
8. Orthonormal Triangularization and Diagonalization

8.1 Definition: Let F = R or C. For a linear map L : U → U , where U is a finite di-
mensional inner product space over F, we say that L is orthonormally triangularizable
when there exists an othonormal basis A for U such that [L]A is upper triangular. For
a matrix A ∈ Mn×n(F), we say that A is orthonormaly triangularizable when there
exists a matrix P ∈ Mn×n(F) with P ∗P = I such that P ∗AP is upper triangular. Most
books do not use the term orthonormally triangularizable but, instead, in the case that
F = R they use the term orthogonally triangularizable and when F = C they use the
term unitarily triangularizable.

8.2 Theorem: Let U be a finite dimensional inner product space over F = R or C.
Let A be an orthonormal basis for U . Let L : U → U be a linear map and let A = [L]A.
Then L is orthonormally triangularlizable if and only if A is orthonormally triangularizable.

Proof: The proof is left as an exercise.

8.3 Theorem: (Schur) Let U be a finite dimensional inner product space over F = R or
C. Let L : U → U be linear. Then L is orthonormally triangularizable if and only if the
characteristic polynomial fL(x) splits.

Proof: Suppose that L is orthonormally trianglarizable. Choose an orthonormal basis A
for U such that [L]A is upper triangular. Let T = [L]A ∈ Mn(F). Then fL(x) = fT (x),

and since T is upper triangular we have fT (x) = (−1)n
n∏
k=1

(
x− Tk,k

)
, which splits.

Conversely, suppose that fL(x) splits. Choose any orthonormal basis A for U and let
A = [L]A. Since fA(x) = fL(x), we know that fA(x) splits. We shall show, by induction on
n, that for any matrix A ∈Mn(F) for which fA(x) splits, there exists a matrix P ∈Mn(F)
with P ∗P = I such that P ∗AP is upper triangular. When n = 1, the 1 × 1 matrix A is
already upper triangular and we can take P to be the 1 × 1 identity matrix. Fix n ≥ 2,
let A ∈ Mn, suppose that fA(x) splits, and suppose, inductively that for every matrix
B ∈ Mn−1(F) for which fB(x) splits, we can find a matrix Q ∈ Mn−1(F) with Q∗Q = I
such that Q∗BQ is upper triangular. Since fA(x) splits, A has an eigenvalue. Let λ1 be
an eigenvalue of A and let u1 ∈ Fn be a corresponding eigenvector with ‖u1‖ = 1. Extend
{u1} to an orthonormal basis {u1, u2, · · · , un} for Fn and let R = (u1, u2, · · · , un) ∈Mn(F).
Note that since {u1, u2, · · · , un} is orthonormal we have R∗R = I. The kth entry of the
first column of the matrix R∗AR is equal to

(R∗AR)k,1 = ek
∗R∗ARe1 = uk

∗Au1 = 〈Au1, uk〉 = 〈λ1u1, uk〉 = λ1δk,1

so we have

R∗AR =

(
λ1 xT

0 B

)
for some x ∈ Fn−1 and some B ∈ Mn−1(F). Since fA(x) = fR∗AR(x) = −(x − λ1)fB(x),
so we see that fB(x) splits. By the induction hypothesis, we can choose Q ∈ Mn−1(F)

with Q∗Q = I such that Q∗BQ is upper triangular. Letting P = R

(
1 0
0 Q

)
, we have

P ∗AP =

(
1 0
0 Q∗

)(
λ1 xT

0 B

)(
1 0
0 Q

)
=

(
λ1 xTQ
0 Q∗BQ

)
which is upper triangular, and it is easy to check that P ∗P = I.
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8.4 Definition: Let F = R or C. For a linear map L : U → U , where U is a finite
dimensional inner product space over F, we say that L is orthonormally diagonalizable
when there exists an orthonormal basis A for U such that [L]A is diagonal. For a matrix
A ∈Mn(F), we say that A is orthonormally diagonalizable when there exists a matrix
P ∈ Mn(F) with P ∗P = I such that P ∗AP is diagonal. Most books do not use the term
orthonormally diagonalizable but, instead, when F = R they use the term orthogonally
diagonalizable and when F = C they use the term unitarily diagonalizable.

8.5 Theorem: Let U be a finite dimensional inner product space over F = R or C. Let
A be an orthonormal basis for U . Let L : U → U be a linear map and let A = [L]A. Then
L is orthonormally diagonalizable if and only if A is orthonormally diagonalizable.

Proof: The proof is left as an exercise.

8.6 Definition: Let F = R or C. For a linear map L : U → U , where U is an inner
product space over F, we say that L is normal when the adjoint L∗ exists and L∗L = LL∗.
For a matrix A ∈Mn(F), we say that A is normal when A∗A = AA∗. Note that when U
is finite dimensional and A is an orthonormal basis for U , the map L is normal if and only
if its matrix [L]A is normal.

8.7 Theorem: (Diagonalization of Normal Matrices) Let U be a finite dimensional inner
product space over F = R or C. Let L : U → U be linear. Then L is orthonormally
diagonalizable if and only if L is normal and the characteristic polynomial fL(x) splits.

Proof: Suppose first that L is orthonormally diagonalizable. Choose an orthonormal basis
A for U so that [L]A is diagonal, say [L]A = D = diag(λ1, λ2, · · · , λn) ∈ Mn×n(F). Then

fL(x) splits because fL(x) = fD(x) = (−1)n
n∏
i=1

(x − λi), and L is normal because D is

normal, indeed

D∗D = diag
(
λ1, · · · , λn

)
diag

(
λ1, · · · , λn

)
= diag

(
|λ1|2, · · · , |λn|2

)
= diag

(
λ1, · · · , λn

)
diag

(
λ1, · · · , λn

)
= DD∗.

Conversely, suppose that L is normal and that fL(x) splits. Since fL(x) splits, by Schur’s
Theorem we can orthonormally triangularize L. Choose an orthonormal basis A for U so
that [L]A is upper triangular. Let T = [L]A ∈ Mn(F). Since L is normal, it follows that
T is normal. Since T is normal and upper triangular, it follows that T is in fact diagonal:

Indeed, the diagonal entries of T ∗T and of TT ∗ are given by (T ∗T )k,k =
n∑
i=1

(T ∗)k,iTi,k =

n∑
i=1

T i,kTi,k =
n∑
i=1

|Ti,k|2 and (TT ∗)k,k =
n∑
i=1

Tk,i(T
∗)i,k =

n∑
i=1

Tk,iT k,i =
n∑
i=1

|Tk,i|2. Since

T is upper triangular, so that Ti,j = 0 whenever i > j, these expressions simplify to

(T ∗T )k,k =
k∑
i=1

|Ti,k|2 and (TT ∗)k,k =
n∑
i=k

|Tk,i|2.

Comparing these diagonal entries, we find that

(T ∗T )1,1 = (TT ∗)1,1 =⇒ |T1,1|2 = |T1,1|2 + |T1,2|2 + · · ·+ |T1,n|2 =⇒ T1,i = 0 for i > 1,

(T ∗T )2,2 = (TT ∗)2,2 =⇒ |T2,2|2 = |T2,2|2 + |T2,3|2 + · · ·+ |T2,n|2 =⇒ T2,i = 0 for i > 2,

and so on, so that T is diagonal.
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8.8 Definition: Let F = R or C. For a linear map L : U → U , where U is an inner
product space over F, we say that L is unitary when the adjoint L∗ exists and we have
L∗L = I = LL∗. For a matrix A ∈ Mn(F), we say that A is unitary when A∗A = I.
Note that when U is finite dimensional and A is an orthonormal basis for U , the map L
is unitary if and only if its matrix [L]A is unitary. When F = R the term unitary can be
replaced by the term orthogonal.

8.9 Theorem: Let U be a finite dimensional inner product space over F = R or C. Let
L : U → U be a linear map. Then the following are equivalent.

(1) L is unitary,
(2) L preserves inner product, that is

〈
L(x), L(y)

〉
= 〈x, y〉 for all x, y ∈ U ,

(3) L preserves norm, that is
∥∥L(x)

∥∥ = ‖x‖ for all x ∈ U .

Proof: First we show that (1) is equivalent to (2). Suppose that L is unitary. Then
for x, y ∈ U we have

〈
Lx,Ly

〉
=
〈
x, L∗Ly

〉
= 〈x, Iy〉 = 〈x, y〉, and so L preserves inner

product. Conversely, suppose that L preserves inner product. Let y ∈ U . Then for all
x ∈ U we have

〈
x, L∗Ly

〉
=
〈
Lx,Ly

〉
= 〈x, y〉 Since

〈
x, L∗Ly

〉
=
〈
x, y
〉

for all x ∈ U , it
follows (from Theorem 5.8) that L∗Ly = y. Since L∗Ly = y for all y ∈ U , it follows that
L∗L = I, and so L is unitary.

Next we shall show that (2) is equivalent to (3). Suppose that L preserves inner
product. Then for x ∈ U we have∥∥Lx∥∥2 =

〈
Lx,Lx

〉
= 〈x, x〉 = ‖x‖2

so that L preserves norm. Conversely, suppose that L preserves norm. Then, using the
Polarization Identity and the linearity of L, for x, y ∈ U we have

〈Lx,Ly〉 = 1
4

(∥∥Lx+ Ly
∥∥2 + i

∥∥Lx+ iLy
∥∥2 − ∥∥Lx− Ly∥∥2 − i∥∥Lx− iLy∥∥2)

= 1
4

(∥∥L(x+ y)
∥∥2 + i

∥∥L(x+ iy)
∥∥2 − ∥∥L(x− y)

∥∥2 − i∥∥L(x− iy)
∥∥2)

= 1
4

(
‖x+ y‖2 + i‖x+ iy‖2 − ‖x− y‖2 − i‖x− iy‖2

)
= 〈x, y〉.

8.10 Theorem: (Diagonalization of Unitary Maps) Let U be a finite dimensional inner
product space over F = R or C and let L : U → U be linear. Then L is orthonormally
diagonalizable and all its eigenvalues have norm 1 if and only if L is unitary and fL(x)
splits.

Proof: Suppose that L is orthonormally diagonalizable and that all of its eigenvalues have
norm 1. Choose an orthonormal basis A for U so that [L]A = D = diag

(
λ1, · · · , λn

)
where

|λi| = 1 for 1 ≤ i ≤ n. Then fL(x) splits since fL(x) = fD(x) = (−1)n
n∏
i=1

(x− λi), and L

is unitary since D is unitary, indeed

D∗D = diag
(
λ1, · · · , λn

)
diag

(
λ1, · · · , λn

)
= diag

(
|λ1|2, · · · , |λn|2

)
= I.

Conversely, suppose that L is unitary and that fL(x) splits. Since L is unitary, it is also
normal because L∗L = I = LL∗. Since L is normal and fL(x) splits, L is orthonormally di-
agonalizable. Choose an orthonormal basisA for U such that [L]A = D = diag(λ1, · · · , λn).
Since L is unitary, so is D, and so we have I = D∗D = diag

(
|λ1|2, · · · , |λn|2

)
, and hence

|λi| = 1 for all indices i.

3



8.11 Definition: Let F = R or C. For a linear map L : U → U , where U is an inner
product space over F, we say that L is Hermitian (or self-adjoint) when the adjoint L∗

exists and we have L∗ = L. For a matrix A ∈Mn(F), we say that A is Hermitian (or self-
adjoint) when A∗ = A. Note that when U is finite dimensional and A is an orthonormal
basis for U , the map L is Hermitian if and only if its matrix A is Hermitian. When F = R,
the terms Hermitian and self-adjoint can be replaced by the term symmetric.

8.12 Theorem: (Diagonalization of Hermitian Maps) Let U be a finite dimensional inner
product space over F = R or C and let L : U → U be linear. Then L is orthonormally
diagonalizable and all its eigenvalues are real if and only if L is Hermitian.

Proof: Suppose that L is orthonormally diagonalizable and all of its eigenvalues are real.
Choose an orthonormal basis A for U so that [L]A = D = diag(λ1, · · · , λn) with each
λi ∈ R. Then L is Hermitian since D is Hermitian, indeed

D∗ = diag
(
λ1, · · · , λn

)
= diag

(
λ1, · · · , λn

)
= D.

Conversely, suppose that L is Hermitian, that is L∗ = L. Since L is Hermitian, it is also
normal, indeed we have L∗L = L2 = LL∗. Choose any orthonormal basis A for U and
let A = [L]A ∈ Mn(F). Since L∗ = L, we also have A∗ = A. Whether F = R or C, we
can consider A as a matrix with complex entries A ∈ Mn(C). Let λ ∈ C be a complex
eigenvalue of A and let u ∈ Cn be an eigenvector, scaled so that ‖u‖ = 1. Using the fact
that A∗ = A, we have

λ = λ〈u, u〉 = 〈λu, u〉 = 〈Au, u〉 = 〈u,A∗u〉 = 〈u,Au〉 = 〈u, λu〉 = λ〈u, u〉 = λ.

so the eigenvalues of A ∈ Mn(C) are all real. Thus the eigenvalues of L are all real (even
when F = C), and fL(x) = fA(x) splits (even when F = R). Since L is normal and fL(x)
splits, L is orthonormally diagonalizable.

8.13 Example: Let U be a finite dimensional inner product space over F = R or C. Let
L : U → U be a linear map. Then L is an orthogonal projection (onto some subspace
U0 ⊆ U) when there exists an orthonormal basis A for U (obtained by extending an
orthonormal basis A0 for U0 to all of U) such that

[L]A =

(
I 0
0 0

)
.

Thus we see that

L is an orthogonal projection map

⇐⇒ L is orthonormally diagonalizable and all of its eigenvalues are 0 or 1

⇐⇒ L∗ = L and L2 = L

because when [L]A = D = diag(λ1, · · · , λn) we have

L2 = L ⇐⇒ D2 = D ⇐⇒ λi
2 = λi for all i ⇐⇒ λi ∈ {0, 1} for all i.

Similarly, L is a reflection (onto some subspace U0 ⊆ U) when there is an orthonormal
basis A for U such that

[L]A =

(
I 0
0 −I

)
and so we see that

L is a reflection map

⇐⇒ L is orthogonally diagonalizable and all of its eigenvalues are 1 or -1

⇐⇒ L∗ = L and L2 = I ⇐⇒ L∗ = L and L∗L = I.
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8.14 Theorem: (Singular Value Decomposition) Let U and V be finite dimensional inner
product spaces over F = R or C. Let L : U → V be a linear map. Then there exist
orthonormal bases A and B for U and V such that [L]AB is of the block form

[L]AB =

(
D 0
0 0

)
with D = diag

(
σ1, σ2, · · · , σr

)
with r = rank(L) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The positive real numbers σi are unique.

Proof: First, let us prove that the numbers σ1, · · · , σr are uniquely determined from L.
Suppose A = {u1, · · · , uk} and B = {v1, · · · , vl} are orthonormal bases for U and V such

that [L]AB =

(
D 0
0 0

)
∈ Ml×k(F) where D = diag(σ1, · · · , σr) with σ1 ≥ · · · ≥ σr > 0.

Since [L]AB =

(
D 0
0 0

)
∈Ml×k(F), we must have L(ui) = σivi for 1 ≤ i ≤ r and L(ui) = 0

for r < i ≤ k. Since [L∗]BA =

(
D 0
0 0

)
∈ Mk×l(F), we must have L∗(vi) = σiui for

1 ≤ i ≤ r and L∗(vi) = 0 for r < i ≤ l. It follows that

L∗L(ui) = L∗(σivi) = σiL
∗(vi) = σi

2ui

for 1 ≤ i ≤ r and L∗L(ui) = L∗(0) = 0 for r < i ≤ k. Thus for 1 ≤ i ≤ r, the values
λi = σi

2 must be the non-zero eigenvalues of L∗L, and they must be positive and real, and
the vectors ui must be corresponding eigenvectors.

Next, let us prove that there do indeed exist orthonormal bases which put L into the
desired form. Note that Null(L∗L) = Null(L), indeed for x ∈ U we have

Lx = 0 =⇒ L∗Lx = 0 , and

L∗Lx = 0 =⇒
〈
x, L∗Lx

〉
= 0 =⇒

〈
Lx,Lx

〉
= 0 =⇒ Lx = 0.

In particular, we have rank(L∗L) = rank(L) = r. Also note that L∗L is Hermitian since
(L∗L)∗ = L∗L∗∗ = L∗L, and so L∗L is orthonormaly diagonalzable and its eigenvalues are
all real. Furthermore, note that the eigenvalues of L∗L are all non-negative because if λ is
an eigenvalue of L∗L and u is a corresponding unit eigenvector so that we have Lu = λu
and ‖u‖ = 1, then we have

λ = λ‖u‖2 = λ〈u, u〉 = 〈λu, u〉 =
〈
L∗Lu, u

〉
=
〈
u, L∗Lu

〉
=
〈
Lu,Lu

〉
=
∥∥Lu∥∥2 ≥ 0.

Let λ1, · · · , λk be the eigenvalues of L∗L with λ1 ≥ · · · ≥ r > 0 and λr+1 = · · · = λk = 0.
let σi =

√
λi for 1 ≤ i ≤ k so that σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σk = 0. Choose an

orthonormal basis A for U so that [L∗L]A = diag(λ1, · · · , λk). Note that {ur+1, · · · , uk}
is an orthonormal basis for Null(L∗L) = Null(L) and {u1, · · · , ur} is an orthonormal basis
for Null(L)⊥. For 1 ≤ i ≤ r, let vi = 1

σi
L(ui). Note that {v1, · · · , vr} is orthonormal since

〈vi, vj〉 =
〈

1
σi
L(ui) ,

1
σj
L(uj)

〉
= 1

σi σj

〈
L(ui), L(uj)

〉
= 1

σiσj

〈
ui, L

∗L(uj)
〉

= 1
σiσj
〈ui, λjuj〉 =

λj

σiσj
〈ui, uj〉 =

λj

σiσj
δi,j = δi,j .

since
λj

σjσj
= 1. Extend {v1, · · · , vr} to an orthonormal basis for V , and note that [L]AB is

of the desired form.

8.15 Definition: The singular values of a linear map L : U → V are the square roots
of the eigenvalues of the map L∗L. The singular values of a matrix A are the square
roots of the eigenvalues of the matrix A∗A.
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