

8. Orthonormal Triangularization and Diagonalization

8.1 Definition: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a linear map $L : U \rightarrow U$, where U is a finite dimensional inner product space over \mathbb{F} , we say that L is **orthonormally triangularizable** when there exists an orthonormal basis \mathcal{A} for U such that $[L]_{\mathcal{A}}$ is upper triangular. For a matrix $A \in M_{n \times n}(\mathbb{F})$, we say that A is **orthonormally triangularizable** when there exists a matrix $P \in M_{n \times n}(\mathbb{F})$ with $P^*P = I$ such that P^*AP is upper triangular. Most books do not use the term *orthonormally triangularizable* but, instead, in the case that $\mathbb{F} = \mathbb{R}$ they use the term **orthogonally triangularizable** and when $\mathbb{F} = \mathbb{C}$ they use the term **unitarily triangularizable**.

8.2 Theorem: Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let \mathcal{A} be an orthonormal basis for U . Let $L : U \rightarrow U$ be a linear map and let $A = [L]_{\mathcal{A}}$. Then L is orthonormally triangularizable if and only if A is orthonormally triangularizable.

Proof: The proof is left as an exercise.

8.3 Theorem: (Schur) Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L : U \rightarrow U$ be linear. Then L is orthonormally triangularizable if and only if the characteristic polynomial $f_L(x)$ splits.

Proof: Suppose that L is orthonormally triangularizable. Choose an orthonormal basis \mathcal{A} for U such that $[L]_{\mathcal{A}}$ is upper triangular. Let $T = [L]_{\mathcal{A}} \in M_n(\mathbb{F})$. Then $f_L(x) = f_T(x)$, and since T is upper triangular we have $f_T(x) = (-1)^n \prod_{k=1}^n (x - T_{k,k})$, which splits.

Conversely, suppose that $f_L(x)$ splits. Choose any orthonormal basis \mathcal{A} for U and let $A = [L]_{\mathcal{A}}$. Since $f_A(x) = f_L(x)$, we know that $f_A(x)$ splits. We shall show, by induction on n , that for any matrix $A \in M_n(\mathbb{F})$ for which $f_A(x)$ splits, there exists a matrix $P \in M_n(\mathbb{F})$ with $P^*P = I$ such that P^*AP is upper triangular. When $n = 1$, the 1×1 matrix A is already upper triangular and we can take P to be the 1×1 identity matrix. Fix $n \geq 2$, let $A \in M_n$, suppose that $f_A(x)$ splits, and suppose, inductively that for every matrix $B \in M_{n-1}(\mathbb{F})$ for which $f_B(x)$ splits, we can find a matrix $Q \in M_{n-1}(\mathbb{F})$ with $Q^*Q = I$ such that Q^*BQ is upper triangular. Since $f_A(x)$ splits, A has an eigenvalue. Let λ_1 be an eigenvalue of A and let $u_1 \in \mathbb{F}^n$ be a corresponding eigenvector with $\|u_1\| = 1$. Extend $\{u_1\}$ to an orthonormal basis $\{u_1, u_2, \dots, u_n\}$ for \mathbb{F}^n and let $R = (u_1, u_2, \dots, u_n) \in M_n(\mathbb{F})$. Note that since $\{u_1, u_2, \dots, u_n\}$ is orthonormal we have $R^*R = I$. The k^{th} entry of the first column of the matrix R^*AR is equal to

$$(R^*AR)_{k,1} = e_k^* R^* A R e_1 = u_k^* A u_1 = \langle A u_1, u_k \rangle = \langle \lambda_1 u_1, u_k \rangle = \lambda_1 \delta_{k,1}$$

so we have

$$R^*AR = \begin{pmatrix} \lambda_1 & x^T \\ 0 & B \end{pmatrix}$$

for some $x \in \mathbb{F}^{n-1}$ and some $B \in M_{n-1}(\mathbb{F})$. Since $f_A(x) = f_{R^*AR}(x) = -(x - \lambda_1)f_B(x)$, so we see that $f_B(x)$ splits. By the induction hypothesis, we can choose $Q \in M_{n-1}(\mathbb{F})$ with $Q^*Q = I$ such that Q^*BQ is upper triangular. Letting $P = R \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix}$, we have

$$P^*AP = \begin{pmatrix} 1 & 0 \\ 0 & Q^* \end{pmatrix} \begin{pmatrix} \lambda_1 & x^T \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & x^T Q \\ 0 & Q^* B Q \end{pmatrix}$$

which is upper triangular, and it is easy to check that $P^*P = I$.

8.4 Definition: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a linear map $L : U \rightarrow U$, where U is a finite dimensional inner product space over \mathbb{F} , we say that L is **orthonormally diagonalizable** when there exists an orthonormal basis \mathcal{A} for U such that $[L]_{\mathcal{A}}$ is diagonal. For a matrix $A \in M_n(\mathbb{F})$, we say that A is **orthonormally diagonalizable** when there exists a matrix $P \in M_n(\mathbb{F})$ with $P^*P = I$ such that P^*AP is diagonal. Most books do not use the term *orthonormally diagonalizable* but, instead, when $\mathbb{F} = \mathbb{R}$ they use the term **orthogonally diagonalizable** and when $\mathbb{F} = \mathbb{C}$ they use the term **unitarily diagonalizable**.

8.5 Theorem: Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let \mathcal{A} be an orthonormal basis for U . Let $L : U \rightarrow U$ be a linear map and let $A = [L]_{\mathcal{A}}$. Then L is orthonormally diagonalizable if and only if A is orthonormally diagonalizable.

Proof: The proof is left as an exercise.

8.6 Definition: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a linear map $L : U \rightarrow U$, where U is an inner product space over \mathbb{F} , we say that L is **normal** when the adjoint L^* exists and $L^*L = LL^*$. For a matrix $A \in M_n(\mathbb{F})$, we say that A is **normal** when $A^*A = AA^*$. Note that when U is finite dimensional and \mathcal{A} is an orthonormal basis for U , the map L is normal if and only if its matrix $[L]_{\mathcal{A}}$ is normal.

8.7 Theorem: (Diagonalization of Normal Matrices) Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L : U \rightarrow U$ be linear. Then L is orthonormally diagonalizable if and only if L is normal and the characteristic polynomial $f_L(x)$ splits.

Proof: Suppose first that L is orthonormally diagonalizable. Choose an orthonormal basis \mathcal{A} for U so that $[L]_{\mathcal{A}}$ is diagonal, say $[L]_{\mathcal{A}} = D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \in M_{n \times n}(\mathbb{F})$. Then $f_L(x)$ splits because $f_L(x) = f_D(x) = (-1)^n \prod_{i=1}^n (x - \lambda_i)$, and L is normal because D is normal, indeed

$$\begin{aligned} D^*D &= \text{diag}(\overline{\lambda_1}, \dots, \overline{\lambda_n}) \text{diag}(\lambda_1, \dots, \lambda_n) = \text{diag}(|\lambda_1|^2, \dots, |\lambda_n|^2) \\ &= \text{diag}(\lambda_1, \dots, \lambda_n) \text{diag}(\overline{\lambda_1}, \dots, \overline{\lambda_n}) = D D^*. \end{aligned}$$

Conversely, suppose that L is normal and that $f_L(x)$ splits. Since $f_L(x)$ splits, by Schur's Theorem we can orthonormally triangularize L . Choose an orthonormal basis \mathcal{A} for U so that $[L]_{\mathcal{A}}$ is upper triangular. Let $T = [L]_{\mathcal{A}} \in M_n(\mathbb{F})$. Since L is normal, it follows that T is normal. Since T is normal and upper triangular, it follows that T is in fact diagonal:

Indeed, the diagonal entries of T^*T and of TT^* are given by $(T^*T)_{k,k} = \sum_{i=1}^n (T^*)_{k,i} T_{i,k} = \sum_{i=1}^n \overline{T}_{i,k} T_{i,k} = \sum_{i=1}^n |T_{i,k}|^2$ and $(TT^*)_{k,k} = \sum_{i=1}^n T_{k,i} (T^*)_{i,k} = \sum_{i=1}^n T_{k,i} \overline{T}_{k,i} = \sum_{i=1}^n |T_{k,i}|^2$. Since T is upper triangular, so that $T_{i,j} = 0$ whenever $i > j$, these expressions simplify to

$$(T^*T)_{k,k} = \sum_{i=1}^k |T_{i,k}|^2 \quad \text{and} \quad (TT^*)_{k,k} = \sum_{i=k}^n |T_{k,i}|^2.$$

Comparing these diagonal entries, we find that

$$\begin{aligned} (T^*T)_{1,1} &= (TT^*)_{1,1} \implies |T_{1,1}|^2 = |T_{1,1}|^2 + |T_{1,2}|^2 + \dots + |T_{1,n}|^2 \implies T_{1,i} = 0 \text{ for } i > 1, \\ (T^*T)_{2,2} &= (TT^*)_{2,2} \implies |T_{2,2}|^2 = |T_{2,2}|^2 + |T_{2,3}|^2 + \dots + |T_{2,n}|^2 \implies T_{2,i} = 0 \text{ for } i > 2, \end{aligned}$$

and so on, so that T is diagonal.

8.8 Definition: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a linear map $L : U \rightarrow U$, where U is an inner product space over \mathbb{F} , we say that L is **unitary** when the adjoint L^* exists and we have $L^*L = I = LL^*$. For a matrix $A \in M_n(\mathbb{F})$, we say that A is **unitary** when $A^*A = I$. Note that when U is finite dimensional and \mathcal{A} is an orthonormal basis for U , the map L is unitary if and only if its matrix $[L]_{\mathcal{A}}$ is unitary. When $\mathbb{F} = \mathbb{R}$ the term *unitary* can be replaced by the term **orthogonal**.

8.9 Theorem: Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L : U \rightarrow U$ be a linear map. Then the following are equivalent.

- (1) L is unitary,
- (2) L preserves inner product, that is $\langle L(x), L(y) \rangle = \langle x, y \rangle$ for all $x, y \in U$,
- (3) L preserves norm, that is $\|L(x)\| = \|x\|$ for all $x \in U$.

Proof: First we show that (1) is equivalent to (2). Suppose that L is unitary. Then for $x, y \in U$ we have $\langle Lx, Ly \rangle = \langle x, L^*Ly \rangle = \langle x, Ly \rangle = \langle x, y \rangle$, and so L preserves inner product. Conversely, suppose that L preserves inner product. Let $y \in U$. Then for all $x \in U$ we have $\langle x, L^*Ly \rangle = \langle Lx, Ly \rangle = \langle x, y \rangle$. Since $\langle x, L^*Ly \rangle = \langle x, y \rangle$ for all $x \in U$, it follows (from Theorem 5.8) that $L^*Ly = y$. Since $L^*Ly = y$ for all $y \in U$, it follows that $L^*L = I$, and so L is unitary.

Next we shall show that (2) is equivalent to (3). Suppose that L preserves inner product. Then for $x \in U$ we have

$$\|Lx\|^2 = \langle Lx, Lx \rangle = \langle x, x \rangle = \|x\|^2$$

so that L preserves norm. Conversely, suppose that L preserves norm. Then, using the Polarization Identity and the linearity of L , for $x, y \in U$ we have

$$\begin{aligned} \langle Lx, Ly \rangle &= \frac{1}{4} \left(\|Lx + Ly\|^2 + i\|Lx + iLy\|^2 - \|Lx - Ly\|^2 - i\|Lx - iLy\|^2 \right) \\ &= \frac{1}{4} \left(\|L(x + y)\|^2 + i\|L(x + iy)\|^2 - \|L(x - y)\|^2 - i\|L(x - iy)\|^2 \right) \\ &= \frac{1}{4} \left(\|x + y\|^2 + i\|x + iy\|^2 - \|x - y\|^2 - i\|x - iy\|^2 \right) = \langle x, y \rangle. \end{aligned}$$

8.10 Theorem: (Diagonalization of Unitary Maps) Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $L : U \rightarrow U$ be linear. Then L is orthonormally diagonalizable and all its eigenvalues have norm 1 if and only if L is unitary and $f_L(x)$ splits.

Proof: Suppose that L is orthonormally diagonalizable and that all of its eigenvalues have norm 1. Choose an orthonormal basis \mathcal{A} for U so that $[L]_{\mathcal{A}} = D = \text{diag}(\lambda_1, \dots, \lambda_n)$ where $|\lambda_i| = 1$ for $1 \leq i \leq n$. Then $f_L(x)$ splits since $f_L(x) = f_D(x) = (-1)^n \prod_{i=1}^n (x - \lambda_i)$, and L is unitary since D is unitary, indeed

$$D^*D = \text{diag}(\overline{\lambda_1}, \dots, \overline{\lambda_n}) \text{diag}(\lambda_1, \dots, \lambda_n) = \text{diag}(|\lambda_1|^2, \dots, |\lambda_n|^2) = I.$$

Conversely, suppose that L is unitary and that $f_L(x)$ splits. Since L is unitary, it is also normal because $L^*L = I = LL^*$. Since L is normal and $f_L(x)$ splits, L is orthonormally diagonalizable. Choose an orthonormal basis \mathcal{A} for U such that $[L]_{\mathcal{A}} = D = \text{diag}(\lambda_1, \dots, \lambda_n)$. Since L is unitary, so is D , and so we have $I = D^*D = \text{diag}(|\lambda_1|^2, \dots, |\lambda_n|^2)$, and hence $|\lambda_i| = 1$ for all indices i .

8.11 Definition: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a linear map $L : U \rightarrow U$, where U is an inner product space over \mathbb{F} , we say that L is **Hermitian** (or **self-adjoint**) when the adjoint L^* exists and we have $L^* = L$. For a matrix $A \in M_n(\mathbb{F})$, we say that A is **Hermitian** (or **self-adjoint**) when $A^* = A$. Note that when U is finite dimensional and \mathcal{A} is an orthonormal basis for U , the map L is Hermitian if and only if its matrix A is Hermitian. When $\mathbb{F} = \mathbb{R}$, the terms *Hermitian* and *self-adjoint* can be replaced by the term **symmetric**.

8.12 Theorem: (Diagonalization of Hermitian Maps) Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $L : U \rightarrow U$ be linear. Then L is orthonormally diagonalizable and all its eigenvalues are real if and only if L is Hermitian.

Proof: Suppose that L is orthonormally diagonalizable and all of its eigenvalues are real. Choose an orthonormal basis \mathcal{A} for U so that $[L]_{\mathcal{A}} = D = \text{diag}(\lambda_1, \dots, \lambda_n)$ with each $\lambda_i \in \mathbb{R}$. Then L is Hermitian since D is Hermitian, indeed

$$D^* = \text{diag}(\overline{\lambda_1}, \dots, \overline{\lambda_n}) = \text{diag}(\lambda_1, \dots, \lambda_n) = D.$$

Conversely, suppose that L is Hermitian, that is $L^* = L$. Since L is Hermitian, it is also normal, indeed we have $L^*L = L^2 = LL^*$. Choose any orthonormal basis \mathcal{A} for U and let $A = [L]_{\mathcal{A}} \in M_n(\mathbb{F})$. Since $L^* = L$, we also have $A^* = A$. Whether $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , we can consider A as a matrix with complex entries $A \in M_n(\mathbb{C})$. Let $\lambda \in \mathbb{C}$ be a complex eigenvalue of A and let $u \in \mathbb{C}^n$ be an eigenvector, scaled so that $\|u\| = 1$. Using the fact that $A^* = A$, we have

$$\lambda = \lambda \langle u, u \rangle = \langle \lambda u, u \rangle = \langle Au, u \rangle = \langle u, A^*u \rangle = \langle u, Au \rangle = \langle u, \lambda u \rangle = \bar{\lambda} \langle u, u \rangle = \bar{\lambda}.$$

so the eigenvalues of $A \in M_n(\mathbb{C})$ are all real. Thus the eigenvalues of L are all real (even when $\mathbb{F} = \mathbb{C}$), and $f_L(x) = f_A(x)$ splits (even when $\mathbb{F} = \mathbb{R}$). Since L is normal and $f_L(x)$ splits, L is orthonormally diagonalizable.

8.13 Example: Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L : U \rightarrow U$ be a linear map. Then L is an orthogonal projection (onto some subspace $U_0 \subseteq U$) when there exists an orthonormal basis \mathcal{A} for U (obtained by extending an orthonormal basis \mathcal{A}_0 for U_0 to all of U) such that

$$[L]_{\mathcal{A}} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus we see that

L is an orthogonal projection map

$$\begin{aligned} &\iff L \text{ is orthonormally diagonalizable and all of its eigenvalues are 0 or 1} \\ &\iff L^* = L \text{ and } L^2 = L \end{aligned}$$

because when $[L]_{\mathcal{A}} = D = \text{diag}(\lambda_1, \dots, \lambda_n)$ we have

$$L^2 = L \iff D^2 = D \iff \lambda_i^2 = \lambda_i \text{ for all } i \iff \lambda_i \in \{0, 1\} \text{ for all } i.$$

Similarly, L is a reflection (onto some subspace $U_0 \subseteq U$) when there is an orthonormal basis \mathcal{A} for U such that

$$[L]_{\mathcal{A}} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

and so we see that

L is a reflection map

$$\begin{aligned} &\iff L \text{ is orthogonally diagonalizable and all of its eigenvalues are 1 or -1} \\ &\iff L^* = L \text{ and } L^2 = I \iff L^* = L \text{ and } L^*L = I. \end{aligned}$$

8.14 Theorem: (Singular Value Decomposition) Let U and V be finite dimensional inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L : U \rightarrow V$ be a linear map. Then there exist orthonormal bases \mathcal{A} and \mathcal{B} for U and V such that $[L]_{\mathcal{B}}^{\mathcal{A}}$ is of the block form

$$[L]_{\mathcal{B}}^{\mathcal{A}} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \quad \text{with } D = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$$

with $r = \text{rank}(L)$ and $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$. The positive real numbers σ_i are unique.

Proof: First, let us prove that the numbers $\sigma_1, \dots, \sigma_r$ are uniquely determined from L . Suppose $\mathcal{A} = \{u_1, \dots, u_k\}$ and $\mathcal{B} = \{v_1, \dots, v_l\}$ are orthonormal bases for U and V such that $[L]_{\mathcal{B}}^{\mathcal{A}} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in M_{l \times k}(\mathbb{F})$ where $D = \text{diag}(\sigma_1, \dots, \sigma_r)$ with $\sigma_1 \geq \dots \geq \sigma_r > 0$.

Since $[L]_{\mathcal{B}}^{\mathcal{A}} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in M_{l \times k}(\mathbb{F})$, we must have $L(u_i) = \sigma_i v_i$ for $1 \leq i \leq r$ and $L(u_i) = 0$ for $r < i \leq k$. Since $[L^*]_{\mathcal{A}}^{\mathcal{B}} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in M_{k \times l}(\mathbb{F})$, we must have $L^*(v_i) = \sigma_i u_i$ for $1 \leq i \leq r$ and $L^*(v_i) = 0$ for $r < i \leq l$. It follows that

$$L^*L(u_i) = L^*(\sigma_i v_i) = \sigma_i L^*(v_i) = \sigma_i^2 u_i$$

for $1 \leq i \leq r$ and $L^*L(u_i) = L^*(0) = 0$ for $r < i \leq k$. Thus for $1 \leq i \leq r$, the values $\lambda_i = \sigma_i^2$ must be the non-zero eigenvalues of L^*L , and they must be positive and real, and the vectors u_i must be corresponding eigenvectors.

Next, let us prove that there do indeed exist orthonormal bases which put L into the desired form. Note that $\text{Null}(L^*L) = \text{Null}(L)$, indeed for $x \in U$ we have

$$Lx = 0 \implies L^*Lx = 0, \text{ and}$$

$$L^*Lx = 0 \implies \langle x, L^*Lx \rangle = 0 \implies \langle Lx, Lx \rangle = 0 \implies Lx = 0.$$

In particular, we have $\text{rank}(L^*L) = \text{rank}(L) = r$. Also note that L^*L is Hermitian since $(L^*L)^* = L^*L^{**} = L^*L$, and so L^*L is orthonormally diagonalizable and its eigenvalues are all real. Furthermore, note that the eigenvalues of L^*L are all non-negative because if λ is an eigenvalue of L^*L and u is a corresponding unit eigenvector so that we have $Lu = \lambda u$ and $\|u\| = 1$, then we have

$$\lambda = \lambda \|u\|^2 = \lambda \langle u, u \rangle = \langle \lambda u, u \rangle = \overline{\langle u, L^*Lu \rangle} = \overline{\langle Lu, Lu \rangle} = \|Lu\|^2 \geq 0.$$

Let $\lambda_1, \dots, \lambda_k$ be the eigenvalues of L^*L with $\lambda_1 \geq \dots \geq r > 0$ and $\lambda_{r+1} = \dots = \lambda_k = 0$. let $\sigma_i = \sqrt{\lambda_i}$ for $1 \leq i \leq k$ so that $\sigma_1 \geq \dots \geq \sigma_r > 0$ and $\sigma_{r+1} = \dots = \sigma_k = 0$. Choose an orthonormal basis \mathcal{A} for U so that $[L^*L]_{\mathcal{A}} = \text{diag}(\lambda_1, \dots, \lambda_k)$. Note that $\{u_{r+1}, \dots, u_k\}$ is an orthonormal basis for $\text{Null}(L^*L) = \text{Null}(L)$ and $\{u_1, \dots, u_r\}$ is an orthonormal basis for $\text{Null}(L)^\perp$. For $1 \leq i \leq r$, let $v_i = \frac{1}{\sigma_i} L(u_i)$. Note that $\{v_1, \dots, v_r\}$ is orthonormal since

$$\begin{aligned} \langle v_i, v_j \rangle &= \langle \frac{1}{\sigma_i} L(u_i), \frac{1}{\sigma_j} L(u_j) \rangle = \frac{1}{\sigma_i \sigma_j} \langle L(u_i), L(u_j) \rangle = \frac{1}{\sigma_i \sigma_j} \langle u_i, L^*L(u_j) \rangle \\ &= \frac{1}{\sigma_i \sigma_j} \langle u_i, \lambda_j u_j \rangle = \frac{\lambda_j}{\sigma_i \sigma_j} \langle u_i, u_j \rangle = \frac{\lambda_j}{\sigma_i \sigma_j} \delta_{i,j} = \delta_{i,j}. \end{aligned}$$

since $\frac{\lambda_j}{\sigma_j \sigma_j} = 1$. Extend $\{v_1, \dots, v_r\}$ to an orthonormal basis for V , and note that $[L]_{\mathcal{B}}^{\mathcal{A}}$ is of the desired form.

8.15 Definition: The **singular values** of a linear map $L : U \rightarrow V$ are the square roots of the eigenvalues of the map L^*L . The **singular values** of a matrix A are the square roots of the eigenvalues of the matrix A^*A .