8. Orthonormal Triangularization and Diagonalization

8.1 Definition: Let F = R or C. For a linear map L : U — U, where U is a finite di-
mensional inner product space over [F, we say that L is orthonormally triangularizable
when there exists an othonormal basis A for U such that [L] 4 is upper triangular. For
a matrix A € M, «,(F), we say that A is orthonormaly triangularizable when there
exists a matrix P € M, «,(F) with P*P = I such that P*AP is upper triangular. Most
books do not use the term orthonormally triangularizable but, instead, in the case that
F = R they use the term orthogonally triangularizable and when F = C they use the
term unitarily triangularizable.

8.2 Theorem: Let U be a finite dimensional inner product space over F = R or C.
Let A be an orthonormal basis for U. Let L : U — U be a linear map and let A = [L] 4.
Then L is orthonormally triangularlizable if and only if A is orthonormally triangularizable.

Proof: The proof is left as an exercise.

8.3 Theorem: (Schur) Let U be a finite dimensional inner product space over F = R or
C. Let L : U — U be linear. Then L is orthonormally triangularizable if and only if the
characteristic polynomial fr,(z) splits.

Proof: Suppose that L is orthonormally trianglarizable. Choose an orthonormal basis A
for U such that [L] 4 is upper triangular. Let T' = [L|4 € M, (F). Then fr(z) = fr(z),

and since T is upper triangular we have fr(z) = (—=1)" [] (z — Ty), which splits.

Conversely, suppose that fr(x) splits. Choose any orthonormal basis A for U and let
A =[L] 4. Since fa(z) = fr(x), we know that fa(z) splits. We shall show, by induction on
n, that for any matrix A € M, (IF) for which f4(x) splits, there exists a matrix P € M,,(F)
with P*P = I such that P*AP is upper triangular. When n = 1, the 1 x 1 matrix A is
already upper triangular and we can take P to be the 1 x 1 identity matrix. Fix n > 2,
let A € M, suppose that fa(x) splits, and suppose, inductively that for every matrix
B € M,,_1(F) for which fg(z) splits, we can find a matrix @ € M,,_;(F) with Q*Q =T
such that @Q*BQ is upper triangular. Since f4(x) splits, A has an eigenvalue. Let A\; be

an eigenvalue of A and let u; € F™ be a corresponding eigenvector with ||u;|| = 1. Extend
{u1} to an orthonormal basis {u1, ug, - - -, u, } for F” and let R = (uy,ua, -, u,) € M, (F).
Note that since {uy,us,---,u,} is orthonormal we have R*R = I. The k' entry of the

first column of the matrix R*AR is equal to

(R*AR)]CJ = €k*R*AR €1 = uk*Aul == (Aul,uk> == <)\1u17uk> = )\lék,l
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for some x € F*~1 and some B € M,,_1(F). Since fa(x) = frar(z) = —(z — A1) f(x),
so we see that fp(x) splits. By the induction hypothesis, we can choose @ € M,,_1(IF)

with @*Q = I such that Q*B( is upper triangular. Letting P = R ((1) g), we have
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which is upper triangular, and it is easy to check that P*P = I.

so we have



8.4 Definition: Let F = R or C. For a linear map L : U — U, where U is a finite
dimensional inner product space over IF, we say that L is orthonormally diagonalizable
when there exists an orthonormal basis A for U such that [L] 4 is diagonal. For a matrix
A € M, (F), we say that A is orthonormally diagonalizable when there exists a matrix
P ¢ M, (F) with P*P = I such that P*AP is diagonal. Most books do not use the term
orthonormally diagonalizable but, instead, when ' = R they use the term orthogonally
diagonalizable and when F = C they use the term unitarily diagonalizable.

8.5 Theorem: Let U be a finite dimensional inner product space over F = R or C. Let
A be an orthonormal basis for U. Let L : U — U be a linear map and let A = [L] 4. Then
L is orthonormally diagonalizable if and only if A is orthonormally diagonalizable.

Proof: The proof is left as an exercise.

8.6 Definition: Let F = R or C. For a linear map L : U — U, where U is an inner
product space over [F, we say that L is normal when the adjoint L* exists and L*L = LL*.
For a matrix A € M, (F), we say that A is normal when A*A = AA*. Note that when U
is finite dimensional and A is an orthonormal basis for U, the map L is normal if and only
if its matrix [L] 4 is normal.

8.7 Theorem: (Diagonalization of Normal Matrices) Let U be a finite dimensional inner
product space over F = R or C. Let L : U — U be linear. Then L is orthonormally
diagonalizable if and only if L is normal and the characteristic polynomial fr,(zx) splits.

Proof: Suppose first that L is orthonormally diagonalizable. Choose an orthonormal basis

A for U so that [L] 4 is diagonal, say [L]4 = D = diag(A1, A2, -+, An) € My xn(F). Then

fr(x) splits because fr(z) = fp(z) = (=1)" [[(x — \;), and L is normal because D is
i=1

normal, indeed

D*D = diag(Ay, -+, Ay )diag(Ay, -+ -,

= diag()\l, cee )\n)diag()\_l, ) =

Conversely, suppose that L is normal and that fr(z) splits. Since fr(x) splits, by Schur’s
Theorem we can orthonormally triangularize L. Choose an orthonormal basis A for U so

that [L] 4 is upper triangular. Let T' = [L]4 € M, (F). Since L is normal, it follows that
T is normal. Since T is normal and upper triangular, it follows that T is in fact diagonal:

Indeed, the diagonal entries of T*T" and of TT* are given by (T"T)kr = > (T*)k:Tik =
i=1

Z TixTig = Z |T; 5> and (TT*)y = E T i(T* )i = Z Tx,iThi = Z |T,i|*. Since
T 1s upper trlangular so that T; ; = 0 Whenever 1> 7, these expressmns surnphfy to
(T*:T)k’k = Z ’Ti,kP and (TT*>k7k = Z ’Tk,i|2-
i=1 i=k
Comparing these diagonal entries, we find that
(T*:T)l,l = (TT*)I,l —— |T1’1|2 = |T171|2 + |T172|2 —+ -4 ‘Tl,n|2 — Tl,i =0 fori> 1,
(TT)2,0 = (TT* )22 = [Top|? = |Topf* + [To3]? + - + |Ton|* = Toi = 0 for i > 2,

and so on, so that 7" is diagonal.



8.8 Definition: Let F = R or C. For a linear map L : U — U, where U is an inner
product space over F, we say that L is unitary when the adjoint L* exists and we have
L*L = I = LL*. For a matrix A € M,(F), we say that A is unitary when A*A = I.
Note that when U is finite dimensional and A is an orthonormal basis for U, the map L
is unitary if and only if its matrix [L] 4 is unitary. When F = R the term unitary can be
replaced by the term orthogonal.

8.9 Theorem: Let U be a finite dimensional inner product space over F = R or C. Let
L :U — U be a linear map. Then the following are equivalent.

(1) L is unitary,

(2) L preserves inner product, that is (L(z), L(y)) = (z,y) for all z,y € U,

(3) L preserves norm, that is | L(z)|| = ||z| for all z € U.

Proof: First we show that (1) is equivalent to (2). Suppose that L is unitary. Then
for x,y € U we have <Lw,Ly> = <:C,L*Ly> = (z,1y) = (z,y), and so L preserves inner
product. Conversely, suppose that L preserves inner product. Let y € U. Then for all
x € U we have <x,L*Ly> = <Lm,Ly> = (z,y) Since <:c,L*Ly> = <:c,y> for all x € U, it
follows (from Theorem 5.8) that L*Ly = y. Since L*Ly = y for all y € U, it follows that
L*L =1, and so L is unitary.

Next we shall show that (2) is equivalent to (3). Suppose that L preserves inner
product. Then for x € U we have

||Lx||2 = <Lx,Lx> = (z,x) = ||I||2

so that L preserves norm. Conversely, suppose that L preserves norm. Then, using the
Polarization Identity and the linearity of L, for x,y € U we have

(La,Ly) = § (| Lo + Ly|* + || Lo+ iLy|” — || Lo - Ly|* - i|[ Lo - iLy|)
= (e +o)* +ill L@ + )| — L@ - )| - il L@ - w)|[*)

= 1l + yl? +illa + il — 2 = I = ille = igl?) = (20

8.10 Theorem: (Diagonalization of Unitary Maps) Let U be a finite dimensional inner
product space over F = R or C and let L : U — U be linear. Then L is orthonormally
diagonalizable and all its eigenvalues have norm 1 if and only if L is unitary and fr(x)
splits.

Proof: Suppose that L is orthonormally diagonalizable and that all of its eigenvalues have

norm 1. Choose an orthonormal basis A for U so that [L]4 = D = diag(/\l, e ,/\n) where

|Ail =1 for 1 <i <mn. Then fr(x) splits since fr(z) = fp(z) = (—=1)" [[(x — \i), and L
i=1

is unitary since D is unitary, indeed

DD = diag(A1, -+, An)diag (A1, -+, An) = diag(IM]?, -, [Aa]?) = 1.

Conversely, suppose that L is unitary and that fr(x) splits. Since L is unitary, it is also
normal because L*L = [ = LL*. Since L is normal and fr (x) splits, L is orthonormally di-
agonalizable. Choose an orthonormal basis A for U such that [L] 4 = D = diag(A1,- -+, \pn).
Since L is unitary, so is D, and so we have [ = D*D = dia,g(\)q]Q, e |)\n|2), and hence
|A;| = 1 for all indices i.



8.11 Definition: Let F = R or C. For a linear map L : U — U, where U is an inner
product space over F, we say that L is Hermitian (or self-adjoint) when the adjoint L*
exists and we have L* = L. For a matrix A € M,,(F), we say that A is Hermitian (or self-
adjoint) when A* = A. Note that when U is finite dimensional and A is an orthonormal
basis for U, the map L is Hermitian if and only if its matrix A is Hermitian. When F = R,
the terms Hermitian and self-adjoint can be replaced by the term symmetric.

8.12 Theorem: (Diagonalization of Hermitian Maps) Let U be a finite dimensional inner
product space over F = R or C and let L : U — U be linear. Then L is orthonormally
diagonalizable and all its eigenvalues are real if and only if L is Hermitian.

Proof: Suppose that L is orthonormally diagonalizable and all of its eigenvalues are real.
Choose an orthonormal basis A for U so that [L|4 = D = diag(A1,---, A,) with each
Ai € R. Then L is Hermitian since D is Hermitian, indeed

D* = diag(A1, -+, Ay) = diag(A1, -+, Ap) = D.

Conversely, suppose that L is Hermitian, that is L* = L. Since L is Hermitian, it is also
normal, indeed we have L*L = L? = LL*. Choose any orthonormal basis A for U and
let A= [Ljax € M,(F). Since L* = L, we also have A* = A. Whether F = R or C, we
can consider A as a matrix with complex entries A € M,,(C). Let A € C be a complex
eigenvalue of A and let u € C™ be an eigenvector, scaled so that ||u|| = 1. Using the fact
that A* = A, we have

A= Mu,u) = A, u) = (Au,u) = (u, A*u) = (u, Au) = (u, \u) = Mu,u) = \.
so the eigenvalues of A € M,,(C) are all real. Thus the eigenvalues of L are all real (even

when F = C), and fr(x) = fa(x) splits (even when F = R). Since L is normal and fr,(x)
splits, L is orthonormally diagonalizable.

8.13 Example: Let U be a finite dimensional inner product space over F = R or C. Let
L : U — U be a linear map. Then L is an orthogonal projection (onto some subspace
Up C U) when there exists an orthonormal basis A for U (obtained by extending an
orthonormal basis A for Uy to all of U) such that

I 0
[L]a = (0 0) :
Thus we see that

L is an orthogonal projection map
<= L is orthonormally diagonalizable and all of its eigenvalues are 0 or 1
< L*=Land L?=1L
because when [L] 4 = D = diag(\1,- -+, A,,) we have
I’=L < D>=D < \?>=\foralli < ); € {0,1} for all i.

Similarly, L is a reflection (onto some subspace Uy C U) when there is an orthonormal

basis A for U such that
I 0

<= L is orthogonally diagonalizable and all of its eigenvalues are 1 or -1
< L*=Land [?=1] < L*=Land 'L =1.

and so we see that

L is a reflection map



8.14 Theorem: (Singular Value Decomposition) Let U and V be finite dimensional inner
product spaces over F = R or C. Let L : U — V be a linear map. Then there exist
orthonormal bases A and B for U and V such that [L]j is of the block form

[L]é:(g 8) with D:diag(m,az,"',ar)

with r = rank(L) and 01 > 09 > -+ > 0, > 0. The positive real numbers o; are unique.

Proof: First, let us prove that the numbers o4, - -, 0, are uniquely determined from L.
Suppose A = {uy, -, ux} and B = {vy,---,v;} are orthonormal bases for U and V such
that [L]é = (Zg 8) € M, (F) where D = diag(oq,---,0,) with 07 > -+ > o, > 0.

Since [L]A = (10) 8) € M« (F), we must have L(u;) = o;v; for 1 <i <rand L(u;) =0
for r < ¢ < k. Since [L*]ﬁ = 10) 8) € My (F), we must have L*(v;) = oju; for

1 <i<rand L*(v;) =0 for r <i <. It follows that
L*L(u;) = L*(03v;) = 0;L* (v;) = 03%u;

for 1 <i < rand L*L(u;) = L*(0) = 0 for r < i < k. Thus for 1 < i < r, the values
\i = 0;2 must be the non-zero eigenvalues of L*L, and they must be positive and real, and
the vectors u; must be corresponding eigenvectors.

Next, let us prove that there do indeed exist orthonormal bases which put L into the
desired form. Note that Null(L*L) = Null(L), indeed for z € U we have

Lr=0=— L*Lx =0, and
L'Lx =0 = <:B,L*Lx> =0= <L:1;,La:> =0= Lz =0.
In particular, we have rank(L*L) = rank(L) = r. Also note that L*L is Hermitian since
(L*L)* = L*L** = L*L, and so L*L is orthonormaly diagonalzable and its eigenvalues are
all real. Furthermore, note that the eigenvalues of L*L are all non-negative because if A is

an eigenvalue of L*L and wu is a corresponding unit eigenvector so that we have Lu = \u
and ||lu|| = 1, then we have

A= Aull* = Mu,u) = (A, u) = (L*Lu,u) = (u, L*Lu) = (Lu, Lu) = HLUH2 > 0.

Let A1, -+, A\x be the eigenvalues of L*L with \;y > --->r >0and \,11 =--- = A\ = 0.
let 0; =/ for 1 <i<ksothat oy > --- >0, >0and 0,4 =--- = 0} = 0. Choose an
orthonormal basis A for U so that [L*L] 4 = diag(A1,---,Ax). Note that {w,y1, -, ur}
is an orthonormal basis for Null(L*L) = Null(L) and {uq,---,u,} is an orthonormal basis
for Null(L)t. For 1 <i <7, let v; = - L(u;). Note that {vi,---,v,} is orthonormal since

1
<’U¢,Uj> = <a% L(Ul) ) ULJ_ L(uj)> = Uila_j <L(uz),L(u])> = #O’j <UZ,L*L(UJ)>

1 A A
= Gio7 (Ui Ajug) = Fo= (i, ug) = 522 0ij = 0y
since UA(’T = 1. Extend {vy,---,v,} to an orthonormal basis for V, and note that [L]7 is
273

of the desired form.

8.15 Definition: The singular values of a linear map L : U — V are the square roots
of the eigenvalues of the map L*L. The singular values of a matrix A are the square
roots of the eigenvalues of the matrix A*A.



