\lambda_2 = -5$. We have

$$A - \lambda_1 I = \begin{pmatrix} -9 & 12 \\ 12 & -16 \end{pmatrix} \sim \begin{pmatrix} -3 & 4 \\ 0 & 0 \end{pmatrix}$$

so we can choose the unit eigenvector $u_1 = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ for λ_1 . The other eigenspace will be orthogonal since A is symmetric, so we can choose the unit eigenvector $u_2 = \frac{1}{5} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ for λ_2 . Let $P = (u_1, u_2) = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ 3 & 4 \end{pmatrix}$ and let $D = \begin{pmatrix} 20 & 0 \\ 0 & -5 \end{pmatrix}$. Then we have $P^*AP = D$. Write $\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} s \\ t \end{pmatrix}$ or equivalently $\begin{pmatrix} s \\ t \end{pmatrix} = P^* \begin{pmatrix} x \\ y \end{pmatrix}$. Then

$$K(x, y) = (x \ y) A \begin{pmatrix} x \\ y \end{pmatrix} = (s \ t) P^*AP \begin{pmatrix} s \\ t \end{pmatrix} = (s \ t) D \begin{pmatrix} s \\ t \end{pmatrix} = 20s^2 - 5t^2$$

and so

$$K(x, y) = 500 \iff 20s^2 - 5t^2 = 500 \iff \frac{s^2}{25} - \frac{t^2}{100} = 1.$$

This is the hyperbola in the st -plane with vertices at $(\pm 5, 0)$ and asymptotes $s = \pm 2t$. We calculate the points (x, y) corresponding to $(s, t) = (\pm 5, 0)$ (the vertices) and $(s, t) = (1, \pm 2)$ (points on the asymptotes):

$$\begin{aligned} P \begin{pmatrix} \pm 5 \\ 0 \end{pmatrix} &= \frac{1}{5} \begin{pmatrix} 4 & -3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} \pm 5 \\ 0 \end{pmatrix} = \pm \begin{pmatrix} 4 \\ 3 \end{pmatrix} \\ P \begin{pmatrix} 1 \\ \pm 2 \end{pmatrix} &= \frac{1}{5} \begin{pmatrix} 4 & -3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ \pm 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -2 \\ 11 \end{pmatrix} \text{ and } \begin{pmatrix} 2 \\ -1 \end{pmatrix}. \end{aligned}$$

Thus the curve $K(x, y) = 500$ is the hyperbola with vertices at $(x, y) = \pm(4, 3)^T$ and asymptotes $11x + 2y = 0$ and $x + 2y = 0$.

(b) Find the volume of the ellipsoid $2x^2 + 3y^2 + 3z^2 + 2xy + 2xz = 9$.

Solution: We have

$$2x^2 + 3y^2 + 3z^2 + 2xy + 2xz = (x, y, z)A \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \text{where} \quad A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix}.$$

The characteristic polynomial of A is

$$\begin{aligned} f_A(x) &= \det(A - xI) = \det \begin{pmatrix} 2-x & 1 & 1 \\ 1 & 3-x & 0 \\ 1 & 0 & 3-x \end{pmatrix} \\ &= -(x-3)^2(x-2) + (x-3) + (x-3) = -(x-3)((x-3)(x-2) - 2) \\ &= -(x-3)(x^2 - 5x + 4) = -(x-3)(x-1)(x-4). \end{aligned}$$

The eigenvalues of A are 4, 3 and 1. Since A is symmetric, it is orthogonally diagonalizable, so there is a matrix $P \in M_3(\mathbb{R})$ with $P^T P = I$ such that $P^T A P = D = \text{diag}(4, 3, 1)$. If we make an orthogonal change of coordinates by letting

$$\begin{pmatrix} r \\ s \\ t \end{pmatrix} = P \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

then in these new coordinates, the equation of the ellipsoid becomes

$$9 = (x, y, z)A(x, y, z)^T = (r, s, t)P^T A P (r, s, t)^T = (r, s, t)D(r, s, t)^T = 4r^2 + 3s^2 + 1t^2,$$

that is

$$\frac{r^2}{9/4} + \frac{s^2}{3} + \frac{t^2}{9} = 1.$$

This ellipsoid can be obtained from the unit sphere, which has volume $\frac{4}{3}\pi$, by scaling in the orthogonal directions of the r , s and t axes by the factors $\frac{3}{2}$, $\sqrt{3}$ and 3, and so its volume is

$$V = \frac{4}{3}\pi \cdot \frac{3}{2} \cdot \sqrt{3} \cdot 3 = 6\sqrt{3}\pi.$$

2: (a) Let $A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$. Find $\max_{|x|=1} |Ax|$ and $\min_{|x|=1} |Ax|$. Find $u \in \mathbb{R}^3$ with $|u|=1$ so that $|Au| = \min_{|x|=1} |Ax|$.

Solution: We have

$$A^*A = \begin{pmatrix} 6 & 2 & 5 \\ 2 & 3 & 2 \\ 5 & 2 & 6 \end{pmatrix}.$$

The characteristic polynomial of A^*A is

$$\begin{aligned} f_{A^*A}(x) &= \det(A^*A - xI) = \det \begin{pmatrix} 6-x & 2 & 5 \\ 2 & 3-x & 2 \\ 5 & 2 & 6-x \end{pmatrix} \\ &= -(x-6)^2(x-3) + 40 + 8(x-6) + 25(x-3) = -(x^2 - 12x + 36)(x-3) + 33x - 83 \\ &= -(x^3 - 15x^2 + 39x - 25) = -(x-1)(x^2 - 14x + 25). \end{aligned}$$

Note that $x^2 - 14x + 25 = 0$ when $x = \frac{14 \pm \sqrt{4 \cdot 49 - 4 \cdot 25}}{2} = 7 \pm \sqrt{24}$ so the eigenvalues of A^*A , in decreasing order, are $\lambda_1 = 7 + 2\sqrt{6}$, $\lambda_2 = 7 - 2\sqrt{6}$ and $\lambda_3 = 1$, and so the singular values of A are $\sigma_1 = 1 + \sqrt{6}$, $\sigma_2 = -1 + \sqrt{6}$ and $\sigma_3 = 1$. At this stage, we know that

$$\max_{|x|=1} |Ax| = \sigma_1 = 1 + \sqrt{6} \quad \text{and} \quad \min_{|x|=1} |Ax| = \sigma_3 = 1.$$

The minimum value is attained at the unit eigenvector u of A^*A for λ_3 . We have

$$A^*A - \lambda_3 I = \begin{pmatrix} 5 & 2 & 5 \\ 2 & 2 & 2 \\ 5 & 2 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 5 & 2 & 5 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and so we can take $u = \frac{1}{\sqrt{2}}(-1, 0, 1)^T$.

(b) Define $L : \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ by $L(x_1, x_2, x_3, x_4, \dots) = \left(\sum_{i=1}^{\infty} x_i, x_2, x_3, x_4, \dots \right)$. Find $\sup_{|x|=1} |Lx|$ and $\inf_{|x|=1} |Lx|$.

Solution: Let $a_n = \sum_{i=1}^n \frac{1}{\sqrt{n}} e_i = \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}, 0, 0, \dots \right)$. Then we have $|a_n| = 1$ and

$$L(a_n) = \sqrt{n} e_1 + \sum_{i=2}^n \frac{1}{\sqrt{n}} e_i = \left(\sqrt{n}, \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}, 0, 0, \dots \right)$$

so that $|L(a_n)|^2 = n + \frac{n-1}{n}$. Since $\lim_{n \rightarrow \infty} |L(a_n)| = \infty$ we see that $\sup_{|a|=1} |L(a)| = \infty$.

Let $b_n = -\sqrt{\frac{n-1}{n}} e_1 + \sum_{i=1}^n \frac{1}{n} e_{i+1} = \left(-\sqrt{\frac{n-1}{n}}, \frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, 0, 0, \dots \right)$. Then we have $|b_n| = 1$ and

$$L(b_n) = \left(1 - \sqrt{\frac{n-1}{n}} \right) e_1 + \sum_{i=1}^n \frac{1}{n} e_{i+1} = \left(1 - \sqrt{\frac{n-1}{n}}, \frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, 0, 0, \dots \right)$$

so that $|L(b_n)|^2 = \left(1 - \sqrt{\frac{n-1}{n}} \right)^2 + \frac{1}{n}$. Since $\lim_{n \rightarrow \infty} |L(b_n)| = 0$ we see that $\inf_{|a|=1} |L(a)| = 0$.

3: Let U and V be non-trivial subspaces of \mathbb{R}^n with $U \cap V = \{0\}$. Recall that

$$\theta(U, V) = \min \{ \theta(u, v) \mid 0 \neq u \in U, 0 \neq v \in V \}.$$

(a) Show that $\theta(U, V) = \cos^{-1}(\sigma)$ where σ is the largest singular value of the linear map $P : U \rightarrow V$ given by $P(x) = \text{Proj}_V(x)$.

Solution: Recall that for fixed $0 \neq u \in \mathbb{R}^n$ we have $\min_{0 \neq v \in V} \theta(u, v) = \cos^{-1} |\text{Proj}_V \frac{u}{|u|}|$. Thus we have

$$\begin{aligned} \theta(U, V) &= \min_{0 \neq u \in U} \min_{0 \neq v \in V} \theta(u, v) = \min_{0 \neq u \in U} \cos^{-1} \left(\left| \text{Proj}_V \frac{u}{|u|} \right| \right) = \cos^{-1} \left(\max_{0 \neq u \in U} \left| \text{Proj}_V \frac{u}{|u|} \right| \right) \\ &= \cos^{-1} \left(\max_{u \in U, |u|=1} \left| \text{Proj}_V(u) \right| \right) = \cos^{-1} \left(\max_{u \in U, |u|=1} |P(u)| \right) = \cos^{-1} \sigma \end{aligned}$$

where σ is the largest singular value of P .

(b) Let $u_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 2 \end{pmatrix}$, $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$. Let $U = \text{Span}\{u_1, u_2\}$ and $V = \text{Span}\{v_1, v_2\}$.

Find $\theta(U, V)$.

Solution: To find the singular values of P we find the matrix of P^*P with respect to orthonormal bases. We apply the Gram-Schmidt Procedure to the basis $\{u_1, u_2\}$ to get

$$w_1 = u_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad w_2 = u_2 - \frac{u_2 \cdot w_1}{|w_1|^2} w_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 2 \end{pmatrix} - \frac{6}{4} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} 4 \\ 2 \\ -2 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ -3 \\ 3 \end{pmatrix} \right) = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$

then we normalize to get the orthonormal basis $\mathcal{U} = \{x_1, x_2\}$ with

$$x_1 = \frac{w_1}{|w_1|} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad x_2 = \frac{w_2}{|w_2|} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}.$$

Next we apply the Gram-Schmidt Procedure to $\{v_1, v_2\}$ to get

$$z_1 = v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \quad z_2 = v_2 - \frac{v_2 \cdot z_1}{|z_1|^2} z_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix} - \frac{3}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

then we normalize to get the orthonormal basis $\mathcal{V} = \{y_1, y_2\}$ for V where

$$y_1 = \frac{z_1}{|z_1|^2} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \quad y_2 = \frac{z_2}{|z_2|^2} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}.$$

Now let

$$A = [P]_{\mathcal{V}}^{\mathcal{U}} = \begin{pmatrix} x_1 \cdot y_1 & x_2 \cdot y_1 \\ x_1 \cdot y_2 & x_2 \cdot y_2 \end{pmatrix} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}.$$

Then

$$[P^*P]_{\mathcal{V}}^{\mathcal{U}} = A^*A = \frac{1}{12} \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 2 & 2 \\ 2 & 10 \end{pmatrix} = \frac{1}{6} B, \quad \text{where } B = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}.$$

The characteristic polynomial of B is

$$\det(B - tI) = \det \begin{pmatrix} 1-t & 1 \\ 1 & 5-t \end{pmatrix} = t^2 - 6t + 4$$

so B has eigenvalues $\lambda = \frac{6 \pm \sqrt{20}}{2} = 3 \pm \sqrt{5}$. Since $A^*A = \frac{1}{6}B$, the eigenvalues of A^*A , or equivalently the eigenvalues of P^*P , are $\frac{3 \pm \sqrt{5}}{6}$. Thus the largest singular value of P is $\sigma = \sqrt{\frac{3+\sqrt{5}}{6}}$ and we obtain

$$\theta(U, V) = \cos^{-1} \sqrt{\frac{3+\sqrt{5}}{6}}.$$